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Abstract: This study provides an analysis of 38 Sertoli-Leydig cell tumors (SLCT), focusing on
their morphological, immunohistochemical, and molecular features. The cohort was
comprised of 10 well differentiated, 25 moderately differentiated, and 3 poorly
differentiated tumors. The immunohistochemical analysis was performed with 28
markers, including diagnostic markers and markers with possible predictive
significance. The results showed high expression of sex cord markers (FOXL2, SF1,
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inhibin A, CD99, calretinin, ER, PR, AR), and variable expression of other markers
such as CKAE1/3 (84%), CAIX (13%), and MUC4 (1%). Loss of PTEN expression was
present in 14% of cases, CTLA4 expression was seen in 45% of cases. All tumors
were MMR proficient and HER2 and PD-L1 negative. The molecular analysis showed
DICER1 mutations in 54.5% of cases, and a FOXL2 mutation in 6% of tumors. In
addition, we detected 2 cases with TERT promoter mutation. RNA NGS sequencing
identified significant differences in mRNA expression between DICER1MUT and
DICER1WT tumors. The DICER1WT tumors showed increased expression of PRKCA,
HNF1A, LDLR, and MAP2K5. On the contrary, the DICER1MUT cases showed
increased expression of CDK6, NOTCH2, and FGFR2.
The results of our study show that SLCT exhibit distinct molecular and
immunohistochemical profiles based on their degree of differentiation. We have
confirmed that DICER1 mutations are characteristic of moderately and poorly
differentiated SLCTs, while well differentiated SLCTs may represent a distinct entity.
DICER1MUT and DICER1WT tumors showed different mRNA expression profiles. The
FOXL2 mutation is less common in these tumors, and is mutually exclusive with the
DICER1 mutation.
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Abstract   

This study provides an analysis of 38 Sertoli-Leydig cell tumors (SLCT), focusing on their morphological, 

immunohistochemical, and molecular features. The cohort was comprised of 10 well differentiated, 25 

moderately differentiated, and 3 poorly differentiated tumors. The immunohistochemical analysis was performed 

with 28 markers, including diagnostic markers and markers with possible predictive significance. The results 

showed high expression of sex cord markers (FOXL2, SF1, inhibin A, CD99, calretinin, ER, PR, AR), and 

variable expression of other markers such as CKAE1/3 (84%), CAIX (13%), and MUC4 (1%). Loss of PTEN 

expression was present in 14% of cases, CTLA4 expression was seen in 45% of cases. All tumors were MMR 

proficient and HER2 and PD-L1 negative. The molecular analysis showed DICER1 mutations in 54.5% of cases, 

and a FOXL2 mutation in 6% of tumors. In addition, we detected 2 cases with TERT promoter mutation. RNA 

NGS sequencing identified significant differences in mRNA expression between DICER1MUT and DICER1WT 

tumors. The DICER1WT tumors showed increased expression of PRKCA, HNF1A, LDLR, and MAP2K5. On the 

contrary, the DICER1MUT cases showed increased expression of CDK6, NOTCH2, and FGFR2.  

The results of our study show that SLCT exhibit distinct molecular and immunohistochemical profiles based on 

their degree of differentiation. We have confirmed that DICER1 mutations are characteristic of moderately and 

poorly differentiated SLCTs, while well differentiated SLCTs may represent a distinct entity. DICER1MUT and 

DICER1WT tumors showed different mRNA expression profiles. The FOXL2 mutation is less common in these 

tumors, and is mutually exclusive with the DICER1 mutation.  

 

Key words: ovarian tumors, Sertoli-Leydig cell tumor, sex cord-stromal tumor, immunohistochemistry, 

DICER1, mRNA expression 
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INTRODUCTION: 

Sertoli-Leydig cell tumors (SLCT) are a rare ovarian sex cord-stromal tumors which account for less than 0.5% 

of all ovarian neoplasms [1]. They typically affect young patients (mean age of 25 years) and may present with 

androgenic symptoms and/or as ovarian mass. Histologically, according to the current WHO Classification, 

SLCT are divided into three main subtypes which reflect their prognosis: well-differentiated, moderately 

differentiated, and poorly differentiated [1, 2]. Retiform SLCT can be regarded as a fourth type.   

Regarding the molecular features, somatic or germline mutations of the DICER1 gene have been found in some 

tumors [3]. SLCT mostly occur sporadically, but can also develop as a part of the DICER1 syndrome in cases of 

germline mutations. Besides SCLT, this syndrome is characterized by cervical rhabdomyosarcoma and unusual 

tumors of the lung, thyroid gland, and/or kidney [1, 4, 5]. The other, less common, mutation which can be found 

in SLCT is the FOXL2 mutation c.402C>G, p.(Cys134Trp), which is mutually exclusive with DICER1. The 

FOXL2 mutation accounts for 0-22% of SLCT and may cause estrogenic manifestations [1, 2, 6, 7].  

Based on the presence and/or absence of the relevant mutations, SLCT can be divided into three molecular 

subtypes, which also reflect their clinico-pathological features: DICER1 mutant, FOXL2 mutant, and 

DICER1/FOXL2 wild type [2]. So far, the DICER1 mutation has been found only in moderately/poorly 

differentiated tumors. Patients with DICER1 mutations tend to be younger and often show androgenic 

manifestations. The FOXL2 mutation has also been described only in moderately/poorly differentiated tumors, 

but patients in this group are typically older (postmenopausal) and the tumors present with estrogenic effects. 

The DICER1/FOXL2 wild type group represents patients of an intermediate age and comprises well 

differentiated tumors only [2].  

In our study, we focused on the immunohistochemical and molecular characterization of 38 SLCT. The 

antibodies used included 12 of the “diagnostic” antibodies already examined in previously published studies, 

although some of those only on a limited number of cases  [7-17]. We also analyzed 9 other “diagnostic” 

antibodies and 7 antibodies with possible predictive significance, the expression of which has not yet been 

described in SCLT, including the expression of HER2, PD-L1, CTLA4, and mismatch repair (MMR) proteins. 

The molecular analysis in all tumors included DNA and RNA NGS sequencing. To the best of our knowledge, 

our study represents the first study focusing also on mRNA expression pattern of SLCT. 

 

METHODS: 

Samples 

The cases were selected from the archives of the co-operating institutions as a part of a project focusing on sex 

cord-stromal tumors. All tumors submitted to this project were reviewed by two pathologists with expertise in 

gynecopathology (KN and PD). During the central review, 5 cases originally diagnosed as SLCT were 

reclassified as other tumors and excluded from the study. Five cases from the final cohort had been originally 

diagnosed as adult granulosa cell tumor (AGCT). The final sample set consists of 38 cases, including 10 well 

differentiated, 25 moderately differentiated, and 3 poorly differentiated tumors. The morphological aspects of all 

the tumors including the mitotic rate, presence of sarcomatoid and/or heterologous elements, and presence of 

lymphovascular invasion (LVSI) were assessed using whole-tissue sections.  
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Molecularly, 33 cases were successfully tested by NGS DNA and 22 cases by NGS RNA. All 38 tumors were 

eligible for mRNA expression profiling. The clinicopathological characteristics of the 38 cases are summarized 

in Table 1.  

 

Immunohistochemical analysis 

The immunohistochemical (IHC) analysis was performed using 4μm thick sections of formalin-fixed and 

paraffin-embedded (FFPE) tissue using tissue microarrays (TMAs). The eligible areas of each tumor were 

selected, and two tissue cores (each 2mm in diameter) were taken from the donor block using the tissue 

microarray instrument TMA Master (3DHISTECH Ltd., Budapest, Hungary). The antibodies used included the 

“diagnostic” markers (FOXL2, SF1, CD99, inhibin A, calretinin, Ki67, ER, PR, AR, p53, p16, Ki67 and 

CKAE1/3), new markers which have not yet been analyzed in SLCT (PTEN, CAIX (carbonic anhydrase IX), 

DPC4, GATA3, napsin A, ARID1A, SATB2, MUC4, and TTF1), and selected predictive markers (CTLA4, PD-

L1, HER2, MLH1, PMS2, MSH2, and MSH6). The list of their manufacturers, clones, and dilutions is provided 

in Supplementary table S1.  

The expression of all markers was double-blindly evaluated by two pathologists (KN, AŠ). Cases were classified 

based on the overall percentage of positive tumor cells as negative (entirely negative or < 5% of positive tumor 

cells) or positive (≥ 5% of positive tumor cells), except for p53, p16, Ki67, HER2, and PD-L1. The p53 protein 

expression was assessed as either the “wild-type” or “aberrant type”. The “aberrant-type” of staining was defined 

as diffuse intense nuclear positivity of >80% of tumor cells, cytoplasmic p53 positivity, or the complete absence 

of staining with positive internal control (the so-called null pattern) [18]. The expression of p16 was regarded as 

block positive (diffuse staining of tumor cells in the nuclei and/or cytoplasm), or negative (focal/patchy or absent 

staining). Ki67 was assessed as a continuous variable based on the proportion of positive tumor cells (0–100%). 

It was counted manually in 200 tumor cells in the hot-spots, or in randomly selected fields in cases of 

homogenous expression. For ARID1A, MMR, PTEN, and DPC4 the loss of expression in tumor cells with 

retained staining in stromal cells was evaluated (loss of expression was defined as less than 5% of positive tumor 

cells). HER2 scoring was performed in accordance with the 2018 ASCO Guidelines for breast carcinoma, as 

there is currently no established scoring system for ovarian tumors  [19]. PD-L1 expression was evaluated as the 

percentage of positive tumor cells (tumor proportion score; TPS). Only occasional rare lymphocytes were 

present in the stroma of a few cases, so neither CTLA4 expression in immune cells nor PD-L1 combined positive 

score (CPS) could be assessed. 

 

Molecular analysis 

Genomic DNA and total RNA were isolated from the FFPE tissue from the tumor using the Quick-DNA/RNA 

FFPE Miniprep Kit (Zymo Research) according to the manufacturer's protocol. DNA was extracted also from the 

adjacent non-neoplastic tissue (Magcore Genomic DNA FFPE One step kit; RBC Bioscience) for sequencing 

analysis to rule out a potential germline origin of the DICER1 mutations detected in the tumor. 

Sequence capture NGS analysis of DNA was performed using the KAPA HyperPlus kit according to KAPA 

HyperCap Workflow v3.0 (Roche) and a panel of hybridization probes against multiple targets of cancer relevant 

genes (Supplementary Table 2; 788 genes or gene parts; 2440 kbp of target sequence including 1992 kbp of 
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coding regions; Roche). The prepared sample libraries were pair-end sequenced by the NextSeq 500 instrument 

(Illumina) using NextSeq 500/550 High Output Kit v2.5 (Illumina). The biostatistical evaluation was performed 

using the CLC Genomics Workbench software (CLC GW; Qiagen, Venlo, The Netherlands). The interpretation 

of DNA variants, calculation of tumor mutation burden (TMB), and status of microsatellite instability was 

determined as previously described [20, 21]. The quality and state of the DNA isolated from the FFPE tissues 

varied across the samples and was of insufficient quality for CNV assessment. 

The total RNA samples were processed according to the KAPA RNA HyperPrep Kit protocol, described in more 

detail in our previously study [20]. The target sequences were enriched by the standard KAPA HyperCap 

Workflow v3 (Roche) using a custom panel focused on the pan-cancer markers and potential fusion genes 

(Supplementary Table 2; 247 genes; 675 kbp of the target DNA sequence; Roche). 

All SLCT cases were eligible for expression profiling, which was conducted using targeted RNA-Seq expression 

analysis (RNA-Seq Analysis module). The detection of gene fusions was performed by the CLC GW Detect and 

Refine Fusion Genes module. Only genes with a transcript per million (TPM) value above 60 were evaluated in 

the gene expression analyses. The “Differential Expression in Two Groups” module in GW was used to analyze 

RNA differences between the group of tumors with detected mutation in DICER1 (DICER1MUT) and DICER1 

wild-type (DICER1WT). Test Bonferroni Correction at the level of 0.05 or less was considered as a significant 

difference. The TMP values of mRNA were normalized to the housekeeping gene HPRT1. 

Statistical analyses  

Standard descriptive statistics were employed to summarize the data. Categorical variables were described using 

the absolute and relative frequencies, continuous variables were described as the mean with standard deviation 

(SD) or median with interquartile range. Differences in the expression of IHC markers between grades of 

differentiation (well differentiated vs. moderately and poorly differentiated) were analyzed using Fisher’s Exact 

test or the Mann-Whitney U test as appropriate. The association between the mutation status of DICER1 and/or 

FOXL2 and tumor grade was assessed using Fisher’s Exact test. 

 

RESULTS 

All cases showed the typical morphological features of SLCT. A retiform component was present in two cases 

(one moderately and one poorly differentiated), a sarcomatoid component was identified in two cases of poorly 

differentiated SLCT, and heterologous elements (mucinous epithelium, rhabdomyoblastic elements) were 

observed in two moderately and one poorly differentiated case. The mitotic rate ranged from 0 to15 mitoses / 10 

high power fields (HPF). The median of the full cohort was 2 mitoses/ 10 HPF (mean = 3.4 ± 3.9). There was a 

slight difference between the well differentiated and moderately/poorly differentiated subgroups, with a lower 

mitotic rate observed in the well differentiated cases (median = 1, mean = 2.1 ± 3.4) compared to the 

moderately/poorly differentiated cases (median = 2, mean = 3.9± 4.1; Mann-Whitney U test: U = 79, Z = 1.99, p 

= 0.04). No case showed LVSI.  

The results of the immunohistochemical analyses are summarized in Table 2 (see also Fig. 1). Briefly, the 

“traditional diagnostic markers” - FOXL2, SF1, inhibin A, CD99, calretinin, ER, PR, AR, CKAE1/3 showed 

expression in 95%, 95%, 92%, 78%, 57%, 73%, 57%, 68%, and 84% of cases. CAIX was positive in 13% of 

cases (5/38) and was the only marker (the expression of which was categorized as positive or negative) to have 
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differed significantly with tumor differentiation. Specifically, 50% (5/10) of well differentiated cases were CAIX 

positive, while no positive cases were detected in the moderately/poorly differentiated group (p < 0.001). 

GATA3, SATB2, napsin A, and TTF1 were completely negative in all cases. One case was MUC4 positive in 

55% of tumor cells, showing mostly weak to moderate intensity of staining. This case was moderately 

differentiated, and showed the expression of FOXL2, SF1, inhibin A, CD99, calretinin, and hormonal receptors. 

EMA staining was negative.  

PTEN showed loss of expression in 14% (5/36) of cases, and DPC4 expression was lost in 24% (8/34) of cases. 

No case showed the aberrant staining pattern of p53, or diffuse (block) positivity of p16. The expression of Ki67 

showed a median value of 3 (range 0-38, mean = 8 ± 9.3). Higher tumor differentiation was associated with an 

increased Ki67 rate, with a median of 2.5% (mean = 4 ± 5.2%) in the well differentiated subgroup compared to a 

median of 7% (mean = 9 ± 10.1%) in the moderately/poorly differentiated cases; however, this difference was 

not statistically significant, likely due to the small sample size (Mann-Whitney U test: U = 101, Z = 1.128, p = 

0.259). 

Concerning the examined predictive markers, all tumors were HER2 negative, PD-L1 negative (TPS < 1%), and 

showed a retained expression of the MMR proteins. CTLA4 showed mostly weak expression in tumor cells in 

45% (17/38) of cases. This included 7 cases of well differentiated, 9 cases of moderately differentiated, and 1 

case of poorly differentiated SLCT.  

 

Molecular findings 

The targeted NGS DNA analysis was successfully performed in 33 SLCT. The DICER1 mutation was detected 

in 54.5% (18/33) of SLCT, all of which were moderately differentiated. Notably, 14 of these tumors harbored 

two mutations in DICER1. The somatic status of DICER1 was confirmed in 10 DICER1MUT tumors, while in the 

remaining 8 DICER1MUT cases it was not possible to confirm or exclude somatic or germline status due to the 

lack of non-tumor tissue. The FOXL2 mutation was detected in 6% (2/33) of SLCT with moderate 

differentiation, and both of those tumors were DICER1WT. There was also a TERT promoter mutation detected in 

6% (2/33) of the DICER1MUT SLCT. Other pathogenic or likely pathogenic mutations were detected only in 

individual SLCT. A detailed list of all the pathogenic or likely pathogenic mutations detected in our cohort is 

provided in Supplementary table 3. Moreover, some non-recurrent mutations were also detected in the group of 

well differentiated tumors (n= 8). An average TMB was 5.8 Mut/Mb (range 2-9; median 6) and no tumor was 

evaluated as TMB-High (≥10 Mut/Mb). The molecular data, including variable protein expression and mutation 

analysis, are summarized in Fig. 2. 

Targeted RNA-sequencing was successful in 22 cases. No transcript gene fusion was detected. The expression 

analysis and comparison between the DICER1MUT and DICER1WT cases revealed significant differences 

(Bonferroni correction; adjusted p-value <0.05) in the expression of mRNA in several genes, especially CDK6, 

PRKCA, NOTCH2, HNF1A, LDLR, FGFR2, and MAP2K5. A graphic display of the relevant expression 

differences is shown in Fig. 3. 

DISCUSSION 

SLCT represent a heterogeneous entity with typical recurrent molecular aberrations occurring only in the subset 

of moderately and poorly differentiated tumors. Based on this finding, it has been suggested that well 
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differentiated SLCT actually represent a different, distinct entity. The DICER1 mutation seems to be a 

characteristic, although not specific, feature of SLCT [2, 22]. The reported frequency of this mutation in SLCT is 

quite variable, with the average prevalence of approximately 65% [23]. In our study, the DICER1 mutation was 

present in 54.5% of cases, which is in concordance with other studies. In two previous studies with a higher 

number of germline DICER1 carriers, the incidence of DICER1 mutations was reported to be 88% and 97% [6, 

24]. In another study involving 8 pediatric SLCT cases, DICER1 mutations were found in 100% of the cases, 

with 5 of these mutations being of germline origin [25]. We did not confirm the germline origin of the DICER1 

mutations in any SLCT; however, in 8 out of the 18 DICER1MUT SLCT germline status could not be assessed as 

non-tumor tissue was not available for testing. 

The FOXL2 (p.C134W) mutation is less common in SLCT and is mutually exclusive with DICER1 mutations. 

This mutation is regarded as a hallmark alteration of AGCT, but it has also been described in 0-22% of SLCT [1, 

2, 6, 7]. We have detected the FOXL2 mutation in 6% of cases, all of which were DICERWT, moderately 

differentiated, and occurred in postmenopausal patients, which is in accordance with literary data.  

Additionally, a TERT promoter mutation was discovered in two DICERMUT cases in our sample set, both being 

moderately differentiated. While the TERT mutation is not typically considered as a primary cancer driver event, 

it has been associated with poorer prognosis in various cancer types, such as AGCT [26]. It has also been 

described in rare cases of juvenile granulosa cell tumor (JGCT), but not yet in SLCT [27].  

Some SLCT, particularly the well differentiated tumors, do not show recurrent mutations and are probably 

driven by another molecular mechanism [2, 22]. Our results from the targeted RNA sequencing show different 

mRNA expression in between the DICER1MUT and DICER1WT SLCT. In the DICER1MUT cases, we found an 

increased mRNA expression of oncogenes such as cyclin-dependent kinase 6 (CDK6), notch receptor 2 

(NOTCH2), and fibroblast growth factor receptor 2 (FGFR2). Aberrant activity of CDK6, NOTCH2, and FGFR2 

is described and often associated with more aggressive disease phenotypes in certain types of cancer, but it has 

not yet been studied in SLCT [28-30]. In contrast, an increased expression of protein kinase C alpha (PRKCA), 

hepatocyte nuclear factor 1 alpha (HNF1A), low-density lipoprotein receptor (LDLR), and mitogen-activated 

protein kinase 5 (MAP2K5) was observed in the DICER1WT cases compared to the DICER1MUT SLCT. The 

LDLR primarily plays a role in cholesterol metabolism by mediating the cell uptake of low-density lipoprotein 

particles, and its overexpression could lead to tumor growth, as has been described in various cancer types such 

as lung, prostate, and breast cancer [31, 32]. In ovarian epithelial neoplasms, the overexpression of LDLR is 

associated with cisplatin resistance and the knockdown of LDLR reduces tumor growth by suppressing 

autophagy associated with the PI3K/AKT/mTOR pathway [33]. The relationship between LDLR and SLCT has 

not yet been described, and our results suggest that there could be increased cell uptake of low-density 

lipoproteins in DICER1WT SLCT. The function and relationships between ovarian cancer and other upregulated 

mRNA genes (PRKCA, HNF1A, and MAP2K5) are not clear and further investigation is necessary.  

Most SLCT are diagnosed in early stages of the disease, so surgical treatment represents the main therapeutic 

approach [34]. Advanced stages or relapsing cases can be treated by adjuvant chemotherapy, but knowledge of 

new therapeutic options for these tumors is limited [35]. We performed targeted RNA sequencing mainly to 

identify targetable fusions of the pan-markers in solid cancers such as NTRK1/2/3, ALK, ROS1, and RET. No 

targetable fusion was detected in our cohort of SLCT.  
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We also explored the expression of selected possible predictive markers, including PD-L1, CTLA4, HER2, and 

MMR proteins. The significance of immune check point inhibitors in cancer immunotherapy has been steadily 

increasing and is becoming more and more important [36, 37]. So far, no study has explored PD-L1 or CTLA4 

expression in ovarian SLCT. We did not find any PD-L1 positivity in the tumor cells. CTLA4 expression was 

seen in 45% cases, mostly of weak to medium intensity, and without association with grade of differentiation. 

However, CTLA4 is not currently a clinically established predictive marker for immunotherapy. Several studies 

found CTLA4 expression in a variety of tumors such as breast, lung, and cervical cancer, and in hematological 

malignancies and ovarian, uterine, and cervical cancer cell lines [38-43]. Concerning the expression of CTLA4 

in other ovarian sex cord-stromal tumors, we found positivity in 69% of AGCT in our previous study [44]. 

Overall, the results of studies investigating the prognostic significance of CTLA4 are unsatisfactory, since some 

of them show a positive relationship, others negative, and the rest did not find any association between the 

expression and prognosis [39, 43, 45, 46]. 

The HER2 expression in ovarian sex cord-stromal tumors was examined only in granulosa cell tumors (GCT), 

but not in SLCT [44, 47-52]. All but two studies focusing on HER2 in GCT (including our previous study) 

showed no HER2 positive cases. Only two studies found several cases which were immunohistochemically 

HER2 positive, but a subsequent examination performed in one of these cases did not reveal HER2 amplification 

[51, 52]. We did not find any HER2 positivity in SLCT. 

MMR deficiency and/or high microsatellite instability is used to predict the response to immune checkpoint 

inhibitor therapy in solid tumors [53]. So far only two studies have explored the expression of MMR proteins in 

sex cord-stromal tumors, specifically in AGCT, and no case showed MMR protein expression deficiency [54]. In 

our study, all cases were MMR proficient. However, the molecular results revealed one case with a pathogenic 

MSH6 mutation along with two common cancer-driver mutations in DICER1.  

Another marker which was examined for the first time in our study was PTEN expression. We found a loss of 

PTEN expression in 14% (5/36) of SLCT, but no case showed molecular alterations in the coding sequence of 

the PTEN gene. The function of PTEN can be affected by a wide range of genetic and epigenetic changes or 

modulated by post-transcriptional or post-translational regulations - these mechanisms are therefore probably 

involved in the observed loss of PTEN expression. Moreover, there are currently no uniform scoring criteria for 

PTEN expression, or a validated test which could predict the lack of PTEN function [55]. There are some studies 

in which the loss of expression/presence of PTEN mutation are regarded as predictive biomarkers, but the precise 

role of PTEN as a potential prognostic and/or predictive biomarker has yet to be elucidated [55, 56].  

The differential diagnosis of SLCT can be difficult in some cases and includes mainly the other types of sex 

cord-stromal tumors, such as JGCT and AGCT, but also tumors of other histogenesis, such as the hypercalcemic 

type of small cell carcinoma, primary or metastatic endometrial stromal sarcoma, undifferentiated carcinoma, 

and endometrioid carcinoma. SCST generally express the “traditional” sex cord markers such as calretinin, 

inhibin A, CD99, FOXL2, and SF1. Inhibin and calretinin are positive in a majority of SLCT, with a typically 

stronger expression in Leydig cells compared to Sertoli cells (inhibin 64-100%, and calretinin 48-100%) [7-12]. 

SF1 expression was mostly described in Sertoli cells and Sertoli cell tumors, where it is present in all reported 

cases [12, 16]. The expression of CD99 and FOXL2 in SLCT ranges from 59-100% and 50-100%, respectively 

[12, 14-17]. This data is in accordance with our results, which showed the expression of inhibin, calretinin, 

CD99, FOXL2, and SF1 in 92%, 57%, 78%, 98%, and 95% of cases. All but one case showed the expression of 
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at least two of these markers. Only one case (of a well differentiated SLCT) was negative for all the “traditional 

sex cord markers”. In general, the sensitivity of these markers seems to be high, but their potential use in 

differential diagnosis with other sex cord stromal tumors is limited, and molecular testing should be used in 

diagnostically problematic cases.  

A variety of sex cord-stromal tumors, including SLCT, have also been reported to express cytokeratins, such as 

CKAE1/3. Goulvin et al. found keratin positivity in 82% (14/17) cases [7]. Our results showed mostly dot-like 

cytoplasmic positivity of CKAE1/3 in 84% of cases. Although SLCT show a rather higher CKAE1/3 expression 

than AGCT (where it has been described in 26-58% of cases), in common practice this finding is not very useful 

for differential diagnosis [9, 44, 57-59].  

Hormonal receptors can be of both diagnostic and therapeutic significance. AR receptor expression has not yet 

been investigated on a larger sample set, and only one study investigated ER and PR expression in ovarian 

SLCT. They found ER expression in 79% and PR in 86% of cases [60]. Our results showed expression of ER in 

73%, PR in 57%, and AR in 68% of cases.  

The expression of Ki67, p53, and p16 has so far been described in SLCT only in rare case reports [13, 61, 62]. 

The median proliferation index (Ki67) observed in our study was 3 (range 0-38), with a mean value of 8 (SD 

9.3). There were differences between the well differentiated and moderately/poorly differentiated SLCTs, but 

this finding did not reach statistical significance due to the insufficient number of cases. The p53 expression was 

investigated only in one study including four sex cord-stromal tumors: two SLCT (one well differentiated and 

one poorly differentiated) and two AGCT. The authors found some p53 positivity in the Sertoli cells component 

which; however, did not reach the criteria for overexpression [13]. Our results did not reveal any case with an 

aberrant expression of p53, or diffuse block type 16 positivity.  

The expression of CAIX, GATA3, SATB2, napsin A, MUC4, TTF1, DPC4, and ARID1A has not been 

investigated in SLCT to date. In our study, CAIX expression was found in 13% of SLCT, all of which were well 

differentiated. This is in slight contradiction to the results of several studies exploring malignant epithelial 

tumors, since CAIX expression has been associated with a worse prognosis in several carcinomas, including 

breast cancer, gastric cancer, and some others [63, 64]. On the other hand, this finding does support the thesis 

that well differentiated SLCT are a distinct tumor type compared to the moderately and poorly differentiated 

tumors. Surprisingly, one moderately differentiated SLCT showed weak to moderate MUC4 expression. We did 

not find a simultaneous MUC4 mutation in this case, but literary data describes a MUC4 mutation in one case of 

a moderately/poorly differentiated tumor in a study of 19 SLCT [65]. Concerning the other markers examined, 

none of our cases showed positive staining with SATB2, napsin A, GATA3, or TTF1 antibodies, which can be 

useful with respect to differential diagnosis.  

We acknowledge that there are some limitations of our study, the main one being related to the use of tissue 

microarrays (TMAs). Although widely utilized, particularly in studies involving larger cohorts, this approach 

theoretically raises the risk of either underestimating or overestimating the immunohistochemical scoring. The 

mRNA expression analysis also had several limitations: a targeted panel of selected genes was used, the sample 

size of our cohort was limited, and post-transcriptional or post-translational regulations were not considered. 

This indicates a need for further, more comprehensive investigation into mRNA expression in SLCT. 

 

CONCLUSION 
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Our study provides a comprehensive characterization of the molecular landscape and immunohistochemical 

features of SLCT. We confirmed that DICER1 and FOXL2 mutations are mutually exclusive and are restricted to 

moderately and poorly differentiated tumors. For the first time we describe a TERT promoter mutation in these 

tumors. Additionally, we identified significant differences in mRNA expression between the DICER1MUT and 

DICER1WT SLCT. Taken together, our results support the view that well differentiated tumors are different from 

the moderately and poorly differentiated ones, and probably represent a different entity on the molecular level. 

Concerning the possible predictive markers, our results show that SLCT are microsatellite stable, do not express 

PD-L1, and are HER2 negative.  
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Figure legends 

Fig. 1   

A – CTLA4 expression (200x), B – MUC4 expression (200x), C – Loss of PTEN expression (200x), D – Loss of 

PTEN expression (400x)  

 

Fig. 2  

Clinico-pathological and molecular findings of Sertoli-Leydig cell tumors.  

Each column represents a single case. The figure displays only the markers with variable expression 

(immunohistochemical findings); markers with lack of expression in all cases (such as GATA3, SATB2, napsin 

A, TTF1, HER2, PD-L1), ARID1A, MMR proteins and MUC4 (only 1 positive case) are not included. Only 

genes that were mutated in at least two cases are shown. 

 

Fig. 3 

Significantly different mRNA expression between the DICER1MUT and DICERWT Sertoli-Leydig cell tumors. 

The transcripts per million (TMP) values of mRNA were normalized to the TPM of the housekeeping gene 

HPRT1. The listed p-values were adjusted using the Bonferroni correction. A - A heat map displaying 

normalized TPM values in the groups DICER1MUT and DICER1WT (more intense red indicating higher mRNA 

levels and green indicating lower levels). B - Distribution of mRNAs significantly decreased in the DICER1WT 

group (normalized TPM values). C - Distribution of mRNAs significantly increased in the DICER1WT group 

(normalized TPM values). 

 

 

Supplementary tables 

Supplementary table 1 

List of antibodies  

Supplementary table 2 

List of genes included in the DNA and RNA NGS targeted panels. 

Supplementary table 3 

All detailed pathogenic or likely pathogenic mutations detected in the cohort of Sertoli-Leydig cell tumor 
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Table 1: Characterization of the dataset of 38 patients with SLCT. 

Characteristics SLCTs n (%) 

Age at diagnosis (years)   

Mean (SD) 42 (20.6) 

Median (range) 45 (14-76) 

Grade   

Well differentiated 10 (26%) 

Moderately differentiated 25 (66%) 

Poorly differentiated 3 (8%) 

FIGO (n/a = 26)   

IA 8 (67%) 

IC1 3 (25%) 

IIB 1 (8%) 

Recurrences (n/a = 31)   

No 6 (86%) 

Yes 1 (14%) 

Mitoses (mitoses/HPF)   

Mean (SD) 3.4 (3.9) 

Median (range) 2 (0-15) 

Retiform component   

No 36 (95%) 

Yes 2 (5%) 

Sarcomatoid component   

No 36 (95%) 

Yes 2 (5%) 

Heterologous component   

No 35 (92%) 

Yes 3 (8%) 

SLCT - Sertoli-Leydig cell tumor, SD – standard deviation, n/a – data not available, mitoses/HPF = mitoses per 10 

high power fields. 

Percentages are counted only from the available data and are rounded up/down. 

 

Table 1



Table 2: Overview of percentage of positivity and ratio of positive and negative events in selected IHC 

markers in SLCT. 

Marker   Marker   Marker   

FOXL2   p53*   CTLA4   

median (range) 90 (0-100) median (range) n/a median (range) 0 (0-90) 

mean (SD) 75 (31.8) mean (SD) n/a mean (SD) 23 (32.2) 

No. of positive cases 35 (95%) No. of positive cases 0 (0%) No. of positive cases 17 (45%) 

No. of negative cases 2 (5%) No. of negative cases 36 (100%) No. of negative cases 21 (55%) 

SF-1   p16*   PTEN    

median (range) 100 (0-100) median (range) n/a median (range) 70 (0-100) 

mean (SD) 94 (22.8) mean (SD) n/a mean (SD) 62 (36.3) 

No. of positive cases 35 (95%) No. of positive cases 0 (0%) No. of positive cases 31 (84%) 

No. of negative cases 2 (5%) No. of negative cases 38 (100%) No. of negative cases 6 (16%) 

CD99   GATA3   HER2   

median (range) 68 (0-100) median (range) 0 (-) median (range) 0 (-) 

mean (SD) 57 (37.7) mean (SD) 0 (-) mean (SD) 0 (-) 

No. of positive cases 29 (78%) No. of positive cases 0 (0%) No. of positive cases 0 (0%) 

No. of negative cases 8 (22%) No. of negative cases 38 (100%) No. of negative cases 38 (100%) 

Inhibin   ARID1A   PD-L1   

median (range) 60 (0-100) median (range) 100 (70-100) median (range) 0 (-) 

mean (SD) 54 (38.6) mean (SD) 99 (5.1) mean (SD) 0 (-) 

No. of positive cases 34 (92%) No. of positive cases 37 (100%) No. of positive cases 0 (0%) 

No. of negative cases 3 (8%) No. of negative cases 0 (0%) No. of negative cases 36 (100%) 

Calretinin   Napsin A   MLH1   

median (range) 5 (0-98) median (range) 0 (-) median (range) 99 (65-100) 

mean (SD) 23 (29.3) mean (SD) 0 (-) mean (SD) 96 (8.1) 

No. of positive cases 21 (57%) No. of positive cases 0 (0%) No. of positive cases 37 (100%) 

No. of negative cases 16 (43%) No. of negative cases 37 (100%) No. of negative cases 0 (0%) 

ER   SATB2   PMS2   

median (range) 53 (0-100) median (range) 0 (-) median (range) 100 (65-100) 

mean (SD) 46 (37.8) mean (SD) 0 (-) mean (SD) 98 (5.9) 

No. of positive cases 27 (73%) No. of positive cases 0 (0%) No. of positive cases 37 (100%) 

No. of negative cases 10 (27%) No. of negative cases 36 (100%) No. of negative cases 0 (0%) 

PR   MUC4   MSH2   

median (range) 11 (0-98) median (range) 0 (0-35) median (range) 100 (80-100) 

mean (SD) 27 (34.4) mean (SD) 1 (5.7) mean (SD) 99 (3.8) 

No. of positive cases 21 (57%) No. of positive cases 1 (3%) No. of positive cases 37 (100%) 

No. of negative cases 16 (43%) No. of negative cases 36 (97%) No. of negative cases 0 (0%) 

AR   TTF1   MSH6   

median (range) 31 (0-99) median (range) 0 (-) median (range) 100 (85-100) 

mean (SD) 41 (39.4) mean (SD) 0 (-) mean (SD) 99 (2.6) 

No. of positive cases 25 (68%) No. of positive cases 0 (0%) No. of positive cases 37 (100%) 

No. of negative cases 12 (32%) No. of negative cases 37 (100%) No. of negative cases 0 (0%) 

CKAE1/3   DPC4     

median (range) 68 (0-100) median (range) 10 (0-100)   

mean (SD) 61 (38.7) mean (SD) 27 (34.2)   

No. of positive cases 32 (84%) No. of positive cases 26 (76%)   

No. of negative cases 6 (16%) No. of negative cases 8 (24%)   

Ki67   CAIX     

median (range) 3 (0-38) median (range) 0 (0-97)   

mean (SD) 8 (9.3) mean (SD) 8 (24.4)   

No. of positive cases n/a No. of positive cases 5 (13%)   

No. of negative cases n/a No. of negative cases 33 (87%)     

Table 2



   

IHC = immunohistochemical, SD = standard deviation, n/a = not available.  

The cut-off for positive/negative case is 5% (methods section) 

*in case of p53, aberrant cases are marked as positive, wild-type cases are marked as negative 

*in case of p16, negative and focal cases are marked as negative, diffusely positive cases are marked as positive 
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