

Part III. Models for Regular Languages

Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that denote concatenation, union, and

iteration, respectively.

Definition: Let Σ be an alphabet. The *regular expressions* over Σ and the *languages they denote* are defined as follows:

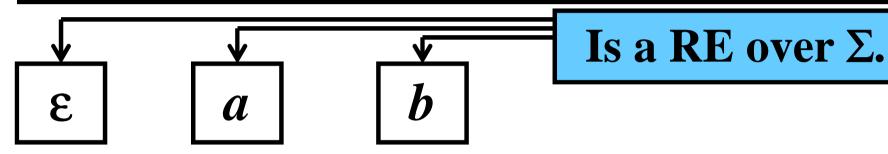
- $\bullet \varnothing$ is a RE denoting the empty set
- ε is a RE denoting { ε }
- *a*, where $a \in \Sigma$, is a RE denoting $\{a\}$
- Let r and s be regular expressions denoting the languages L_r and L_s , respectively; then
 - (r.s) is a RE denoting $L = L_r L_s$
 - (r+s) is a RE denoting $L = L_r \cup L_s$
 - (r^*) is a RE denoting $L = L_r^*$

Regular Expressions: Example

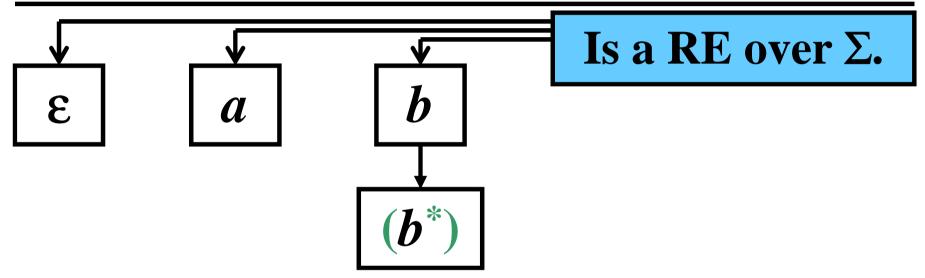
Regular Expressions: Example

Regular Expressions: Example

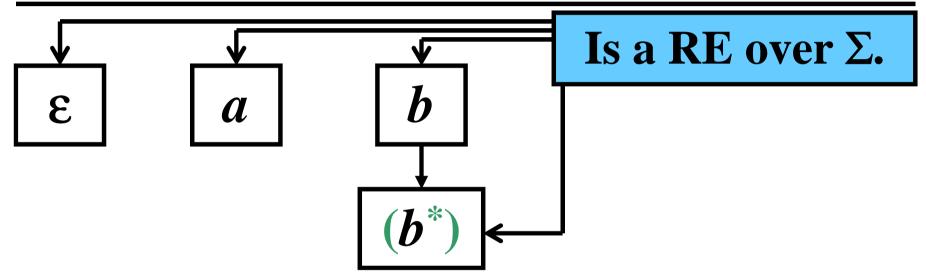
Regular Expressions: Example



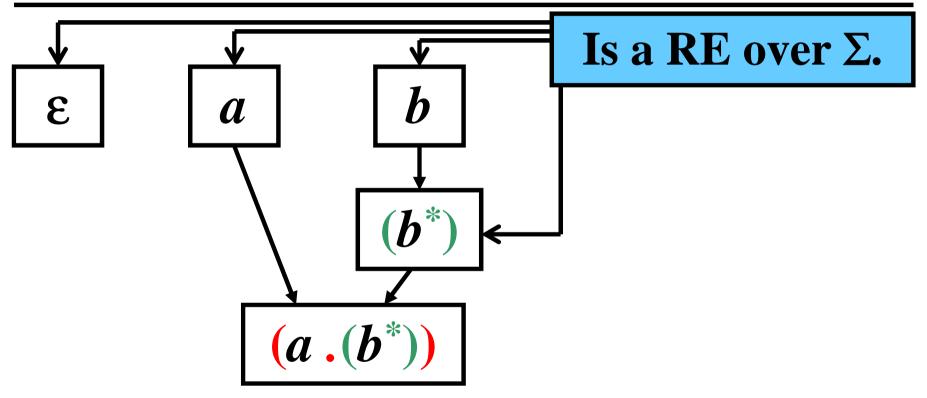
Regular Expressions: Example



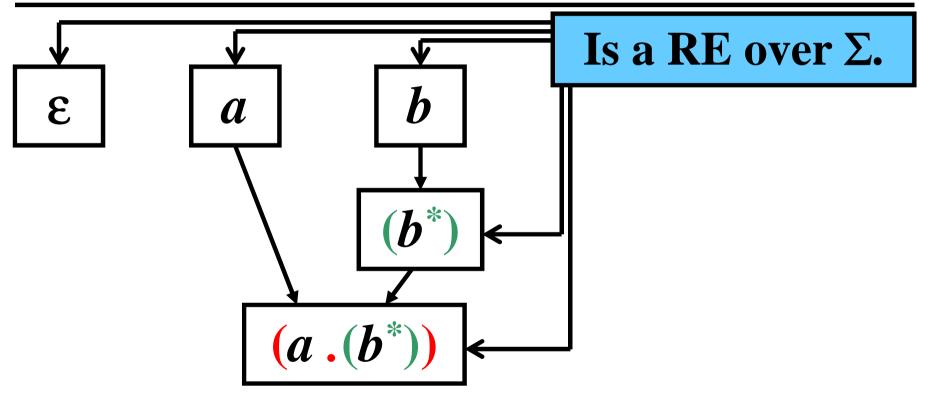
Regular Expressions: Example



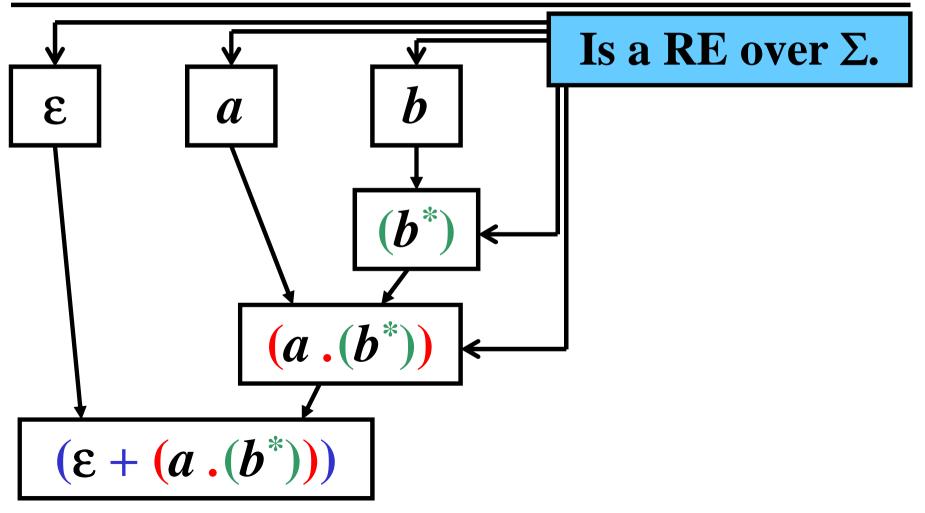
Regular Expressions: Example



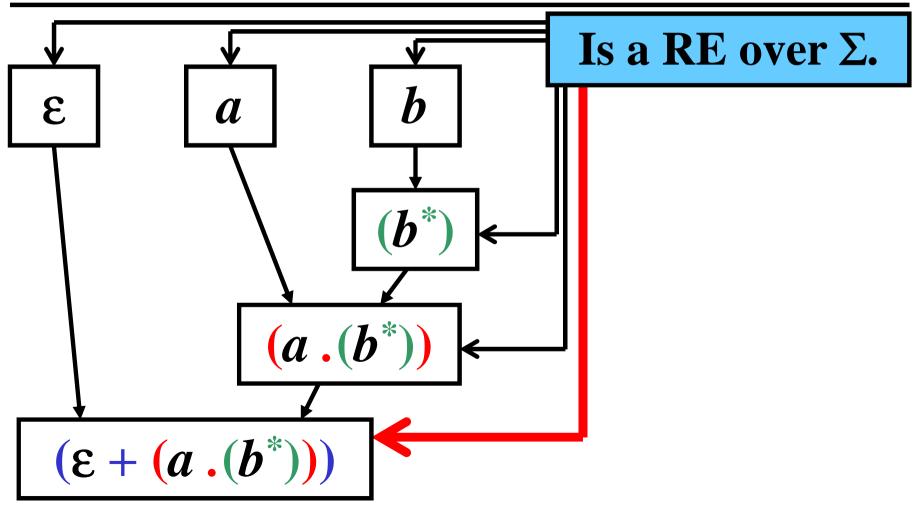
Regular Expressions: Example



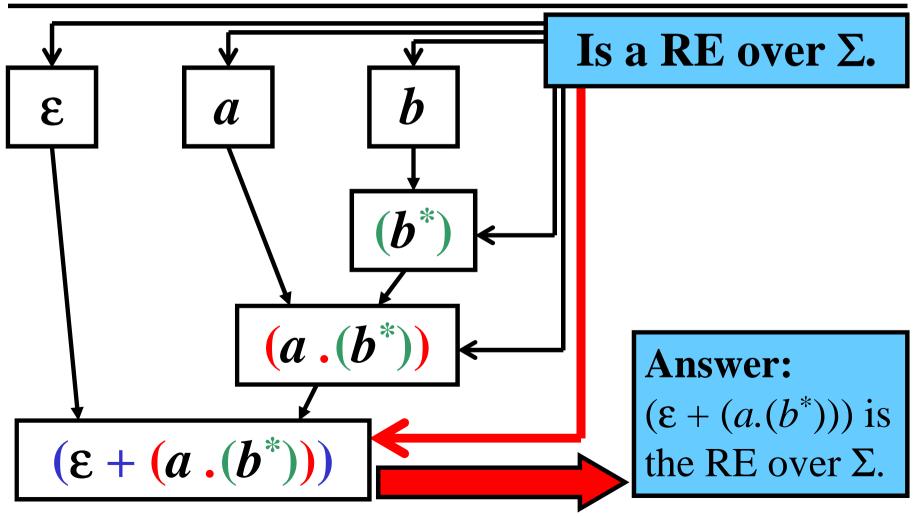
Regular Expressions: Example



Regular Expressions: Example



Regular Expressions: Example



Simplification

1) Reduction of the number of parentheses by

Precedences:
$$* > . > +$$

2) Expression *r.s* is simplified to *rs*3) Expression *rr*^{*} or *r*^{*}*r* is simplified to *r*⁺

Example:

 $((a.(a^*)) + ((b^*).b))$ can be written as $a.a^* + b^*.b$,

and $a \cdot a^* + b^* \cdot b$ can be written as $a^+ + b^+$

Regular Language (RL)

Gist: Every RE denotes a regular language Definition: Let *L* be a language. *L* is a *regular language* (RL) if there exists a regular expression *r* that denotes *L*.

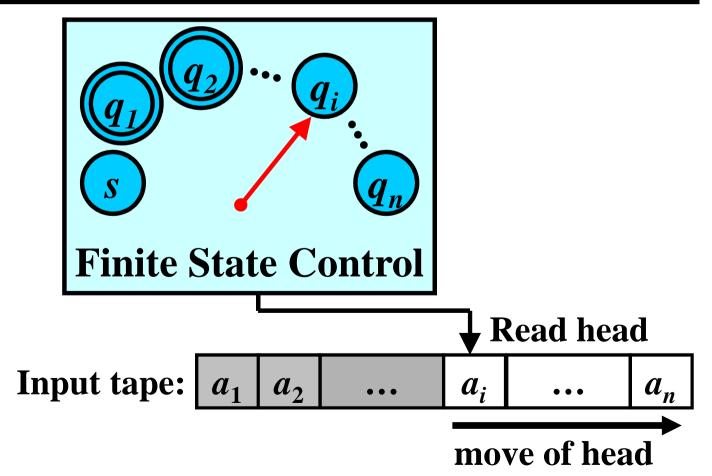
Denotation: L(r) means the language denoted by r.

Examples:

 $r_{1} = ab + ba$ denotes $L_{1} = \{ab, ba\}$ $r_{2} = a^{+}b^{*}$ denotes $L_{2} = \{a^{n}b^{m}: n \ge 1, m \ge 0\}$ $r_{3} = ab(a + b)^{*}$ denotes $L_{3} = \{x: ab \text{ is prefix of } x\}$ $r_{4} = (a + b)^{*}ab(a + b)^{*} \text{ denotes } L_{4} = \{x: ab \text{ is substring of } x\}$ $L_{1}, L_{2}, L_{3}, L_{4} \text{ are regular languages over } \Sigma$

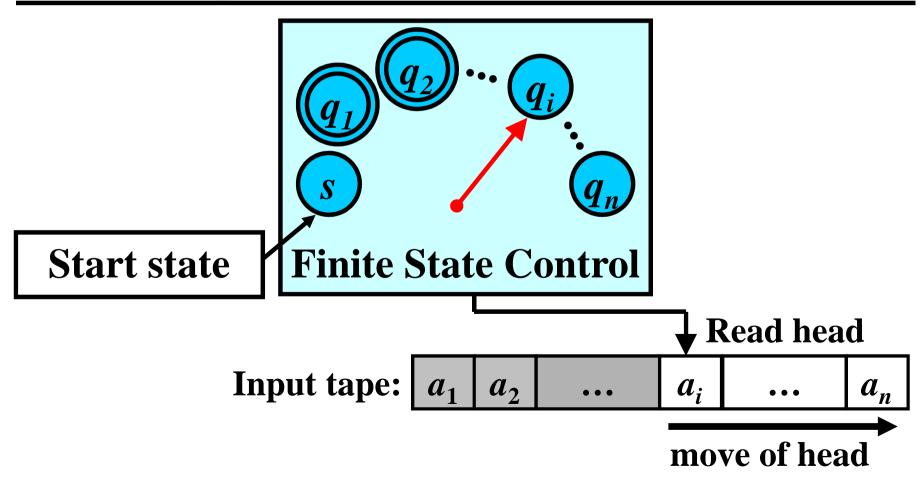
Finite Automata (FA)

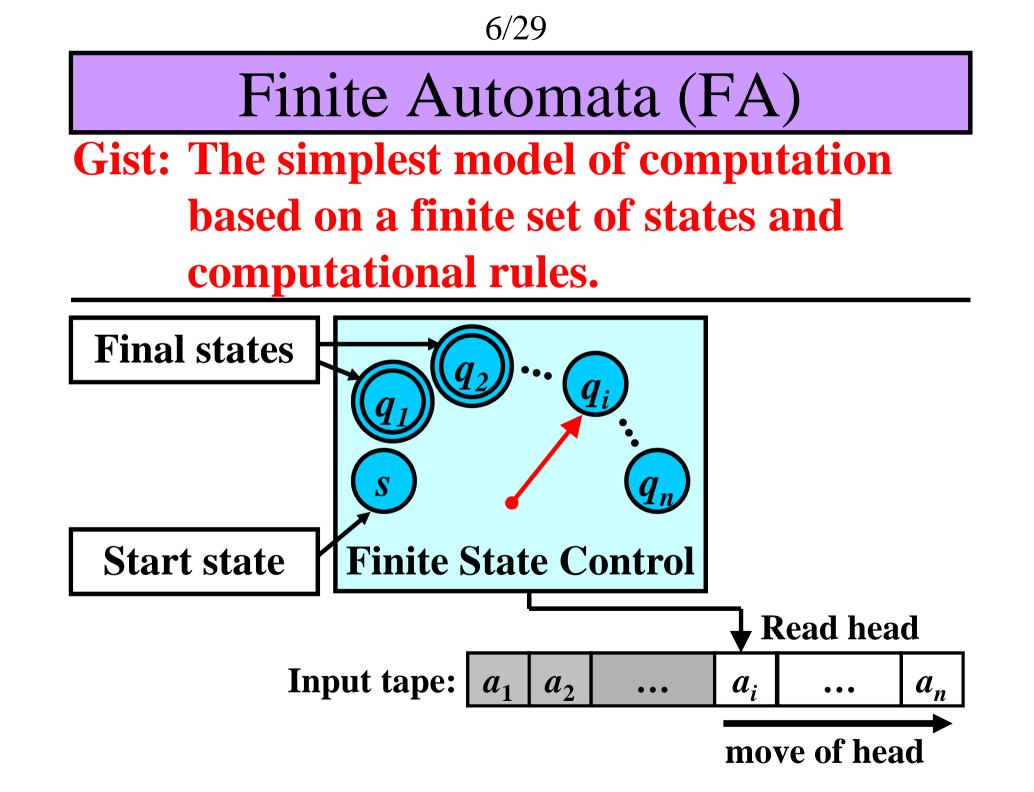
Gist: The simplest model of computation based on a finite set of states and computational rules.

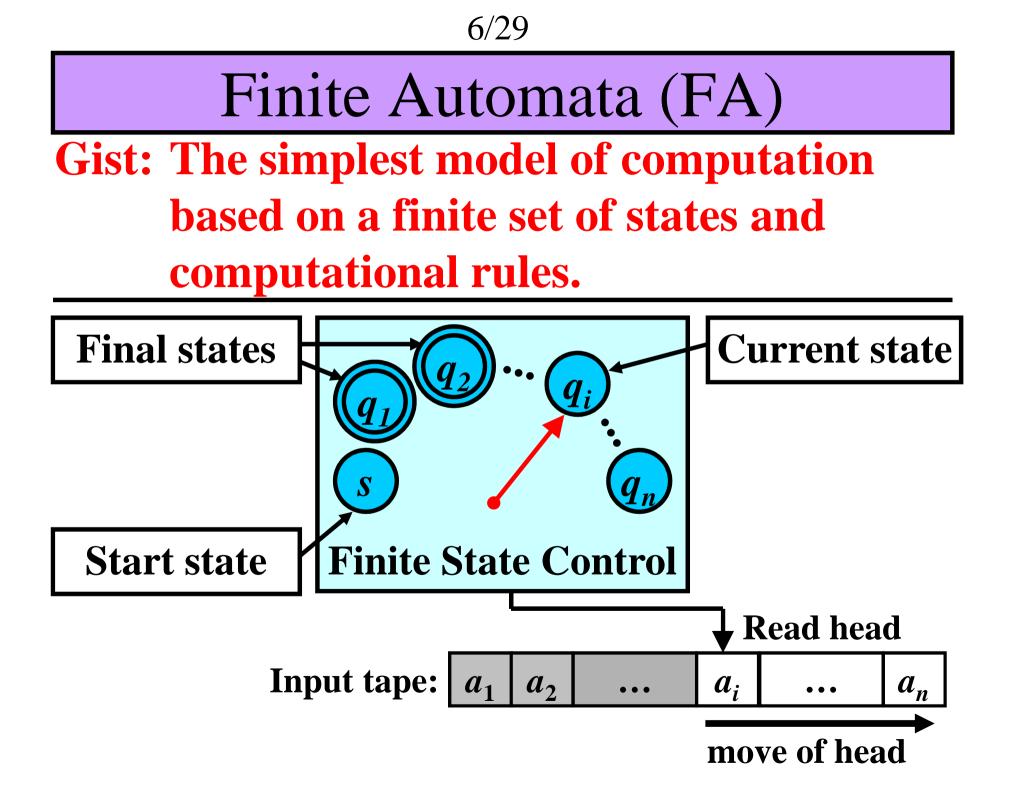


Finite Automata (FA)

Gist: The simplest model of computation based on a finite set of states and computational rules.







Finite Automata: Definition

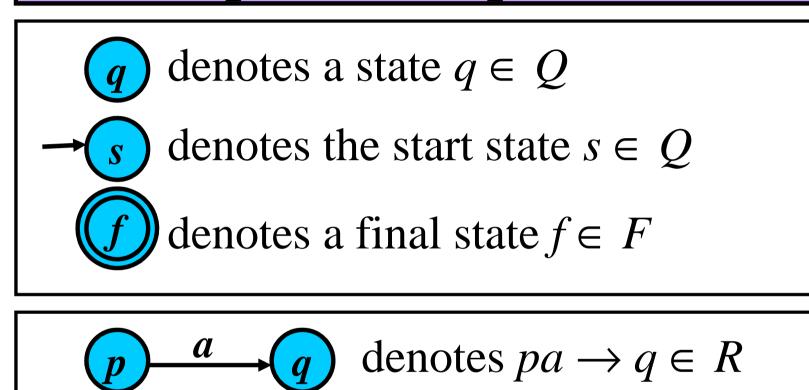
Definition: *A finite automaton* (FA) is a 5-tuple: $M = (Q, \Sigma, R, s, F)$, where

- *Q* is a finite set of states
- Σ is an *input alphabet*
- *R* is a *finite set of rules* of the form: $pa \rightarrow q$, where $p, q \in Q, a \in \Sigma \cup \{\varepsilon\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Mathematical note on rules:

- Strictly mathematically, *R* is a relation from $Q \times (\Sigma \cup \{\varepsilon\})$ to *Q*
- Instead of (pa, q), however, we write the rule as $pa \rightarrow q$
- $pa \rightarrow q$ means that with a, M can move from p to q
- if $a = \varepsilon$, no symbol is read

Graphical Representation



Graphical Representation: Example

 $M = (Q, \Sigma, R, s, F),$ where:

$$M = (Q, \Sigma, R, s, F),$$
where:
• $Q = \{s, p, q, f\};$

(s) (p) (f)
(q)

$$M = (Q, \Sigma, R, s, F),$$
where:
• $Q = \{s, p, q, f\};$
• $\Sigma = \{a, b, c\};$

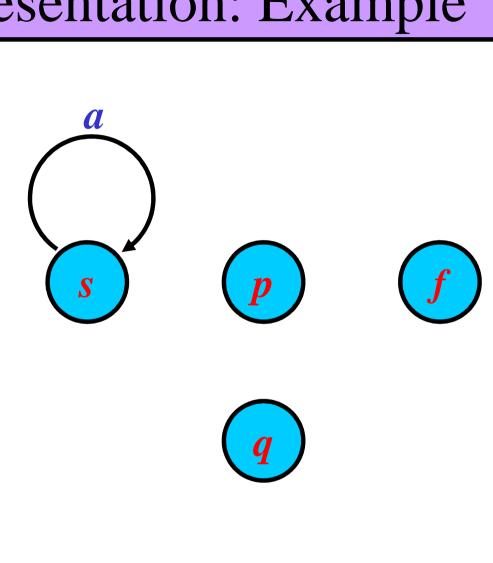
(s) p f

(q)

$$M = (Q, \Sigma, R, s, F),$$

where:

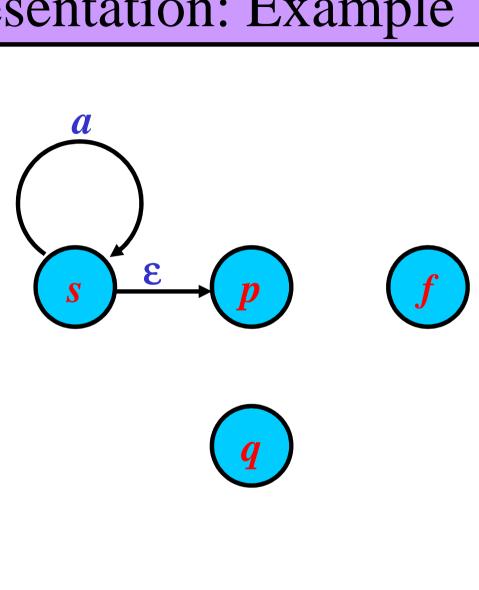
- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s, s , s \rightarrow p, s \}$



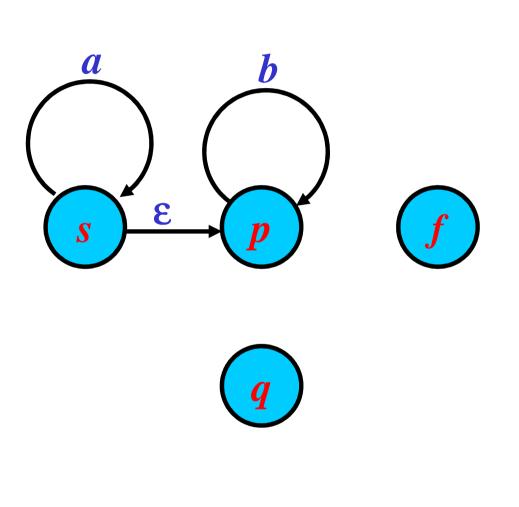
$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{ \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \};$
- $R = \{ sa \rightarrow s,$

$$s \rightarrow p,$$

 $pb \rightarrow p,$



$$M = (Q, \Sigma, R, s, F),$$

where:

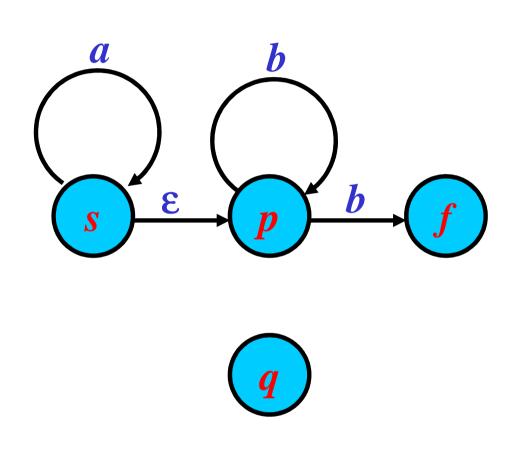
•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$$

•
$$R = \{ \mathbf{sa} \to \mathbf{s},$$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$



9/29

$$M = (Q, \Sigma, R, s, F),$$

where:

•
$$Q = \{s, p, q, f\};$$

•
$$\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$$

•
$$R = \{ \mathbf{sa} \to \mathbf{s},$$

•

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$

1

$$\frac{a}{b}$$

9/29

$$M = (Q, \Sigma, R, s, F),$$

where:

•
$$Q = \{s, p, q, f\};$$

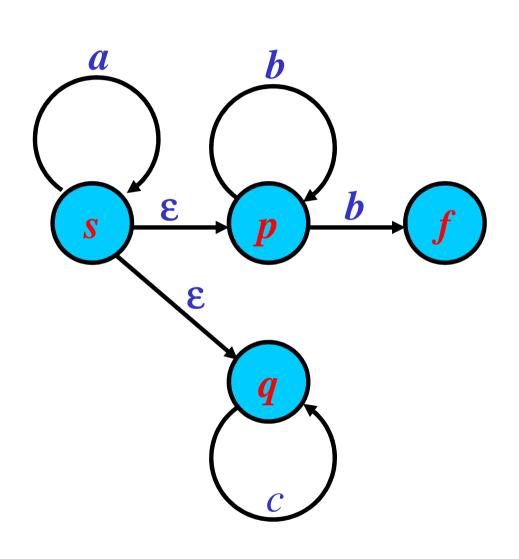
•
$$\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$$

•
$$R = \{ sa \rightarrow s, \\ s \rightarrow p, \}$$

$$pb \rightarrow p,$$

 $pb \rightarrow f,$
 $s \rightarrow q,$
 $ac \rightarrow q$

$$qc \rightarrow q$$
,

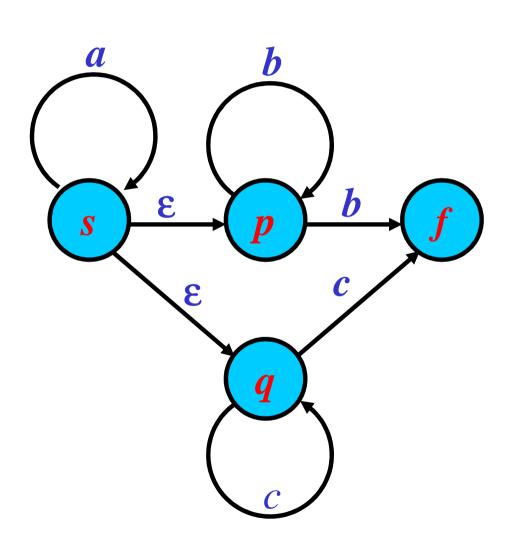


9/29

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$
 - $\begin{array}{l} qc \rightarrow q, \\ qc \rightarrow f, \end{array}$



9/29

$$M = (Q, \Sigma, R, s, F),$$

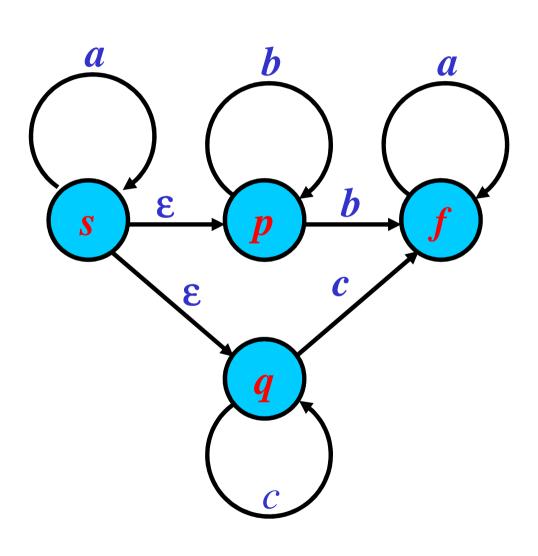
where:

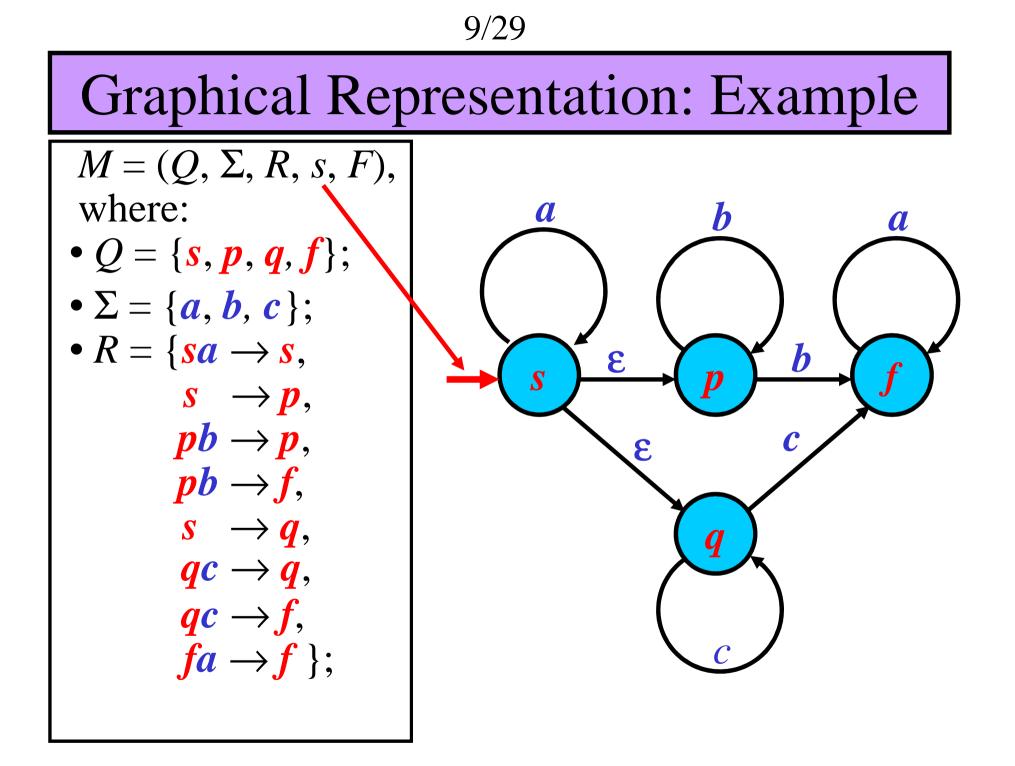
- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$

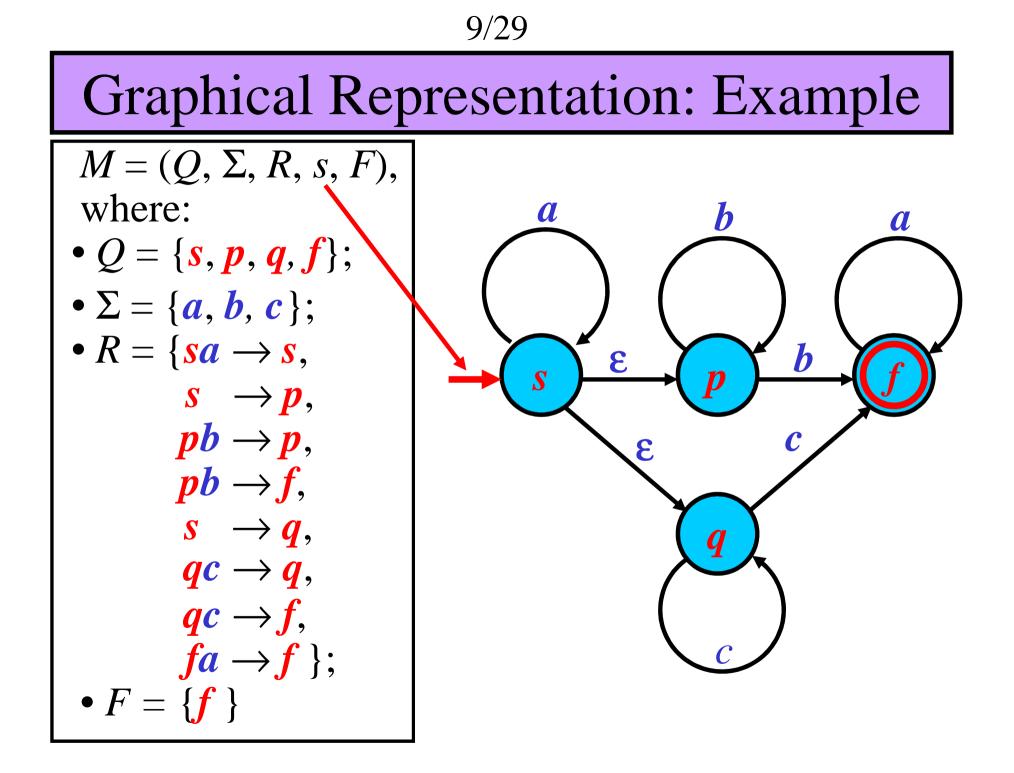
$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$
 $qc \rightarrow q,$

$$qc \rightarrow f, f \rightarrow f \};$$





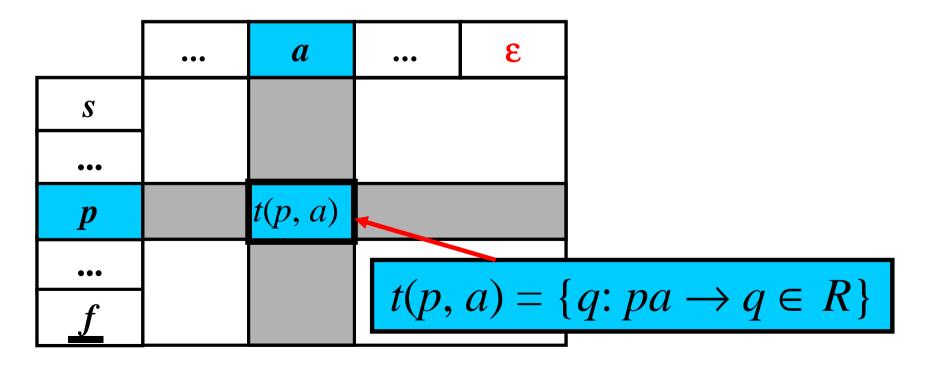


Tabular Representation

Member of $\Sigma \cup \{\epsilon\}$

- Columns:
- Rows:

- States of Q
- **First row:** The start state
- Underscored: Final states



Tabular Representation: Example

 $M = (Q, \Sigma, R, s, F),$ where:

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$

 s

 p

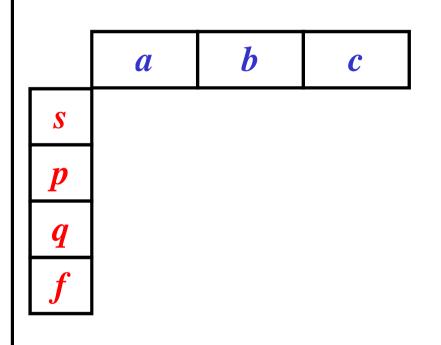
 q

 f

$$M = (Q, \Sigma, R, s, F),$$

where:

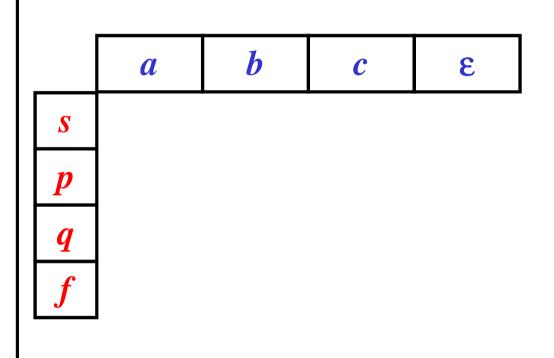
- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$ $\Sigma = \{a, b, c\};$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

	a	b	С	3
S	Ø	Ø	Ø	Ø
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{\mathbf{s}, \mathbf{p}, \mathbf{q}, \mathbf{f}\};$
- $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s, d\}$

	a	b	С	3
S	{ S }	Ø	Ø	Ø
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s, s, s \rightarrow p, s\}$

	а	b	С	3
S	{ S }	Ø	Ø	{ p }
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s, s, s \rightarrow p, p, pb \rightarrow p, p\};$

	a	b	С	3
S	{ S }	Ø	Ø	{ p }
p	Ø	{ p }	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s,$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$

	a	b	С	3
S	{ S }	Ø	Ø	{ p }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s, s, s \rightarrow p, s\}$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$

	а	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s, s, s \rightarrow p, p, pb \rightarrow p, p\}$

 $pb \rightarrow f$,

 $s \rightarrow q$,

 $qc \rightarrow q$,

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q }	Ø
f	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$ • $R = \{sa \rightarrow s, s, s \rightarrow p, s\}$

 $pb \rightarrow p$,

 $pb \rightarrow f$,

 $s \rightarrow q$,

 $qc \rightarrow q$,

 $qc \rightarrow f$,

	а	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

• $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b\}$ • $R = \{ sa \}$ S

pb

pb

S

 $qc \rightarrow f$,

 $fa \rightarrow f$ };

$$\begin{bmatrix}
 a, b, c \\
 sa \rightarrow s, \\
 s \rightarrow p, \\
 pb \rightarrow p, \\
 pb \rightarrow f, \\
 s \rightarrow q, \\
 qc \rightarrow q,
 \end{bmatrix}
 \begin{bmatrix}
 s & \{s \\
 p & \emptyset \\
 q & \emptyset \\
 f & \{f \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 f \\
 s & \{g \\
 c & g \\
 s & \{g \\
 f \\
 s & \{g \\
 s & \{g \\
 s \\
 s \\
 s & \{g \\
 s \\
 s \\
 s & \{g \\
 s \\
 s \\
 s \\
 s & \{g \\
 s \\$$

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
ſ	{ f }	Ø	Ø	Ø

Tabular Representation: Example

 $M = (Q, \Sigma, R, s, F),$ where:

- $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$
- $R = \{ sa \to s,$
 - $egin{aligned} s & o p, \ pb & o p, \ pb & o f, \ s & o q, \ qc & o q, \end{aligned}$

 $qc \rightarrow f$,

 $fa \rightarrow f$ };

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
f	{ f }	Ø	Ø	Ø

Tabular Representation: Example

 $M = (Q, \Sigma, R, s, F),$ where:

- $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b, c\};$
- $R = \{ sa \rightarrow s,$

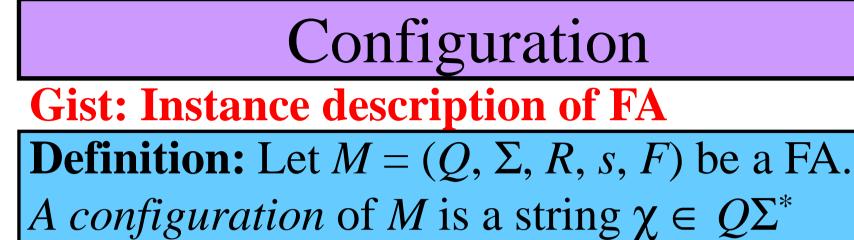
• $F = \{f\}$

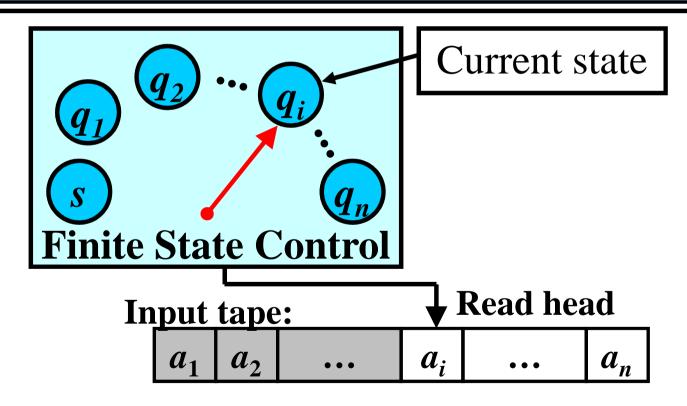
 $egin{array}{c} s &
ightarrow p, \ pb &
ightarrow p, \ pb &
ightarrow f, \ s &
ightarrow f, \ gc &
ightarrow q, \ qc &
ightarrow q, \end{array}$

 $qc \rightarrow f$,

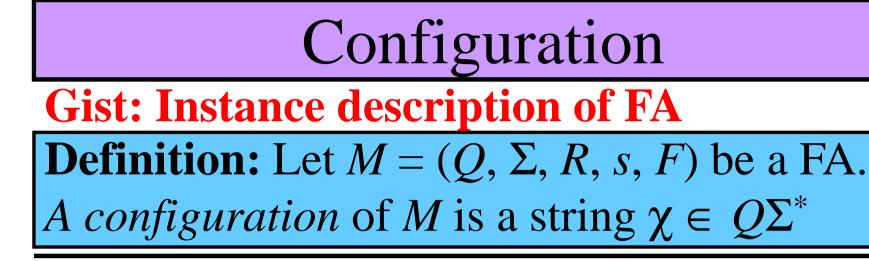
 $fa \rightarrow f$ };

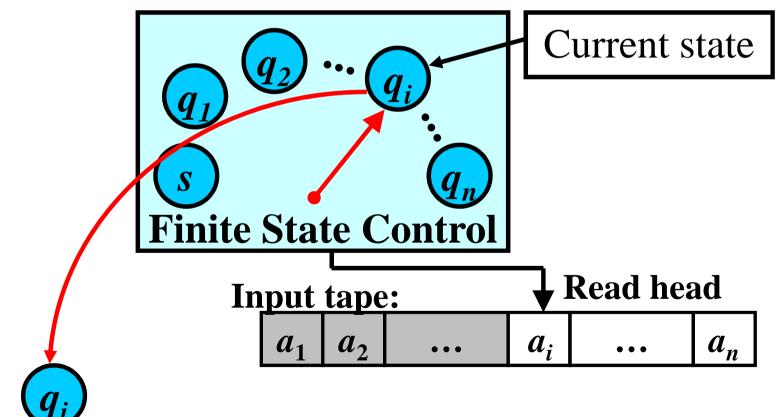
	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
f	{ f }	Ø	Ø	Ø



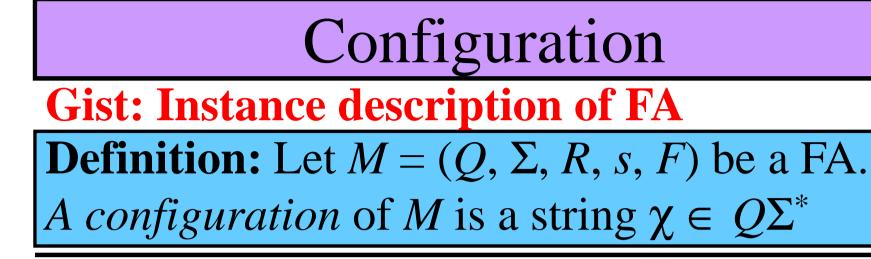


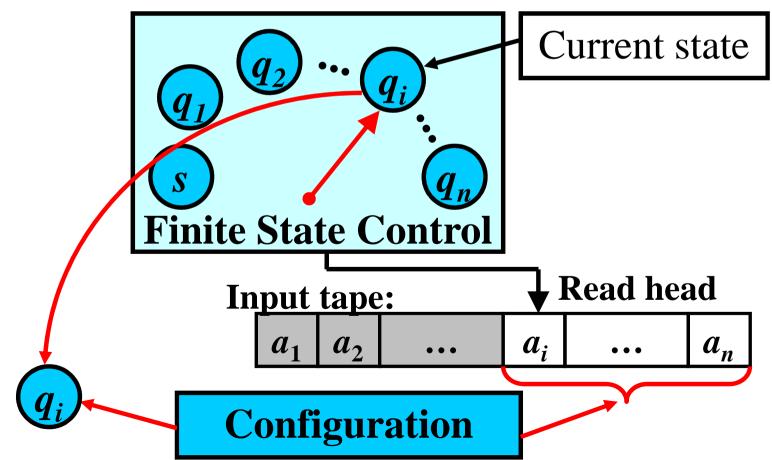










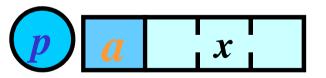


Move

Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* |-qx[r] or, simply, *pax* |-qx

Note: if $a = \varepsilon$, no input symbol is read

Configuration:



Move

Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* /- *qx* [*r*] or, simply, *pax* /- *qx*

Note: if $a = \varepsilon$, no input symbol is read

Configuration:

Rule: $pa \rightarrow q$

Move

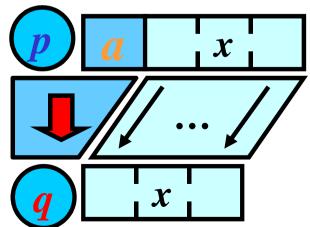
Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* [-qx[r] or, simply, *pax* [-qx]

Note: if $a = \varepsilon$, no input symbol is read

Configuration:

Rule: $pa \rightarrow q$

New configuration:



Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. *M* makes *zero moves* from χ to χ ; in symbols, $\chi \models 0 \chi [\varepsilon]$ or, simply, $\chi \models 0 \chi$

Definition: Let $\chi_0, \chi_1, ..., \chi_n$ be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \models \chi_i [r_i], r_i \in R$, for all i = 1, ..., n; that is, $\chi_0 \models \chi_1 [r_1] \models \chi_2 [r_2] ... \models \chi_n [r_n]$ Then *M* makes *n* moves from χ_0 to χ_n : $\chi_0 \models n \chi_n [r_1...r_n]$ or, simply, $\chi_0 \models n \chi_n$

Sequence of Moves 2/2

 $\chi_0 \mid -^* \chi_n[\rho].$

If
$$\chi_0 \mid -^n \chi_n [\rho]$$
 for some $n \ge 1$, then
 $\chi_0 \mid -^+ \chi_n [\rho]$.
If $\chi_0 \mid -^n \chi_n [\rho]$ for some $n \ge 0$, then

Example: Consider

pabc |-qbc| [1: $pa \rightarrow q$], and qbc |-rc| [2: $qb \rightarrow r$]. Then, *pabc* $|-^2 rc|$ [12], *pabc* $|-^+ rc|$ [12], *pabc* $|-^* rc|$ [12]

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^*f, f \in F \}$$

 $M = (Q, \Sigma, R, \mathbf{S}, F):$

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

 $M = (Q, \Sigma, R, s, F):$

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, s, F):$$

$$sa_1a_2...a_n |-q_1a_2...a_n| - ... |-q_{n-1}a_n| - q_n$$

$$W$$

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, s, F):$$

$$sa_{1}a_{2}...a_{n} |-q_{1}a_{2}...a_{n}| - ... |-q_{n-1}a_{n}| - q_{n}$$

$$W$$

Accepted Language

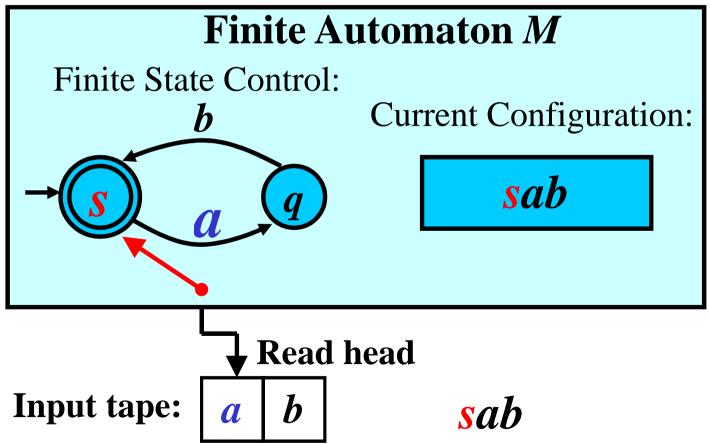
Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

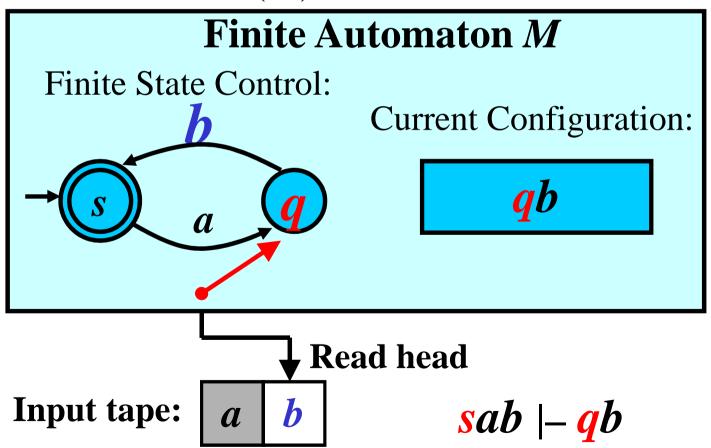
$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^*f, f \in F \}$$

 $M = (Q, \Sigma, R, s, F):$ if $q_n \in F$ then $w \in L(M)$; otherwise, $w \notin L(M)$ $sa_1a_2...a_n |-q_1a_2...a_n |-...|-q_{n-1}a_n |-q_n$

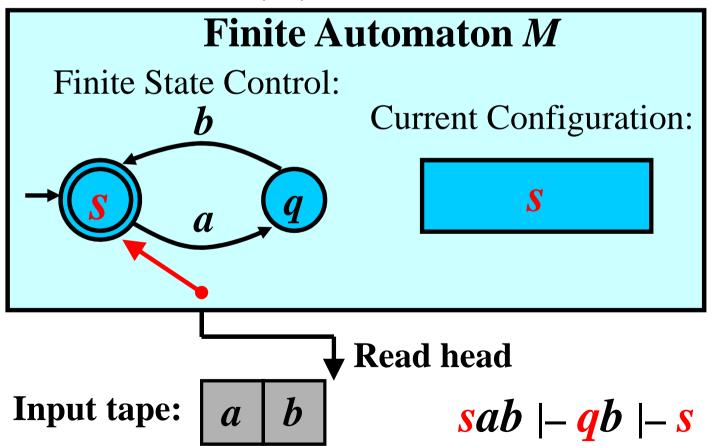
FA: Example 1/3



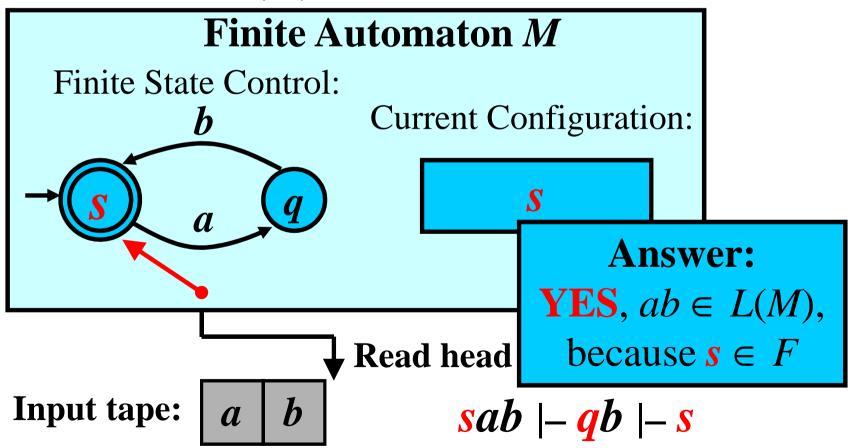
FA: Example 2/3



FA: Example 3/3



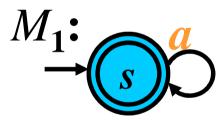
FA: Example 3/3

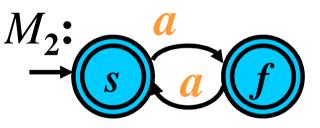


Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

Example:



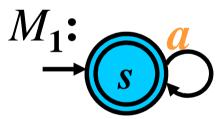


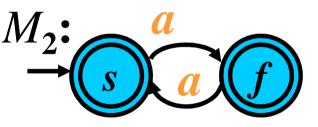
Question: Is M_1 equivalent to M_2 ?

Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

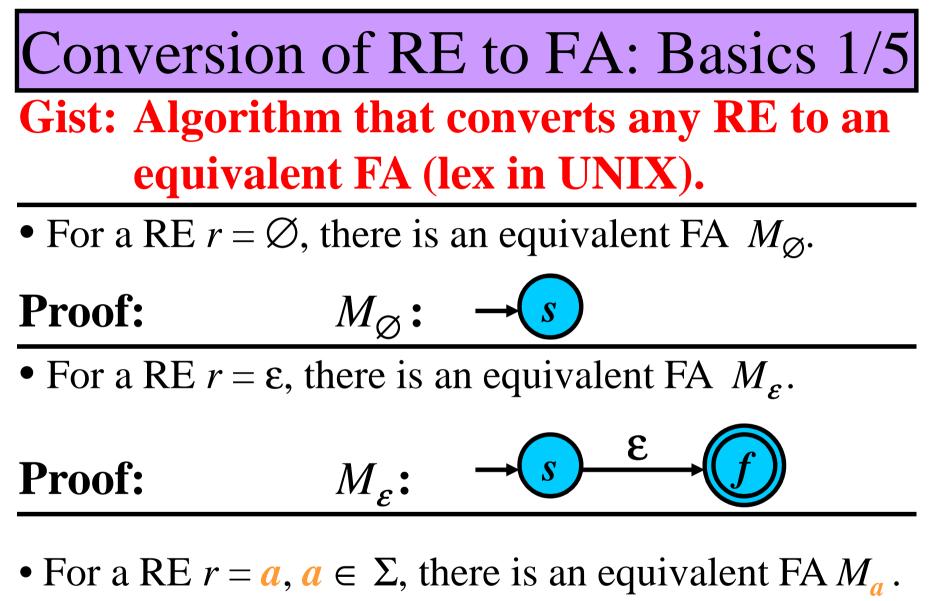
Example:





Question: Is M_1 equivalent to M_2 ?

Answer: M_1 and M_2 are equivalent because $L(M_1) = L(M_2) = \{a^n : n \ge 0\}$



Proof:
$$M_a: \rightarrow s \xrightarrow{a} f$$

22/29

RE to FA: Concatenation 2/5

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction:

22/29

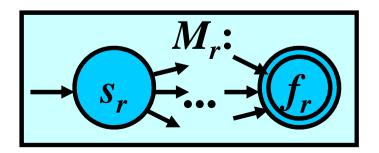
RE to FA: Concatenation 2/5

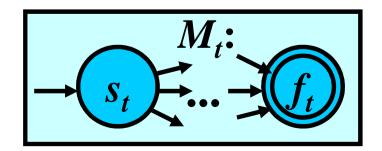
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction:

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t)$$



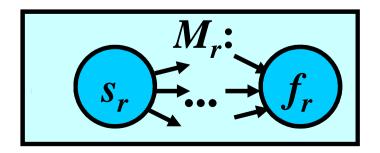


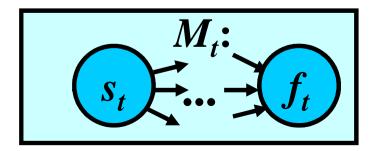
22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t)$$



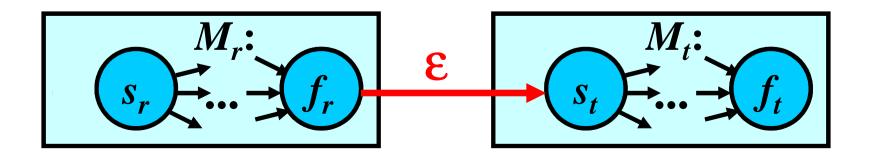


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction: $M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \rightarrow s_t\},\$

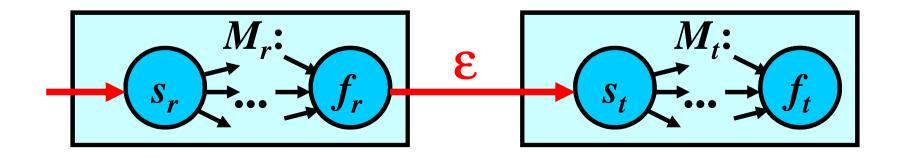


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r,$$

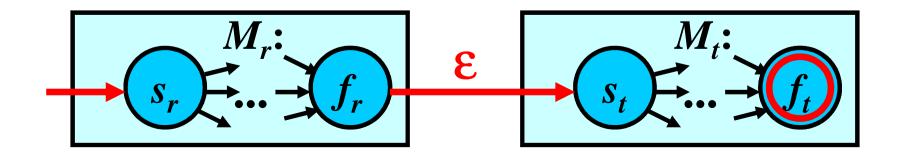


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r, \{f_t\})$$

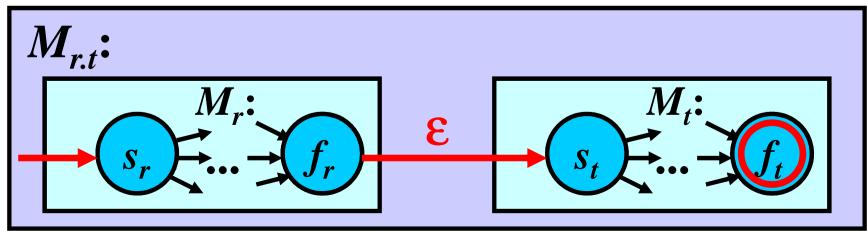


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r, \{f_t\})$$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

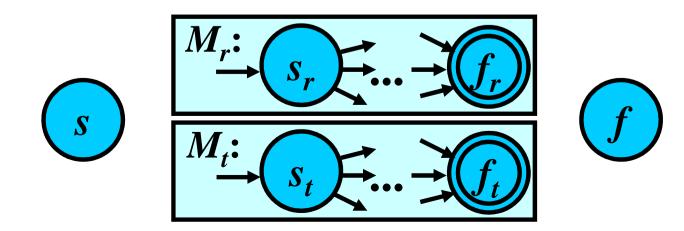
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction

•

23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

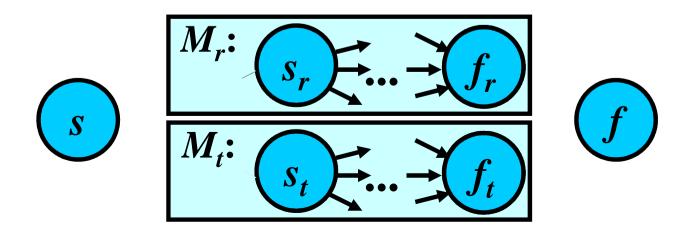
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t)$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

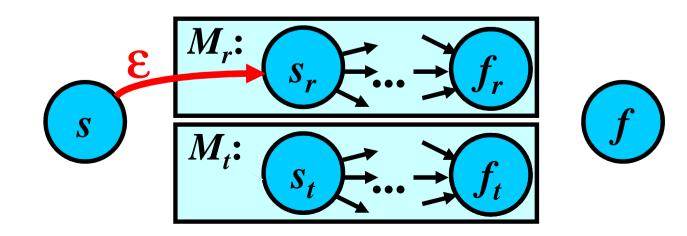
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t)$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

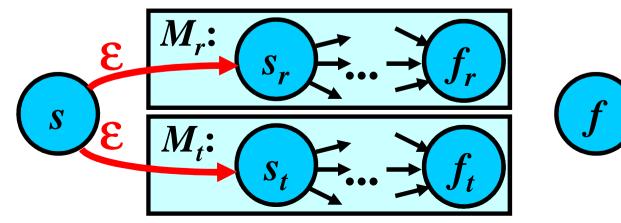
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \to s_r, f\})$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

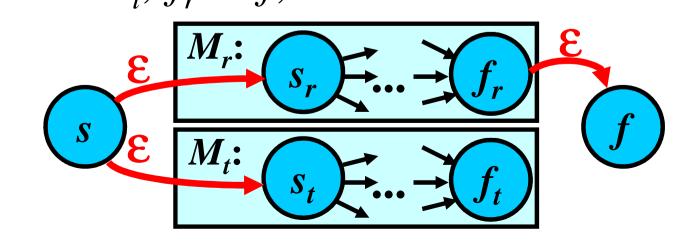
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f\})$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

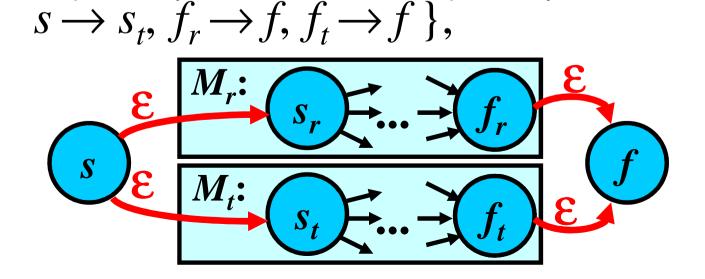
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \to s_r, s \to s_t, f_r \to f, f_r)$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

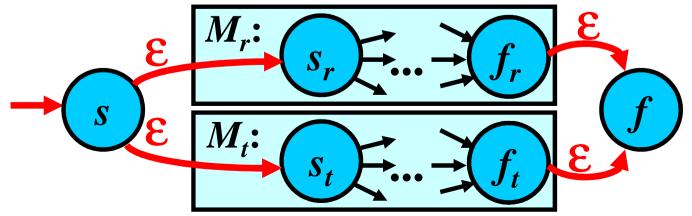
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \to s_r, f\})$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s,$



23/29

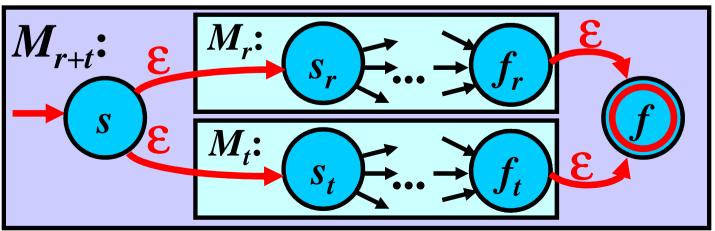
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \to s_r, s \to s_t, f_r \to f, f_t \to f\}, S, \{f\})$ M_r : S_r M_t :

23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s, \{f\})$



RE to FA: Iteration 4/5

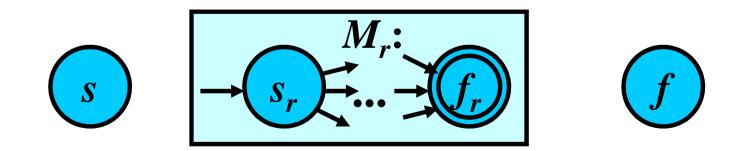
• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

• For the RE r^* , there exists an equivalent FA M_{r^*}

Proof: Let $s, f \notin Q_r$. **Construction:**

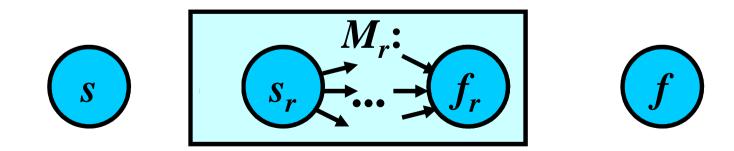
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*}
- **Proof:** Let $s, f \notin Q_r$. Construction:

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r)$$



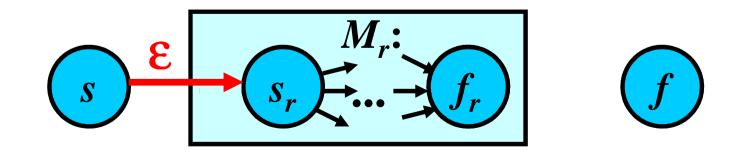
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*}
- **Proof:** Let $s, f \notin Q_r$. Construction:

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r)$$



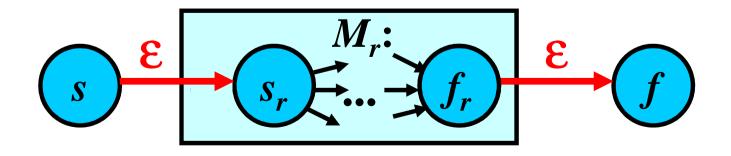
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r,$$



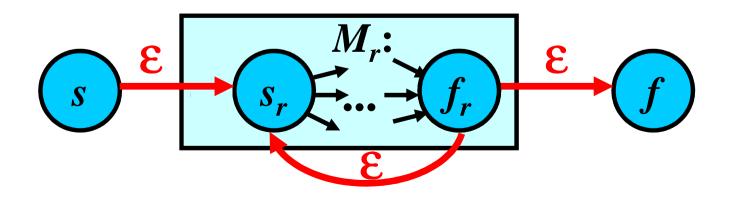
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f,$$



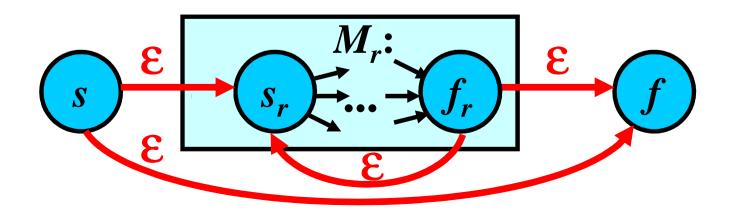
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, f_r \to s_r,$$



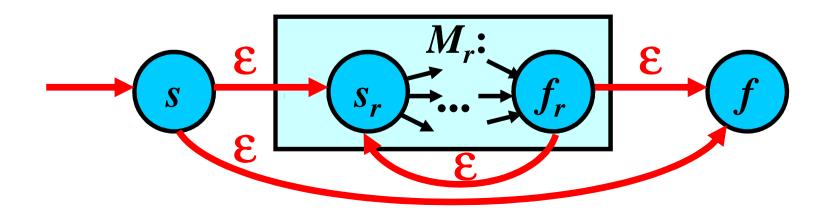
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\},$$



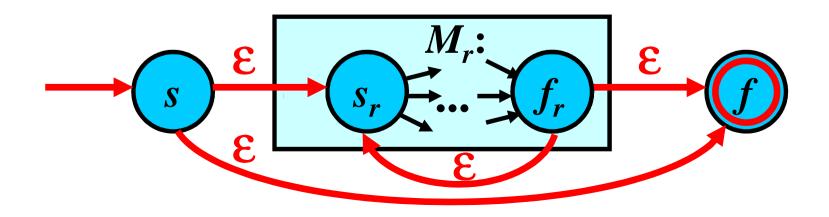
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, S,$$



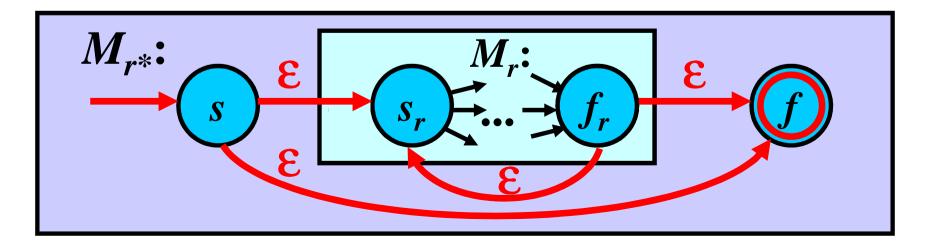
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, S, \{f\})$$



- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, s, \{f\})$$



RE to FA: Completion 5/5

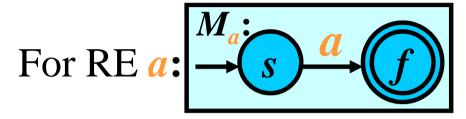
- Input: RE r over Σ
- **Output:** FA *M* such that L(r) = L(M)
- Method:
- From "inside" of *r*, repeatedly use the next rules to construct *M*:
 - for RE \emptyset , construct FA M_{\emptyset}
 - for RE ε , construct FA M_{ε}
 - for RE $a \in \Sigma$, construct FA M_a
 - let for REs *r* and *t*, there already exist FAs *M_r* and *M_t*, respectively; then,
 - for RE *r.t*, construct FA $M_{r.t}$ (see 2/5)

(see 4/5)

- for RE r + t, construct FA M_{r+t} (see 3/5)
- for RE r^* construct FA M_{r^*}

26/29

26/29



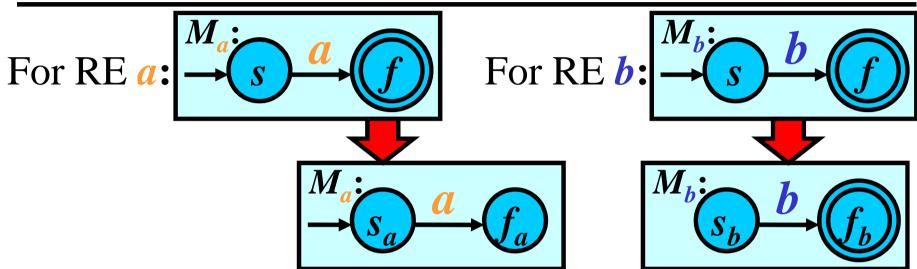
26/29

Transform RE $r = ((ab) + (cd))^*$ to an equivalent FA M

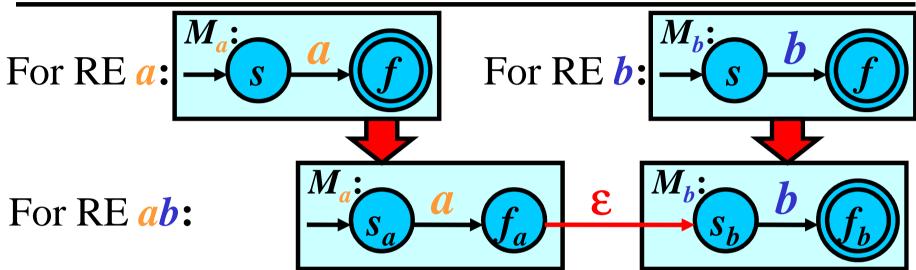
For RE $a: \overset{M_a:}{\longrightarrow} \overset{a}{\longrightarrow} \overset{f}{\longrightarrow} \overset{f}{\longrightarrow}$

For RE
$$b$$
: b f

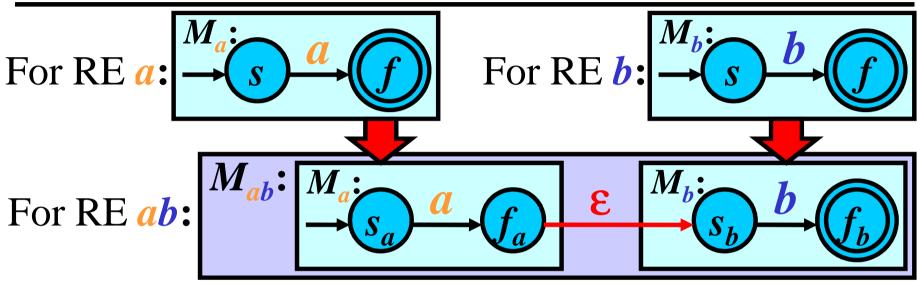
26/29



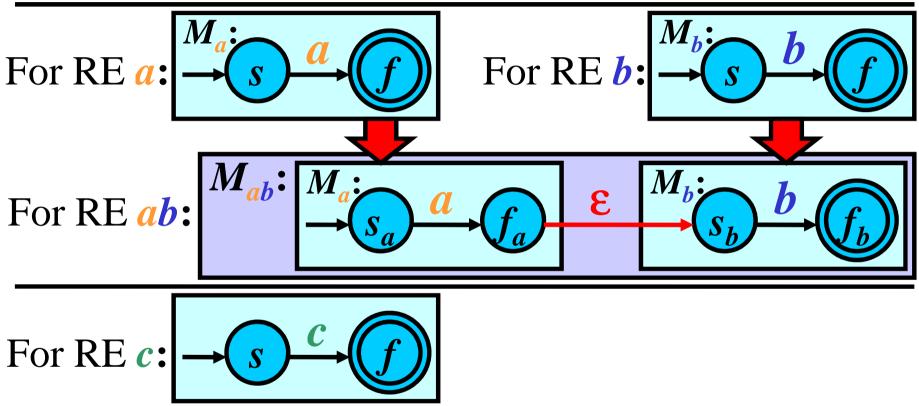
26/29

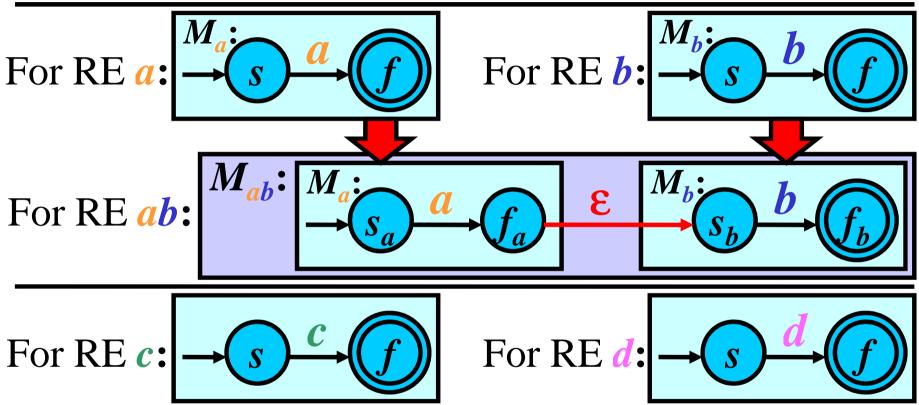


26/29

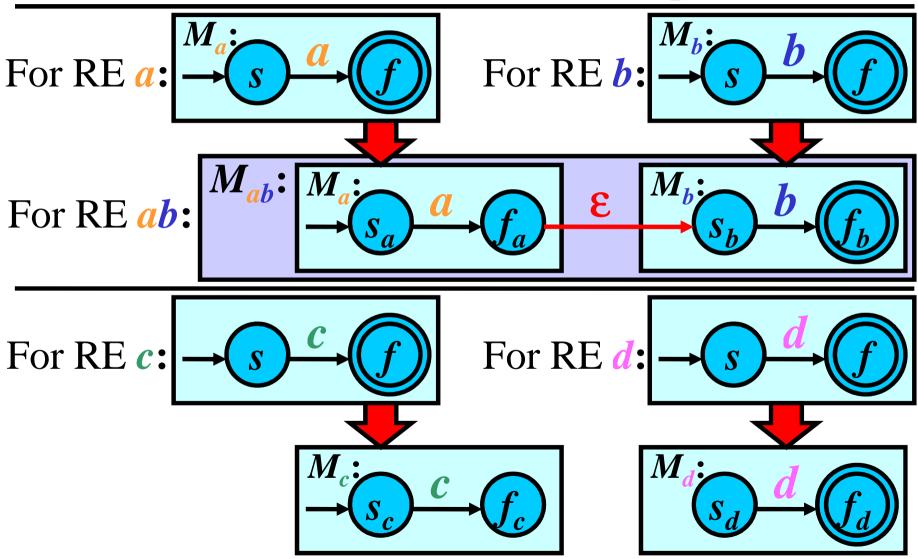


26/29

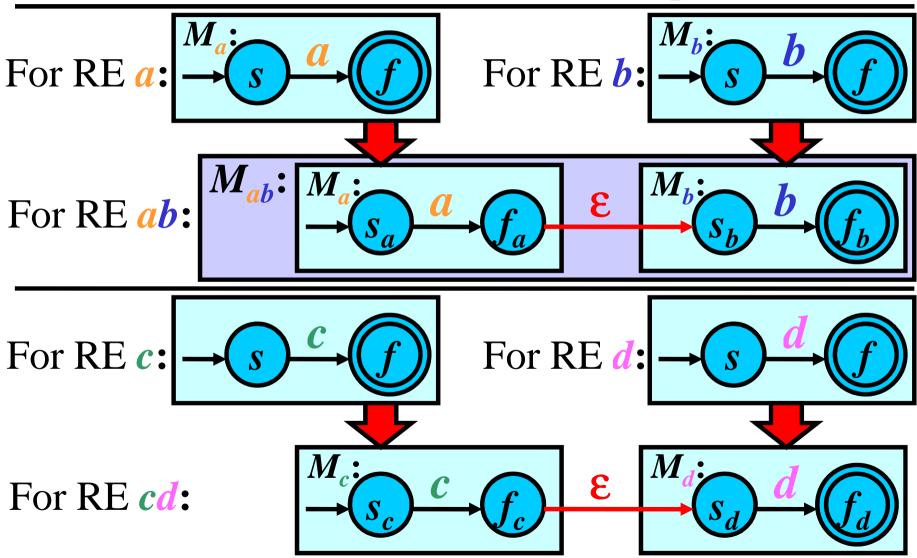




26/29

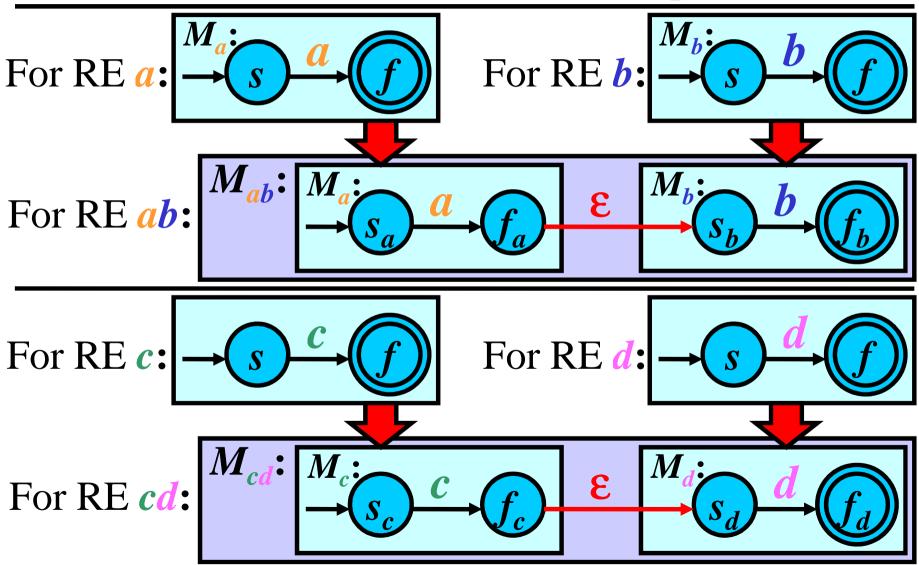


26/29



26/29

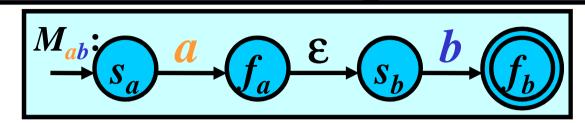
Transform RE $r = ((ab) + (cd))^*$ to an equivalent FA M



27/29

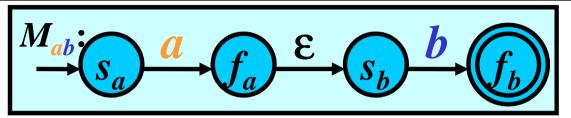
27/29

For RE *ab*:

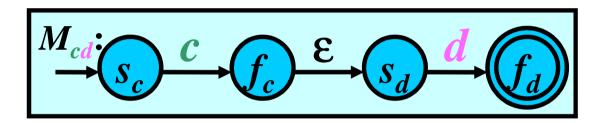


27/29

For RE *ab*:



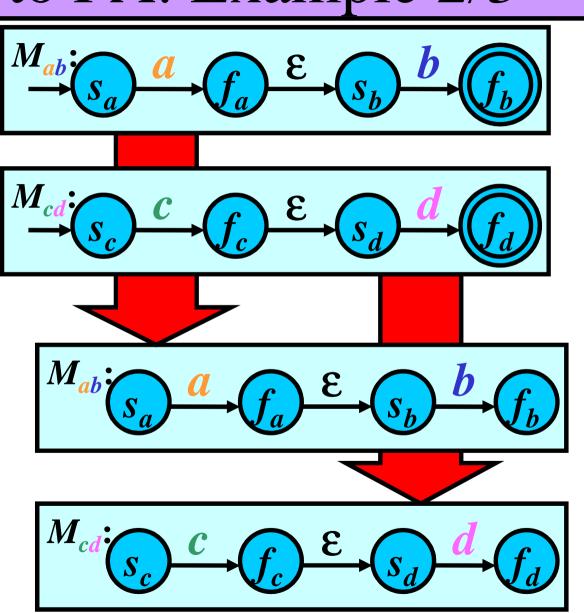
For RE *cd*:

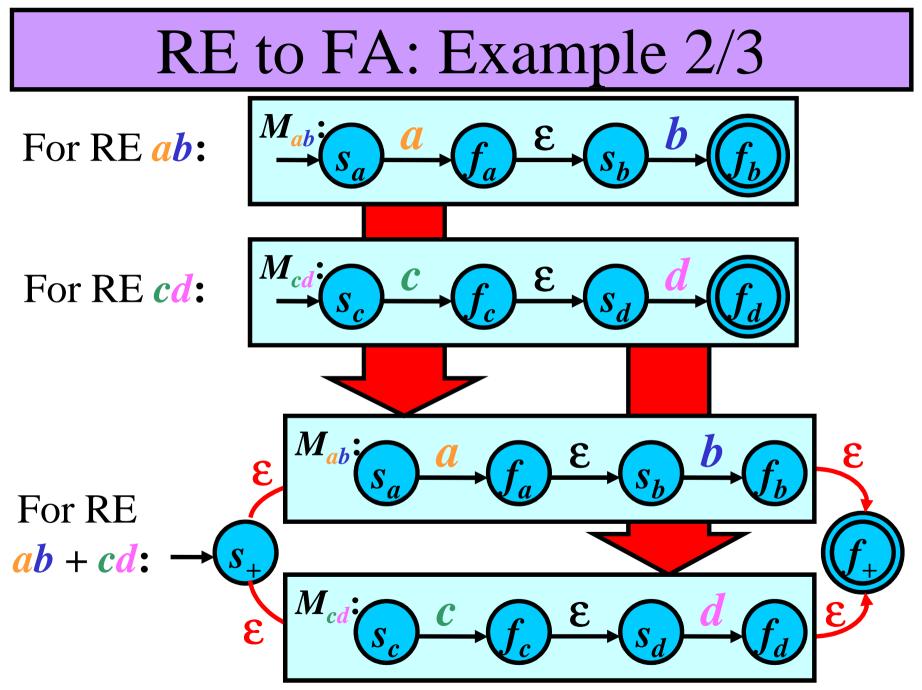


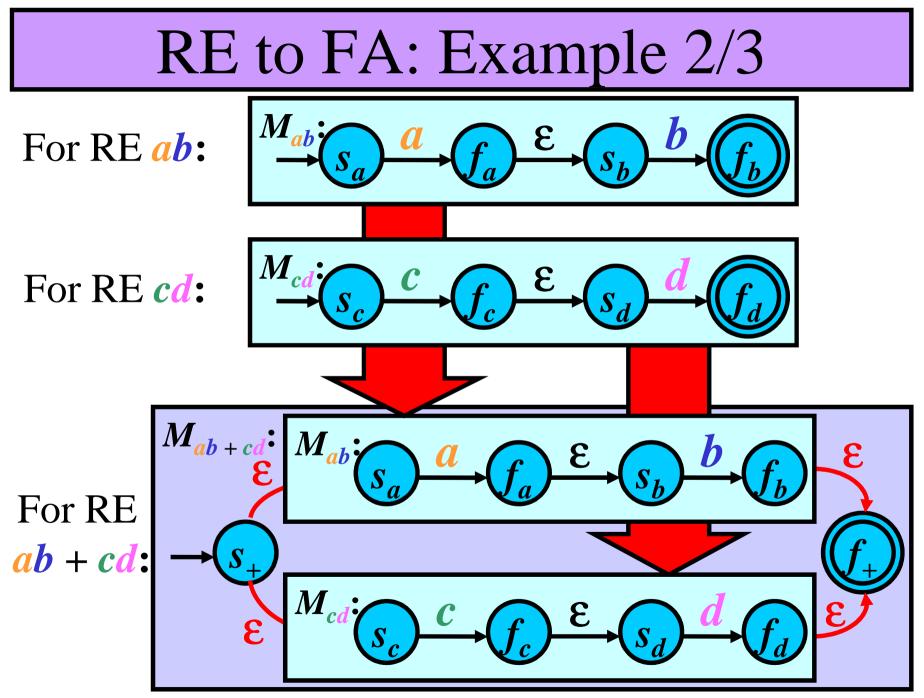
27/29

For RE *ab*:

For RE *cd*:



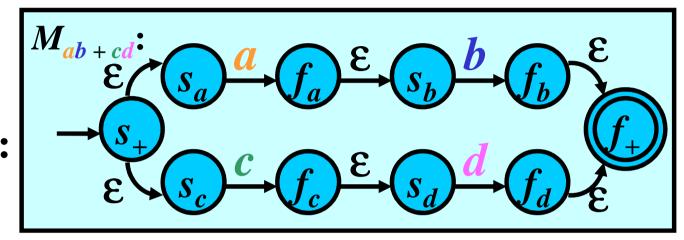




28/29

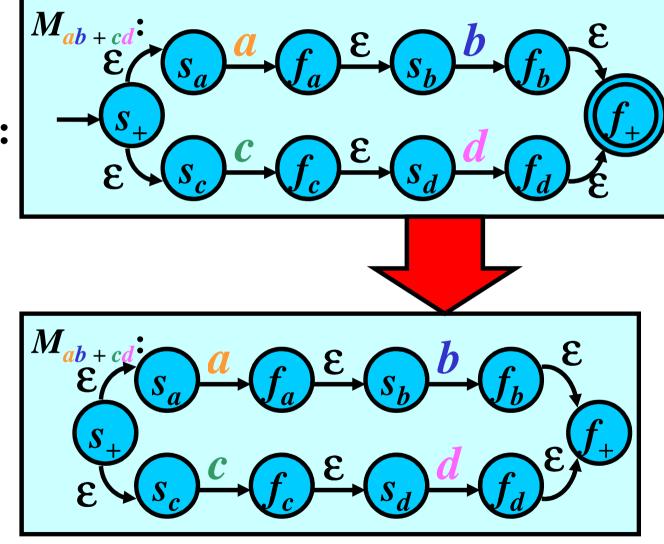
28/29

For RE *ab* + *cd*:

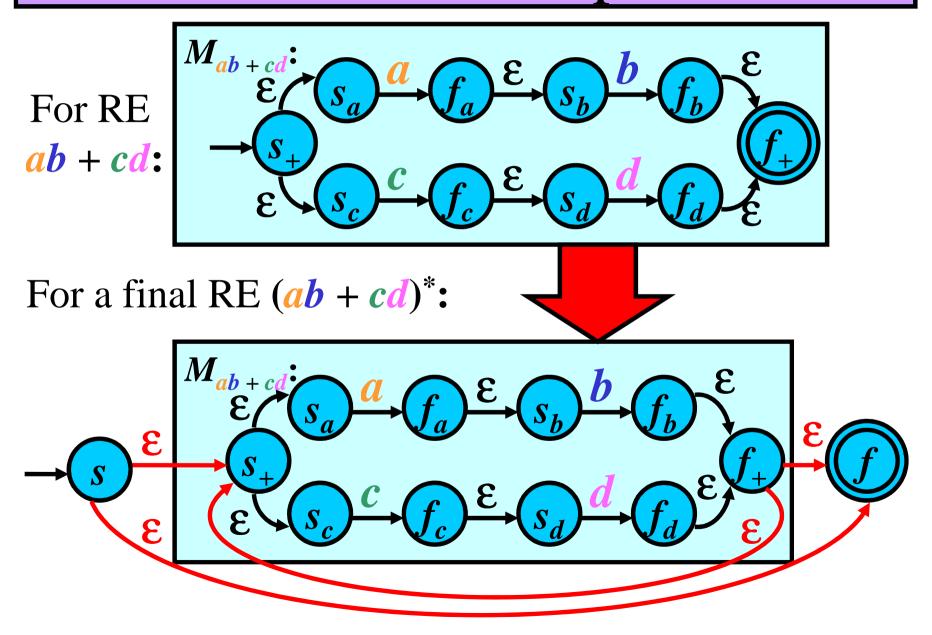


28/29

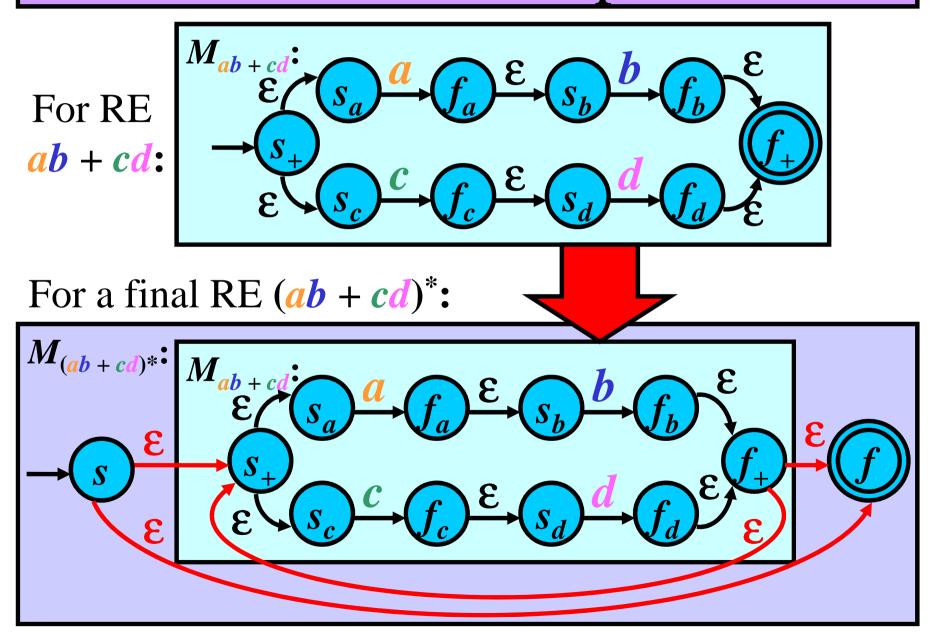
For RE *ab* + *cd*:



28/29



28/29



29/29

Models for Regular Languages

Theorem: For every RE *r*, there is an FA *M* such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FA *M*, there is an RE *r* such that L(M) = L(r).

Proof: See page 210 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for regular languages are
1) Regular expressions 2) Finite Automata