Laboratory Investigation

The molecular landscape of 227 adult granulosa cell tumors of the ovary: Insights into the progression from primary to recurrence --Manuscript Draft--

Manuscript Number:	
Full Title:	The molecular landscape of 227 adult granulosa cell tumors of the ovary: Insights into the progression from primary to recurrence
Article Type:	Research Article
Section/Category:	
Keywords:	adult-type granulosa cell tumor of the ovary; FOXL2; TERT promoter; KMT2D; FOXO1; DICER1; TMB; MSI
Corresponding Author:	Kristýna Němejcová Charles University First Faculty of Medicine CZECH REPUBLIC
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Charles University First Faculty of Medicine
Corresponding Author's Secondary Institution:	
First Author:	Romana Michálková, Ph.D.
First Author Secondary Information:	
Order of Authors:	Romana Michálková, Ph.D.
	Adam Šafanda
	Nikola Hájková
	Jan Hojný
	Eva Krkavcová
	Michaela Kendall Bártů
	Marián Švajdler
	Tetiana Shatokhina
	Jan Laco
	Radoslav Matěj
	Gábor Méhes
	Jitka Hausnerová
	Jozef Škarda
	Mária Hácová
	Monika Náležinská
	Tomáš Zima
	Pavel Dundr
	Kristýna Němejcová
Order of Authors Secondary Information:	
Manuscript Region of Origin:	CZECH REPUBLIC
Abstract:	Adult granulosa cell tumors (AGCTs) of the ovary are characterized by their propensity

Powered by Editorial Manager ${\ensuremath{\mathbb R}}$ and ProduXion Manager ${\ensuremath{\mathbb R}}$ from Aries Systems Corporation

	for late recurrences and are primarily managed surgically due to the limited efficacy of systemic treatment. The FOXL2 p.C134W somatic mutation has been identified in ~95% of AGCT cases, and TERT promoter alterations have been linked to worse overall survival. Additionally, KMT2D mutations have been observed more frequently in recurrences compared to primary tumors. This study analyzed a total of 183 primary AGCTs and 44 recurrences without corresponding primary tumors. The primary AGCTs were categorized into three groups: 77 non-recurrent tumors, 18 tumors which later recurred (including 9 cases with matched primary-recurrence pairs), and 88 tumors with unknown recurrence status. Targeted next-generation sequencing was conducted on 786 cancer-related genes to investigate their genetic profile. The study aimed to identify the molecular alterations associated with AGCT pathogenesis and recurrence rate, comparing primary vs. recurrent tumors, and primary-recurrent vs. primary non-recurrent cases. Our findings confirmed the high prevalence (99%) of the FOXL2 p.C134W mutation in AGCTs. Secondary truncating FOXL2 mutations were observed in 5% of cases. Two cases with typical AGCT morphology were FOXL2 wild-type, harboring mutations in KRAS or KMT2D instead, suggesting alternative genetic pathways. TERT promoter mutations were found in 43% of cases, more frequently in recurrences. However, survival analyses indicated only a non-significant trend towards worse overall survival in patients with TERT promoter mutations. Other recurrent mutations detected in the cohort included KMT2D (10%), FOXO1 (7%), CHEK2 (5%), TP53 (3.5%), PIK3CA (3.5%), and AKT1 (3%). Two recurrent, FOXL2-mutated cases also carried DICER1 mutations. One tumor exhibited MSI-High status and a TMB of 19 mut/Mb. Survival analysis indicated that FOXO1 mutations could be associated with poorer overall survival and shorter time to recurrence, suggesting its potential as a prognostic marker, warranting further investigation.
Suggested Reviewers:	
Opposed Reviewers:	
Additional Information:	
Question	Response

CHARLES UNIVERSITY First Faculty of Medicine

> Institute of Pathology of the First Faculty of Medicine and General Teaching Hospital in Prague Studničkova 2, 128 00 Prague 2 Associate professor Kristýna Němejcová, MD, Ph.D. Tel.: +420 224968632

> > September 13, 2024

Laboratory Investigation Dear Editor,

We would appreciate it if you would consider our manuscript " The molecular landscape of 227 adult granulosa cell tumors of the ovary: Insights into the progression from primary to recurrence" for publication in your journal.

Our study provides a comprehensive characterization of the molecular landscape of AGCTs. We confirmed a high prevalence of the FOXL2 p.C134W mutation in our dataset, while also demonstrating that the absence of this mutation does not exclude AGCT diagnosis confirmed by morphology. Additionally, we emphasized the prognostic value of FOXO1 mutations and identified the role of TERT promoter mutations in tumor recurrences. For the first time, we detected an MSI-High, TMB-High sample within the cohort of AGCTs based on NGS.

These findings highlight the importance of further research to validate potential biomarkers and assess their therapeutic relevance. Future studies should focus on incorporating molecular profiling into the clinical management of AGCTs, with the potential to advance personalized and more effective treatment approaches.

We hope that our manuscript would by beneficial for the readership.

Thank you for receiving our manuscript and considering it for review and publication in your Journal. We appreciate your time and look forward to your response.

Yours sincerely, Kristýna Němejcová

DECLARATIONS

Ethical approval: The study was approved by the Ethics Committee of the General University Hospital in Prague in compliance with the Helsinki Declaration (No. 2140/19 S-IV). The Ethics Committee waived the requirement for informed consent as according to the Czech Law (Act. no. 373/11, and its amendment Act no. 202/17), it is not necessary to obtain informed consent in fully anonymized studies.

Informed consent: Not applicable.

Conflict of interests: The authors declare no conflict of interests.

Ror Bár Hau Kris	nana Michálková ¹ , Adam Šafanda ¹ , Nikola Hájková ¹ , Jan Hojný ¹ , Eva Krkavcová ¹ , Michaela Ke tů ¹ , Marián Švajdler ² , Tetiana Shatokhina ³ , Jan Laco ⁴ , Radoslav Matěj ^{1,5,6} , Gábor Méhes ⁷ , Jitka Jsnerová ⁸ , Jozef Škarda ⁹ , Mária Hácová ¹⁰ , Monika Náležinská ¹¹ , Tomáš Zima ¹² , Pavel Dundr ¹ , stýna Němejcová ¹ *
¹ De Hos	partment of Pathology, First Faculty of Medicine, Charles University and General University spital in Prague, Prague, Czech Republic
²Šik Uni	(l's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles iversity, Pilsen, Czech Republic
³ De ⁴ Th anc	partment of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republi e Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králc d University Hospital Hradec Králové, Czech Republic
⁵De Vin	partment of Pathology, Charles University, 3rd Faculty of Medicine, University Hospital Králov. ohrady, 10034 Prague, Czech Republic
⁶ De Thc	partment of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles Universit mayer University Hospital, Prague, Czech Republic
⁷ De ⁸ De Cze	partment of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungar partment of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brr ch Republic
⁹ De Ost	partment of Pathology, University Hospital Ostrava and Faculty of Medicine University of Ost rava, Czech Republic
¹⁰ D ¹¹ D Inst	epartment of Pathology, The Regional Hospital Pardubice, Czech Republic ivision of Gynecologic Oncology, Department of Surgical Oncology, Masaryk Memorial Cancer titute and Medical Faculty of Masaryk University, Brno, Czech Republic
¹² In Uni	istitute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charle iversity and General University Hospital in Prague, Prague, Czech Republic
*Co Kria	prresponding author:
Dep Hos	partment of Pathology, First Faculty of Medicine, Charles University and General University spital in Prague, Studničkova 2, 12800 Prague 2, Czech Republic ail address: Kristyna Nemeicova@vfn cz

The molecular landscape of 227 adult granulosa cell tumors of the ovary: Insights into the

ABSTRACT

Adult granulosa cell tumors (AGCTs) of the ovary are characterized by their propensity for late recurrences and are primarily managed surgically due to the limited efficacy of systemic treatment. The *FOXL2* p.C134W somatic mutation has been identified in ~95% of AGCT cases, and *TERT* promoter alterations have been linked to worse overall survival. Additionally, *KMT2D* mutations have been observed more frequently in recurrences compared to primary tumors.

This study analyzed a total of 183 primary AGCTs and 44 recurrences without corresponding primary tumors. The primary AGCTs were categorized into three groups: 77 non-recurrent tumors, 18 tumors which later recurred (including 9 cases with matched primary-recurrence pairs), and 88 tumors with unknown recurrence status. Targeted next-generation sequencing was conducted on 786 cancer-related genes to investigate their genetic profile. The study aimed to identify the molecular alterations associated with AGCT pathogenesis and recurrence rate, comparing primary vs. recurrent tumors, and primary-recurrent vs. primary non-recurrent cases.

Our findings confirmed the high prevalence (99%) of the *FOXL2* p.C134W mutation in AGCTs. Secondary truncating *FOXL2* mutations were observed in 5% of cases. Two cases with typical AGCT morphology were *FOXL2* wild-type, harboring mutations in *KRAS* or *KMT2D* instead, suggesting alternative genetic pathways. *TERT* promoter mutations were found in 43% of cases, more frequently in recurrences. However, survival analyses indicated only a non-significant trend towards worse overall survival in patients with *TERT* promoter mutations. Other recurrent mutations detected in the cohort included *KMT2D* (10%), *FOXO1* (7%), *CHEK2* (5%), *TP53* (3.5%), *PIK3CA* (3.5%), and *AKT1* (3%). Two recurrent, *FOXL2*-mutated cases also carried *DICER1* mutations. One tumor exhibited MSI-High status and a TMB of 19 mut/Mb.

Survival analysis indicated that *FOXO1* mutations could be associated with poorer overall survival and shorter time to recurrence, suggesting its potential as a prognostic marker, warranting further investigation.

Keywords: adult-type granulosa cell tumor of the ovary, *FOXL2*, *TERT* promoter, *KMT2D*, *FOXO1*, *DICER1*, TMB, MSI

INTRODUCTION

Granulosa cell tumor (GCT) of the ovary represents a subset of estrogen-producing sex-cord stromal tumors, constituting 2-5% of all ovarian malignancies ¹⁻³. These tumors can be classified into two main subtypes based primarily on the clinical symptoms, patient age, and histopathological features: juvenile granulosa cell tumors (JGCTs) and adult granulosa cell tumors (AGCTs), with the AGCT being predominant and representing approximately 95% of all GCT cases.

AGCTs can manifest at any age, however, patients are commonly diagnosed during the perimenopausal or early postmenopausal stages, typically between 50 and 54 years of age ⁴. These tumors often exhibit a slow and indolent growth pattern and are diagnosed as stage I disease, resulting in a favorable prognosis. However, aggressive recurrences, typically emerging > 5 years after the initial diagnosis, are observed in up to one third of cases and can be fatal ^{5,6}.

Current treatment strategies involve surgical resection, with adjuvant therapy considered in cases where surgery is not a feasible option ⁷. The prognosis of patients with AGCTs is predominantly determined by the FIGO stage, while the role of adjuvant chemotherapy remains unclear ^{8,9}. However, the management of recurrent disease is still clinically challenging due to the limited systemic treatment efficacy ¹⁰. The lack of effective systematic therapies emphasizes the need for novel therapeutic approaches and highlights the importance of molecular characterization in identifying actionable targets.

A recurrent somatic missense mutation in the *FOXL2* gene (c.402 C>G; p.C134W) was identified in 97% of AGCTs, elucidating the underlying oncogenic mechanisms ^{1,11}. *FOXL2*, a transcription factor involved in ovarian function and granulosa cell differentiation, emerged as a key driver in GCT pathogenesis ¹². The p.C134W variant has since been recognized as a potential molecular hallmark of AGCTs, as it has been detected only rarely in other tumor types ^{1,13}. Subsequent independent investigations have confirmed the high prevalence of this mutation in AGCTs, distinguishing them from other sex cord-stromal tumors ¹⁴. Cases of AGCTs lacking this mutation raise questions about potential misdiagnoses and warrant further investigation ^{11,14,15}.

More recently, somatic *TERT* promoter hotspot mutations, recognized as biomarker for the prognosis of various cancer type ^{16,17}, have been frequently observed in AGCT patients experiencing a recurrence ¹⁸⁻²¹. Beyond the *TERT* mutation, recent studies have reported the occurrence of altered cancer-related genes, including *TP53*, *PIK3CA*, *CTNNB1*, and *KMT2D* ^{18-20,22,23}. Some of those have suggested that inactivating mutations in *KMT2D* may serve as potential pathogenic drivers in AGCTs ²⁴.

Moving forward, additional focus on the molecular landscape of AGCTs may provide valuable insights into their pathogenesis, identify novel therapeutic targets, and refine diagnostic criteria for improved patient management. Unfortunately, due to the rarity of AGCT diagnosis, molecular studies on AGCTs are naturally limited to a small number of cases ²⁵.

This study aims to comprehensively characterize the mutational profile, tumor mutational burden (TMB), and microsatellite instability (MSI) status of 227 adult granulosa cell tumors (AGCTs), including 183 primary tumors and 44 recurrences. The objective is to provide novel insights into the molecular pathogenesis and mechanisms driving the recurrence of this rare malignancy.

METHODS

Samples

The sample set of 290 AGCT cases represents a dataset already used in our previous immunohistochemical study ²⁶. Initially, 319 cases diagnosed as AGCT were retrieved from the archives of the co-operating institutions. Following a central review by two experienced gynecological pathologists (KN and PD), the final dataset was refined to 290 cases, of which 227 cases had successful DNA analysis. In 9 cases, tumor tissue from both the primary tumor and subsequent recurrences was available. The *FOXL2* mutation was present in all but two cases. Both *FOXL2*-negative cases exhibited typical AGCT morphology and were therefore retained in the dataset.

Patient clinical characteristics

Clinical data on the patient and tumor characteristics were obtained retrospectively from the medical records. The date of primary surgical procedure was reported as the date of diagnosis. Deaths due to unknown causes or unrelated to the diagnosis were classified as "dead of other causes". Clinical data availability was limited, with follow-up information available for only 63% (143/227) of patients.

NGS analyses of DNA

To describe the spectrum and frequency of genomic alterations and Copy Number Variations (CNV), targeted capture next-generation sequencing (NGS) analysis of the DNA was performed on 227 qualitatively sufficient FFPE samples, comprising 183 cases of primary origin, and 44 recurrences

without matched primary tumors. The DNA panel covered 786 genes or gene parts (2440 kbp of target sequence; 1992 kbp of coding sequence; Supplementary Table S1).

The DNA library preparation was conducted as previously described ²⁷. Libraries were paired-end sequenced using the NextSeq 500 instruments (Illumina) with the NextSeq 500/550 High Output Kit v2.5 (150 cycles). Bioinformatic evaluation, annotation, interpretation, and classification of detected variants were processed as described previously ²⁷. Only pathogenic and likely pathogenic variants were reported. Truncating variants in known oncogenes were not evaluated as pathogenic. The analysis does not allow for distinguishing between somatic and germline origins of the variants.

Copy Number Variations (CNVs) for each sample were calculated using the mean of four non-tumorsample controls as a baseline, with recommended loss vs. gain cut-offs for individual tumor samplepuritylevels(manualGW23.0.5;

https://resources.qiagenbioinformatics.com/manuals/clcgenomicsworkbench/current).

Homozygous deletions (both gene level and exon level) were defined as losses adjusted by tumor purity. Amplifications were designated if the calculated number of gene copies was > 10.

Due to the variable integrity of FFPE DNA, the quality of each CNV sample analysis was evaluated using a CNV scoring system. This system involved adding up all absolute differences between the adjusted fold change of each region and its regional fold change, then dividing by the total number of CNV regions. Samples with a CNV score of ≤ 0.20 were further analyzed for all CNV events, moreover, the detected events were manually checked for potential miscall of hybridization errors. Samples with a higher CNV score were evaluated individually, with only high-level amplifications or homozygous deletions designated as events when applicable. Homozygous deletions were evaluated only for known tumor suppressor genes, while amplifications were evaluated only for known oncogenes according to the OncoKB database ²⁸.

Microsatellite instability (MSI) was assessed for all samples using the NGS bioinformatics pipeline based on 17 microsatellite loci, standardized for evaluating MSI in colorectal and endometrial carcinomas. These loci were included in the DNA gene panel as described previously ²⁹. A sample was classified as microsatellite unstable if \geq 25% of its microsatellite markers were determined to be unstable. Additionally, immunohistochemical (IHC) analysis of mismatch repair (MMR) proteins, including MLH1, PMS2, MSH6, and MSH2, was conducted according to previously described protocol ²⁹.

Statistical analyses

Standard descriptive statistics were employed to summarize the dataset: categorical variables were reported as frequencies and percentages, while continuous variables were expressed as means with standard deviation (SD), or medians with interquartile range.

Associations between patient characteristics and tumor origin were assessed using Pearson's chisquare test or Fisher's exact test for categorical variables, and the Mann-Whitney U-test for continuous variables. For matched sample comparisons, the paired t-test was used.

For survival analyses, data on the dates of primary excision, first recurrence, and mortality were collected in 143 cases. Overall survival (OS) was calculated from the date of surgery to the date of recorded death or to the last known follow-up date (censoring). Recurrence-free survival (RFS) was calculated from the date of primary surgery to the date of the first recurrence.

The univariate and multivariate Cox proportional hazard (Cox PH) regression models (*survival::coxph*) were used to estimate the hazard ratio associated with molecular pattern (e.g. *TERT*-mutated vs. *TERT* wild-type, *FOXL2* one hit vs. *FOXL2* two hits), adjusting for age, binarized FIGO stage, and adjuvant therapy. Cox PH were described by regression coefficients (β), hazard ratios (HR) with 95% confidence

intervals (95%CI), and corresponding statistical significance (*p*-value). A backward stepwise elimination from the full model was employed to obtain the minimal adequate model.

Survival curves were constructed using the Kaplan-Meier method (*survminer::ggsurvplot*) and differences between the compared groups were assessed using the log-rank test.

All statistical analyses were performed using the R software version 4.3.3. (2024-02-29). All tests were two-sided and a p-value <0.05 was considered statistically significant.

RESULTS

Clinico-pathological features of primary and recurrent AGCTs

Detailed clinico-pathological characteristics of the 227 AGCT cases are described in Table 1.

The median age of the entire patient cohort was 58 years (range 24-83), with a significant difference observed between the primary (median = 59 years) and recurrent cases (median = 47 years; p < 0.001). This could suggest that younger patients are more susceptible to subsequent recurrence. However, younger patients might also be monitored for a longer average duration, which increases the probability of detecting a late relapse.

Among patients with a known FIGO stage, 89% (132/148) presented with stage IA-IC. Notably, only 7% of primary cases had higher stages, whereas 25% of recurrences were diagnosed as FIGO II-IV (p = 0.014). Furthermore, a significant difference was observed between primary and recurrent tumors regarding the FIGO stage I classification, with primaries predominantly manifesting as stage IA (76%), while recurrences exhibited a distribution of 48% in stage IA and 52% in stages IB-IC (p = 0.009).

The follow-up data was available for 143 cases, with an average length of 100 months (median = 68; range 1-432). Primary cases had significantly shorter follow-up time (median = 45 months) compared to recurrences (median = 183 months; p < 0.001). Similarly, the primary non-recurrent cases had notably shorter follow-up time (median = 40 months) than the primary recurrent cases (median = 150 months; p < 0.001).

The recurrence rate in the dataset with available follow-up data was 40% (57/143), with 6% (9/143) of patients dying of the disease, all of whom experienced recurrence. The time to recurrence was an average of 100 months, with a median of 82 months.

When comparing the subset of primary cases only, based on subsequent recurrences, primary recurrent cases did not differ from primary non-recurrent cases in any of the tested parameters, except for the duration of follow-up (Table 1).

Mutational landscape of primary and recurrent AGCTs

The comprehensive mutation profile of genes recurrently altered in the entire cohort is visualized in Fig. 1. All detected pathogenic and likely pathogenic mutations are listed in Supplementary Table S2.

A comparison of the main molecular characteristics between the primary and recurrent cases is summarized in Table 2.

Briefly, 99% (225/227) of cases in our dataset harbored the *FOXL2* mutation p. C134W, with no significant difference between the primary and recurrent cases. Additionally, truncating mutations representing a secondary hit of *FOXL2* were detected in 12 cases (5%), both in primaries and recurrences (Supplementary Table S3). Notably, two tumors with typical histological and immunohistochemical features of AGCTs, which were both non-recurrent primary cases, were found to be *FOXL2* wild-type. These two cases were diagnosed at FIGO I stage, exhibited no evidence of disease, and were found to be mutated in *KRAS* or *KMT2D*, respectively.

The second most frequently alteration was *TERT* promoter mutation, observed in 43% (98/227). Mutations in the *TERT* promoter were significantly more frequent in recurrences compared to primary cases (p = 0.007). The predominant alteration observed was *TERT* c.-124C>T (known in literature as C228T), detected in 90% of mutated primary and 74% of mutated recurrent cases. The less frequent mutation, c.-146C>T (known as C250T), was present in 10% of mutated primaries and 26% of mutated recurrences. The frequency of specific TERT promoter mutations in mutated cases did not differ significantly between the primary and recurrent cases (p = 0.055).

In 10% of samples, an inactivating *KMT2D* variant was identified, with a comparable occurrence rate observed in both primary (9% mutated) and recurrent cases (14% mutated; p = 0.406).

FOXO1 truncating variants were identified in 7% of cases, with a similar frequency of mutated cases observed in primaries and recurrences (p = 0.314). Notably, all patients with *FOXO1* mutations also harbored the *FOXL2* p.C134W variant and all of them were *KMT2D* wild-type and *TP53* wild-type.

Among other frequently altered genes, *CHEK2* mutations were found in 5% of all cases, followed by *TP53* and *PIK3CA* mutations, each observed in 3.5% of cases and *AKT1* mutations in 3% of cases. *TP53* mutations were present in all cases with *FOXL2* mutations. Three cases with *TP53* mutation also harbored *TERT* promoter mutations. No mutual exclusivity was detected between these genes.

Additionally, some pathogenic or likely pathogenic mutations were detected in other genes, albeit at a much lower frequency (Fig. 1; Supplementary Table S2).

Interestingly, two cases of *DICER1* mutations were detected in our cohort of AGCTs. Both cases originated from recurrences and presented with a low FIGO stage. One of the patients harbored a frameshift variant (c.1447_1469delins, p.G483fs), while the other had two pathogenic mutations in *DICER1* (c.1630C>T, p.T55* and c.4031C>T, p.S1344L). A sufficient quantity of non-tumor tissue was not available to distinguish between a germline mutation and a somatic mutation in *DICER1*-mutated cases. Both cases were also found to harbor mutations in the *FOXL2* and *TERT* promoter and were *TP53* wild-type.

Comparison between the subset of primary recurrent and primary non-recurrent cases did not reveal any significant differences in selected molecular features between the groups. However, there was an increasing trend in the frequency of *TERT* mutations and *KMT2D* mutations from primary non-recurrent to primary recurrent cases (Table 2).

TMB, MSI, and CNV of primary and recurrent AGCTs

The mean tumor mutation burden (TMB) of the cohort was 5.8 mut/Mb (median = 6; range 2-19). There was no significant difference in TMB between the primary and recurrent cases (p = 0.937). The TMB also did not differ based on the presence of mutation in either *TERT* promoter (p = 0.399), *KMT2D* (p = 0.524), *FOXO1* (p = 0.332), *CHEK1* (p = 0.361), or *TP53* (p = 0.188).

A single case with TMB-High status (TMB = 19 mut/Mb) was identified. This case was a primary, nonrecurrent tumor and was the only sample in the dataset that also exhibited an MSI-High status by NGS. However, IHC of MMR proteins was evaluable in 220 out of 227 cases, and all these tumors, including the MSI-High sample identified by NGS, were MMR proficient ²⁶. (Němejcová et al. 2024). No pathogenic or likely pathogenic mutations in MMR genes were found in the MSI-High sample; however, duplication of exon 7 of the *PMS2* gene (NM_000535.7) was observed.

Results of CNV were available in 58 % of cases (132/227). No amplification of oncogene was detected. Homozygous deletion of *CDKN2A* and *CDKN2B* was observed in one recurrent case. Homozygous deletion of *NOTCH1* was detected in one primary non-recurrent tumour and homozygous deletion of *POLD1* gene was detected in one primary case without information of recurrence (Fig. 1).

Comparison between matched primaries and recurrences

The mutational landscape was evaluated in primary tumors and their matched recurrences from nine patients. Mutational differences between these samples are detailed in Table 3.

Briefly, all cases harbored the *FOXL2* mutation p.C134W in both the primary and recurrence samples. *TERT* promoter mutations were identified in at least one sample of a given patient in five cases. In three pairs, the mutation was present in both the primary tumor and matched recurrence, while in one case, only the recurrence harbored the mutation, suggesting it may have been acquired during disease progression. Interestingly, in one pair, only the primary tumor exhibited the mutation, while the recurrence lacked the alteration in a specific hotspot. In this case, the *TERT* mutation was probably weeded out by selection during the ongoing tumorigenesis.

Additionally, *KMT2D* truncating mutations were detected in three pairs, with two of them sharing the mutation in both the primary and recurrence, and in one case, only the recurrence harbored the *KMT2D* mutation. Other genes, in which pathogenic mutations were detected only in the recurrence and not in the primary tumor, included *PIK3CA*, *SMARCA4*, and *NAV3* (all in one pair). Matched primaries and recurrences did not differ in TMB score (p > 0.995).

Association of TERT promoter alterations with recurrences and survival

A higher prevalence of *TERT* mutations was observed in recurrent cases compared to primary cases (p = 0.007; Table 2). When comparing only the subset of primary AGCTs according to known subsequent recurrences, primary non-recurrent cases did not significantly differ in the rate of *TERT* promoter mutations from the primary recurrent cases (p = 0.393; Table 2).

For survival analyses, we classified *TERT* mutations in two ways: first, we grouped cases with either C250T or C228T mutations as having a mutated phenotype, while the rest were considered wild-type. Second, we focused specifically on the C228T mutation, treating it as mutated and all others, including C250T, as wild-type. This was performed because C228T is the predominant mutation, and other studies have suggested its association with worse prognosis. Finally, only *TERT*-mutated cases were compared according to specific hotspot variant.

Survival analyses showed no significant difference in tested clinical outcomes between patients with and without *TERT* mutations, whether considering C228T/C250T together or C228T alone (Supplementary Table S4). However, in univariate analyses, there was a slight but non-significant trend towards worse prognosis in term of overall survival for cases with C228T mutation compared to wildtype cases (p = 0.064). In contrast, recurrence-free survival in patients with the *TERT* promoter mutation was similar to patients without it. When comparing only *TERT*-mutated cases in relation to specific type of alterations (C228T vs. C250T), there was no difference in any of the tested outcomes (Supplementary Table S4).

Association of KMT2D alterations with recurrences and survival

The prevalence of *KMT2D* truncating mutations did not differ between the primary and recurrent cases in our study (p = 0.406), nor between the primary non-recurrent and primary recurrent cases (p = 0.394; Table 2). Furthermore, no significant difference was observed in overall or recurrence-free survival based on *KMT2D* mutation status (Supplementary Table S4).

Association of other recurrent altered genes with survival

Besides the *TERT* promoter and *KMT2D* alterations, univariate survival analyses were performed based on mutation status of other frequently altered genes: *FOXO1*, *TP53*, *CHEK2*, and based on the status of *FOXL2* (C134W vs. second hit).

Only *FOXO1* mutations appeared to have prognostic value, indicating poorer overall survival in mutated cases compared to those without mutation, with a median OS of 35.8 years in *FOXO1* wild-type cases versus 11.6 years in *FOXO1*-mutated cases (p = 0.009), and shorter time to recurrence, with a median RFS of 10.3 years in wild-type cases compared to 5.7 years in mutated cases (p = 0.045; Supplementary Table S4). In multivariate Cox PH analyses, *FOXO1* status remained significant, along with the patients age for overall survival and FIGO stage for recurrence-free survival (Table 4). However, clinical data on *FOXO1*-mutated cases are highly limited, as shown in the Kaplan-Meier curves (Supplementary Fig. S1), which precludes definitive conclusions.

The mutation status of *TP53*, *CHEK2*, and *FOXL2* had no impact on survival in any of the clinical parameters tested (Supplementary Table S4).

DISCUSSION

This study provides a comprehensive analysis of the clinico-pathological and molecular characteristics of primary and recurrent adult granulosa cell tumors. The NGS analysis has reaffirmed the previously reported limited number of recurrent mutations in individual genes within AGCTs and confirmed the high prevalence of the *FOXL2* p.C134W mutation, consistent with earlier findings which have established this mutation as a hallmark of AGCTs¹. Interestingly, two primary non-recurrent cases were *FOXL2* wild-type, harboring mutations in *KRAS* or *KMT2D* instead, suggesting that alternative genetic pathways might drive tumorigenesis in a small subset of AGCTs. Moreover, truncating mutations in *FOXL2*, in addition to p.C134W, were detected as secondary hits in 5% of samples.

A higher prevalence of *TERT* promoter mutations was observed in recurrent AGCT cases compared to primary cases, which aligns with previous findings ¹⁸⁻²⁰. Although our survival analysis did not show a statistically significant impact of *TERT* mutations on overall or recurrence-free survival, there was a non-significant trend towards worse overall survival in patients with *TERT* promoter mutations. This trend, particularly for the c.-124C>T (C228T) mutation, is consistent with prior study suggesting association of C228T with poorer overall survival in a set of 186 primary cases ¹⁸. Our findings, based on a dataset of 143 AGCTs, support the hypothesis that *TERT* promoter mutations may contribute to poorer overall survival in AGCT patients. However, the non-significant results highlight the need for further research to fully elucidate the prognostic value of *TERT* promoter mutations in AGCTs.

The role of *KMT2D* mutations in AGCTs remains less clear. No significant difference in the prevalence of *KMT2D* mutations between the primary and recurrent cases was found in our cohort. This contrasts with previous research by Hillman et al. ²⁴, which has suggested that *KMT2D* mutations might contribute to tumor progression and recurrence on a subset of 79 AGCT patients. On the contrary, this finding was not confirmed by other studies ^{20,23}, nor by our study. Additionally, our survival analyses showed no significant impact of *KMT2D* mutational status on survival outcomes.

Interestingly, a *KRAS* mutation was identified in only one case in our dataset, which was the *FOXL2* wildtype case, corresponding to a frequency of 0.4%. Similarly, Roze et al. reported a *KRAS* mutation in just one patient (2%); however, in their study, this mutation co-occurred with alterations in both *FOXL2* and *KMT2D*²². In contrast, Rowland et al. reported a higher incidence of KRAS mutations in AGCT patients, with an occurrence rate exceeding 4% ³⁰. A recent study has highlighted the role of the *FOXO1* gene, an antagonist of *FOXL2*, in AGCT pathogenesis ^{31,32} and has suggested an interaction between the *FOXO1* and *FOXL2* pathways, proposing that *FOXO1* alterations may represent a secondary genetic event in AGCT development. These alterations could potentially contribute to tumor progression or aggressiveness, particularly in cases where *FOXO1* co-occurs with *FOXL2* ^{31,32}. Our findings identified *FOXO1* truncating variants in 7% of cases, all of which were *FOXL2*-mutated, *KMT2D* wild-type, and *TP53* wild-type. The presence of *FOXO1* mutations in our study was associated with significantly poorer overall survival and shorter time to recurrence. The identification of *FOXO1* as a possible prognostic marker aligns with recent research suggesting its involvement in AGCT pathogenesis and its interaction with the *FOXL2* pathway ^{31,32}. While it is possible that the *FOXO1* gene could serve as a potential prognostic marker for AGCT diagnosis, this hypothesis requires more robust, independent investigation.

Our study also reported rare occurrences of *DICER1* mutations in recurrent AGCTs. Mutations in *DICER1* have been identified primarily in Sertoli-Leydig cell tumors ^{33,34}. Although *DICER1* mutations have been reported in the juvenile type of granulosa cell tumors (JGCTs), they were not commonly observed in AGCTs ³³⁻³⁵, except for findings published by Roze et al. ²². They suggested *DICER1* as a potential alternative driver in the development of this tumor type, as they detected alterations in *DICER1* only in the *FOXL2* wild-type cases ²². On the contrary, our study detected both the *DICER* mutations in *FOXL2*-mutated recurrent cases. This could suggest a potential role for *DICER1* mutations particularly in recurrent AGCTs, but further exploration is needed.

Moreover, our findings did not confirm mutually exclusivity of *TP53* and *FOXL2* mutations. All eight *TP53*-mutated cases in our cohort harbored *FOXL2* mutation p.C134W, and all exhibited low tumor mutation burden. Contrary to a previous report ³⁶, *TP53*-mutated cases did not demonstrate higher TMB compared to *TP53* non-mutated cases. This contradicts the hypothesis of a "high-grade" pattern proposed by some researchers, who defined a new subgroup with aggressive behavior and high TMB of *TP53*-mutated cases ^{22,36,37}.

In AGCTs, there is limited evidence regarding the prevalence of predictive biomarkers associated with FDA-approved therapies, such as tumor mutation burden (TMB) or microsatellite instability (MSI). To our knowledge, this study is the first to report the occurrence of MSI-High status in an AGCT cohort. Previous studies have classified all AGCT cases as MMR-proficient ^{38,39} or MSS ^{36,38}. In our cohort, one tumor (0.4%) was identified as MSI-High based on NGS analysis. This case showed a high TMB of 19 mut/Mb, no pathogenic MMR genes mutations, but *PMS2* exon 7 duplication was observed. Despite this, the expression of all MMR proteins was retained. Discrepancies between NGS-MSI testing and IHC have been reported, where protein expression may be preserved, but the function of the protein is lost ^{40,41}. Therefore, studies based solely on IHC may underestimate the presence of MSI status in AGCTs.

Although our findings provide new insights into the genetic background of AGCTs, several limitations must be addressed. Firstly, the clinical data on patient's follow-up and survival status were highly limited in our dataset. Secondly, CNV analysis was conducted on only 132/227 samples.

CONCLUSION

In conclusion, our study provides a comprehensive characterization of the molecular landscape of AGCTs. We confirmed a high prevalence of the *FOXL2* p.C134W mutation in our dataset, while also demonstrating that the absence of this mutation does not exclude AGCT diagnosis confirmed by morphology. Additionally, we emphasized the prognostic value of *FOXO1* mutations and identified the

role of *TERT* promoter mutations in tumor recurrences. For the first time, we detected an MSI-High, TMB-High sample within the cohort of AGCTs based on NGS.

These findings highlight the importance of further research to validate potential biomarkers and assess their therapeutic relevance. Future studies should focus on incorporating molecular profiling into the clinical management of AGCTs, with the potential to advance personalized and more effective treatment approaches.

Acknowledgements: The authors wish to thank to Mgr. Zachary H. K. Kendall, B.A. (Institute for History of Medicine and Foreign Languages, First Faculty of Medicine, Charles University in Prague) for the English language editing.

Author contribution: KN and PD designed the study concept. RM drafted the initial manuscript and performed all statistical analyses. RM, KN, NH and JH interpreted data. All authors contributed to material preparation and data collection. All authors provided critical feedback on the manuscript drafts and approved the final version of the manuscript.

Funding: This work was supported by the Ministry of Health, Czech Republic (MH CZ DRO-VFN 64165 and AZV NU21-03–00238), by Charles University (Project UNCE24/MED/018, SVV 260631), and by the European Regional Development Fund (EF16_013/0001674 and BBMRI_CZ LM2023033).

Data availability: The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Supplementary information: The online version contains supplementary material.

Table S1: List of genes included in the NGS panel.

Table S2: List of all pathogenic/likely pathogenic variants detected in dataset of 227 AGCTs.

Table S3: List of detected *FOXL2* mutation other than p.C134W in dataset of 227 AGCTs.

Table S4: Results of univariate Cox Proportion Hazard models based on mutational status of selected genes. Figure S1: Kaplan-Meier curves for patients with AGCT stratified by *FOXO1* status. *FOXO1*-mutated cases are associated with A) worse overall survival and B) shorter time to recurrence. Numbers at risk demonstrate the cumulative number of events, *p*-values are based on log-rank test.

DECLARATIONS

Ethical approval: The study was approved by the Ethics Committee of the General University Hospital in Prague in compliance with the Helsinki Declaration (No. 2140/19 S-IV). The Ethics Committee waived the requirement for informed consent as according to the Czech Law (Act. no. 373/11, and its amendment Act no. 202/17), it is not necessary to obtain informed consent in fully anonymized studies.

Informed consent: Not applicable.

Conflict of interests: The authors declare no conflict of interests.

TABLES AND FIGURES:

Table 1: Clinicopathological characteristics of 227 AGCT patients stratified by tissue origin (Primary vs. Recurrence) and 95 primary AGCT patients stratified by known recurrence status (P non-recurrent vs. P recurrent)

Table 2: Selected molecular characteristics of 227 AGCT patients stratified by tissue origin (Primary vs.Recurrence) and 95 primary AGCT patients stratified by known recurrence status (P non-recurrent vs.P recurrent)

Table 3: Selected clinico-pathological features and mutational status of primaries and their matched

 recurrences in 9 AGCT patients.

Table 4: Results of minimal adequate models of multivariate Cox Proportional Hazard regression

 models for overall survival and recurrence-free survival

Fig.1: OncoPrint showing the landscape of genetic alterations in cancer-related genes in primary and recurrent AGCTs.

Cases are shown in columns and genes in rows. Primary cases are categorized based on recurrence status. All clinical and molecular categories are color-coded according to the legend.

N/A – data not available, NED – no evidence of disease, AWD – alive with disease, DOC – death of other cause, DOD – death of disease, n. – number

References:

- 1 Shah, S. P. *et al.* Mutation of FOXL2 in granulosa-cell tumors of the ovary. *N Engl J Med* **360**, 2719-2729 (2009). <u>https://doi.org/10.1056/NEJMoa0902542</u>
- Li, X., Tian, B., Liu, M., Miao, C. & Wang, D. Adult-type granulosa cell tumor of the ovary. *Am J Cancer Res* **12**, 3495-3511 (2022).
- 3 Zannoni, G. F. *et al.* FOXL2 molecular status in adult granulosa cell tumors of the ovary: A study of primary and metastatic cases. *Oncol Lett* **12**, 1159-1163 (2016). <u>https://doi.org/10.3892/ol.2016.4711</u>
- Pectasides, D., Pectasides, E. & Psyrri, A. Granulosa cell tumor of the ovary. *Cancer Treat Rev* 34, 1-12 (2008). <u>https://doi.org/10.1016/j.ctrv.2007.08.007</u>
- 5 Colombo, N., Parma, G., Zanagnolo, V. & Insinga, A. Management of ovarian stromal cell tumors. *J Clin Oncol* **25**, 2944-2951 (2007). <u>https://doi.org/10.1200/jco.2007.11.1005</u>
- 6 Li, J. *et al.* Progress in the management of ovarian granulosa cell tumor: A review. *Acta Obstet Gynecol Scand* **100**, 1771-1778 (2021). <u>https://doi.org/10.1111/aogs.14189</u>
- Brink, G. J., Groeneweg, J. W., Hooft, L., Zweemer, R. P. & Witteveen, P. O. Response to Systemic Therapies in Ovarian Adult Granulosa Cell Tumors: A Literature Review. *Cancers (Basel)* 14 (2022). <u>https://doi.org/10.3390/cancers14122998</u>
- 8 Park, J. Y. *et al.* Surgical staging and adjuvant chemotherapy in the management of patients with adult granulosa cell tumors of the ovary. *Gynecol Oncol* **125**, 80-86 (2012). https://doi.org/10.1016/j.ygyno.2011.12.442
- 9 Plett, H. et al. Adult ovarian granulosa cell tumors: analysis of outcomes and risk factors for recurrence. International Journal of Gynecologic Cancer **33**, 734-740 (2023). <u>https://doi.org/10.1136/ijgc-2022-003854</u>
- 10 Färkkilä, A. *et al.* Pathogenesis and treatment of adult-type granulosa cell tumor of the ovary. *Ann Med* **49**, 435-447 (2017). <u>https://doi.org/10.1080/07853890.2017.1294760</u>
- 11 Jamieson, S. *et al.* The FOXL2 C134W mutation is characteristic of adult granulosa cell tumors of the ovary. *Mod Pathol* 23, 1477-1485 (2010). <u>https://doi.org/10.1038/modpathol.2010.145</u>
- 12 Georges, A. *et al.* FOXL2: a central transcription factor of the ovary. *J Mol Endocrinol* **52**, R17-33 (2014). <u>https://doi.org/10.1530/jme-13-0159</u>
- 13 Kim, M. S., Hur, S. Y., Yoo, N. J. & Lee, S. H. Mutational analysis of FOXL2 codon 134 in granulosa cell tumour of ovary and other human cancers. *J Pathol* 221, 147-152 (2010). https://doi.org/10.1002/path.2688
 - 14 Jamieson, S. & Fuller, P. J. Molecular pathogenesis of granulosa cell tumors of the ovary. *Endocr Rev* **33**, 109-144 (2012). <u>https://doi.org/10.1210/er.2011-0014</u>
- 15 McConechy, M. K. *et al.* Molecularly Defined Adult Granulosa Cell Tumor of the Ovary: The Clinical Phenotype. *J Natl Cancer Inst* **108** (2016). <u>https://doi.org/10.1093/jnci/djw134</u>
- 16 Lee, H. W. *et al.* Clinicopathological characteristics of TERT promoter mutation and telomere length in hepatocellular carcinoma. *Medicine (Baltimore)* **96**, e5766 (2017). <u>https://doi.org/10.1097/md.00000000005766</u>
- 17 Zhang, Y. *et al.* TERT promoter mutation is an objective clinical marker for disease progression in chondrosarcoma. *Mod Pathol* **34**, 2020-2027 (2021). <u>https://doi.org/10.1038/s41379-021-00848-0</u>
- 18 Pilsworth, J. A. *et al.* TERT promoter mutation in adult granulosa cell tumor of the ovary. *Mod Pathol* **31**, 1107-1115 (2018). <u>https://doi.org/10.1038/s41379-018-0007-9</u>
- 19 Alexiadis, M. *et al.* Mutational Landscape of Ovarian Adult Granulosa Cell Tumors from Whole Exome and Targeted TERT Promoter Sequencing. *Mol Cancer Res* **17**, 177-185 (2019). <u>https://doi.org/10.1158/1541-7786.Mcr-18-0359</u>
- 20 Da Cruz Paula, A. *et al.* Genomic profiling of primary and recurrent adult granulosa cell tumors of the ovary. *Modern Pathology* **33**, 1606-1617 (2020). <u>https://doi.org/10.1038/s41379-020-0514-3</u>

- 21 Groeneweg, J. W. *et al.* FOXL2 and TERT promoter mutation detection in circulating tumor DNA of adult granulosa cell tumors as biomarker for disease monitoring. *Gynecol Oncol* **162**, 413-420 (2021). <u>https://doi.org/10.1016/j.ygyno.2021.05.027</u>
- 22 Roze, J. *et al.* Whole Genome Analysis of Ovarian Granulosa Cell Tumors Reveals Tumor Heterogeneity and a High-Grade TP53-Specific Subgroup. *Cancers (Basel)* **12** (2020). <u>https://doi.org/10.3390/cancers12051308</u>
- 23 Pilsworth, J. A. *et al.* Adult-type granulosa cell tumor of the ovary: a FOXL2-centric disease. *J Pathol Clin Res* **7**, 243-252 (2021). <u>https://doi.org/10.1002/cjp2.198</u>
- 24 Hillman, R. T. *et al.* KMT2D/MLL2 inactivation is associated with recurrence in adult-type granulosa cell tumors of the ovary. *Nature Communications* **9**, 2496 (2018). <u>https://doi.org/10.1038/s41467-018-04950-x</u>
- 25 Karstensen, S. *et al.* DNA alterations in ovarian adult granulosa cell tumours: A scoping review protocol. *PLoS One* **19**, e0303989 (2024). <u>https://doi.org/10.1371/journal.pone.0303989</u>
- 26 Němejcová, K. *et al.* An extensive immunohistochemical analysis of 290 ovarian adult granulosa cell tumors with 29 markers. *Virchows Arch* (2024). <u>https://doi.org/10.1007/s00428-024-03854-0</u>
- Stružinská, I. *et al.* Somatic Genomic and Transcriptomic Characterization of Primary Ovarian Serous Borderline Tumors and Low-Grade Serous Carcinomas. *J Mol Diagn* 26, 257-266 (2024). <u>https://doi.org/10.1016/j.jmoldx.2023.12.004</u>
- 28 Chakravarty, D. *et al.* OncoKB: A Precision Oncology Knowledge Base. *JCO Precis Oncol* **2017** (2017). <u>https://doi.org/10.1200/po.17.00011</u>
- 29 Hájková, N. *et al.* Microsatellite instability in non-endometrioid ovarian epithelial tumors: a study of 400 cases comparing immunohistochemistry, PCR, and NGS based testing with mutation status of MMR genes. *Transl Res* **260**, 61-68 (2023). https://doi.org/10.1016/j.trsl.2023.05.004
- 30 Rowland, M. *et al.* Abstract A79: Comprehensive genomic profiling (CGP) of adult granulosa cell tumors (aGCT) identifies clinically relevant genomic alterations (CRGA) and targeted therapy options. *Molecular Cancer Therapeutics* **14**, A79-A79 (2015). https://doi.org/10.1158/1535-7163.TARG-15-A79
- 31 Secchi, C. *et al.* FOXO1 Mitigation of FOXL2C143W/SMAD3 Transcriptomic Landscape in a Model of Granulosa Cell Tumor. *Journal of the Endocrine Society* **5**, A1018-A1019 (2021). https://doi.org/10.1210/jendso/bvab048.2084
- 32 Secchi, C. *et al.* FOXO1 mitigates the SMAD3/FOXL2(C134W) transcriptomic effect in a model of human adult granulosa cell tumor. *J Transl Med* **19**, 90 (2021). <u>https://doi.org/10.1186/s12967-021-02754-0</u>
- 33 Heravi-Moussavi, A. *et al.* Recurrent somatic DICER1 mutations in nonepithelial ovarian cancers. *N Engl J Med* **366**, 234-242 (2012). <u>https://doi.org/10.1056/NEJMoa1102903</u>
- 34 Goulvent, T. *et al.* DICER1 and FOXL2 mutations in ovarian sex cord-stromal tumours: a GINECO Group study. *Histopathology* **68**, 279-285 (2016). <u>https://doi.org/10.1111/his.12747</u>
- 35 Wang, Y. *et al*. DICER1 hot-spot mutations in ovarian gynandroblastoma. *Histopathology* **73**, 306-313 (2018). <u>https://doi.org/10.1111/his.13630</u>
- Hillman, R. T., Lin, D. I., Lawson, B. & Gershenson, D. M. Prevalence of predictive biomarkers in a large cohort of molecularly defined adult-type ovarian granulosa cell tumors. *Gynecol Oncol* 162, 728-734 (2021). https://doi.org/10.1016/j.ygyno.2021.06.024
 - Fashedemi, Y. *et al.* Adult Granulosa Cell Tumor With High-grade Transformation: Report of a Series With FOXL2 Mutation Analysis. *Am J Surg Pathol* 43, 1229-1238 (2019).
 https://doi.org/10.1097/pas.0000000001296
- 38 MacArthur, E. et al. FOXL2 mutation is prevalent in metastatic adult granulosa cell tumors and is associated with improved survival. Gynecologic Oncology 162, S162-S163 (2021). https://doi.org/https://doi.org/10.1016/S0090-8258(21)00951-3

б

- 39 Gupta, P. *et al.* Mismatch Repair Deficiency in Adult Granulosa Cell Tumors: an Immunohistochemistry-based Preliminary Study. *Appl Immunohistochem Mol Morphol* **30**, 540-548 (2022). https://doi.org/10.1097/pai.00000000001051
- 40 Luchini, C. *et al.* ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. *Ann Oncol* **30**, 1232-1243 (2019). https://doi.org/10.1093/annonc/mdz116
- 41 Guyot D'Asnières De Salins, A. *et al.* Discordance between immunochemistry of mismatch repair proteins and molecular testing of microsatellite instability in colorectal cancer. *ESMO Open* **6**, 100120 (2021). <u>https://doi.org/10.1016/j.esmoop.2021.100120</u>

Click here to access/download;Figure;Fig. 1_OncoPrint.pdf ±

Figure

Variables	Primary (n = 183)	Recurrence (n = 44)	<i>p</i> -value	P non-recurrent (n = 77)	P recurrent (n = 18)	<i>p</i> -value
Age at diagnosis (years)			<0.001 ^m			0.066 ^m
mean (SD)	57 (13.6)	49 (13.4)		57 (12.4)	51 (13.5)	
median (range)	59 (24-83)	47 (27-77)		59 (25-79)	51 (29-77)	
FIGO stage			0.014 ^f			0.073 ^f
low (I)	111 (93%)	21 (75%)		68 (96%)	13 (81%)	
high (II-IV)	9 (7%)	7 (25%)		3 (4%)	3 (19%)	
N/A	63	16		6	2	
FIGO I			0.009 ^p			0.088 ^f
IA	84 (76%)	10 (48%)		53 (78%)	7 (54%)	
IB-IC	27 (24%)	11 (52%)		15 (22%)	6 (46%)	
Lympho-vascular invasion			0.595 ^f			0.282 ^f
No	103 (94%)	14 (88%)		66 (99%)	11 (92%)	
Yes	6 (6%)	2 (12%)		1 (1%)	1 (8%)	
N/A	74	28		10	6	
AH/EIN and/or EEC			-			0.744 ^f
No	67 (65%)	O (-)		44 (64%)	7 (70%)	
Yes	36 (54%)	0 (-)		25 (36%)	3 (30%)	
N/A	80	44		8	8	
Radicality of surgery			0.353 ^f			0.337 ^f
RO	95 (98%)	14 (93%)		52 (98%)	11 (92%)	
R1	2 (2%)	1 (7%)		1 (2%)	1 (8%)	
N/A	86	29		24	6	
Adjuvant therapy			0.053 ^p			0.072 ^f
No	80 (82%)	23 (66%)		56 (84%)	9 (60%)	
Yes	18 (18%)	12 (34%)		11 (16%)	6 (40%)	
N/A	85	9		10	3	
Follow-up time (months)			<0.001 ^m			<0.001 ^m
mean (SD)	62 (60.6)	197 (105.3)		52 (48.4)	137 (58.5)	
median (range)	45 (1-252)	183 (13-432)		40 (1-181)	150 (35-252)	
Disease status at last control			-			-
NED	85 (83%)	19 (48%)		62 (95%)	7 (41%)	
AWD	6 (6%)	14 (35%)		1 (2%)	5 (29%)	
DOD	4 (4%)	5 (12%)		0 (0%)	4 (24%)	
DOC	8 (8%)	2 (5%)		2 (3%)	1 (6%)	
N/A	80	4		12	1	

Table 1: Clinicopathological characteristics of 227 AGCT patients stratified by tissue origin (Primary vs. Recurrence) and 95 primary AGCT patients stratified by known recurrence status (P non-recurrent vs. P recurrent)

p- values are based on Pearson chi-square test (^{*p*}) or Fisher Exact test (^f) for categorical variables and Mann-Whitney U-test (^m) for continuous variables; **statistically** significant *p*-values are indicated in **bold**.

Percentages are counted only from available data and are rounded up/down.

AGCT – adult granulosa cell tumors, SD – standard deviation, N/A – data not available, AH – endometrial atypical hyperplasia, EIN – endometrial intraepithelial neoplasia, EEC – endometroid endometrial cancer, NED – no evidence of disease, AWD – alive with disease, DOD – death of disease, DOC – death of other cause

Variables	Primary (n = 183)	Recurrence (n = 44)	<i>p</i> -value	P non-recurrent (n = 77)	P recurrent (n = 18)	<i>p</i> -value
FOXL2 status			> 0.995 ^m			> 0.995 ^f
Wild type	2 (1%)	0 (0%)		2 (3%)	0 (0%)	
C134W	181 (99%)	44 (100%)		75 (97%)	18 (100%)	
TERT promoter status*			0.007 ^p			0.393 ^p
Wild-type	112 (61%)	17 (39%)		47 (61%)	9 (50%)	
Mutated	71 (39%)	27 (61%)		30 (39%)	9 (50%)	
C228T	64 (90%)	20 (74%)		29 (97%)	7 (78%)	
C250T	7 (10%)	7 (26%)		1 (3%)	2 (22%)	
KMT2D status			0.406 ^f			0.394 ^f
Wild-type	166 (91%)	38 (86%)		70 (91%)	15 (83%)	
Mutated (truncating)	17 (9%)	6 (14%)		7 (9%)	3 (7%)	
FOXO1 status			0.314 ^f			> 0.995 ^f
Wild-type	169 (92%)	43 (98%)		71 (92%)	16 (89%)	
Mutated	14 (8%)	1 (2%)		6 (8%)	2 (11%)	
CHEK2 status			0.469 ^f			> 0.995 ^f
Wild-type	172 (94%)	43 (98%)		71 (92%)	17 (94%)	
Mutated	11 (6%)	1 (2%)		6 (8%)	1 (6%)	
TP53 status			0.481 ^f			> 0.995 ^f
Wild-type	177 (97%)	42 (95%)		75 (97%)	18 (100%)	
Mutated	6 (3%)	2 (5%)		2 (3%)	0 (0%)	
TMB status			0.599 ^f			> 0.995 ^f
TMB-Low (< 10 mut/Mb)	179 (98%)	42 (95%)		76 (99%)	18 (100%)	
TMB-High (≥ 10 mut/Mb)	4 (2%)	2 (5%)		1 (1%)	0 (0%)	
MSI status			> 0.995 ^f			> 0.995 ^f
MSS	182 (99%)	44 (100%)		76 (99%)	18 (100%)	
MSI-High	1 (1%)	0 (0%)		1 (1%)	0 (0%)	

Table 2: Selected molecular characteristics of 227 AGCT patients stratified by tissue origin (Primary vs. Recurrence) and 95 primary AGCT patients stratified by known recurrence status (P non-recurrent vs. P recurrent)

p- values are based on Pearson chi-square test (^p) or Fisher Exact test (^f) for categorical variables and Mann-Whitney U-test (^m) for continuous variables; statistically

significant *p*-values are indicated in bold.

Percentage is counted only from available data and are rounded up/down.

* - *p*-value is based only on status wild-type vs. mutated.

AGCT – adult granulosa cell tumors, SD – standard deviation, MSS – microsatellite stable, MSI – microsatellite instable.

Sample ID	Origin	Age	Survival status	FIGO	MSI status	TMB (mut/MB)	FOXL2 status	TERTp status	KMT2D status	FOXO1 status	CHEK2 status	TP53 status	PIK3CA status	SMARCA4 status	NAV3 status	PASK status	SPOP status	MSH5 status			
P_8	Primary				MSS	6	C134W	C228T	wt	H134fs	wt	wt	wt	wt	wt	wt	wt	wt			
R_8	Matched Recurrence	59	AWD	IIIC	MSS	7	C134W	C228T	wt	H134fs	wt	wt	wt	E700fs	R272*	wt	wt	wt			
P_62	Primary	16			MSS	4	C134W	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt			
R_62	Matched Recurrence	46	NED	IA	MSS	3	C134W	wt	F3672fs	wt	wt	wt	wt	wt	wt	wt	wt	wt			
P_74	Primary			15	MSS	5	C134W	C228T	wt	wt	wt	wt	wt	wt	wt	wt	wt	R181*			
R_74	Matched Recurrence	55	N/A	IB	MSS	5	C134W	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt	R181*			
P_86	Primary	F 2		101	MSS	6	C134W	wt	wt	wt	wt	wt	wt	wt	wt	splice	wt	wt			
R_86	Matched Recurrence	53	NED	ICI	MSS	6	C134W	wt	wt	wt	wt	wt	wt	wt	wt	splice	wt	wt			
P_95	Primary				101	MSS	7	C134W	C250T	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt		
R_95	Matched Recurrence	55	AWD		MSS	5	C134W	C250T	wt	wt	wt	wt	H1047R	wt	wt	wt	wt	wt			
P_112	Primary	60		N/A	N/A IA	N/A IA	N/A IA	MSS	5	C134W	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt
R_112	Matched Recurrence	60	00					N/A	IA	MSS	5	C134W	wt	wt	wt	wt	wt	wt	wt	wt	wt
P_123	Primary	33 N/A	NI/A	101	MSS	4	C134W	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt			
R_123	Matched Recurrence		33	N/A	N/A IC	N/A	N/A	ICI	MSS	4	C134W	wt	wt	wt	wt	wt	wt	wt	wt	wt	wt
P_173	Primary	69 AWD		IC1	MSS	6	C134W	wt	L3428fs	wt	wt	wt	wt	wt	wt	wt	Y87C	wt			
R_173	Matched Recurrence		AWD		MSS	6	C134W	C228T	L3428fs	wt	wt	wt	wt	wt	wt	wt	Y87C	wt			
P_176	Primary	66	DOD	101	MSS	3	C134W	C228T	H3000fs	wt	wt	wt	wt	wt	wt	wt	wt	wt			
R_176	Matched Recurrence	60		ICI	MSS	5	C134W	C228T	H3000fs	wt	wt	wt	wt	wt	wt	wt	wt	wt			

Table 3: Selected clinico-pathological features and mutational status of primaries and their matched recurrences in 9 AGCT patients.

AGCT – adult granulosa cell tumors, AWD – alive with disease, NED – no evidence of disease, DOD – death of disease, N/A – data not available, TERTp – TERT promoter, wt – wild-type, mutated cases are indicated in **bold**.

Predictor	β	SE	HR (95%CI)	<i>p</i> -value
Overall survival				
FOXO1 (wild-type vs. mutated)	1.817	0.776	6.15 (1.34-28.23)	0.019
age (continuous)	0.076	0.022	1.08 (1.03-1.13)	< 0.001
Recurrence-free survival				
FOXO1 (wild-type vs. mutated)	1.622	0.765	5.1 (1.13-22.72)	0.034
FIGO stage (I vs. II-III)	1.342	0.394	3.83 (1.76-8.28)	< 0.001

Table 4: Results of minimal adequate models of multivariate Cox Proportional Hazard regressionmodels for overall survival and recurrence-free survival

 β – regression coefficient, SE – standard errors, HR – hazard ratio, CI – confidence intervals, *p*-values are based on log-rank test, **statistically significant** *p*-values are indicated in **bold**.

Full models included age, FIGO stage and adjuvant therapy as covariates.

Click here to access/download Supplementary Material Suppl. Fig. S1_Survival curves FOXO1.pdf

Click here to access/download Supplementary Material Suppl. Table S1_List of genes in panel.xlsx

Click here to access/download Supplementary Material Suppl. Table S2_All detected class 4-5 mutation.xlsx

Click here to access/download Supplementary Material Suppl. Table S3_FOXL2 second hits.docx

Click here to access/download Supplementary Material Suppl. Table S4_Univariate Cox PH results.docx