
1 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

[MS-OXMSG]:

Outlook Item (.msg) File Format

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.

No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjunction with publicly available standards

specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 New Initial Availability.

4/25/2008 0.2 Minor
Revised and updated property names and other technical
content.

6/27/2008 1.0 Major Initial Release.

8/6/2008 1.01 Minor Revised and edited technical content.

9/3/2008 1.02 Minor Updated references.

12/3/2008 1.03 Minor Updated IP notice.

4/10/2009 2.0 Major Updated technical content for new product releases.

7/15/2009 3.0 Major Revised and edited for technical content.

11/4/2009 3.1.0 Minor Updated the technical content.

2/10/2010 4.0.0 Major Updated and revised the technical content.

5/5/2010 4.0.1 Editorial Revised and edited the technical content.

8/4/2010 5.0 Major Significantly changed the technical content.

11/3/2010 5.0.1 Editorial Changed language and formatting in the technical content.

3/18/2011 6.0 Major Significantly changed the technical content.

8/5/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/7/2011 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 7.0 Major Significantly changed the technical content.

4/27/2012 7.1 Minor Clarified the meaning of the technical content.

7/16/2012 8.0 Major Significantly changed the technical content.

10/8/2012 9.0 Major Significantly changed the technical content.

2/11/2013 9.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/26/2013 9.1 Minor Clarified the meaning of the technical content.

11/18/2013 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

7/31/2014 9.1 None
No changes to the meaning, language, or formatting of the
technical content.

3 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Date
Revision
History

Revision
Class Comments

10/30/2014 9.2 Minor Clarified the meaning of the technical content.

3/16/2015 10.0 Major Significantly changed the technical content.

5/26/2015 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/14/2015 11.0 Major Significantly changed the technical content.

6/13/2016 12.0 Major Significantly changed the technical content.

4 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 8
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.3.1 Compound Files .. 8
1.3.2 Properties .. 8
1.3.3 Storages .. 9
1.3.4 Top Level Structure ... 9

1.4 Relationship to Protocols and Other Structures .. 9
1.5 Applicability Statement ... 9
1.6 Versioning and Localization ... 10
1.7 Vendor-Extensible Fields ... 10

2 Structures ... 11
2.1 Properties ... 11

2.1.1 Properties of a .msg File .. 11
2.1.1.1 PidTagStoreSupportMask ... 11
2.1.1.2 Other Properties ... 11

2.1.2 Fixed Length Properties ... 11
2.1.3 Variable Length Properties ... 12
2.1.4 Multiple-Valued Properties ... 12

2.1.4.1 Fixed Length Multiple-Valued Properties ... 13
2.1.4.2 Variable Length Multiple-Valued Properties ... 13

2.1.4.2.1 Length Stream .. 14
2.1.4.2.1.1 Length for PtypMultipleBinary .. 14
2.1.4.2.1.2 Length for PtypMultipleString8 or PtypMultipleString 14

2.1.4.2.2 Value Streams .. 14
2.2 Storages ... 15

2.2.1 Recipient Object Storage ... 15
2.2.2 Attachment Object Storage .. 15

2.2.2.1 Embedded Message Object Storage ... 16
2.2.2.2 Custom Attachment Storage ... 16

2.2.3 Named Property Mapping Storage ... 17
2.2.3.1 Property ID to Property Name Mapping .. 17

2.2.3.1.1 GUID Stream .. 17
2.2.3.1.2 Entry Stream .. 17

2.2.3.1.2.1 Index and Kind Information... 18
2.2.3.1.3 String Stream ... 18

2.2.3.2 Property Name to Property ID Mapping Streams 19
2.2.3.2.1 Determining GUID Index .. 19
2.2.3.2.2 Generating Stream ID .. 19

2.2.3.2.2.1 Stream ID Equation.. 19
2.2.3.2.3 Generating Stream Name ... 20
2.2.3.2.4 Obtaining Stream Data ... 20

2.3 Top Level Structure .. 21
2.4 Property Stream .. 21

2.4.1 Header .. 21
2.4.1.1 Top Level ... 21
2.4.1.2 Embedded Message object Storage ... 22
2.4.1.3 Attachment Object Storage or Recipient Object Storage 23

2.4.2 Data ... 23
2.4.2.1 Fixed Length Property Entry ... 23

2.4.2.1.1 Fixed Length Property Value ... 24

5 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

2.4.2.2 Variable Length Property or Multiple-Valued Property Entry 24

3 Structure Examples ... 26
3.1 From Message Object to .msg File .. 26
3.2 Named Property Mapping .. 29

3.2.1 Property ID to Property Name .. 29
3.2.1.1 Fetching the Name Identifier .. 29

3.2.1.1.1 Numerical Named Property ... 29
3.2.1.1.2 String Named Property ... 30

3.2.1.2 Fetching the GUID... 30
3.2.2 Property Name to Property ID .. 31

3.3 Custom Attachment Storage .. 32

4 Security ... 34
4.1 Security Considerations for Implementers ... 34
4.2 Index of Security Parameters .. 34

5 Appendix A: Product Behavior ... 35

6 Change Tracking .. 36

7 Index ... 38

6 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

1 Introduction

The Outlook Item (.msg) File Format is used to format a Message object, such as an e-mail
message, an appointment, a contact, a task, and so on, for storage in the file system.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specification are informative.

1.1 Glossary

This document uses the following terms:

Attachment object: A set of properties that represents a file, Message object, or structured
storage that is attached to a Message object and is visible through the attachments table for a

Message object.

contact: A person, company, or other entity that is stored in a directory and is associated with one

or more unique identifiers and attributes (2), such as an Internet message address or login
name.

cyclic redundancy check (CRC): An algorithm used to produce a checksum (a small, fixed
number of bits) against a block of data, such as a packet of network traffic or a block of a
computer file. The CRC is a broad class of functions used to detect errors after transmission or

storage. A CRC is designed to catch random errors, as opposed to intentional errors. If errors
might be introduced by a motivated and intelligent adversary, a cryptographic hash function
should be used instead.

Embedded Message object: A Message object that is stored as an Attachment object within
another Message object.

globally unique identifier (GUID): A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.

Specifically, the use of this term does not imply or require that the algorithms described in
[RFC4122] or [C706] must be used for generating the GUID. See also universally unique
identifier (UUID).

little-endian: Multiple-byte values that are byte-ordered with the least significant byte stored in
the memory location with the lowest address.

Message object: A set of properties that represents an email message, appointment, contact, or
other type of personal-information-management object. In addition to its own properties, a
Message object contains recipient properties that represent the addressees to which it is
addressed, and an attachments table that represents any files and other Message objects that
are attached to it.

message store: A unit of containment for a single hierarchy of Folder objects, such as a mailbox
or public folders.

name identifier: The identifier that is used to refer to a named property. It can be either a
LONG numerical value or a Unicode string. It is represented by the Kind member variable of the
PropertyName structure, depending on the value of the Kind member variable.

named property: A property that is identified by both a GUID and either a string name or a 32-bit
identifier.

named property mapping: A process that converts PropertyName structures to property IDs and
vice-versa. Named properties can be referred to by their PropertyName. However, before

accessing the property on a specific message store, named properties need to be mapped to

http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824

7 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

property IDs that are valid for that message store. The reverse is also true. When properties
need to be copied across message stores, property IDs that are valid for the source message

store need to be mapped to their PropertyName structures before they can be sent to the
destination message store.

non-Unicode: A character set (1) that has a restricted set of glyphs, such as Shift_JIS or ISO-
2022-JP.

numerical named property: A named property that has a numerical name identifier, which is
stored in the LID field of a PropertyName structure.

property ID: A 16-bit numeric identifier of a specific attribute (1). A property ID does not include
any property type information.

property name: A string that, in combination with a property set, identifies a named property.

property set: A set of attributes (1), identified by a GUID. Granting access to a property set
grants access to all the attributes in the set.

property tag: A 32-bit value that contains a property type and a property ID. The low-order 16
bits represent the property type. The high-order 16 bits represent the property ID.

property type: A 16-bit quantity that specifies the data type of a property value.

Recipient object: A set of properties that represent the recipient of a Message object.

storage: An element of a compound file that is a unit of containment for one or more storages and
streams, analogous to directories in a file system, as described in [MS-CFB].

stream: An element of a compound file, as described in [MS-CFB]. A stream contains a sequence
of bytes that can be read from or written to by an application, and they can exist only in
storages.

string named property: A named property that has a Unicode string as a name identifier, which
is stored in the Name field of a PropertyName structure. A string named property can have any

property type; "string" refers only to its name identifier.

tagged property: A property that is defined by a 16-bit property ID and a 16-bit property type.
The property ID for a tagged property is in the range 0x001 – 0x7FFF. Property IDs in the range
0x8000 – 0x8FFF are reserved for assignment to named properties.

Unicode: A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF-8, UTF-16, and UTF-32) and seven schemes (UTF-8, UTF-16, UTF-16

BE, UTF-16 LE, UTF-32, UTF-32 LE, and UTF-32 BE).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
http://go.microsoft.com/fwlink/?LinkId=154659
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx

8 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will

assist you in finding the relevant information.

[MS-CFB] Microsoft Corporation, "Compound File Binary File Format".

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[MS-OXCDATA] Microsoft Corporation, "Data Structures".

[MS-OXCMSG] Microsoft Corporation, "Message and Attachment Object Protocol".

[MS-OXPROPS] Microsoft Corporation, "Exchange Server Protocols Master Property List".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt

1.2.2 Informative References

[MSDN-STS] Microsoft Corporation, "About Structured Storage", http://msdn.microsoft.com/en-
us/library/aa378734.aspx

[X25] ITU-T, "X25: Interface between Data Terminal Equipment (DTE) and Data Circuit-terminating
Equipment (DCE) for terminals operating in the packet mode and connected to public data networks
by dedicated circuit", ITU-T Recommendation X.25, October 1996, http://www.itu.int/rec/T-REC-X.25-
199610-I/en

1.3 Overview

The Outlook Item (.msg) File Format is a syntax for storing a Message object, such as an e-mail, an
appointment, a contact, a task, and so on, in a file. Any properties that are present on the Message

object are also present in the .msg file.

For information about a Message object and its properties, see the Message and Attachment Object
Protocol, which is described in [MS-OXCMSG].

1.3.1 Compound Files

The .msg File Format is based on the Compound File Binary File Format, which is described in [MS-
CFB]. The paradigm provides for the concept of storages and streams, which are similar to

directories and files, except that the entire hierarchy of storages and streams are packaged into a
single file, called a compound file. This facility allows applications to store complex, structured data in
a single file. For more information regarding structured storage in a compound file, see [MSDN-STS].

The format specifies a number of storages, each representing one major component of the Message
object. A number of streams are contained within those storages, each stream representing a property

(or a set of properties) of that component. Nesting is possible, as described by [MS-CFB], where one
storage can contain substorages.

1.3.2 Properties

Properties are stored in streams contained within storages or at the top level of the .msg file. They
can be classified into the following broad categories:

 Fixed length properties — For more information, see section 2.1.2.

mailto:dochelp@microsoft.com
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=112496
http://go.microsoft.com/fwlink/?LinkId=112496
http://go.microsoft.com/fwlink/?LinkId=193335
http://go.microsoft.com/fwlink/?LinkId=193335
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
http://go.microsoft.com/fwlink/?LinkId=112496

9 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

 Variable length properties — For more information, see section 2.1.3.

 Multiple-valued properties — For more information, see section 2.1.4.

Regardless of the category, a property is either a tagged property or a named property. There is
no difference in the way the property is stored based on that attribute. However, for all named

properties, appropriate mapping information has to be provided as specified by the named property
mapping storage.

1.3.3 Storages

Storages are used to represent major components of the Message object. The .msg File Format
defines the following storages:

 Recipient object storage — For more information, see section 2.2.1.

 Attachment object storage — For more information, see section 2.2.2.

 Embedded Message object storage — For more information, see section 2.2.2.1.

 Custom attachment storage — For more information, see section 2.2.2.2.

 Named property mapping storage — For more information, see section 2.2.3.

1.3.4 Top Level Structure

The top level of the .msg file represents the entire Message object. Depending on what type of
Message object it is, the number of Recipient objects and Attachment objects it has, and the
properties that are set on it, there can be different storages and stream in the corresponding .msg file.

1.4 Relationship to Protocols and Other Structures

The .msg File Format has the following relationships to protocols and other structures:

 It is based on the Compound File Binary File Format, as described in [MS-CFB].

 It uses structures and data types that are described in [MS-OXCDATA] and [MS-DTYP].

 It uses the properties that are used by the Message and Attachment Object Protocol, as described
in [MS-OXCMSG].

For conceptual background information and overviews of the relationships and interactions between
this and other protocols, see [MS-OXPROTO].

1.5 Applicability Statement

The .msg File Format is used to store a Message object in a .msg file, which then can be shared
between clients or message stores that use the file system.

There are scenarios for which storing a Message object in the .msg File Format would not be
particularly well-suited. For example, a .msg file is not suitable in the following scenarios:

 Maintaining a large standalone archive. A better option would be a more full-featured format that

can render views more efficiently.

 Sending information to an unknown receiver. In this scenario, it is possible that the format is not
supported by the receiver or that information that is private or irrelevant might be transmitted.

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-OXPROTO%5d.pdf#Section_734ab967e43e425babe1974af56c0283

10 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

1.6 Versioning and Localization

None.

1.7 Vendor-Extensible Fields

The .msg File Format does not provide any extensibility beyond what is specified in [MS-CFB].

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b

11 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

2 Structures

2.1 Properties

Properties are stored in streams contained within one of the storages or at the top level of the .msg

file. There is no difference in property storage semantics for named properties when compared to
tagged properties.

2.1.1 Properties of a .msg File

2.1.1.1 PidTagStoreSupportMask

Type: PtypInteger32 ([MS-OXCDATA] section 2.11.1)

The PidTagStoreSupportMask property ([MS-OXPROPS] section 2.1020) indicates whether string
properties within the .msg file are Unicode-encoded or not. This property defines multiple flags, but

only the STORE_UNICODE_OK flag is valid. All other bits MUST be ignored. The settings for this
property are summarized in the following table.

Flag name Value Description

STORE_UNICODE_OK 0x00040000 Set if the string properties are
Unicode-encoded.

other flags All values except 0x00040000 All other bits MUST be ignored.

2.1.1.2 Other Properties

A .msg file includes all properties that are present on the Message object that is being stored. If the

Message object includes any Attachment objects, the properties of each Attachment object are also
present in the .msg file. For details about the properties of these objects, see [MS-OXCMSG] section
2.2.1 and section 2.2.2.

2.1.2 Fixed Length Properties

Fixed length properties, within the context of this document, are defined as properties that, as a result
of their type, always have values of the same length.

Following is a list of fixed length property types. All of these property types are specified in [MS-

OXCDATA] section 2.11.1.

 PtypInteger16

 PtypInteger32

 PtypFloating32

 PtypFloating64

 PtypBoolean

 PtypCurrency

 PtypFloatingTime

%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8

12 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

 PtypTime

 PtypInteger64

 PtypErrorCode

All fixed length properties are stored in the property stream. Each fixed length property has one entry

in the property stream, and that entry includes its property tag, its value, and a flag providing
additional information about the property.

2.1.3 Variable Length Properties

A variable length property, within the context of this document, is defined as one where each instance
of the property can have a value of a different size. Such properties are specified along with their
lengths or have alternate mechanisms (such as terminating null characters) for determining their size.

Following is an exhaustive list of property types that are either variable length or stored in a stream
like variable length property types. These property types are specified in [MS-OXCDATA] section

2.11.1.

 PtypString

 PtypBinary

 PtypString8

 PtypGuid

 PtypObject

Each variable length property has an entry in the property stream. However, the entry contains only
the property tag, a flag providing more information about the property, the size, and a reserved field.
The entry does not contain the variable length property's value. Since the value can be variable in

length, it is stored in an individual stream by itself. Properties of type PtypGuid do not have variable

length values (they are always 16 bytes long). However, like variable length properties, they are
stored in a stream by themselves in the .msg file because the values have a large size. Therefore,
they are grouped along with variable length properties.

The name of the stream where the value of a particular variable length property is stored is
determined by its property tag. The stream name is created by prefixing a string containing the

hexadecimal representation of the property tag with the string "__substg1.0_". For example, if the
property is PidTagSubject ([MS-OXPROPS] section 2.1023), the name of the stream is
"__substg1.0_0037001F", where "0037001F" is the hexadecimal representation of the property tag for
PidTagSubject.

If the PidTagStoreSupportMask property (section 2.1.1.1) is present and has the
STORE_UNICODE_OK (bitmask 0x00040000) flag set, all string properties in the .msg file MUST be
present in Unicode format. If the PidTagStoreSupportMask is not available in the property stream

or if the STORE_UNICODE_OK flag is not set, the .msg file is considered to be non-Unicode and all
string properties in the file MUST be in non-Unicode format.

All string properties for a Message object MUST be either Unicode or non-Unicode. The .msg File
Format does not allow the presence of both simultaneously.

2.1.4 Multiple-Valued Properties

A multiple-valued property can have multiple values corresponding to it, stored in an array. All values
of the property MUST have the same type.

%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148

13 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Each multiple-valued property has an entry in the property stream. However, the entry contains only
the property tag, size, and a flag providing more information about the property and not its value.

The value is stored differently depending upon whether the property is a fixed length multiple-valued
property, as specified in section 2.1.4.1, or a variable length multiple-valued property, as specified in

section 2.1.4.2.

2.1.4.1 Fixed Length Multiple-Valued Properties

A fixed length multiple-valued property, within the context of this document, is defined as a property

that can have multiple values, where each value is of the same fixed length type. The following table
is an exhaustive list of fixed length multiple-valued property types and the corresponding value types.
All of the property types and value types in the following table are specified in [MS-OXCDATA] section
2.11.1.

Property type Value type

PtypMultipleInteger16 PtypInteger16

PtypMultipleInteger32 PtypInteger32

PtypMultipleFloating32 PtypFloating32

PtypMultipleFloating64 PtypFloating64

PtypMultipleCurrency PtypCurrency

PtypMultipleFloatingTime PtypFloatingTime

PtypMultipleTime PtypTime

PtypMultipleGuid PtypGuid

PtypMultipleInteger64 PtypInteger64

The array of values of a fixed length multiple-valued property is stored in one stream. The name of
that stream is determined by the property's property tag. The stream name is created by prefixing a
string containing the hexadecimal representation of the property tag with the string "__substg1.0_".
For example, if the property is PidTagScheduleInfoMonthsBusy ([MS-OXPROPS] section 2.973),
the name of the stream is "__substg1.0_68531003", where "68531003" is the hexadecimal

representation of the property tag for PidTagScheduleInfoMonthsBusy.

The values associated with the fixed length multiple-valued property are stored in the stream
contiguously like an array.

2.1.4.2 Variable Length Multiple-Valued Properties

A variable length multiple-valued property, within the context of this document, is defined as a
property that can have multiple values, where each value is of the same type but can have different
lengths. The following table is an exhaustive list of variable length multiple-valued property types and

the corresponding value types. All of the property types and value types in the following table are
specified in [MS-OXCDATA] section 2.11.1.

Property type Value type

PtypMultipleBinary PtypBinary

PtypMultipleString8 PtypString8

%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8

14 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Property type Value type

PtypMultipleString PtypString

For each variable length multiple-valued property, if there are N values, there MUST be N + 1
streams: N streams to store each individual value and one stream to store the lengths of all the
individual values.

2.1.4.2.1 Length Stream

The name of the stream that stores the lengths of all values is derived by prefixing a string containing
the hexadecimal representation of the property tag with the string "__substg1.0_". For example, if the
property is PidTagScheduleInfoDelegateNames ([MS-OXPROPS] section 2.960), the stream's
name is "__substg1.0_6844101F", where "6844101F" is the hexadecimal representation of the
property tag for PidTagScheduleInfoDelegateNames.

The number of entries in the length stream (1) MUST be equal to the number of values of the

multiple-valued property. The entries in the length stream are stored contiguously. The first entry in

the length stream specifies the size of the first value of the multiple-valued property; the second entry
specifies the size of the second value, and so on. The format of length stream entries depends on the
property's type. The following sections specify the format of one entry in the length stream.

2.1.4.2.1.1 Length for PtypMultipleBinary

Each entry in the length stream for a PtypMultipleBinary property ([MS-OXCDATA] section 2.11.1)

has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Reserved

Length (4 bytes): The length, in bytes, of the corresponding value of the PtypBinary property
([MS-OXCDATA] section 2.11.1).

Reserved (4 bytes): This field MUST be set to 0 when writing a .msg file and MUST be ignored when
reading a .msg file.

2.1.4.2.1.2 Length for PtypMultipleString8 or PtypMultipleString

Each entry in the length stream for a PtypMultipleString8 property or a PtypMultipleString

property ([MS-OXCDATA] section 2.11.1) has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Length (4 bytes): The length, in bytes, of the corresponding value of the PtypString8 property or
the PtypString property ([MS-OXCDATA] section 2.11.1). The length includes the NULL
terminating character.

2.1.4.2.2 Value Streams

%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8

15 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Each value of the property MUST be stored in an individual stream. The name of the stream is
constructed as follows:

1. Concatenate a string containing the hexadecimal representation of the property tag to the string
"__substg1.0_".

2. Concatenate the character "-" to the result of step 1.

3. Concatenate a string containing the hexadecimal representation of the index of the value within
that property, to the result of step 2. The index used MUST match the index of the value's length,
which is stored in the length stream. The indexes are zero-based.

For example, the first value of the property PidTagScheduleInfoDelegateNames ([MS-OXPROPS]
section 2.960) is stored in a stream with name "__substg1.0_6844101F-00000000", where
"6844101F" is the hexadecimal representation of the property tag and "00000000" represents the

index of the first value. The second value of the property is stored in a stream with name
"__substg1.0_6844101F-00000001", and so on.

In case of multiple-valued properties of type PtypMultipleString and PtypMultipleString8 ([MS-

OXCDATA] section 2.11.1), all values of the property MUST end with the NULL terminating character.

2.2 Storages

2.2.1 Recipient Object Storage

The Recipient object storage contains streams and substorages that store properties pertaining to one
Recipient object.

The following MUST be true for Recipient object storages:

 The Recipient object storage representing the first Recipient object is named
"__recip_version1.0_#00000000". The storage representing the second is named

"__recip_version1.0_#00000001" and so on. The digit suffix is in hexadecimal. For example, the

storage name for the eleventh Recipient object is "__recip_version1.0_#0000000A".

 A .msg file can have a maximum of 2048 Recipient object storages.

 There is exactly one property stream, and it contains entries for all properties of the Recipient
object.

 There is exactly one stream for each variable length property of the Recipient object, as specified
in section 2.1.3.

2.2.2 Attachment Object Storage

The Attachment object storage contains streams and substorages that store properties pertaining to
one Attachment object.

The following MUST be true for Attachment object storages:

 The Attachment object storage representing the first Attachment object is named

"__attach_version1.0_#00000000". The storage representing the second is named
"__attach_version1.0_#00000001" and so on. The digit suffix is in hexadecimal. For example, the
storage name for the eleventh Attachment object is "__attach_version1.0_#0000000A"

 A .msg file can have a maximum of 2048 Attachment object storages.

%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8

16 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

 There is exactly one property stream, and it contains entries for all properties of the Attachment
object.

 There is exactly one stream for each variable length property of the Attachment object, as
specified in section 2.1.3.

 There is exactly one stream for each fixed length multiple-valued property of the Attachment
object, as specified in section 2.1.4.1.

 For each variable length multiple-valued property of the Attachment object, if there are N values,
there are N + 1 streams, as specified in section 2.1.4.2.

 If the Attachment object itself is a Message object, there is an Embedded Message object storage
under the Attachment object storage.

 If the Attachment object has a value of afStorage (0x00000006) for the PidTagAttachMethod

property ([MS-OXCMSG] section 2.2.2.9), then there is a custom attachment storage under the
Attachment object storage.

 For any named properties on the Attachment object, the corresponding mapping information
MUST be present in the named property mapping storage.

2.2.2.1 Embedded Message Object Storage

The .msg File Format defines separate storage semantics for Embedded Message objects. First, as
for any other Attachment object, an Attachment object storage is created for them. Any properties on
the Attachment object are stored under the Attachment object storage, as would be done for a regular
Attachment object.

Then within that Attachment object storage, a substorage with the name "__substg1.0_3701000D"

MUST be created. All properties of the Embedded Message object are contained inside this storage and
follow the regular property storage semantics.

If there are multiple levels of Attachment objects; for example, if the Embedded Message object

further has Attachment objects, they are represented by substorages contained in the Embedded
Message object storage and follow the regular storage semantics for Attachment objects. For each
Recipient object of the Embedded Message object, there is a Recipient object storage contained in the

Embedded Message object storage.

However, named property mapping information for any named properties on the Embedded
Message object MUST be stored in the named property mapping storage under the top level, and the
Embedded Message object MUST NOT contain a named property mapping storage.

The Embedded Message object can have different Unicode state than the Message object containing it,
and so its Unicode state SHOULD be checked as specified in section 2.1.3.

It is important to understand the difference between the properties on the Attachment object and the

properties on the Embedded Message object that the Attachment object represents. An example of a
property on the Attachment object would be PidTagDisplayName ([MS-OXPROPS] section 2.667),
which is a property that all Attachment objects have irrespective of whether they represent Embedded

Message objects or regular Attachment objects. Such properties are stored in the Attachment object
storage. An example of a property on an Embedded Message object is PidTagSubject ([MS-
OXPROPS] section 2.1023), and it is contained in the Embedded Message object storage.

2.2.2.2 Custom Attachment Storage

The .msg File Format defines separate storage semantics for attachments that represent data from an
arbitrary client application. These are attachments that have the PidTagAttachMethod property
([MS-OXCMSG] section 2.2.2.9) set to afStorage (0x00000006).

%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682

17 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

First, as for any other Attachment object, an Attachment object storage is created for them. Any
properties on the Attachment object are stored under the Attachment object storage, as would be

done for a regular Attachment object.

Then, within that Attachment object storage, a substorage with the name "__substg1.0_3701000D" is

created. At this point, the application that owns the data is allowed to define the structure of the
substorage. Thus, the streams and storages contained in the custom attachment storage are defined
by the application that owns the data. For an example, see section 3.3.

2.2.3 Named Property Mapping Storage

Named properties are specified using their property names.

The mapping between a named property's property name and its property ID and vice versa is
provided by the data inside the various streams contained in the named property mapping storage.
The streams and the role each one plays are specified in the following subsections.

This storage is the one and only place where such mappings are stored for the Message object and all

its subobjects. The storage MUST be named "__nameid_version1.0".

2.2.3.1 Property ID to Property Name Mapping

The streams specified in the following sections MUST be present inside the named property mapping
storage.

2.2.3.1.1 GUID Stream

The GUID stream MUST be named "__substg1.0_00020102". It MUST store the property set GUID
part of the property name of all named properties in the Message object or any of its subobjects,
except for those named properties that have PS_MAPI or PS_PUBLIC_STRINGS, as described in [MS-
OXPROPS] section 1.3.2, as their property set GUID.

The GUIDs are stored in the stream consecutively like an array. If there are multiple named properties

that have the same property set GUID, then the GUID is stored only once and all the named

properties will refer to it by its index.

2.2.3.1.2 Entry Stream

The entry stream MUST be named "__substg1.0_00030102" and consist of 8-byte entries, one for
each named property being stored. The properties are assigned unique numeric IDs (distinct from any
property ID assignment) starting from a base of 0x8000. The IDs MUST be numbered consecutively,

like an array. In this stream, there MUST be exactly one entry for each named property of the
Message object or any of its subobjects. The index of the entry for a particular ID is calculated by
subtracting 0x8000 from it. For example, if the ID is 0x8005, the index for the corresponding 8-byte
entry would be 0x8005 – 0x8000 = 5. The index can then be multiplied by 8 to get the actual byte
offset into the stream from where to start reading the corresponding entry.

Each of the 8-byte entries has the following format:

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Identifier/String Offset

Index and Kind Information

%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148

18 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Name Identifier/String Offset (4 bytes): If this property is a numerical named property (as
specified by the Property Kind subfield of the Index and Kind Information field), this value is

the LID part of the PropertyName structure, as specified in [MS-OXCDATA] section 2.6.1. If this
property is a string named property, this value is the offset in bytes into the strings stream

where the value of the Name field of the PropertyName structure is located.

Index and Kind Information (4 bytes): This value MUST have the structure specified in section
2.2.3.1.2.1.

2.2.3.1.2.1 Index and Kind Information

The following structure specifies the stream indexes and whether the property is a numerical named
property or a string named property.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Property Index GUID Index

Pr
op
ert
y
Ki
nd

Property Index (2 bytes): Sequentially increasing, zero-based index. This MUST be 0 for the first
named property, 1 for the second, and so on.

GUID Index (15 bits): Index into the GUID stream. The possible values are shown in the following
table.

Value GUID to use

1 Always use the PS_MAPI property set, as specified in [MS-OXPROPS] section 1.3.2. No GUID is stored in
the GUID stream.

2 Always use the PS_PUBLIC_STRINGS property set, as specified in [MS-OXPROPS] section 1.3.2. No
GUID is stored in the GUID stream.

>= 3 Use Value minus 3 as the index of the GUID into the GUID stream. For example, if the GUID index is 5,
the third GUID (5 minus 3, resulting in a zero-based index of 2) is used as the GUID for the name
property being derived.

Property Kind (1 bit): Bit indicating the type of the property; zero (0) if numerical named property
and 1 if string named property.

2.2.3.1.3 String Stream

The string stream MUST be named "__substg1.0_00040102". It MUST consist of one entry for each
string named property, and all entries MUST be arranged consecutively, like in an array.

As specified in section 2.2.3.1.2, the offset, in bytes, to use for a particular property is stored in the
corresponding entry in the entry stream. That is a byte offset into the string stream from where the
entry for the property can be read. The strings MUST NOT be null-terminated. Implementers can add a
terminating null character to the string after they read it from the stream, if one is required by the
implementer's programming language.

Each entry MUST have the following format.

%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148

19 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Length

Name (variable)

...

Name Length (4 bytes): The length of the following Name field in bytes.

Name (variable): A Unicode string that is the name of the property. A new entry MUST always start
on a 4 byte boundary; therefore, if the size of the Name field is not an exact multiple of 4, and
another Name field entry occurs after it, null characters MUST be appended to the stream after it
until the 4-byte boundary is reached. The Name Length field for the next entry will then start at
the beginning of the next 4-byte boundary.

2.2.3.2 Property Name to Property ID Mapping Streams

Besides the three streams that provide a map of property IDs to property names, there MUST be
streams in the named property mapping storage that provide a map of property names to property

IDs. Each named property MUST have an entry in one of those streams, although one stream can
have entries for multiple named properties. The following sections specify the steps for creating the
property name to property ID mapping stream.

2.2.3.2.1 Determining GUID Index

The first step in creating the property name to property ID mapping stream is to determine the GUID
index. The GUID index for a named property is computed from the position at which its GUID is stored

in the GUID stream, except if the GUID is that of the PS_MAPI or PS_PUBLIC_STRINGS property set,
as specified in [MS-OXPROPS] section 1.3.2. The following table specifies how the GUID index is

computed.

Property set
GUID
index

PS_MAPI 1

PS_PUBLIC_STRINGS 2

Other property sets: Search for the GUID in the GUID stream. If the GUID is the first one in the GUID
stream, the GUID index is 3; if it is the second GUID in the GUID stream, the GUID index is 4, and so
on.

Index +
3

Index is the zero-based position of the GUID in the GUID stream.

2.2.3.2.2 Generating Stream ID

The second step in creating the property name to property ID mapping stream is to generate the
stream ID. The stream ID is a number used to create the name of the stream for the named property.

The stream ID for a particular named property is calculated differently depending on whether the

named property is a numerical named property or a string named property.

2.2.3.2.2.1 Stream ID Equation

For numerical named properties, the following equation is used:

%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148

20 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

 Stream ID = 0x1000 + ((ID XOR (GUID index << 1))) MOD 0x1F

For string named properties, the following equation is used:

 Stream ID = 0x1000 + ((ID XOR (GUID index << 1 |1))) MOD 0x1F

0x1F is the maximum number of property name to property ID mapping streams that the .msg File
Format allows in the named property mapping storage.

For numerical named properties, ID, in the equation, is the name identifier.

For string named properties, ID is generated by computing the CRC-32 (cyclic redundancy check
(CRC)) for the property's Unicode name identifier.<1> For more information on the CRC-32
algorithm, see [X25].

2.2.3.2.3 Generating Stream Name

The third step in creating the property name to property ID mapping stream is to use the stream ID to

generate a hexadecimal identifier. The hexadecimal identifier is a ULONG ([MS-DTYP]) and is
generated in this case by setting the first 16 bits to be the stream ID and the last 16 bits to be
0x0102. The computation of the hexadecimal identifier is as follows:

 Hexadecimal Identifier = (stream ID << 16) | 0x00000102

The stream name is then generated by prefixing the hexadecimal identifier with the following string:

"__substg1.0_". For example, if the stream ID is 0x100A, the hexadecimal identifier is 0x100A0102
and the stream name is "__substg1.0_100A0102".

Multiple named properties can be mapped to the same stream if the same stream ID is generated by
the stream ID equation.

2.2.3.2.4 Obtaining Stream Data

Each of these streams MUST be an array of 8-byte entries. The number of entries in one stream
depends on the number of properties that were mapped into it by the stream ID equation. Each 8-
byte entry MUST have the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Name Identifier/CRC-32 Checksum

Index and Kind Information

Name Identifier/CRC-32 Checksum (4 bytes): If this property is a numerical named property,
this value is the name identifier obtained from the stream. By comparing this value with the name
identifier obtained from the property name, the correct 8-byte entry can be identified. If this
property is a string named property, this value is the CRC-32 checksum obtained from the stream.
By comparing this value with the CRC-32 computation of the Unicode string name, the correct 8-

byte entry can be identified.

Index and Kind Information (4 bytes): This field contains an Index and Kind Information
structure, as specified in section 2.2.3.1.2.1.

http://go.microsoft.com/fwlink/?LinkId=193335
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

21 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Once the correct entry is identified, the property ID of the named property is simply the sum of
0x8000 and the value of the Property Index field of the Index & Kind Information structure. An

example illustrating this mapping is provided in section 3.2.2.

2.3 Top Level Structure

The top level of the file represents the entire Message object. The numbers and types of storages and
streams present in a .msg file depend on the type of Message object, the number of Recipient objects
and Attachment objects it has, and the properties that are set on it.

The .msg File Format specifies the following top level structure. Under the top level are the following:

 Exactly one Recipient object storage for each Recipient object of the Message object.

 Exactly one Attachment object storage for each Attachment object of the Message object.

 Exactly one named property mapping storage.

 Exactly one property stream, and it MUST contain entries for all properties of the Message object.

 Exactly one stream for each variable length property of the Message object. That stream MUST
contain the value of that variable length property.

 Exactly one stream for each fixed length multiple-valued property of the Message object. That
stream MUST contain all the values of that fixed length multiple-valued property.

 For each variable length multiple-valued property of the Message object, if there are N values,
there MUST be N + 1 streams.

2.4 Property Stream

The property stream MUST have the name "__properties_version1.0" and MUST consist of a header
followed by an array of 16-byte entries. With the exception of Named Property Mapping storage, which
is specified in section 2.2.3, every storage type specified by the .msg File Format MUST have a

property stream in it.

Every property of an object MUST have an entry in the property stream for that object. Fixed length

properties also have their values stored as a part of the entry, whereas the values of variable length
properties and multiple-valued properties are stored in separate streams.

2.4.1 Header

The header of the property stream differs depending on which storage this property stream belongs

to.

2.4.1.1 Top Level

The header for the property stream contained inside the top level of the .msg file, which represents

the Message object itself, has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

...

22 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Next Recipient ID

Next Attachment ID

Recipient Count

Attachment Count

Reserved

...

Reserved (8 bytes): This field MUST be set to zero when writing a .msg file and MUST be ignored
when reading a .msg file.

Next Recipient ID (4 bytes): The ID to use for naming the next Recipient object storage if one is
created inside the .msg file. The naming convention to be used is specified in section 2.2.1. If no
Recipient object storages are contained in the .msg file, this field MUST be set to 0.

Next Attachment ID (4 bytes): The ID to use for naming the next Attachment object storage if one
is created inside the .msg file. The naming convention to be used is specified in section 2.2.2. If
no Attachment object storages are contained in the .msg file, this field MUST be set to 0.

Recipient Count (4 bytes): The number of Recipient objects.

Attachment Count (4 bytes): The number of Attachment objects.

Reserved (8 bytes): This field MUST be set to 0 when writing a .msg file and MUST be ignored when
reading a .msg file.

2.4.1.2 Embedded Message object Storage

The header for the property stream contained inside any Embedded Message object storage has the
following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

...

Next Recipient ID

Next Attachment ID

Recipient Count

Attachment Count

Reserved (8 bytes): This field MUST be set to zero when writing a .msg file and MUST be ignored
when reading a .msg file.

23 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Next Recipient ID (4 bytes): The ID to use for naming the next Recipient object storage if one is
created inside the .msg file. The naming convention to be used is specified in section 2.2.1.

Next Attachment ID (4 bytes): The ID to use for naming the next Attachment object storage if one
is created inside the .msg file. The naming convention to be used is specified in section 2.2.2.

Recipient Count (4 bytes): The number of Recipient objects.

Attachment Count (4 bytes): The number of Attachment objects.

2.4.1.3 Attachment Object Storage or Recipient Object Storage

The header for the property stream contained inside an Attachment object storage or a Recipient
object storage has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Reserved

...

Reserved (8 bytes): This field MUST be set to zero when writing a .msg file and MUST be ignored
when reading a .msg file.

2.4.2 Data

The data inside the property stream MUST be an array of 16-byte entries. The number of properties,
each represented by one entry, can be determined by first measuring the size of the property stream,
then subtracting the size of the header from it, and then dividing the result by the size of one entry.

The structure of each entry, representing one property, depends on whether the property is a fixed

length property or not.

2.4.2.1 Fixed Length Property Entry

The entry for a fixed length property has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Property Tag

Flags

Value

...

Property Tag (4 bytes): The property tag of the property.

Flags (4 bytes): Flags giving context to the property. Possible values for this field are given in the
following table. Any bitwise combination of the flags is valid.

24 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Flag name Value Description

PROPATTR_MANDATORY 0x00000001 If this flag is set for a property, that property MUST NOT be deleted
from the .msg file (irrespective of which storage it is contained in)
and implementations MUST return an error if any attempt is made
to do so. This flag is set in circumstances where the implementation
depends on that property always being present in the .msg file once
it is written there.

PROPATTR_READABLE 0x00000002 If this flag is not set on a property, that property MUST NOT be read
from the .msg file and implementations MUST return an error if any
attempt is made to read it. This flag is set on all properties unless
there is an implementation-specific reason to prevent a property
from being read from the .msg file.

PROPATTR_WRITABLE 0x00000004 If this flag is not set on a property, that property MUST NOT be
modified or deleted and implementations MUST return an error if
any attempt is made to do so. This flag is set in circumstances
where the implementation depends on the properties being
writable.

Value (8 bytes): This field contains a Fixed Length Property Value structure, as specified in
section 2.4.2.1.1.

2.4.2.1.1 Fixed Length Property Value

The following structure contains the value of the property.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Data (variable)

Reserved (variable)

Data (variable): The value of the property. The size of this field depends upon the property type,

which is specified in the Property Tag field, as specified in section 2.4.2.1. The size required for
each property type is specified in [MS-OXCDATA] section 2.11.1.

Reserved (variable): This field MUST be ignored when reading a .msg file. The size of the Reserved
field is the difference between 8 bytes and the size of the Data field; if the size of the Reserved
field is greater than 0, this field MUST be set to 0 when writing a .msg file.

2.4.2.2 Variable Length Property or Multiple-Valued Property Entry

The entry for a variable length property has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Property Tag

Flags

Size

%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8

25 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Reserved

Property Tag (4 bytes): Same as the description in section 2.4.2.1.

Flags (4 bytes): Same as the description in section 2.4.2.1.

Size (4 bytes): This value is interpreted based on the property type, which is specified in the
Property Tag field. If the message contains an embedded message attachment or a storage

attachment, this field MUST be set to 0xFFFFFFFF. Otherwise, the following table shows how this
field is interpreted for each property type. The property types are specified in [MS-OXCDATA]
section 2.11.1.

Property type Meaning of Size value

Variable length
property, except for
PtypString or
PtypString8

Size MUST be equal to the size of the stream where the value of the property
represented by this entry is stored.

PtypString Size MUST be equal to 2 plus the size of the stream where the value of the property
represented by this entry is stored. The string being stored MUST<2> have at least
one character. When parsing property streams, clients MUST issue a
MAPI_E_BAD_VALUE error for any zero-length property streams of PtypString.

PtypString8 Size MUST be equal to 1 plus the size of the stream where the value of the property
represented by this entry is stored. The string being stored MUST have at least one
character. When parsing property streams, clients MUST issue a MAPI_E_BAD_VALUE
error for any zero-length property streams of PtypString8.

Multiple-valued fixed
length property

Size MUST be equal to the size of the stream where all values of the property
represented by this entry are stored.

Multiple-valued variable
length property

Size MUST be equal to the size of the length stream where the lengths of the value
streams for the property represented by this entry are stored.

Reserved (4 bytes): This field MUST be ignored when reading a .msg file. When writing a .msg file,
this field MUST be set to 0 if the message does not contain an attachment. This field MUST be set
to 0x01 if the message contains an embedded message attachment and to 0x04 if the message
contains a storage attachment. The following table shows the required value for this field based on
the value of the PidTagAttachMethod property ([MS-OXCMSG] section 2.2.2.9).

PidTagAttachMethod property value Required Reserved field value

ATTACH_EMBEDDED_MSG (0x00000005) 0x01

ATTACH_OLE (0x00000006) 0x04

%5bMS-OXCDATA%5d.pdf#Section_1afa0cd9b1a04520b623bf15030af5d8
%5bMS-OXCMSG%5d.pdf#Section_7fd7ec40deec4c0694931bc06b349682

26 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

3 Structure Examples

3.1 From Message Object to .msg File

The structure of a Message object in the .msg File Format that has two Attachment objects and two

Recipient objects is represented in figure 1. In the figures, the folder icons represent storages, and the
text page icons represent streams. Note that the streams present depend on the properties that are
set on the Message object.

Figure 1: A sample message in the .msg File Format

A few things to note:

 "__nameid_version1.0" is the named property mapping storage that contains all named property
mappings for the Message object and its subobjects.

 "__properties_version1.0" is the property stream.

 "__recip_version1.0_#00000000" and "__recip_version1.0_#00000001" are Recipient object
storages, each representing one Recipient object of the Message object.

 "__attach_version1.0_#00000000" and "__attach_version1.0_#00000001" are Attachment object

storages, each representing one Attachment object in the Message object.

An expanded view of the "__nameid_version1.0" named property mapping storage is shown in the
following figure.

27 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Figure 2: Expanded view of the named property mapping storage

In the preceding figure, the "__nameid_version1.0" named property mapping storage contains the
three streams used to provide a mapping from property ID to property name

("__substg1.0_00020102", "__substg1.0_00030102", and "__substg1.0_00040102") and various
other streams that provide a mapping from property names to property IDs.

An expanded view of the "__recip_version1.0_#00000000" and "__recip_version1.0_#00000001"
Recipient object storages and the "__attach_version1.0_#00000000" and

"__attach_version1.0_#00000001" Attachment object storages is shown in the following figure.

28 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Figure 3: Expanded view of Attachment object storages and Recipient object storages

In the preceding figure, each of the Attachment object storages and Recipient object storages contain
the property stream and a stream for each variable length property. One of the Attachment objects is

29 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

itself a Message object, and it has a substorage called "__substg1.0_3701000D" where properties
pertaining to that Message object are stored. The Embedded Message object storage contains a

Recipient object storage and six Attachment object storages.

3.2 Named Property Mapping

In this example that illustrates how named property mapping works, it is assumed that the named
property mapping storage has been populated with the data required to achieve named property
mapping, as specified by the .msg File Format.

3.2.1 Property ID to Property Name

For both numerical named properties and string named properties, the first step in mapping a
property name to a property ID is to fetch the entry from the entry stream. Once the kind of the
named property has been determined, the logic for fetching the name identifier is different.

3.2.1.1 Fetching the Name Identifier

In this example, property ID 0x8005 has to be mapped to its property name. First, the entry index
into the entry stream is determined:

Property ID – 0x8000

=0x8005 – 0x8000

=0x0005

Then, the offset for the corresponding 8-byte entry is determined:

Entry index * size of entry

= 0x05 * 0x08

= 0x28

The offset is then used to fetch the entry from the entry stream ("__substg1.0_00030102"), which is
contained inside the named property mapping storage ("__nameid_version1.0"). In this case, bytes
40 – 47 are fetched from the stream. Then, the structure specified in the entry stream section is
applied to those bytes, taking into consideration that the data is stored in little-endian format.

3.2.1.1.1 Numerical Named Property

The following 8 bytes represent an entry from the entry stream (in hexadecimal notation):

 1C 81 00 00 08 00 05 00

The structure specified in the entry stream section is applied to these bytes to obtain the following
values:

Name identifier = 0x811C

Property index = 0x05

GUID index = 0x04

Property Kind= 0

30 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

From these values, it is determined that this is a numerical named property that has the name
identifier 0x811C.

3.2.1.1.2 String Named Property

The following 8 bytes represent an entry from the entry stream (in hexadecimal notation):

 10 00 00 00 07 00 05 00

The structure specified in the entry stream section is applied to these bytes to obtain the following
values:

String offset = 0x10

Property index = 0x05

GUID index = 0x03

Property Kind = 1

From these values it is determined that this is a string named property with a string offset of 0x10.

The string offset is then used to fetch the entry from the string stream ("__substg1.0_00040102"),
which is contained inside the named property mapping storage ("__nameid_version1.0"). The

structure in the table specified in the string stream section is applied to those bytes, taking into
consideration that the data is stored in little-endian format.

If the string stream is as follows:

 09 92 7D 46 35 2E 7D 1A 41 11 92 72 01 F2 30 12 00 00 00 1C 00 5A 00 5C 00 91 00 48 00 45 00
44 00 41 00 45 00 52 00 20 00 53 00 49 00 5A 00 44 8A 6F BB 4D 12 52 E4 11 09 91

The 4 bytes at offset 0x10 constitute the ULONG ([MS-DTYP]) 0x0000001C. The string name starts at
0x10 + 0x04 = 0x14 and extends till 0x14 + 0x1C = 0x2F. Hence, it will be the following:

 00 5A 00 5C 00 91 00 48 00 45 00 44 00 41 00 45 00 52 00 20 00 53 00 49 00 5A 00 44

3.2.1.2 Fetching the GUID

The only missing piece of information at this point is the GUID. It is fetched by first calculating the
GUID Entry Index:

GUID index – 0x03

= 0x04 – 0x03

= 0x01

Then the offset into the GUID stream is determined:

GUID Entry Index * size of GUID

=0x01 * 0x10

= 0x10

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

31 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

The offset is then used to fetch the GUID from the GUID stream ("__substg1.0_00020102"), which is
contained inside the named property mapping storage ("__nameid_version1.0"). In this case, bytes

16 – 31 will be fetched from the stream.

In this example, the 16 bytes fetched are as follows (in hexadecimal notation):

 03 20 06 00 00 00 00 00 C0 00 00 00 00 00 00 46

Considering that the bytes are in little-endian format, the GUID is as follows:

{0x00062003, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}

Thus all the fields needed to specify the property name, given a property ID, can be obtained from the

data stored in the entry stream, the string stream, and the GUID stream.

3.2.2 Property Name to Property ID

If a property name is specified, the data inside the named property mapping storage is used to
determine the property ID of the property. The method differs slightly for string named properties and

numerical named properties.

If the property name specified is the following:

GUID = {0x00062003, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}

Name identifier = 0x811C

Kind = 0

First the GUID is examined to compute the GUID index, as described in section 2.2.3.2.1.

In this example, the GUID was found in the second position in the GUID stream, so its GUID index will
be 0x04.

Then, the stream ID is calculated using the stream ID equation for numerical named properties:

0x1000 + (name identifier XOR (GUID index << 1)) MOD 0x1F

= 0x1000 + (0x811C XOR (0x04 << 1)) MOD 0x1F

= 0x1000 + (0x811C XOR 0x08) MOD 0x1F

= 0x1000 + 0x8114 MOD 0x1F

= 0x1000 + 0x1D

= 0x101D

Then, the hexadecimal identifier is generated as follows:

stream ID << 16 | 0x00000102

= 0x101D << 16 | 0x00000102

= 0x101D0102

The stream name is generated by concatenating "__substg1.0_" and the hexadecimal identifier.

Therefore, the stream name is "__substg1.0_101D0102".

32 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

The data inside the stream is an array of 8-byte entries, each with the structure described in section
2.2.3.2.4. One of those entries maps to the named property in question and can be found by

comparing the name identifier of the named property with that fetched from the stream. In this
example, the stream "__substg1.0_101D0102" has the following contents:

 1C 81 00 00 08 00 05 00 15 85 00 00 06 00 40 00 34 85 00 00 06 00 4A 00 A8 85 00 00 06 00 70
00

The structure described in section 2.2.3.2.4 is applied to these bytes to obtain the following entries.

Serial # Name identifier Property index GUID index Property Kind

1 0x811C 0x05 0x04 0

2 0x8515 0x40 0x03 0

3 0x8534 0x4A 0x03 0

4 0x85A8 0x70 0x03 0

The entry corresponding to the named property in question is number 1 because the name identifier
from the stream is equal to the property's name identifier.

The property ID is then computed as follows:

0x8000 + property index

= 0x8000 + 0x05

= 0x8005

3.3 Custom Attachment Storage

The storage format of Attachment objects that represent data from an arbitrary client application is
controlled by the application itself. For example, a media application can write a completely different

set of streams under the substorage than an image manipulation application.

The following figure shows the structure of the substorage for two different types of applications,
demonstrating that the structure is essentially controlled by the owning application.

33 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

Figure 4: Expanded view of the substorage for two different types of applications

34 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

4 Security

4.1 Security Considerations for Implementers

The .msg File Format provides some mechanisms for ensuring that clients read the correct number of
bytes from constituent streams.

 In the case of multiple-valued variable length properties, the length stream contains the lengths

of each value. Clients can compare the lengths obtained from there with the actual length of the
value streams. If they are not in sync, it can be assumed that there is data corruption.

 In case of the strings, stream entries are stored prefixed with their lengths; and if any
inconsistency is detected, clients can assume that there is data corruption.

However, there are certain inherent security concerns with .msg files:

 Possible modification of properties, especially security-related flags.

 The .msg File Format does not provide for any encryption.

4.2 Index of Security Parameters

None.

35 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

 Microsoft Exchange Server 2003

 Microsoft Exchange Server 2007

 Microsoft Exchange Server 2010

 Microsoft Exchange Server 2013

 Microsoft Exchange Server 2016

 Microsoft Office Outlook 2003

 Microsoft Office Outlook 2007

 Microsoft Outlook 2010

 Microsoft Outlook 2013

 Microsoft Outlook 2016

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise specified. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or

SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not
follow the prescription.

<1> Section 2.2.3.2.2.1: If the string named property belongs to the PS_INTERNET_HEADERS
property set ([MS-OXPROPS] section 1.3.2), then the Office Outlook 2003, Office Outlook 2007,
Outlook 2010, and Outlook 2013 implementations of the .msg File Format will convert the Unicode
property name to lower case before computing the equivalent CRC-32 for it.

<2> Section 2.4.2.2: Office Outlook 2003, Office Outlook 2007 and Outlook 2010 will not open a

.msg file with zero-length property streams of type PtypString or PtypString8.

%5bMS-OXPROPS%5d.pdf#Section_f6ab1613aefe447da49c18217230b148

36 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

6 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as New, Major, Minor, Editorial, or No change.

The revision class New means that a new document is being released.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements or functionality.

 The removal of a document from the documentation set.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class Editorial means that the formatting in the technical content was changed. Editorial

changes apply to grammatical, formatting, and style issues.

The revision class No change means that no new technical changes were introduced. Minor editorial
and formatting changes may have been made, but the technical content of the document is identical
to the last released version.

Major and minor changes can be described further using the following change types:

 New content added.

 Content updated.

 Content removed.

 New product behavior note added.

 Product behavior note updated.

 Product behavior note removed.

 New protocol syntax added.

 Protocol syntax updated.

 Protocol syntax removed.

 New content added due to protocol revision.

 Content updated due to protocol revision.

 Content removed due to protocol revision.

 New protocol syntax added due to protocol revision.

 Protocol syntax updated due to protocol revision.

 Protocol syntax removed due to protocol revision.

 Obsolete document removed.

Editorial changes are always classified with the change type Editorially updated.

Some important terms used in the change type descriptions are defined as follows:

37 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

 Protocol syntax refers to data elements (such as packets, structures, enumerations, and
methods) as well as interfaces.

 Protocol revision refers to changes made to a protocol that affect the bits that are sent over the
wire.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section
Tracking number (if applicable) and
description

Major change (Y
or N)

Change type

5 Appendix A: Product
Behavior

Updated list of applicable products. Y
Content
update.

mailto:dochelp@microsoft.com

38 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

7 Index

.

.msg file properties
 PidTagStoreSupportMask 11
.msg file properties other properties 11

A

Applicability 9
Attachment object storage 15

C

Change tracking 36
Compound files 8
Custom Attachment Storage example 32

D

Data - property stream 23
Details
 fixed length properties 11
 multiple-valued properties 12
 other properties 11
 PidTagStoreSupportMask 11
 Properties structure 11
 variable length properties 12

E

Examples
 Custom Attachment Storage 32
 From Message Object to .msg File 26
 Named Property Mapping 29

F

Fields - vendor-extensible 10
fixed length properties 11
From Message Object to .msg File example 26

G

Glossary 6

H

Header - property stream 21

I

Implementer - security considerations 34
Index of security parameters 34
Informative references 8
Introduction 6

L

Localization 10

M

multiple-valued properties 12

N

Named Property Mapping example 29
Named property mapping example - property ID to

property name 29
Named property mapping example - property name

to property ID 31
Named property mapping storage 17
Normative references 8

O

Overview
 compound files 8
 properties 8
 storages 9
 top level structure 9
Overview (synopsis) 8

P

Parameters - security index 34
Product behavior 35
Properties 8
 fixed length properties 11
 multiple-valued properties 12
 other properties 11
 PidTagStoreSupportMask 11
 variable length properties 12
Properties structure 11
Property ID to property name example 29
Property name to property ID example 31
Property stream
 data 23
 header 21
Property stream structures 21

R

Recipient object storage 15
References 7

 informative 8
 normative 8
Relationship to protocols and other structures 9

S

Security
 implementer considerations 34
 parameter index 34
Storages
 Attachment object storage 15
 named property mapping storage 17
 overview 9
 Recipient object storage 15
Structures
 properties 11

39 / 39

[MS-OXMSG] - v20160613
Outlook Item (.msg) File Format
Copyright © 2016 Microsoft Corporation
Release: June 13, 2016

 property stream 21
 top level structure 21

T

Top level structure 21
Top level structure - overview 9
Tracking changes 36

V

variable length properties 12

Vendor-extensible fields 10
Versioning 10

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.3.1 Compound Files
	1.3.2 Properties
	1.3.3 Storages
	1.3.4 Top Level Structure

	1.4 Relationship to Protocols and Other Structures
	1.5 Applicability Statement
	1.6 Versioning and Localization
	1.7 Vendor-Extensible Fields

	2 Structures
	2.1 Properties
	2.1.1 Properties of a .msg File
	2.1.1.1 PidTagStoreSupportMask
	2.1.1.2 Other Properties

	2.1.2 Fixed Length Properties
	2.1.3 Variable Length Properties
	2.1.4 Multiple-Valued Properties
	2.1.4.1 Fixed Length Multiple-Valued Properties
	2.1.4.2 Variable Length Multiple-Valued Properties
	2.1.4.2.1 Length Stream
	2.1.4.2.1.1 Length for PtypMultipleBinary
	2.1.4.2.1.2 Length for PtypMultipleString8 or PtypMultipleString

	2.1.4.2.2 Value Streams

	2.2 Storages
	2.2.1 Recipient Object Storage
	2.2.2 Attachment Object Storage
	2.2.2.1 Embedded Message Object Storage
	2.2.2.2 Custom Attachment Storage

	2.2.3 Named Property Mapping Storage
	2.2.3.1 Property ID to Property Name Mapping
	2.2.3.1.1 GUID Stream
	2.2.3.1.2 Entry Stream
	2.2.3.1.2.1 Index and Kind Information

	2.2.3.1.3 String Stream

	2.2.3.2 Property Name to Property ID Mapping Streams
	2.2.3.2.1 Determining GUID Index
	2.2.3.2.2 Generating Stream ID
	2.2.3.2.2.1 Stream ID Equation

	2.2.3.2.3 Generating Stream Name
	2.2.3.2.4 Obtaining Stream Data

	2.3 Top Level Structure
	2.4 Property Stream
	2.4.1 Header
	2.4.1.1 Top Level
	2.4.1.2 Embedded Message object Storage
	2.4.1.3 Attachment Object Storage or Recipient Object Storage

	2.4.2 Data
	2.4.2.1 Fixed Length Property Entry
	2.4.2.1.1 Fixed Length Property Value

	2.4.2.2 Variable Length Property or Multiple-Valued Property Entry

	3 Structure Examples
	3.1 From Message Object to .msg File
	3.2 Named Property Mapping
	3.2.1 Property ID to Property Name
	3.2.1.1 Fetching the Name Identifier
	3.2.1.1.1 Numerical Named Property
	3.2.1.1.2 String Named Property

	3.2.1.2 Fetching the GUID

	3.2.2 Property Name to Property ID

	3.3 Custom Attachment Storage

	4 Security
	4.1 Security Considerations for Implementers
	4.2 Index of Security Parameters

	5 Appendix A: Product Behavior
	6 Change Tracking
	7 Index

