
Software Testing and Analysis:

Process, Principles, and

Techniques

Software Testing and Analysis:

Process, Principles, and

Techniques

Mauro Pezzè

Università di Milano Bicocca

Michal Young

University of Oregon

PUBLISHER Daniel Sayre
SENIOR PRODUCTION EDITOR Lisa Wojcik
EDITORIAL ASSISTANT Lindsay Murdock
COVER DESIGNER Madelyn Lesure
COVER PHOTO Rick Fischer/Masterfile
WILEY 200TH ANNIVERSARY LOGO DESIGN Richard J. Pacifico
This book was typeset by the authors using pdfLATEXand printed and bound
by Malloy Lithographing. The cover was printed by Phoenix Color Corp.
This book is printed on acid free paper. •

Copyright c� 2008 John Wiley & Sons, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222
Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax
(201) 748-6008, website http://www.wiley.com/go/permissions.

To order books or for customer service please, call 1-800-CALL WILEY (225-5945).

ISBN-13 978-0-471-45593-6

Printed in the United States of America

10 9 8 7 5 6 4 3 2 1

Contents

List of Figures xi

List of Tables xv

I Fundamentals of Test and Analysis 1

1 Software Test and Analysis in a Nutshell 3
1.1 Engineering Processes and Verification 3
1.2 Basic Questions . 5
1.3 When Do Verification and Validation Start and End? 5
1.4 What Techniques Should Be Applied? 7
1.5 How Can We Assess the Readiness of a Product? 10
1.6 How Can We Ensure the Quality of Successive Releases? 11
1.7 How Can the Development Process Be Improved? 11

2 A Framework for Test and Analysis 15
2.1 Validation and Verification . 15
2.2 Degrees of Freedom . 18
2.3 Varieties of Software . 23

3 Basic Principles 29
3.1 Sensitivity . 29
3.2 Redundancy . 32
3.3 Restriction . 33
3.4 Partition . 35
3.5 Visibility . 36
3.6 Feedback . 36

4 Test and Analysis Activities Within a Software Process 39
4.1 The Quality Process . 39
4.2 Planning and Monitoring . 41
4.3 Quality Goals . 42
4.4 Dependability Properties . 43
4.5 Analysis . 46

v

vi CONTENTS

4.6 Testing . 48
4.7 Improving the Process . 49
4.8 Organizational Factors . 50

II Basic Techniques 53

5 Finite Models 55
5.1 Overview . 55
5.2 Finite Abstractions of Behavior . 58
5.3 Control Flow Graphs . 59
5.4 Call Graphs . 63
5.5 Finite State Machines . 65

6 Dependence and Data Flow Models 77
6.1 Definition-Use Pairs . 77
6.2 Data Flow Analysis . 82
6.3 Classic Analyses: Live and Avail 85
6.4 From Execution to Conservative Flow Analysis 91
6.5 Data Flow Analysis with Arrays and Pointers 94
6.6 Interprocedural Analysis . 96

7 Symbolic Execution and Proof of Properties 101
7.1 Symbolic State and Interpretation 102
7.2 Summary Information . 104
7.3 Loops and Assertions . 105
7.4 Compositional Reasoning . 108
7.5 Reasoning about Data Structures and Classes 109

8 Finite State Verification 113
8.1 Overview . 113
8.2 State Space Exploration . 116
8.3 The State Space Explosion Problem 126
8.4 The Model Correspondence Problem 129
8.5 Granularity of Modeling . 131
8.6 Intensional Models . 134
8.7 Model Refinement . 138
8.8 Data Model Verification with Relational Algebra 140

III Problems and Methods 149

9 Test Case Selection and Adequacy 151
9.1 Overview . 151
9.2 Test Specifications and Cases . 152
9.3 Adequacy Criteria . 154
9.4 Comparing Criteria . 157

CONTENTS vii

10 Functional Testing 161
10.1 Overview . 161
10.2 Random versus Partition Testing Strategies 162
10.3 A Systematic Approach . 167
10.4 Choosing a Suitable Approach . 174

11 Combinatorial Testing 179
11.1 Overview . 180
11.2 Category-Partition Testing . 180
11.3 Pairwise Combination Testing . 188
11.4 Catalog-Based Testing . 194

12 Structural Testing 211
12.1 Overview . 212
12.2 Statement Testing . 215
12.3 Branch Testing . 217
12.4 Condition Testing . 219
12.5 Path Testing . 222
12.6 Procedure Call Testing . 229
12.7 Comparing Structural Testing Criteria 230
12.8 The Infeasibility Problem . 230

13 Data Flow Testing 235
13.1 Overview . 236
13.2 Definition-Use Associations . 236
13.3 Data Flow Testing Criteria . 239
13.4 Data Flow Coverage with Complex Structures 241
13.5 The Infeasibility Problem . 243

14 Model-Based Testing 245
14.1 Overview . 245
14.2 Deriving Test Cases from Finite State Machines 246
14.3 Testing Decision Structures . 251
14.4 Deriving Test Cases from Control and Data Flow Graphs 257
14.5 Deriving Test Cases from Grammars 257

15 Testing Object-Oriented Software 271
15.1 Overview . 271
15.2 Issues in Testing Object-Oriented Software 272
15.3 An Orthogonal Approach to Test . 280
15.4 Intraclass Testing . 282
15.5 Testing with State Machine Models 282
15.6 Interclass Testing . 286
15.7 Structural Testing of Classes . 293
15.8 Oracles for Classes . 298
15.9 Polymorphism and Dynamic Binding 301

viii CONTENTS

15.10 Inheritance . 303
15.11 Genericity . 306
15.12 Exceptions . 308

16 Fault-Based Testing 313
16.1 Overview . 313
16.2 Assumptions in Fault-Based Testing 314
16.3 Mutation Analysis . 315
16.4 Fault-Based Adequacy Criteria . 319
16.5 Variations on Mutation Analysis . 321

17 Test Execution 327
17.1 Overview . 327
17.2 From Test Case Specifications to Test Cases 328
17.3 Scaffolding . 329
17.4 Generic versus Specific Scaffolding 330
17.5 Test Oracles . 332
17.6 Self-Checks as Oracles . 334
17.7 Capture and Replay . 337

18 Inspection 341
18.1 Overview . 341
18.2 The Inspection Team . 343
18.3 The Inspection Process . 344
18.4 Checklists . 345
18.5 Pair Programming . 351

19 Program Analysis 355
19.1 Overview . 355
19.2 Symbolic Execution in Program Analysis 356
19.3 Symbolic Testing . 358
19.4 Summarizing Execution Paths . 359
19.5 Memory Analysis . 360
19.6 Lockset Analysis . 363
19.7 Extracting Behavior Models from Execution 365

IV Process 373

20 Planning and Monitoring the Process 375
20.1 Overview . 375
20.2 Quality and Process . 376
20.3 Test and Analysis Strategies . 377
20.4 Test and Analysis Plans . 382
20.5 Risk Planning . 386
20.6 Monitoring the Process . 389

CONTENTS ix

20.7 Improving the Process . 394
20.8 The Quality Team . 399

21 Integration and Component-based Software Testing 405
21.1 Overview . 405
21.2 Integration Testing Strategies . 408
21.3 Testing Components and Assemblies 413

22 System, Acceptance, and Regression Testing 417
22.1 Overview . 417
22.2 System Testing . 418
22.3 Acceptance Testing . 421
22.4 Usability . 423
22.5 Regression Testing . 427
22.6 Regression Test Selection Techniques 428
22.7 Test Case Prioritization and Selective Execution 434

23 Automating Analysis and Test 439
23.1 Overview . 439
23.2 Automation and Planning . 441
23.3 Process Management . 441
23.4 Static Metrics . 443
23.5 Test Case Generation and Execution 445
23.6 Static Analysis and Proof . 445
23.7 Cognitive Aids . 448
23.8 Version Control . 449
23.9 Debugging . 449
23.10 Choosing and Integrating Tools . 451

24 Documenting Analysis and Test 455
24.1 Overview . 455
24.2 Organizing Documents . 456
24.3 Test Strategy Document . 458
24.4 Analysis and Test Plan . 458
24.5 Test Design Specification Documents 460
24.6 Test and Analysis Reports . 462

Bibliography 467

Index 479

x CONTENTS

List of Figures

1 Selective reading . xxi

1.1 Analysis and testing activities . 9

2.1 Validation and verification . 16
2.2 Verification trade-off dimensions . 19

3.1 Unpredictable failure and predictable failure 31
3.2 Initialize before use problem . 34

4.1 Dependability properties . 46

5.1 Abstraction coalesces execution states 58
5.2 Constructing control flow graphs . 59
5.3 Java method to collapse adjacent newline characters 61
5.4 Statements broken across basic blocks 62
5.5 Linear-code sequence and jump (LCSAJ) 62
5.6 Over-approximation in a call graph 64
5.7 Context sensitivity . 66
5.8 Exponential explosion of calling contexts in a call graph 67
5.9 Finite state machine specification of line-end conversion procedure . 69
5.10 Correctness relations for a finite state machine model 70
5.11 Procedure to convert among Dos, Unix, and Macintosh line ends . . . 72
5.12 Completed FSM specification of line-end conversion procedure . . . 73

6.1 GCD calculation in Java . 78
6.2 Control flow graph of GCD method 79
6.3 Data dependence graph of GCD method 80
6.4 Calculating control dependence . 81
6.5 Control dependence tree of GCD method 82
6.6 Reaching definitions algorithm . 84
6.7 Available expressions algorithm . 86
6.8 Java method with potentially uninitialized variable 87
6.9 Control flow with definitions and uses 88
6.10 Annotated CFG for detecting uses of uninitialized variables 89

xi

xii LIST OF FIGURES

6.11 CGI program in Python with misspelled variable 91
6.12 Powerset lattice . 93
6.13 Spurious execution paths in interprocedural analysis 97

7.1 Binary search procedure . 103
7.2 Concrete and symbolic tracing . 104

8.1 Finite state verification . 115
8.2 Misapplication of the double-check initialization pattern 118
8.3 FSM models from Figure 8.2 . 119
8.4 Promela finite state model . 120
8.5 Excerpts of Spin verification tool transcript 121
8.6 Spin guided simulation trace describing race condition 123
8.7 A graphical interpretation of Spin guided simulation trace 124
8.8 Dining philosophers in Promela . 128
8.9 A simple data race in Java . 131
8.10 Coarse and fine-grain models of interleaving 132
8.11 Lost update problem . 133
8.12 OBDD encoding of a propositional formula 136
8.13 OBDD representation of transition relation 137
8.14 Data model of a simple Web site . 141
8.15 Alloy model of a Web site. 142
8.16 Alloy model of a Web site (continued) 143
8.17 A Web site that violates the “browsability” property 145

9.1 A Java method for collapsing sequences of blanks 155

10.1 A Java class for finding roots of a quadratic equation 165
10.2 A quasi-partition of a program’s input domain 167
10.3 The functional testing process . 169

11.1 Specification of Check configuration 182
11.2 Specification of cgi decode . 195
11.3 Elementary items of specification cgi decode 198
11.4 Test case specifications for cgi decode generated after step 2 201

12.1 The C function cgi decode . 213
12.2 Control flow graph of function cgi decode 214
12.3 The control flow graph of C function cgi decode0 218
12.4 Deriving a tree from a control flow graph for boundary/interior testing 223
12.5 Buggy self-organizing list . 224
12.6 Control flow graph of C function search 225
12.7 Tree of boundary/interior sub-paths for C function search 226
12.8 Subsumption relations among structural test adequacy criteria 231

13.1 The C function cgi decode . 237
13.2 A C procedure with a large number of DU paths 241

LIST OF FIGURES xiii

13.3 Pointer arithmetic . 242

14.1 Functional specification of feature Maintenance 247
14.2 The finite state machine corresponding to Maintenance 248
14.3 Functional specification of feature Pricing 252
14.4 Decision table for Pricing . 254
14.5 Set of test cases corresponding to the modified adequacy criterion . . 256
14.6 Functional specification of Process shipping order 258
14.7 Control flow model of Process shipping order 259
14.8 Node-adequate test suite . 260
14.9 Branch-adequate test suite . 260
14.10 Functional specification of Advanced search 261
14.11 BNF description of Advanced search 261
14.12 XML schema for Product configuration 263
14.13 BNF description of Product configuration 264
14.14 Test case for feature Advanced Search 264
14.15 The BNF description of Product Configuration 265
14.16 Sample seed probabilities for the BNF of Product Configuration . . . 266

15.1 Part of a Java implementation of class Model 274
15.2 More of the Java implementation of class Model 275
15.3 Class diagram for the LineItem hierarchy. 276
15.4 Part of a Java implementation of class Account. 278
15.5 Impact of object-oriented design on analysis and test. 279
15.6 Statechart specification of class Model 284
15.7 Finite state machine corresponding to the statechart in Figure 15.6 . . 285
15.8 Statechart specification of class Order 287
15.9 Finite state machine corresponding to the statechart in Figure 15.8 . . 288
15.10 Class diagram of the Chipmunk Web presence 290
15.11 Use/include relation for the class diagram in Figure 15.10 291
15.12 Sequence diagram for configuring an order 294
15.13 Partial intraclass control flow graph for class Model 296
15.14 Summary information for structural interclass testing 299
15.15 Polymorphic method call . 302
15.16 Part of a Java implementation of the abstract class LineItem 305
15.17 Part of a Java implementation of class CompositeItem 307

16.1 Program transduce . 317
16.2 Sample mutation operators for C . 318
16.3 Sample mutants for program Transduce 320
16.4 Edit distance check . 325

17.1 JUnit tests in JFlex . 331
17.2 Test harness with comparison-based test oracle 333
17.3 Testing with self-checks . 334
17.4 Structural invariant as run-time self-check 336

xiv LIST OF FIGURES

18.1 Detailed description referenced by a checklist item. 349

19.1 A C program invoking cgi decode 361
19.2 Purify verification tool transcript. 362
19.3 Model of memory states . 363
19.4 Concurrent threads with shared variables 364
19.5 Lockset state transition diagram . 365
19.6 A Java method for inserting a node in an AVL tree 367
19.7 Sample set of predicates for behavior program analysis 368
19.8 Test cases for an AVL tree . 369
19.9 Behavioral models for method insert 370

20.1 Alternative schedules . 385
20.2 A sample A&T schedule . 387
20.3 Typical fault distribution over time 392

21.1 Chipmunk Web presence hierarchy 411

22.1 Version 1.0 of the C function cgi decode 430
22.2 Version 2.0 of the C function cgi decode 431
22.3 Coverage of structural test cases for cgi decode 432
22.4 Control flow graph of function cgi decode version 2.0 433
22.5 New definitions and uses for cgi decode 434
22.6 Flow graph model of the extended shipping order specification 435

23.1 CodeCrawler code size visualization 450

24.1 Sample document naming conventions 456

List of Tables

11.1 Example categories and value classes 187
11.2 Test case specifications for Check configuration 189
11.3 Parameters and values for Display control 190
11.4 Pairwise coverage of three parameters 191
11.5 Pairwise coverage of five parameters 192
11.6 Constraints for Display control . 193
11.7 A test catalog . 202
11.8 Summary of catalog-based test cases for cgi decode 205

12.1 Test cases for cgi decode . 215

13.1 Definitions and uses for C function cgi decode 238
13.2 DU pairs for C function cgi decode 239

14.1 A test suite derived from the FSM of Figure 14.2 249

15.1 Test cases to satisfy transition coverage criterion 285
15.2 Simple transition coverage . 289
15.3 Equivalent scenarios . 301
15.4 Pairwise combinatorial coverage of polymorphic binding 302
15.5 Testing history for class LineItem . 304
15.6 Testing history for class CompositeItem 306

20.1 Standard severity levels for root cause analysis 397

21.1 Integration faults. 407

xv

xvi LIST OF TABLES

Preface

This book addresses software test and analysis in the context of an overall effort to
achieve quality. It is designed for use as a primary textbook for a course in software
test and analysis or as a supplementary text in a software engineering course, and as a
resource for software developers.

The main characteristics of this book are:

• It assumes that the reader’s goal is to achieve a suitable balance of cost, sched-
ule, and quality. It is not oriented toward critical systems for which ultra-high
reliability must be obtained regardless of cost, nor will it be helpful if one’s aim
is to cut cost or schedule regardless of consequence.

• It presents a selection of techniques suitable for near-term application, with suf-
ficient technical background to understand their domain of applicability and to
consider variations to suit technical and organizational constraints. Techniques
of only historical interest and techniques that are unlikely to be practical in the
near future are omitted.

• It promotes a vision of software testing and analysis as integral to modern soft-
ware engineering practice, equally as important and technically demanding as
other aspects of development. This vision is generally consistent with current
thinking on the subject, and is approached by some leading organizations, but is
not universal.

• It treats software testing and static analysis techniques together in a coherent
framework, as complementary approaches for achieving adequate quality at ac-
ceptable cost.

Why This Book?

One cannot “test quality into” a badly constructed software product, but neither can one
build quality into a product without test and analysis. The goal of acceptable quality
at acceptable cost is both a technical and a managerial challenge, and meeting the goal
requires a grasp of both the technical issues and their context in software development.

xvii

xviii Preface

It is widely acknowledged today that software quality assurance should not be a
phase between development and deployment, but rather a set of ongoing activities in-
terwoven with every task from initial requirements gathering through evolution of the
deployed product. Realization of this vision in practice is often only partial. It requires
careful choices and combinations of techniques fit to the organization, products, and
processes, but few people are familiar with the full range of techniques, from inspection
to testing to automated analyses. Those best positioned to shape the organization and
its processes are seldom familiar with the technical issues, and vice versa. Moreover,
there still persists in many organizations a perception that quality assurance requires
less skill or background than other aspects of development.

This book provides students with a coherent view of the state of the art and practice,
and provides developers and managers with technical and organizational approaches to
push the state of practice toward the state of the art.

Who Is This Book For?

Students who read portions of this book will gain a basic understanding of principles
and issues in software test and analysis, including an introduction to process and or-
ganizational issues. Developers, including quality assurance professionals, will find a
variety of techniques with sufficient discussion of technical and process issues to sup-
port adaptation to the particular demands of their organization and application domain.
Technical managers will find a coherent approach to weaving software quality assur-
ance into the overall software process. All readers should obtain a clearer view of the
interplay among technical and nontechnical issues in crafting an approach to software
quality.

Students, developers, and technical managers with a basic background in computer
science and software engineering will find the material in this book accessible without
additional preparation. Some of the material is technically demanding, but readers may
skim it on a first reading to get the big picture, and return to it at need.

A basic premise of this book is that effective quality assurance is best achieved
by selection and combination of techniques that are carefully woven into (not grafted
onto) a software development process for a particular organization. A software quality
engineer seeking technical advice will find here encouragement to consider a wider
context and participate in shaping the development process. A manager whose faith
lies entirely in process, to the exclusion of technical knowledge and judgment, will
find here many connections between technical and process issues, and a rationale for a
more comprehensive view.

How to Read This Book

This book is designed to permit selective reading. Most readers should begin with
Part I, which presents fundamental principles in a coherent framework and lays the
groundwork for understanding the strengths and weaknesses of individual techniques
and their application in an effective software process. Part II brings together basic tech-

xix

nical background for many testing and analysis methods. Those interested in particular
methods may proceed directly to the relevant chapters in Part III of the book. Where
there are dependencies, the Required Background section at the beginning of a chap-
ter indicates what should be read in preparation. Part IV discusses how to design a
systematic testing and analysis process and incorporates it into an overall development
process, and may be read either before or after Part III.

Readers new to the field of software test and analysis can obtain an overview by reading
Chapters

1 Software Test and Analysis in a nutshell
2 A Framework for Test and Analysis
4 Test and Analysis Activities within a Software Process
10 Functional Testing
11 Combinatorial Testing
14 Model-Based Testing
15 Testing Object-Oriented Software
17 Test Execution
18 Inspection
19 Program Analysis
20 Planning and Monitoring the Process

Notes for Instructors

This book can be used in an introductory course in software test and analysis or as a
supplementary text in an undergraduate software engineering course.

An introductory graduate-level or an undergraduate level course in software test and
analysis can cover most of the book. In particular, it should include

• All of Part I (Fundamentals of Test and Analysis), which provides a complete
overview.

• Most of Part II (Basic Techniques), which provides fundamental background,
possibly omitting the latter parts of Chapters 6 (Dependence and Data Flow
Models) and 7 (Symbolic Execution and Proof of Properties). These chapters are
particularly suited for students who focus on theoretical foundations and those
who plan to study analysis and testing more deeply.

• A selection of materials from Parts III (Problems and Methods) and IV (Process).

For a course with more emphasis on techniques than process, we recommend

• Chapter 10 (Functional Testing), to understand how to approach black-box test-
ing.

• The overview section and at least one other section of Chapter 11 (Combinatorial
Testing) to grasp some combinatorial techniques.

xx Preface

• Chapter 12 (Structural Testing), through Section 12.3, to introduce the basic cov-
erage criteria.

• Chapter 13 (Data Flow Testing), through Section 13.3, to see an important appli-
cation of data flow analysis to software testing.

• The overview section and at least one other section of Chapter 14 (Model-based
Testing) to grasp the interplay between models and testing.

• Chapter 15 (Testing Object-Oriented Software) to appreciate implications of the
object-oriented paradigm on analysis and testing.

• Chapter 17 (Test Execution), to manage an easily overlooked set of problems
and costs.

• Chapter 18 (Inspection) to grasp the essential features of inspection and appreci-
ate the complementarity of analysis and test.

• Chapter 19 (Program Analysis) to understand the role of automated program
analyses and their relation to testing and inspection techniques.

• Chapters 20 (Planning and Monitoring the Process), 21 (Integration and Component-
based Software Testing), and 22 (System, Acceptance, and Regression Testing)
to widen the picture of the analysis and testing process.

For a stronger focus on software process and organizational issues, we recommend

• Chapter 10 (Functional Testing), a selection from Chapters 11 and 14 (Com-
binatorial Testing and Model-Based Testing), and Chapters 15 (Testing Object-
Oriented Software), 17 (Test Execution), 18 (Inspection), and 19 (Program Anal-
ysis) to provide a basic overview of techniques.

• Part IV, possibly omitting Chapter 23 (Automating Analysis and Test), for a
comprehensive view of the quality process.

When used as a supplementary text in an undergraduate software engineering course,
Chapters 1 (Software Test and Analysis in a Nutshell), and 2 (A Framework for Test
and Analysis) can provide a brief overview of the field. We recommend completing
these two essential chapters along with either Chapter 4, or a selection of chapters
from Part III, or both, depending on the course schedule. Chapter 4 (Test and Analysis
Activities within a Software Process) can be used to understand the essential aspects
of a quality process. The following chapters from Part III will help students grasp
essential techniques:

• Chapter 10 (Functional Testing) and a selection of techniques from Chapters 11
(Combinatorial Testing) and 14 (Model-Based Testing), to grasp basic black-box
testing techniques.

• Chapter 12 (Structural Testing), through Section 12.3, to introduce basic cover-
age criteria.

xxi

SW A&T in a Nutshell

A Framework for A&T

Basic Principles

A&T within a SW Process

Finite Models

Dependence and Data Flow

Symbolic Execution & Proof

Finite State Verification

Test Case Selection & Adequacy

Functional Testing

Combinatorial Testing

Structural Testing

Data Flow Testing

Model-Based Testing

Testing Object Oriented Software

Fault Based Testing

Test Execution

Inspection

Integration Testing

System, Acceptance & Regression

Automating A&T

Documenting A&T24

23

22

21

20

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Program Analysis19

Pa
rt

 I
:

Fu
n
d
am

en
ta

ls
Pa

rt
 I
I:

T
ec

h
n
iq

u
es

Pa
rt

 I
II
:

Pr
o
b
le

m
s

an
d
 M

et
h
o
d
s

Pa
rt

 I
V

:
Pr

o
ce

ss

Graduate-level course with emphasis on techniques

Graduate-level course with emphasis on process

Undergraduate-level course on software test and analysis

Supplementary text in an undergraduate software engineering course

Essential material for the general reader

Essential chapter for a short course

Next priority for selective reading

Topics for a longer course or a
second reading

Planning and Monitoring

Figure 1: Selecting core material by need

xxii Preface

• Chapter 15 (Testing Object-Oriented Software), through Section 15.3, to appre-
ciate implications of the object oriented paradigm on analysis and testing.

• Chapter 17 (Test Execution), to manage an easily overlooked set of problems
and costs.

• Chapter 18 (Inspection), to grasp the essential features of inspection.

In addition, Chapter 20 (Planning and Monitoring the Process) is useful to gain
a deeper appreciation of the interplay between software quality activities and other
aspects of a software process.

If the computer science graduate curriculum does not include a course devoted
to analysis and testing, we recommend that a graduate software engineering course
also cover Chapters 5 (Finite Models), 8 (Finite State Verification), and 19 (Program
Analysis) to provide essential technical background.

Supplementary material and a discussion forum are available on the book Web site,
http://www.wiley.com/college/pezze

Part I

Fundamentals of Test and

Analysis

1

Chapter 1

Software Test and Analysis in

a Nutshell

Before considering individual aspects and techniques of software analysis and testing,
it is useful to view the “big picture” of software quality in the context of a software
development project and organization. The objective of this chapter is to introduce
the range of software verification and validation (V&V) activities and a rationale for
selecting and combining them within a software development process. This overview is
necessarily cursory and incomplete, with many details deferred to subsequent chapters.

1.1 Engineering Processes and Verification

Engineering disciplines pair design and construction activities with activities that check
intermediate and final products so that defects can be identified and removed. Software
engineering is no exception: Construction of high-quality software requires comple-
mentary pairing of design and verification activities throughout development.

Verification and design activities take various forms ranging from those suited to
highly repetitive construction of noncritical items for mass markets to highly cus-
tomized or highly critical products. Appropriate verification activities depend on the
engineering discipline, the construction process, the final product, and quality require-
ments.

Repetition and high levels of automation in production lines reduce the need for
verification of individual products. For example, only a few key components of prod-
ucts like screens, circuit boards, and toasters are verified individually. The final prod-
ucts are tested statistically. Full test of each individual product may not be economical,
depending on the costs of testing, the reliability of the production process, and the costs
of field failures.

Even for some mass market products, complex processes or stringent quality re-
quirements may require both sophisticated design and advanced product verification
procedures. For example, computers, cars, and aircraft, despite being produced in se-
ries, are checked individually before release to customers. Other products are not built

3

4 Software Test and Analysis in a Nutshell

in series, but are engineered individually through highly evolved processes and tools.
Custom houses, race cars, and software are not built in series. Rather, each house,
each racing car, and each software package is at least partly unique in its design and
functionality. Such products are verified individually both during and after production
to identify and eliminate faults.

Verification of goods produced in series (e.g., screens, boards, or toasters) consists
of repeating a predefined set of tests and analyses that indicate whether the products
meet the required quality standards. In contrast, verification of a unique product, such
as a house, requires the design of a specialized set of tests and analyses to assess the
quality of that product. Moreover, the relationship between the test and analysis results
and the quality of the product cannot be defined once for all items, but must be assessed
for each product. For example, the set of resistance tests for assessing the quality of
a floor must be customized for each floor, and the resulting quality depends on the
construction methods and the structure of the building.

Verification grows more difficult with the complexity and variety of the products.
Small houses built with comparable technologies in analogous environments can be
verified with standardized procedures. The tests are parameterized to the particular
house, but are nonetheless routine. Verification of a skyscraper or of a house built
in an extreme seismic area, on the other hand, may not be easily generalized, instead
requiring specialized tests and analyses designed particularly for the case at hand.

Software is among the most variable and complex of artifacts engineered on a reg-
ular basis. Quality requirements of software used in one environment may be quite
different and incompatible with quality requirements of a different environment or ap-
plication domain, and its structure evolves and often deteriorates as the software system
grows. Moreover, the inherent nonlinearity of software systems and uneven distribu-
tion of faults complicates verification. If an elevator can safely carry a load of 1000 kg,
it can also safely carry any smaller load, but if a procedure correctly sorts a set of 256
elements, it may fail on a set of 255 or 53 or 12 elements, as well as on 257 or 1023.

The cost of software verification often exceeds half the overall cost of software de-
velopment and maintenance. Advanced development technologies and powerful sup-
porting tools can reduce the frequency of some classes of errors, but we are far from
eliminating errors and producing fault-free software. In many cases new development
approaches introduce new subtle kinds of faults, which may be more difficult to reveal
and remove than classic faults. This is the case, for example, with distributed software,
which can present problems of deadlock or race conditions that are not present in se-
quential programs. Likewise, object-oriented development introduces new problems
due to the use of polymorphism, dynamic binding, and private state that are absent or
less pronounced in procedural software.

The variety of problems and the richness of approaches make it challenging to
choose and schedule the right blend of techniques to reach the required level of quality
within cost constraints. There are no fixed recipes for attacking the problem of verify-
ing a software product. Even the most experienced specialists do not have pre-cooked
solutions, but need to design a solution that suits the problem, the requirements, and
the development environment.

Basic Questions 5

1.2 Basic Questions

To start understanding how to attack the problem of verifying software, let us consider
a hypothetical case. The Board of Governors of Chipmunk Computers, an (imaginary)
computer manufacturer, decides to add new online shopping functions to the company
Web presence to allow customers to purchase individually configured products. Let us
assume the role of quality manager. To begin, we need to answer a few basic questions:

• When do verification and validation start? When are they complete?

• What particular techniques should be applied during development of the product
to obtain acceptable quality at an acceptable cost?

• How can we assess the readiness of a product for release?

• How can we control the quality of successive releases?

• How can the development process itself be improved over the course of the cur-
rent and future projects to improve products and make verification more cost-
effective?

1.3 When Do Verification and Validation Start and End?

Although some primitive software development processes concentrate testing and anal-
ysis at the end of the development cycle, and the job title “tester” in some organizations
still refers to a person who merely executes test cases on a complete product, today it
is widely understood that execution of tests is a small part of the verification and vali-
dation process required to assess and maintain the quality of a software product.

Verification and validation start as soon as we decide to build a software product,
or even before. In the case of Chipmunk Computers, when the Board of Governors
asks the information technology (IT) manager for a feasibility study, the IT manager
considers not only functionality and development costs, but also the required qualities
and their impact on the overall cost.

The Chipmunk software quality manager participates with other key designers in
the feasibility study, focusing in particular on risk analysis and the measures needed to
assess and control quality at each stage of development. The team assesses the impact
of new features and new quality requirements on the full system and considers the con-
tribution of quality control activities to development cost and schedule. For example,
migrating sales functions into the Chipmunk Web site will increase the criticality of
system availability and introduce new security issues. A feasibility study that ignored
quality could lead to major unanticipated costs and delays and very possibly to project
failure.

The feasibility study necessarily involves some tentative architectural design, for
example, a division of software structure corresponding to a division of responsibility
between a human interface design team and groups responsible for core business soft-
ware (“business logic”) and supporting infrastructure, and a rough build plan breaking

6 Software Test and Analysis in a Nutshell

the project into a series of incremental deliveries. Opportunities and obstacles for cost-
effective verification are important considerations in factoring the development effort
into subsystems and phases, and in defining major interfaces.

Overall architectural design divides work and separates qualities that can be verified
independently in the different subsystems, thus easing the work of the testing team as
well as other developers. For example, the Chipmunk design team divides the system
into a presentation layer, back-end logic, and infrastructure. Development of the three
subsystems is assigned to three different teams with specialized experience, each of
which must meet appropriate quality constraints. The quality manager steers the early
design toward a separation of concerns that will facilitate test and analysis.

In the Chipmunk Web presence, a clean interface between the presentation layer
and back end logic allows a corresponding division between usability testing (which
is the responsibility of the human interface group, rather than the quality group) and
verification of correct functioning. A clear separation of infrastructure from business
logic serves a similar purpose. Responsibility for a small kernel of critical functions is
allocated to specialists on the infrastructure team, leaving effectively checkable rules
for consistent use of those functions throughout other parts of the system.

Taking into account quality constraints during early breakdown into subsystems
allows for a better allocation of quality requirements and facilitates both detailed design
and testing. However, many properties cannot be guaranteed by one subsystem alone.
The initial breakdown of properties given in the feasibility study will be detailed during
later design and may result in “cross-quality requirements” among subsystems. For
example, to guarantee a given security level, the infrastructure design team may require
verification of the absence of some specific security holes (e.g., buffer overflow) in
other parts of the system.

The initial build plan also includes some preliminary decisions about test and anal-
ysis techniques to be used in development. For example, the preliminary prototype
of Chipmunk on-line sales functionality will not undergo complete acceptance testing,
but will be used to validate the requirements analysis and some design decisions. Ac-
ceptance testing of the first release will be based primarily on feedback from selected
retail stores, but will also include complete checks to verify absence of common secu-
rity holes. The second release will include full acceptance test and reliability measures.

If the feasibility study leads to a project commitment, verification and validation
(V&V) activities will commence with other development activities, and like develop-
ment itself will continue long past initial delivery of a product. Chipmunk’s new Web-
based functions will be delivered in a series of phases, with requirements reassessed
and modified after each phase, so it is essential that the V&V plan be cost-effective over
a series of deliveries whose outcome cannot be fully known in advance. Even when
the project is “complete,” the software will continue to evolve and adapt to new con-
ditions, such as a new version of the underlying database, or new requirements, such
as the opening of a European sales division of Chipmunk. V&V activities continue
through each small or large change to the system.

What Techniques Should Be Applied? 7

Why Combine Techniques?
No single test or analysis technique can serve all purposes. The primary reasons for

combining techniques, rather than choosing a single “best” technique, are

• Effectiveness for different classes of faults. For example, race conditions are
very difficult to find with conventional testing, but they can be detected with
static analysis techniques.

• Applicability at different points in a project. For example, we can apply inspec-
tion techniques very early to requirements and design representations that are not
suited to more automated analyses.

• Differences in purpose. For example, systematic (nonrandom) testing is aimed
at maximizing fault detection, but cannot be used to measure reliability; for that,
statistical testing is required.

• Trade-offs in cost and assurance. For example, one may use a relatively expen-
sive technique to establish a few key properties of core components (e.g., a se-
curity kernel) when those techniques would be too expensive for use throughout
a project.

1.4 What Techniques Should Be Applied?

The feasibility study is the first step of a complex development process that should lead
to delivery of a satisfactory product through design, verification, and validation activ-
ities. Verification activities steer the process toward the construction of a product that
satisfies the requirements by checking the quality of intermediate artifacts as well as
the ultimate product. Validation activities check the correspondence of the intermediate
artifacts and the final product to users’ expectations.

The choice of the set of test and analysis techniques depends on quality, cost,
scheduling, and resource constraints in development of a particular product. For the
business logic subsystem, the quality team plans to use a preliminary prototype for
validating requirements specifications. They plan to use automatic tools for simple
structural checks of the architecture and design specifications. They will train staff for
design and code inspections, which will be based on company checklists that identify
deviations from design rules for ensuring maintainability, scalability, and correspon-
dence between design and code.

Requirements specifications at Chipmunk are written in a structured, semiformal
format. They are not amenable to automated checking, but like any other software ar-
tifact they can be inspected by developers. The Chipmunk organization has compiled
a checklist based on their rules for structuring specification documents and on expe-
rience with problems in requirements from past systems. For example, the checklist
for inspecting requirements specifications at Chipmunk asks inspectors to confirm that
each specified property is stated in a form that can be effectively tested.

The analysis and test plan requires inspection of requirements specifications, design

8 Software Test and Analysis in a Nutshell

specifications, source code, and test documentation. Most source code and test docu-
mentation inspections are a simple matter of soliciting an off-line review by one other
developer, though a handful of critical components are designated for an additional
review and comparison of notes. Component interface specifications are inspected by
small groups that include a representative of the “provider” and “consumer” sides of
the interface, again mostly off-line with exchange of notes through a discussion service.
A larger group and more involved process, including a moderated inspection meeting
with three or four participants, is used for inspection of a requirements specification.

Chipmunk developers produce functional unit tests with each development work
assignment, as well as test oracles and any other scaffolding required for test execution.
Test scaffolding is additional code needed to execute a unit or a subsystem in isolation.
Test oracles check the results of executing the code and signal discrepancies between
actual and expected outputs.

Test cases at Chipmunk are based primarily on interface specifications, but the ex-
tent to which unit tests exercise the control structure of programs is also measured. If
less than 90% of all statements are executed by the functional tests, this is taken as an
indication that either the interface specifications are incomplete (if the missing cover-
age corresponds to visible differences in behavior), or else additional implementation
complexity hides behind the interface. Either way, additional test cases are devised
based on a more complete description of unit behavior.

Integration and system tests are generated by the quality team, working from a
catalog of patterns and corresponding tests. The behavior of some subsystems or com-
ponents is modeled as finite state machines, so the quality team creates test suites that
exercise program paths corresponding to each state transition in the models.

Scaffolding and oracles for integration testing are part of the overall system archi-
tecture. Oracles for individual components and units are designed and implemented
by programmers using tools for annotating code with conditions and invariants. The
Chipmunk developers use a home-grown test organizer tool to bind scaffolding to code,
schedule test runs, track faults, and organize and update regression test suites.

The quality plan includes analysis and test activities for several properties distinct
from functional correctness, including performance, usability, and security. Although
these are an integral part of the quality plan, their design and execution are delegated
in part or whole to experts who may reside elsewhere in the organization. For example,
Chipmunk maintains a small team of human factors experts in its software division.
The human factors team will produce look-and-feel guidelines for the Web purchasing
system, which together with a larger body of Chipmunk interface design rules can be
checked during inspection and test. The human factors team also produces and executes
a usability testing plan.

Parts of the portfolio of verification and validation activities selected by Chipmunk
are illustrated in Figure 1.1. The quality of the final product and the costs of the quality
assurance activities depend on the choice of the techniques to accomplish each activity.
Most important is to construct a coherent plan that can be monitored. In addition to
monitoring schedule progress against the plan, Chipmunk records faults found during
each activity, using this as an indicator of potential trouble spots. For example, if the
number of faults found in a component during design inspections is high, additional
dynamic test time will be planned for that component.

What Techniques Should Be Applied? 9

Requirements
Elicitation

Requirements
Specification

Architectural
Design

Detailed
Design

Unit
Coding

Integration
& Delivery Maintenance

P
la

n
an

d
M

on
ito

r
V

er
ify

S

pe
ci

fic
at

io
ns

E
xe

cu
te

 T
es

t C
as

es
 a

nd
 V

al
id

at
e

S
of

tw
ar

e
G

en
er

at
e

Te
st

C

as
es

Im
pr

ov
e

P
ro

ce
ss

Analyze faults and improve the process

Collect data on faults

Execute regression test

Execute acceptance test

Execute system test

Execute integration test

Generate structural test

Analyze coverage

Execute unit test

Design oracles

Design scaffolding

Update regression test

Generate regression test

Generate unit test

Generate integration test

Generate system test

Code inspection

Inspect detailed design

Inspect architectural design

Analyze architectural design

Validate specifications

Monitor the A&T process

Plan unit & integration test

Plan system test

Plan acceptance test

Identify qualites

Figure 1.1: Main analysis and testing activities through the software life cycle.

10 Software Test and Analysis in a Nutshell

1.5 How Can We Assess the Readiness of a Product?

Analysis and testing activities during development are intended primarily to reveal
faults so that they can be removed. Identifying and removing as many faults as possible
is a useful objective during development, but finding all faults is nearly impossible and
seldom a cost-effective objective for a nontrivial software product. Analysis and test
cannot go on forever: Products must be delivered when they meet an adequate level
of functionality and quality. We must have some way to specify the required level of
dependability and to determine when that level has been attained.

Different measures of dependability are appropriate in different contexts. Avail-D dependability

D availability ability measures the quality of service in terms of running versus down time; mean
time between failures (MTBF) measures the quality of the service in terms of timeD MTBF

between failures, that is, length of time intervals during which the service is available.
Reliability is sometimes used synonymously with availability or MTBF, but usuallyD reliability

indicates the fraction of all attempted operations (program runs, or interactions, or
sessions) that complete successfully.

Both availability and reliability are important for the Chipmunk Web presence. The
availability goal is set (somewhat arbitrarily) at an average of no more than 30 minutes
of down time per month. Since 30 one-minute failures in the course of a day would be
much worse than a single 30-minute failure, MTBF is separately specified as at least
one week. In addition, a reliability goal of less than 1 failure per 1000 user sessions
is set, with a further stipulation that certain critical failures (e.g., loss of data) must be
vanishingly rare.

Having set these goals, how can Chipmunk determine when it has met them? Mon-
itoring systematic debug testing can provide a hint, but no more. A product with only
a single fault can have a reliability of zero if that fault results in a failure on every exe-
cution, and there is no reason to suppose that a test suite designed for finding faults is
at all representative of actual usage and failure rate.

From the experience of many previous projects, Chipmunk has empirically deter-
mined that in its organization, it is fruitful to begin measuring reliability when debug
testing is yielding less than one fault (“bug”) per day of tester time. For some appli-
cation domains, Chipmunk has gathered a large amount of historical usage data from
which to define an operational profile, and these profiles can be used to generate large,
statistically valid sets of randomly generated tests. If the sample thus tested is a valid
model of actual executions, then projecting actual reliability from the failure rate of
test cases is elementary. Unfortunately, in many cases such an operational profile is not
available.

Chipmunk has an idea of how the Web sales facility will be used, but it cannot
construct and validate a model with sufficient detail to obtain reliability estimates from
a randomly generated test suite. They decide, therefore, to use the second major ap-
proach to verifying reliability, using a sample of real users. This is commonly known as
alpha testing if the tests are performed by users in a controlled environment, observedD alpha test

by the development organization. If the tests consist of real users in their own envi-
ronment, performing actual tasks without interference or close monitoring, it is known
as beta testing. The Chipmunk team plans a very small alpha test, followed by a longerD beta test

beta test period in which the software is made available only in retail outlets. To ac-

How Can We Ensure the Quality of Successive Releases? 11

celerate reliability measurement after subsequent revisions of the system, the beta test
version will be extensively instrumented, capturing many properties of a usage profile.

1.6 How Can We Ensure the Quality of Successive
Releases?

Software test and analysis does not stop at the first release. Software products of-
ten operate for many years, frequently much beyond their planned life cycle, and un-
dergo many changes. They adapt to environment changes—for example, introduction
of new device drivers, evolution of the operating system, and changes in the underly-
ing database. They also evolve to serve new and changing user requirements. Ongoing
quality tasks include test and analysis of new and modified code, reexecution of system
tests, and extensive record-keeping.

Chipmunk maintains a database for tracking problems. This database serves a dual
purpose of tracking and prioritizing actual, known program faults and their resolution
and managing communication with users who file problem reports. Even at initial
release, the database usually includes some known faults, because market pressure sel-
dom allows correcting all known faults before product release. Moreover, “bugs” in the
database are not always and uniquely associated with real program faults. Some prob-
lems reported by users are misunderstandings and feature requests, and many distinct
reports turn out to be duplicates which are eventually consolidated.

Chipmunk designates relatively major revisions, involving several developers, as
“point releases,” and smaller revisions as “patch level” releases. The full quality pro- point release

patch level
release

cess is repeated in miniature for each point release, including everything from inspec-
tion of revised requirements to design and execution of new unit, integration, system,
and acceptance test cases. A major point release is likely even to repeat a period of
beta testing.

Patch level revisions are often urgent for at least some customers. For example,
a patch level revision is likely when a fault prevents some customers from using the
software or when a new security vulnerability is discovered. Test and analysis for patch
level revisions is abbreviated, and automation is particularly important for obtaining
a reasonable level of assurance with very fast turnaround. Chipmunk maintains an
extensive suite of regression tests. The Chipmunk development environment supports regression test

recording, classification, and automatic re-execution of test cases. Each point release
must undergo complete regression testing before release, but patch level revisions may
be released with a subset of regression tests that run unattended overnight.

When fixing one fault, it is all too easy to introduce a new fault or re-introduce
faults that have occurred in the past. Chipmunk developers add new regression test
cases as faults are discovered and repaired.

1.7 How Can the Development Process Be Improved?

As part of an overall process improvement program, Chipmunk has implemented a
quality improvement program. In the past, the quality team encountered the same

12 Software Test and Analysis in a Nutshell

defects in project after project. The quality improvement program tracks and classifies
faults to identify the human errors that cause them and weaknesses in test and analysis
that allow them to remain undetected.

Chipmunk quality improvement group members are drawn from developers and
quality specialists on several project teams. The group produces recommendations that
may include modifications to development and test practices, tool and technology sup-
port, and management practices. The explicit attention to buffer overflow in networked
applications at Chipmunk is the result of failure analysis in previous projects.

Fault analysis and process improvement comprise four main phases: Defining the
data to be collected and implementing procedures for collecting it; analyzing collected
data to identify important fault classes; analyzing selected fault classes to identify
weaknesses in development and quality measures; and adjusting the quality and de-
velopment process.

Collection of data is particularly crucial and often difficult. Earlier attempts by
Chipmunk quality teams to impose fault data collection practices were a dismal fail-
ure. The quality team possessed neither carrots nor sticks to motivate developers under
schedule pressure. An overall process improvement program undertaken by the Chip-
munk software division provided an opportunity to better integrate fault data collection
with other practices, including the normal procedure for assigning, tracking, and re-
viewing development work assignments. Quality process improvement is distinct from
the goal of improving an individual product, but initial data collection is integrated in
the same bug tracking system, which in turn is integrated with the revision and config-
uration control system used by Chipmunk developers.

The quality improvement group defines the information that must be collected for
faultiness data to be useful as well as the format and organization of that data. Par-
ticipation of developers in designing the data collection process is essential to balance
the cost of data collection and analysis with its utility, and to build acceptance among
developers.

Data from several projects over time are aggregated and classified to identify classes
of faults that are important because they occur frequently, because they cause particu-
larly severe failures, or because they are costly to repair. These faults are analyzed to
understand how they are initially introduced and why they escape detection. The im-
provement steps recommended by the quality improvement group may include specific
analysis or testing steps for earlier fault detection, but they may also include design
rules and modifications to development and even to management practices. An im-
portant part of each recommended practice is an accompanying recommendation for
measuring the impact of the change.

Summary

The quality process has three distinct goals: improving a software product (by pre-
venting, detecting, and removing faults), assessing the quality of the software product
(with respect to explicit quality goals), and improving the long-term quality and cost-
effectiveness of the quality process itself. Each goal requires weaving quality assurance

How Can the Development Process Be Improved? 13

and improvement activities into an overall development process, from product incep-
tion through deployment, evolution, and retirement.

Each organization must devise, evaluate, and refine an approach suited to that or-
ganization and application domain. A well-designed approach will invariably combine
several test and analysis techniques, spread across stages of development. An array
of fault detection techniques are distributed across development stages so that faults
are removed as soon as possible. The overall cost and cost-effectiveness of techniques
depends to a large degree on the extent to which they can be incrementally re-applied
as the product evolves.

Further Reading

This book deals primarily with software analysis and testing to improve and assess
the dependability of software. That is not because qualities other than dependability
are unimportant, but rather because they require their own specialized approaches and
techniques. We offer here a few starting points for considering some other important
properties that interact with dependability. Norman’s The Design of Everyday Things
[Nor90] is a classic introduction to design for usability, with basic principles that apply
to both hardware and software artifacts. A primary reference on usability for interactive
computer software, and particularly for Web applications, is Nielsen’s Designing Web
Usability [Nie00]. Bishop’s text Computer Security: Art and Science [Bis02] is a good
introduction to security issues. The most comprehensive introduction to software safety
is Leveson’s Safeware [Lev95].

Exercises

1.1. Philip has studied “just-in-time” industrial production methods and is convinced
that they should be applied to every aspect of software development. He argues
that test case design should be performed just before the first opportunity to
execute the newly designed test cases, never earlier. What positive and negative
consequences do you foresee for this just-in-time test case design approach?

1.2. A newly hired project manager at Chipmunk questions why the quality manager
is involved in the feasibility study phase of the project, rather than joining the
team only when the project has been approved, as at the new manager’s previous
company. What argument(s) might the quality manager offer in favor of her
involvement in the feasibility study?

1.3. Chipmunk procedures call for peer review not only of each source code module,
but also of test cases and scaffolding for testing that module. Anita argues that
inspecting test suites is a waste of time; any time spent on inspecting a test case
designed to detect a particular class of fault could more effectively be spent in-
specting the source code to detect that class of fault. Anita’s project manager,

14 Software Test and Analysis in a Nutshell

on the other hand, argues that inspecting test cases and scaffolding can be cost-
effective when considered over the whole lifetime of a software product. What
argument(s) might Anita’s manager offer in favor of this conclusion?

1.4. The spiral model of software development prescribes sequencing incremental
prototyping phases for risk reduction, beginning with the most important project
risks. Architectural design for testability involves, in addition to defining testable
interface specifications for each major module, establishing a build order that
supports thorough testing after each stage of construction. How might spiral
development and design for test be complementary or in conflict?

1.5. You manage an online service that sells downloadable video recordings of classic
movies. A typical download takes one hour, and an interrupted download must be
restarted from the beginning. The number of customers engaged in a download
at any given time ranges from about 10 to about 150 during peak hours. On
average, your system goes down (dropping all connections) about two times per
week, for an average of three minutes each time. If you can double availability or
double mean time between failures, but not both, which will you choose? Why?

1.6. Having no a priori operational profile for reliability measurement, Chipmunk
will depend on alpha and beta testing to assess the readiness of its online pur-
chase functionality for public release. Beta testing will be carried out in retail
outlets, by retail store personnel, and then by customers with retail store per-
sonnel looking on. How might this beta testing still be misleading with respect
to reliability of the software as it will be used at home and work by actual cus-
tomers? What might Chipmunk do to ameliorate potential problems from this
reliability misestimation?

1.7. The junior test designers of Chipmunk Computers are annoyed by the proce-
dures for storing test cases together with scaffolding, test results, and related
documentation. They blame the extra effort needed to produce and store such
data for delays in test design and execution. They argue for reducing the data to
store to the minimum required for reexecuting test cases, eliminating details of
test documentation, and limiting test results to the information needed for gener-
ating oracles. What argument(s) might the quality manager use to convince the
junior test designers of the usefulness of storing all this information?

Chapter 2

A Framework for Test and

Analysis

The purpose of software test and analysis is either to assess software qualities or else
to make it possible to improve the software by finding defects. Of the many kinds of
software qualities, those addressed by the analysis and test techniques discussed in this
book are the dependability properties of the software product.

There are no perfect test or analysis techniques, nor a single “best” technique for
all circumstances. Rather, techniques exist in a complex space of trade-offs, and of-
ten have complementary strengths and weaknesses. This chapter describes the nature
of those trade-offs and some of their consequences, and thereby a conceptual frame-
work for understanding and better integrating material from later chapters on individual
techniques.

It is unfortunate that much of the available literature treats testing and analysis
as independent or even as exclusive choices, removing the opportunity to exploit their
complementarities. Armed with a basic understanding of the trade-offs and of strengths
and weaknesses of individual techniques, one can select from and combine an array of
choices to improve the cost-effectiveness of verification.

2.1 Validation and Verification

While software products and processes may be judged on several properties ranging
from time-to-market to performance to usability, the software test and analysis tech-
niques we consider are focused more narrowly on improving or assessing dependabil-
ity.

Assessing the degree to which a software system actually fulfills its requirements,
in the sense of meeting the user’s real needs, is called validation. Fulfilling require- D validation

ments is not the same as conforming to a requirements specification. A specification is
a statement about a particular proposed solution to a problem, and that proposed solu-
tion may or may not achieve its goals. Moreover, specifications are written by people,
and therefore contain mistakes. A system that meets its actual goals is useful, while a

15

16 A Framework for Test and Analysis

Actual Needs and
Constraints

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
ev

ie
w

Analysis /
Review

Analysis /
Review

User review of external behavior as it is
determined or becomes visible

Unit/
Components

Subsystem
Design/Specs Subsystem

System
Specifications

System
Integration

Delivered
Package

Validation

Verification

Le
ge

nd

Unit/Component
Specs

Figure 2.1: Validation activities check work products against actual user requirements,
while verification activities check consistency of work products.

system that is consistent with its specification is dependable.1D dependable

“Verification” is checking the consistency of an implementation with a specifica-D verification

tion. Here, “specification” and “implementation” are roles, not particular artifacts. For
example, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation”; checking whether the detailed design
is consistent with the overall design would then be verification of the detailed design.
Later, the same detailed design could play the role of “specification” with respect to

1A good requirements document, or set of documents, should include both a requirements analysis and
a requirements specification, and should clearly distinguish between the two. The requirements analysis
describes the problem. The specification describes a proposed solution. This is not a book about requirements
engineering, but we note in passing that confounding requirements analysis with requirements specification
will inevitably have negative impacts on both validation and verification.

Validation and Verification 17

source code, which would be verified against the design. In every case, though, ver-
ification is a check of consistency between two descriptions, in contrast to validation
which compares a description (whether a requirements specification, a design, or a
running system) against actual needs.

Figure 2.1 sketches the relation of verification and validation activities with respect
to artifacts produced in a software development project. The figure should not be inter-
preted as prescribing a sequential process, since the goal of a consistent set of artifacts
and user satisfaction are the same whether the software artifacts (specifications, design,
code, etc.) are developed sequentially, iteratively, or in parallel. Verification activities
check consistency between descriptions (design and specifications) at adjacent levels
of detail, and between these descriptions and code.2 Validation activities attempt to
gauge whether the system actually satisfies its intended purpose.

Validation activities refer primarily to the overall system specification and the final
code. With respect to overall system specification, validation checks for discrepancies
between actual needs and the system specification as laid out by the analysts, to en-
sure that the specification is an adequate guide to building a product that will fulfill its
goals. With respect to final code, validation aims at checking discrepancies between
actual need and the final product, to reveal possible failures of the development process
and to make sure the product meets end-user expectations. Validation checks between
the specification and final product are primarily checks of decisions that were left open
in the specification (e.g., details of the user interface or product features). Chapter 4
provides a more thorough discussion of validation and verification activities in partic-
ular software process models.

We have omitted one important set of verification checks from Figure 2.1 to avoid
clutter. In addition to checks that compare two or more artifacts, verification includes
checks for self-consistency and well-formedness. For example, while we cannot judge
that a program is “correct” except in reference to a specification of what it should do,
we can certainly determine that some programs are “incorrect” because they are ill-
formed. We may likewise determine that a specification itself is ill-formed because it
is inconsistent (requires two properties that cannot both be true) or ambiguous (can be
interpreted to require some property or not), or because it does not satisfy some other
well-formedness constraint that we impose, such as adherence to a standard imposed
by a regulatory agency.

Validation against actual requirements necessarily involves human judgment and
the potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci-
fication should be sufficiently precise and unambiguous that there can be no disagree-
ment about whether a particular system behavior is acceptable. While the term testing
is often used informally both for gauging usefulness and verifying the product, the
activities differ in both goals and approach. Our focus here is primarily on dependabil-
ity, and thus primarily on verification rather than validation, although techniques for
validation and the relation between the two is discussed further in Chapter 22.

Dependability properties include correctness, reliability, robustness, and safety.
Correctness is absolute consistency with a specification, always and in all circum-
stances. Correctness with respect to nontrivial specifications is almost never achieved.

2This part of the diagram is a variant of the well-known “V model” of verification and validation.

18 A Framework for Test and Analysis

Reliability is a statistical approximation to correctness, expressed as the likelihood
of correct behavior in expected use. Robustness, unlike correctness and reliability,
weighs properties as more and less critical, and distinguishes which properties should
be maintained even under exceptional circumstances in which full functionality can-
not be maintained. Safety is a kind of robustness in which the critical property to be
maintained is avoidance of particular hazardous behaviors. Dependability properties
are discussed further in Chapter 4.

2.2 Degrees of Freedom

Given a precise specification and a program, it seems that one ought to be able to
arrive at some logically sound argument or proof that a program satisfies the specified
properties. After all, if a civil engineer can perform mathematical calculations to show
that a bridge will carry a specified amount of traffic, shouldn’t we be able to similarly
apply mathematical logic to verification of programs?

For some properties and some very simple programs, it is in fact possible to obtain
a logical correctness argument, albeit at high cost. In a few domains, logical correct-
ness arguments may even be cost-effective for a few isolated, critical components (e.g.,
a safety interlock in a medical device). In general, though, one cannot produce a com-
plete logical “proof” for the full specification of practical programs in full detail. This
is not just a sign that technology for verification is immature. It is, rather, a conse-
quence of one of the most fundamental properties of computation.

Even before programmable digital computers were in wide use, computing pioneer
Alan Turing proved that some problems cannot be solved by any computer program.undecidability

The universality of computers — their ability to carry out any programmed algorithm,
including simulations of other computers — induces logical paradoxes regarding pro-
grams (or algorithms) for analyzing other programs. In particular, logical contradic-
tions ensue from assuming that there is some program P that can, for some arbitrary
program Q and input I, determine whether Q eventually halts. To avoid those log-halting problem

ical contradictions, we must conclude that no such program for solving the “halting
problem” can possibly exist.

Countless university students have encountered the halting problem in a course
on the theory of computing, and most of those who have managed to grasp it at all
have viewed it as a purely theoretical result that, whether fascinating or just weird, is
irrelevant to practical matters of programming. They have been wrong. Almost every
interesting property regarding the behavior of computer programs can be shown to
“embed” the halting problem, that is, the existence of an infallible algorithmic check
for the property of interest would imply the existence of a program that solves the
halting problem, which we know to be impossible.

In theory, undecidability of a property S merely implies that for each verification
technique for checking S, there is at least one “pathological” program for which that
technique cannot obtain a correct answer in finite time. It does not imply that verifica-
tion will always fail or even that it will usually fail, only that it will fail in at least one
case. In practice, failure is not only possible but common, and we are forced to accept
a significant degree of inaccuracy.

Degrees of Freedom 19

Typical
testing
technique

Perfect verification of
arbitrary properties by

logical proof or
exhaustive testing

(infinite effort)

Theorem proving:
Unbounded effort to

verify general properties

Model Checking:
Decidable but possibly
intractable checking of

simple temporal properties

Data flow
analysis

Precise analysis of
simple syntactic

properties

Simplified
properties

Pessimistic
inaccuracy

Optimistic
inaccuracy

Figure 2.2: Verification trade-off dimensions

20 A Framework for Test and Analysis

Program testing is a verification technique and is as vulnerable to undecidability
as other techniques. Exhaustive testing, that is, executing and checking every possible
behavior of a program, would be a “proof by cases,” which is a perfectly legitimate way
to construct a logical proof. How long would this take? If we ignore implementation
details such as the size of the memory holding a program and its data, the answer is
“forever.” That is, for most programs, exhaustive testing cannot be completed in any
finite amount of time.

Suppose we do make use of the fact that programs are executed on real machines
with finite representations of memory values. Consider the following trivial Java class:

1 class Trivial{
2 static int sum(int a, int b) { return a + b; }
3 }

The Java language definition states that the representation of an int is 32 binary
digits, and thus there are only 232 ⇥ 232 = 264 ⇡ 1021 different inputs on which the
method Trivial.sum() need be tested to obtain a proof of its correctness. At one nanosec-
ond (10�9 seconds) per test case, this will take approximately 1012 seconds, or about
30,000 years.

A technique for verifying a property can be inaccurate in one of two directions (Fig-
ure 2.2). It may be pessimistic, meaning that it is not guaranteed to accept a programD pessimistic

even if the program does possess the property being analyzed, or it can be optimisticD optimistic

if it may accept some programs that do not possess the property (i.e., it may not detect
all violations). Testing is the classic optimistic technique, because no finite number
of tests can guarantee correctness. Many automated program analysis techniques for
properties of program behaviors3 are pessimistic with respect to the properties they are
designed to verify. Some analysis techniques may give a third possible answer, “don’t
know.” We can consider these techniques to be either optimistic or pessimistic depend-
ing on how we interpret the “don’t know” result. Perfection is unobtainable, but one
can choose techniques that err in only a particular direction.

A software verification technique that errs only in the pessimistic direction is called
a conservative analysis. It might seem that a conservative analysis would always be
preferable to one that could accept a faulty program. However, a conservative analysis
will often produce a very large number of spurious error reports, in addition to a few
accurate reports. A human may, with some effort, distinguish real faults from a few
spurious reports, but cannot cope effectively with a long list of purported faults of
which most are false alarms. Often only a careful choice of complementary optimistic
and pessimistic techniques can help in mutually reducing the different problems of the
techniques and produce acceptable results.

In addition to pessimistic and optimistic inaccuracy, a third dimension of compro-
mise is possible: substituting a property that is more easily checked, or constraining
the class of programs that can be checked. Suppose we want to verify a property S,
but we are not willing to accept the optimistic inaccuracy of testing for S, and the only

3Why do we bother to say “properties of program behaviors” rather than “program properties?” Because
simple syntactic properties of program text, such as declaring variables before they are used or indenting
properly, can be decided efficiently and precisely.

Degrees of Freedom 21

A Note on Terminology
Many different terms related to pessimistic and optimistic inaccuracy appear in the

literature on program analysis. We have chosen these particular terms because it is
fairly easy to remember which is which. Other terms a reader is likely to encounter
include:

Safe: A safe analysis has no optimistic inaccuracy; that is, it accepts only correct
programs. In other kinds of program analysis, safety is related to the goal of
the analysis. For example, a safe analysis related to a program optimization is
one that allows that optimization only when the result of the optimization will be
correct.

Sound: Soundness is a term to describe evaluation of formulas. An analysis of a
program P with respect to a formula F is sound if the analysis returns True only
when the program actually does satisfy the formula. If satisfaction of a formula
F is taken as an indication of correctness, then a sound analysis is the same as a
safe or conservative analysis.

If the sense of F is reversed (i.e., if the truth of F indicates a fault rather than cor-
rectness) then a sound analysis is not necessarily conservative. In that case it is
allowed optimistic inaccuracy but must not have pessimistic inaccuracy. (Note,
however, that use of the term sound has not always been consistent in the soft-
ware engineering literature. Some writers use the term unsound as we use the
term optimistic.)

Complete: Completeness, like soundness, is a term to describe evaluation of formu-
las. An analysis of a program P with respect to a formula F is complete if the
analysis always returns True when the program actually does satisfy the formula.
If satisfaction of a formula F is taken as an indication of correctness, then a com-
plete analysis is one that admits only optimistic inaccuracy. An analysis that is
sound but incomplete is a conservative analysis.

22 A Framework for Test and Analysis

available static analysis techniques for S result in such huge numbers of spurious error
messages that they are worthless. Suppose we know some property S0 that is a suffi-
cient, but not necessary, condition for S (i.e., the validity of S0 implies S, but not the
contrary). Maybe S0 is so much simpler than S that it can be analyzed with little or
no pessimistic inaccuracy. If we check S0 rather than S, then we may be able to pro-
vide precise error messages that describe a real violation of S0 rather than a potential
violation of S.

Many examples of substituting simple, checkable properties for actual properties
of interest can be found in the design of modern programming languages. Consider,
for example, the property that each variable should be initialized with a value before its
value is used in an expression. In the C language, a compiler cannot provide a precise
static check for this property, because of the possibility of code like the following:

1 int i, sum;
2 int first=1;
3 for (i=0; i<10; ++i) {
4 if (first) {
5 sum=0; first=0;
6 }
7 sum += i;
8 }

It is impossible in general to determine whether each control flow path can be
executed, and while a human will quickly recognize that the variable sum is initialized
on the first iteration of the loop, a compiler or other static analysis tool will typically
not be able to rule out an execution in which the initialization is skipped on the first
iteration. Java neatly solves this problem by making code like this illegal; that is, the
rule is that a variable must be initialized on all program control paths, whether or not
those paths can ever be executed.

Software developers are seldom at liberty to design new restrictions into the pro-
gramming languages and compilers they use, but the same principle can be applied
through external tools, not only for programs but also for other software artifacts. Con-
sider, for example, the following condition that we might wish to impose on require-
ments documents:

(1) Each significant domain term shall appear with a definition in the glossary of
the document.

This property is nearly impossible to check automatically, since determining whether
a particular word or phrase is a “significant domain term” is a matter of human judg-
ment. Moreover, human inspection of the requirements document to check this require-
ment will be extremely tedious and error-prone. What can we do? One approach is to
separate the decision that requires human judgment (identifying words and phrases as
“significant”) from the tedious check for presence in the glossary.

(1a) Each significant domain term shall be set off in the requirements document
by the use of a standard style term. The default visual representation of the

Varieties of Software 23

term style is a single underline in printed documents and purple text in on-line
displays.

(1b) Each word or phrase in the term style shall appear with a definition in the
glossary of the document.

Property (1a) still requires human judgment, but it is now in a form that is much
more amenable to inspection. Property (1b) can be easily automated in a way that
will be completely precise (except that the task of determining whether definitions
appearing in the glossary are clear and correct must also be left to humans).

As a second example, consider a Web-based service in which user sessions need not
directly interact, but they do read and modify a shared collection of data on the server.
In this case a critical property is maintaining integrity of the shared data. Testing for
this property is notoriously difficult, because a “race condition” (interference between
writing data in one process and reading or writing related data in another process) may
cause an observable failure only very rarely.

Fortunately, there is a rich body of applicable research results on concurrency con-
trol that can be exploited for this application. It would be foolish to rely primarily on
direct testing for the desired integrity properties. Instead, one would choose a (well-
known, formally verified) concurrency control protocol, such as the two-phase locking
protocol, and rely on some combination of static analysis and program testing to check
conformance to that protocol. Imposing a particular concurrency control protocol sub-
stitutes a much simpler, sufficient property (two-phase locking) for the complex prop-
erty of interest (serializability), at some cost in generality; that is, there are programs
that violate two-phase locking and yet, by design or dumb luck, satisfy serializability
of data access.

It is a common practice to further impose a global order on lock accesses, which
again simplifies testing and analysis. Testing would identify execution sequences in
which data is accessed without proper locks, or in which locks are obtained and re-
linquished in an order that does not respect the two-phase protocol or the global lock
order, even if data integrity is not violated on that particular execution, because the
locking protocol failure indicates the potential for a dangerous race condition in some
other execution that might occur only rarely or under extreme load.

With the adoption of coding conventions that make locking and unlocking actions
easy to recognize, it may be possible to rely primarily on flow analysis to determine
conformance with the locking protocol, with the role of dynamic testing reduced to
a “back-up” to raise confidence in the soundness of the static analysis. Note that the
critical decision to impose a particular locking protocol is not a post-hoc decision that
can be made in a testing “phase” at the end of development. Rather, the plan for
verification activities with a suitable balance of cost and assurance is part of system
design.

2.3 Varieties of Software

The software testing and analysis techniques presented in the main parts of this book
were developed primarily for procedural and object-oriented software. While these

24 A Framework for Test and Analysis

“generic” techniques are at least partly applicable to most varieties of software, partic-
ular application domains (e.g., real-time and safety-critical software) and construction
methods (e.g., concurrency and physical distribution, graphical user interfaces) call for
particular properties to be verified, or the relative importance of different properties,
as well as imposing constraints on applicable techniques. Typically a software system
does not fall neatly into one category but rather has a number of relevant characteristics
that must be considered when planning verification.

As an example, consider a physically distributed (networked) system for scheduling
a group of individuals. The possibility of concurrent activity introduces considerations
that would not be present in a single-threaded system, such as preserving the integrity
of data. The concurrency is likely to introduce nondeterminism, or else introduce an
obligation to show that the system is deterministic, either of which will almost certainly
need to be addressed through some formal analysis. The physical distribution may
make it impossible to determine a global system state at one instant, ruling out some
simplistic approaches to system test and, most likely, suggesting an approach in which
dynamic testing of design conformance of individual processes is combined with static
analysis of their interactions. If in addition the individuals to be coordinated are fire
trucks, then the criticality of assuring prompt response will likely lead one to choose a
design that is amenable to strong analysis of worst-case behavior, whereas an average-
case analysis might be perfectly acceptable if the individuals are house painters.

As a second example, consider the software controlling a “soft” dashboard display
in an automobile. The display may include ground speed, engine speed (rpm), oil pres-
sure, fuel level, and so on, in addition to a map and navigation information from a
global positioning system receiver. Clearly usability issues are paramount, and may
even impinge on safety (e.g., if critical information can be hidden beneath or among
less critical information). A disciplined approach will not only place a greater empha-
sis on validation of usability throughout development, but to the extent possible will
also attempt to codify usability guidelines in a form that permits verification. For ex-
ample, if the usability group determines that the fuel gauge should always be visible
when the fuel level is below a quarter of a tank, then this becomes a specified property
that is subject to verification. The graphical interface also poses a challenge in effec-
tively checking output. This must be addressed partly in the architectural design of the
system, which can make automated testing feasible or not depending on the interfaces
between high-level operations (e.g., opening or closing a window, checking visibility
of a window) and low-level graphical operations and representations.

Summary

Verification activities are comparisons to determine the consistency of two or more
software artifacts, or self-consistency, or consistency with an externally imposed cri-
terion. Verification is distinct from validation, which is consideration of whether soft-
ware fulfills its actual purpose. Software development always includes some validation
and some verification, although different development approaches may differ greatly
in their relative emphasis.

Precise answers to verification questions are sometimes difficult or impossible to

Varieties of Software 25

obtain, in theory as well as in practice. Verification is therefore an art of compromise,
accepting some degree of optimistic inaccuracy (as in testing) or pessimistic inaccu-
racy (as in many static analysis techniques) or choosing to check a property that is only
an approximation of what we really wish to check. Often the best approach will not be
exclusive reliance on one technique, but careful choice of a portfolio of test and anal-
ysis techniques selected to obtain acceptable results at acceptable cost, and addressing
particular challenges posed by characteristics of the application domain or software.

Further Reading

The “V” model of verification and validation (of which Figure 2.1 is a variant) appears
in many software engineering textbooks, and in some form can be traced at least as
far back as Myers’ classic book [Mye79]. The distinction between validation and ver-
ification as given here follow’s Boehm [Boe81], who has most memorably described
validation as “building the right system” and verification as “building the system right.”

The limits of testing have likewise been summarized in a famous aphorism, by
Dijkstra [Dij72] who pronounced that “Testing can show the presence of faults, but
not their absence.” This phrase has sometimes been interpreted as implying that one
should always prefer formal verification to testing, but the reader will have noted that
we do not draw that conclusion. Howden’s 1976 paper [How76] is among the earliest
treatments of the implications of computability theory for program testing.

A variant of the diagram in Figure 2.2 and a discussion of pessimistic and optimistic
inaccuracy were presented by Young and Taylor [YT89]. A more formal characteriza-
tion of conservative abstractions in static analysis, called abstract interpretation, was
introduced by Cousot and Cousot in a seminal paper that is, unfortunately, nearly un-
readable [CC77]. We enthusiastically recommend Jones’s lucid introduction to abstract
interpretation [JN95], which is suitable for readers who have a firm general background
in computer science and logic but no special preparation in programming semantics.

There are few general treatments of trade-offs and combinations of software test-
ing and static analysis, although there are several specific examples, such as work in
communication protocol conformance testing [vBDZ89, FvBK+91]. The two-phase
locking protocol mentioned in Section 2.2 is described in several texts on databases;
Bernstein et al. [BHG87] is particularly thorough.

Exercises

2.1. The Chipmunk marketing division is worried about the start-up time of the new
version of the RodentOS operating system (an (imaginary) operating system of
Chipmunk). The marketing division representative suggests a software require-
ment stating that the start-up time shall not be annoying to users.

Explain why this simple requirement is not verifiable and try to reformulate the
requirement to make it verifiable.

26 A Framework for Test and Analysis

2.2. Consider a simple specification language SL that describes systems diagrammat-
ically in terms of functions, which represent data transformations and correspond
to nodes of the diagram, and flows, which represent data flows and correspond
to arcs of the diagram.4 Diagrams can be hierarchically refined by associating a
function F (a node of the diagram) with an SL specification that details function
F . Flows are labeled to indicate the type of data.
Suggest some checks for self-consistency for SL.

2.3. A calendar program should provide timely reminders; for example, it should
remind the user of an upcoming event early enough for the user to take action,
but not too early. Unfortunately, “early enough” and “too early” are qualities
that can only be validated with actual users. How might you derive verifiable
dependability properties from the timeliness requirement?

2.4. It is sometimes important in multi-threaded applications to ensure that a se-
quence of accesses by one thread to an aggregate data structure (e.g., some kind
of table) appears to other threads as an atomic transaction. When the shared
data structure is maintained by a database system, the database system typically
uses concurrency control protocols to ensure the atomicity of the transactions it
manages. No such automatic support is typically available for data structures
maintained by a program in main memory.
Among the options available to programmers to ensure serializability (the illu-
sion of atomic access) are the following:

• The programmer could maintain very coarse-grain locking, preventing any
interleaving of accesses to the shared data structure, even when such inter-
leaving would be harmless. (For example, each transaction could be encap-
sulated in an single synchronized Java method.) This approach can cause a
great deal of unnecessary blocking between threads, hurting performance,
but it is almost trivial to verify either automatically or manually.

• Automated static analysis techniques can sometimes verify serializability
with finer-grain locking, even when some methods do not use locks at all.
This approach can still reject some sets of methods that would ensure seri-
alizability.

• The programmer could be required to use a particular concurrency con-
trol protocol in his or her code, and we could build a static analysis tool
that checks for conformance with that protocol. For example, adherence
to the common two-phase-locking protocol, with a few restrictions, can be
checked in this way.

• We might augment the data accesses to build a serializability graph struc-
ture representing the “happens before” relation among transactions in test-
ing. It can be shown that the transactions executed in serializable manner
if and only if the serializability graph is acyclic.

4Readers expert in Structured Analysis may have noticed that SL resembles a simple Structured Analysis
specification

Varieties of Software 27

Compare the relative positions of these approaches on the three axes of verifi-
cation techniques: pessimistic inaccuracy, optimistic inaccuracy, and simplified
properties.

2.5. When updating a program (e.g., for removing a fault, changing or adding a func-
tionality), programmers may introduce new faults or expose previously hidden
faults. To be sure that the updated version maintains the functionality provided
by the previous version, it is common practice to reexecute the test cases de-
signed for the former versions of the program. Reexecuting test cases designed
for previous versions is called regression testing.

When testing large complex programs, the number of regression test cases may
be large. If updated software must be expedited (e.g., to repair a security vul-
nerability before it is exploited), test designers may need to select a subset of
regression test cases to be reexecuted.

Subsets of test cases can be selected according to any of several different criteria.
An interesting property of some regression test selection criteria is that they do
not to exclude any test case that could possibly reveal a fault.

How would you classify such a property according to the sidebar of page 21?

28 A Framework for Test and Analysis

Chapter 3

Basic Principles

Mature engineering disciplines are characterized by basic principles. Principles pro-
vide a rationale for defining, selecting, and applying techniques and methods. They are
valid beyond a single technique and over a time span in which techniques come and
go, and can help engineers study, define, evaluate, and apply new techniques.

Analysis and testing (A&T) has been common practice since the earliest software
projects. A&T activities were for a long time based on common sense and individual
skills. It has emerged as a distinct discipline only in the last three decades.

This chapter advocates six principles that characterize various approaches and tech-
niques for analysis and testing: sensitivity, redundancy, restriction, partition, visibility,
and feedback. Some of these principles, such as partition, visibility, and feedback, are
quite general in engineering. Others, notably sensitivity, redundancy, and restriction,
are specific to A&T and contribute to characterizing A&T as a discipline.

3.1 Sensitivity

Human developers make errors, producing faults in software. Faults may lead to fail-
ures, but faulty software may not fail on every execution. The sensitivity principle
states that it is better to fail every time than sometimes.

Consider the cost of detecting and repairing a software fault. If it is detected im-
mediately (e.g., by an on-the-fly syntactic check in a design editor), then the cost of
correction is very small, and in fact the line between fault prevention and fault de-
tection is blurred. If a fault is detected in inspection or unit testing, the cost is still
relatively small. If a fault survives initial detection efforts at the unit level, but triggers
a failure detected in integration testing, the cost of correction is much greater. If the
first failure is detected in system or acceptance testing, the cost is very high indeed,
and the most costly faults are those detected by customers in the field.

A fault that triggers a failure on every execution is unlikely to survive past unit
testing. A characteristic of faults that escape detection until much later is that they
trigger failures only rarely, or in combination with circumstances that seem unrelated
or are difficult to control. For example, a fault that results in a failure only for some
unusual configurations of customer equipment may be difficult and expensive to detect.

29

30 Basic Principles

A fault that results in a failure randomly but very rarely — for example, a race condition
that only occasionally causes data corruption — may likewise escape detection until the
software is in use by thousands of customers, and even then be difficult to diagnose and
correct.

The small C program in Figure 3.1 has three faulty calls to string copy procedures.
The call to strcpy, strncpy, and stringCopy all pass a source string “Muddled,” which
is too long to fit in the array middle. The vulnerability of strcpy is well known, and is
the culprit in the by-now-standard buffer overflow attacks on many network services.
Unfortunately, the fault may or may not cause an observable failure depending on the
arrangement of memory (in this case, it depends on what appears in the position that
would be middle[7], which will be overwritten with a newline character). The standard
recommendation is to use strncpy in place of strcpy. While strncpy avoids overwriting
other memory, it truncates the input without warning, and sometimes without properly
null-terminating the output. The replacement function stringCopy, on the other hand,
uses an assertion to ensure that, if the target string is too long, the program always fails
in an observable manner.

The sensitivity principle says that we should try to make these faults easier to detect
by making them cause failure more often. It can be applied in three main ways: at the
design level, changing the way in which the program fails; at the analysis and testing
level, choosing a technique more reliable with respect to the property of interest; and at
the environment level, choosing a technique that reduces the impact of external factors
on the results.

Replacing strcpy and strncpy with stringCopy in the program of Figure 3.1 is a
simple example of application of the sensitivity principle in design. Run-time array
bounds checking in many programming languages (including Java but not C or C++)
is an example of the sensitivity principle applied at the language level. A variety of
tools and replacements for the standard memory management library are available to
enhance sensitivity to memory allocation and reference faults in C and C++.

The fail-fast property of Java iterators is another application of the sensitivity prin-
ciple. A Java iterator provides a way of accessing each item in a collection data struc-
ture. Without the fail-fast property, modifying the collection while iterating over it
could lead to unexpected and arbitrary results, and failure might occur rarely and be
hard to detect and diagnose. A fail-fast iterator has the property that an immediate and
observable failure (throwing ConcurrentModificationException) occurs when the illegal
modification occurs. Although fail-fast behavior is not guaranteed if the update occurs
in a different thread, a fail-fast iterator is far more sensitive than an iterator without the
fail-fast property.

So far, we have discussed the sensitivity principle applied to design and code: al-
ways privilege design and code solutions that lead to consistent behavior, that is, such
that fault occurrence does not depend on uncontrolled execution conditions that may
mask faults, thus resulting in random failures. The sensitivity principle can also be
applied to test and analysis techniques. In this case, we privilege techniques that cause
faults to consistently manifest in failures.

Deadlock and race conditions in concurrent systems may depend on the relative
speed of execution of the different threads or processes, and a race condition may lead

Sensitivity 31

1 /**
2 * Worse than broken: Are you feeling lucky?
3 */
4

5 #include <assert.h>
6

7 char before[] = "=Before=";
8 char middle[] = "Middle";
9 char after[] = "=After=";

10

11 void show() {
12 printf("%s\n%s\n%s\n", before, middle, after);
13 }
14

15 void stringCopy(char *target, const char *source, int howBig);
16

17 int main(int argc, char *argv) {
18 show();
19 strcpy(middle, "Muddled"); /* Fault, but may not fail */
20 show();
21 strncpy(middle, "Muddled", sizeof(middle)); /* Fault, may not fail */
22 show();
23 stringCopy(middle, "Muddled",sizeof(middle)); /* Guaranteed to fail */
24 show();
25 }
26

27 /* Sensitive version of strncpy; can be counted on to fail
28 * in an observable way EVERY time the source is too large
29 * for the target, unlike the standard strncpy or strcpy.
30 */
31 void stringCopy(char *target, const char *source, int howBig) {
32 assert(strlen(source) < howBig);
33 strcpy(target, source);
34 }

Figure 3.1: Standard C functions strcpy and strncpy may or may not fail when the
source string is too long. The procedure stringCopy is sensitive: It is guaranteed to fail
in an observable way if the source string is too long.

32 Basic Principles

to an observable failure only under rare conditions. Testing a concurrent system on
a single configuration may fail to reveal deadlocks and race conditions. Repeating
the tests with different configurations and system loads may help, but it is difficult to
predict or control the circumstances under which failure occurs. We may observe that
testing is not sensitive enough for revealing deadlocks and race conditions, and we
may substitute other techniques that are more sensitive and less dependent on factors
outside the developers’ and testers’ control. Model checking and reachability analysis
techniques are limited in the scope of the faults they can detect, but they are very
sensitive to this particular class of faults, having the advantage that they attain complete
independence from any particular execution environment by systematically exploring
all possible interleavings of processes.

Test adequacy criteria identify partitions of the input domain of the unit under test
that must be sampled by test suites. For example, the statement coverage criterion
requires each statement to be exercised at least once, that is, it groups inputs according
to the statements they execute. Reliable criteria require that inputs belonging to the
same class produce the same test results: They all fail or they all succeed. When this
happens, we can infer the correctness of a program with respect to the a whole class of
inputs from a single execution. Unfortunately, general reliable criteria do not exist1.

Code inspection can reveal many subtle faults. However, inspection teams may
produce completely different results depending on the cohesion of the team, the disci-
pline of the inspectors, and their knowledge of the application domain and the design
technique. The use of detailed checklists and a disciplined review process may reduce
the influence of external factors, such as teamwork attitude, inspectors’ discipline, and
domain knowledge, thus increasing the predictability of the results of inspection. In
this case, sensitivity is applied to reduce the influence of external factors.

Similarly, skilled test designers can derive excellent test suites, but the quality of
the test suites depends on the mood of the designers. Systematic testing criteria may
not do better than skilled test designers, but they can reduce the influence of external
factors, such as the tester’s mood.

3.2 Redundancy

Redundancy is the opposite of independence. If one part of a software artifact (pro-
gram, design document, etc.) constrains the content of another, then they are not en-
tirely independent, and it is possible to check them for consistency.

The concept and definition of redundancy are taken from information theory. In
communication, redundancy can be introduced into messages in the form of error-
detecting and error-correcting codes to guard against transmission errors. In software
test and analysis, we wish to detect faults that could lead to differences between in-
tended behavior and actual behavior, so the most valuable form of redundancy is in the
form of an explicit, redundant statement of intent.

Where redundancy can be introduced or exploited with an automatic, algorithmic
check for consistency, it has the advantage of being much cheaper and more thorough

1Existence of a general, reliable test coverage criterion would allow us to prove the equivalence of pro-
grams. Readers interested in this topic will find more information in Chapter 9.

Restriction 33

than dynamic testing or manual inspection. Static type checking is a classic application
of this principle: The type declaration is a statement of intent that is at least partly
redundant with the use of a variable in the source code. The type declaration constrains
other parts of the code, so a consistency check (type check) can be applied.

An important trend in the evolution of programming languages is introduction of
additional ways to declare intent and automatically check for consistency. For example,
Java enforces rules about explicitly declaring each exception that can be thrown by a
method.

Checkable redundancy is not limited to program source code, nor is it something
that can be introduced only by programming language designers. For example, soft-
ware design tools typically provide ways to check consistency between different design
views or artifacts. One can also intentionally introduce redundancy in other software
artifacts, even those that are not entirely formal. For example, one might introduce
rules quite analogous to type declarations for semistructured requirements specifica-
tion documents, and thereby enable automatic checks for consistency and some limited
kinds of completeness.

When redundancy is already present — as between a software specification docu-
ment and source code — then the remaining challenge is to make sure the information
is represented in a way that facilitates cheap, thorough consistency checks. Checks that
can be implemented by automatic tools are usually preferable, but there is value even
in organizing information to make inconsistency easier to spot in manual inspection.

Of course, one cannot always obtain cheap, thorough checks of source code and
other documents. Sometimes redundancy is exploited instead with run-time checks.
Defensive programming, explicit run-time checks for conditions that should always
be true if the program is executing correctly, is another application of redundancy in
programming.

3.3 Restriction

When there are no acceptably cheap and effective ways to check a property, sometimes
one can change the problem by checking a different, more restrictive property or by
limiting the check to a smaller, more restrictive class of programs.

Consider the problem of ensuring that each variable is initialized before it is used,
on every execution. Simple as the property is, it is not possible for a compiler or
analysis tool to precisely determine whether it holds. See the program in Figure 3.2 for
an illustration. Can the variable k ever be uninitialized the first time i is added to it?
If someCondition(0) always returns true, then k will be initialized to zero on the first
time through the loop, before k is incremented, so perhaps there is no potential for a
run-time error — but method someCondition could be arbitrarily complex and might
even depend on some condition in the environment. Java’s solution to this problem is to
enforce a stricter, simpler condition: A program is not permitted to have any syntactic
control paths on which an uninitialized reference could occur, regardless of whether
those paths could actually be executed. The program in Figure 3.2 has such a path, so
the Java compiler rejects it.

Java’s rule for initialization before use is a program source code restriction that

34 Basic Principles

1 /** A trivial method with a potentially uninitialized variable.
2 * Maybe someCondition(0) is always true, and therefore k is
3 * always initialized before use ... but it’s impossible, in
4 * general, to know for sure. Java rejects the method.
5 */
6 static void questionable() {
7 int k;
8 for (int i=0; i < 10; ++i) {
9 if (someCondition(i)) {

10 k = 0;
11 } else {
12 k += i;
13 }
14 }
15 System.out.println(k);
16 }
17 }

Figure 3.2: Can the variable k ever be uninitialized the first time i is added to it? The
property is undecidable, so Java enforces a simpler, stricter property.

enables precise, efficient checking of a simple but important property by the compiler.
The choice of programming language(s) for a project may entail a number of such
restrictions that impact test and analysis. Additional restrictions may be imposed in
the form of programming standards (e.g., restricting the use of type casts or pointer
arithmetic in C), or by tools in a development environment. Other forms of restriction
can apply to architectural and detailed design.

Consider, for example, the problem of ensuring that a transaction consisting of a
sequence of accesses to a complex data structure by one process appears to the outside
world as if it had occurred atomically, rather than interleaved with transactions of other
processes. This property is called serializability: The end result of a set of such trans-
actions should appear as if they were applied in some serial order, even if they didn’t.

One way to ensure serializability is to make the transactions really serial (e.g., by
putting the whole sequence of operations in each transaction within a Java synchro-
nized block), but that approach may incur unacceptable performance penalties. One
would like to allow interleaving of transactions that don’t interfere, while still ensuring
the appearance of atomic access, and one can devise a variety of locking and versioning
techniques to achieve this. Unfortunately, checking directly to determine whether the
serializability property has been achieved is very expensive at run-time, and precisely
checking whether it holds on all possible executions is impossible. Fortunately, the
problem becomes much easier if we impose a particular locking or versioning scheme
on the program at design time. Then the problem becomes one of proving, on the one
hand, that the particular concurrency control protocol has the desired property, and then

Partition 35

checking that the program obeys the protocol. Database researchers have completed
the first step, and some of the published and well-known concurrency control protocols
are trivial to check at run-time and simple enough that (with some modest additional
restrictions) they can be checked even by source code analysis.

From the above examples it should be clear that the restriction principle is useful
mainly during design and specification; it can seldom be applied post hoc on a com-
plete software product. In other words, restriction is mainly a principle to be applied in
design for test. Often it can be applied not only to solve a single problem (like detecting
potential access of uninitialized variables, or nonserializable execution of transactions)
but also at a more general, architectural level to simplify a whole set of analysis prob-
lems.

Stateless component interfaces are an example of restriction applied at the archi-
tectural level. An interface is stateless if each service request (method call, remote
procedure call, message send and reply) is independent of all others; that is, the service
does not “remember” anything about previous requests. Stateless interfaces are far eas-
ier to test because the correctness of each service request and response can be checked
independently, rather than considering all their possible sequences or interleavings. A
famous example of simplifying component interfaces by making them stateless is the
Hypertext Transport Protocol (HTTP) 1.0 of the World-Wide-Web, which made Web
servers not only much simpler and more robust but also much easier to test.

3.4 Partition

Partition, often also known as “divide and conquer,” is a general engineering principle.
Dividing a complex problem into subproblems to be attacked and solved independently
is probably the most common human problem-solving strategy. Software engineering
in particular applies this principle in many different forms and at almost all develop-
ment levels, from early requirements specifications to code and maintenance. Analysis
and testing are no exception: the partition principle is widely used and exploited.

Partitioning can be applied both at process and technique levels. At the process
level, we divide complex activities into sets of simple activities that can be attacked
independently. For example, testing is usually divided into unit, integration, subsystem,
and system testing. In this way, we can focus on different sources of faults at different
steps, and at each step, we can take advantage of the results of the former steps. For
instance, we can use units that have been tested as stubs for integration testing. Some
static analysis techniques likewise follow the modular structure of the software system
to divide an analysis problem into smaller steps.

Many static analysis techniques first construct a model of a system and then analyze
the model. In this way they divide the overall analysis into two subtasks: first simplify
the system to make the proof of the desired properties feasible and then prove the
property with respect to the simplified model. The question “Does this program have
the desired property?” is decomposed into two questions, “Does this model have the
desired property?” and “Is this an accurate model of the program?”

Since it is not possible to execute the program with every conceivable input, sys-
tematic testing strategies must identify a finite number of classes of test cases to exe-

36 Basic Principles

cute. Whether the classes are derived from specifications (functional testing) or from
program structure (structural testing), the process of enumerating test obligations pro-
ceeds by dividing the sources of information into significant elements (clauses or spe-
cial values identifiable in specifications, statements or paths in programs), and creating
test cases that cover each such element or certain combinations of elements.

3.5 Visibility

Visibility means the ability to measure progress or status against goals. In software
engineering, one encounters the visibility principle mainly in the form of process vis-
ibility, and then mainly in the form of schedule visibility: ability to judge the state of
development against a project schedule. Quality process visibility also applies to mea-
suring achieved (or predicted) quality against quality goals. The principle of visibility
involves setting goals that can be assessed as well as devising methods to assess their
realization.

Visibility is closely related to observability, the ability to extract useful information
from a software artifact. The architectural design and build plan of a system determines
what will be observable at each stage of development, which in turn largely determines
the visibility of progress against goals at that stage.

A variety of simple techniques can be used to improve observability. For exam-
ple, it is no accident that important Internet protocols like HTTP and SMTP (Simple
Mail Transport Protocol, used by Internet mail servers) are based on the exchange of
simple textual commands. The choice of simple, human-readable text rather than a
more compact binary encoding has a small cost in performance and a large payoff in
observability, including making construction of test drivers and oracles much simpler.
Use of human-readable and human-editable files is likewise advisable wherever the
performance cost is acceptable.

A variant of observability through direct use of simple text encodings is provid-
ing readers and writers to convert between other data structures and simple, human-
readable and editable text. For example, when designing classes that implement a
complex data structure, designing and implementing also a translation from a simple
text format to the internal structure, and vice versa, will often pay back handsomely in
both ad hoc and systematic testing. For similar reasons it is often useful to design and
implement an equality check for objects, even when it is not necessary to the function-
ality of the software product.

3.6 Feedback

Feedback is another classic engineering principle that applies to analysis and testing.
Feedback applies both to the process itself (process improvement) and to individual
techniques (e.g., using test histories to prioritize regression testing).

Systematic inspection and walkthrough derive part of their success from feedback.
Participants in inspection are guided by checklists, and checklists are revised and re-
fined based on experience. New checklist items may be derived from root cause anal-

Feedback 37

ysis, analyzing previously observed failures to identify the initial errors that lead to
them.

Summary

Principles constitute the core of a discipline. They form the basis of methods, tech-
niques, methodologies and tools. They permit understanding, comparing, evaluating
and extending different approaches, and they constitute the lasting basis of knowledge
of a discipline.

The six principles described in this chapter are

• Sensitivity: better to fail every time than sometimes,

• Redundancy: making intentions explicit,

• Restriction: making the problem easier,

• Partition: divide and conquer,

• Visibility: making information accessible, and

• Feedback: applying lessons from experience in process and techniques.

Principles are identified heuristically by searching for a common denominator of
techniques that apply to various problems and exploit different methods, sometimes
borrowing ideas from other disciplines, sometimes observing recurrent phenomena.
Potential principles are validated by finding existing and new techniques that exploit
the underlying ideas. Generality and usefulness of principles become evident only
with time. The initial list of principles proposed in this chapter is certainly incom-
plete. Readers are invited to validate the proposed principles and identify additional
principles.

Further Reading

Analysis and testing is a relatively new discipline. To our knowledge, the principles
underlying analysis and testing have not been discussed in the literature previously.
Some of the principles advocated in this chapter are shared with other software engi-
neering disciplines and are discussed in many books. A good introduction to software
engineering principles is the third chapter of Ghezzi, Jazayeri, and Mandrioli’s book
on software engineering [GJM02].

38 Basic Principles

Exercises

3.1. Indicate which principles guided the following choices:

1. Use an externally readable format also for internal files, when possible.

2. Collect and analyze data about faults revealed and removed from the code.

3. Separate test and debugging activities; that is, separate the design and ex-
ecution of test cases to reveal failures (test) from the localization and re-
moval of the corresponding faults (debugging).

4. Distinguish test case design from execution.

5. Produce complete fault reports.

6. Use information from test case design to improve requirements and design
specifications.

7. Provide interfaces for fully inspecting the internal state of a class.

3.2. A simple mechanism for augmenting fault tolerance consists of replicating com-
putation and comparing the obtained results. Can we consider redundancy for
fault tolerance an application of the redundancy principle?

3.3. A system safety specification describes prohibited behaviors (what the system
must never do). Explain how specified safety properties can be viewed as an
implementation of the redundancy principle.

3.4. Process visibility can be increased by extracting information about the progress
of the process. Indicate some information that can be easily produced to increase
process visibility.

Chapter 4

Test and Analysis Activities

Within a Software Process

Dependability and other qualities of software are not ingredients that can be added in
a final step before delivery. Rather, software quality results from a whole set of in-
terdependent activities, among which analysis and testing are necessary but far from
sufficient. And while one often hears of a testing “phase” in software development,
as if testing were a distinct activity that occurred at a particular point in development,
one should not confuse this flurry of test execution with the whole process of soft-
ware test and analysis any more than one would confuse program compilation with
programming.

Testing and analysis activities occur throughout the development and evolution of
software systems, from early in requirements engineering through delivery and subse-
quent evolution. Quality depends on every part of the software process, not only on
software analysis and testing; no amount of testing and analysis can make up for poor
quality arising from other activities. On the other hand, an essential feature of soft-
ware processes that produce high-quality products is that software test and analysis is
thoroughly integrated and not an afterthought.

4.1 The Quality Process

One can identify particular activities and responsibilities in a software development
process that are focused primarily on ensuring adequate dependability of the software
product, much as one can identify other activities and responsibilities concerned pri-
marily with project schedule or with product usability. It is convenient to group these
quality assurance activities under the rubric “quality process,” although we must also
recognize that quality is intertwined with and inseparable from other facets of the over-
all process. Like other parts of an overall software process, the quality process provides
a framework for selecting and arranging activities aimed at a particular goal, while
also considering interactions and trade-offs with other important goals. All software
development activities reflect constraints and trade-offs, and quality activities are no

39

40 Test and Analysis Activities Within a Software Process

exception. For example, high dependability is usually in tension with time to market,
and in most cases it is better to achieve a reasonably high degree of dependability on
a tight schedule than to achieve ultra-high dependability on a much longer schedule,
although the opposite is true in some domains (e.g., certain medical devices).

The quality process should be structured for completeness, timeliness, and cost-
effectiveness. Completeness means that appropriate activities are planned to detect
each important class of faults. What the important classes of faults are depends on the
application domain, the organization, and the technologies employed (e.g., memory
leaks are an important class of faults for C++ programs, but seldom for Java programs).
Timeliness means that faults are detected at a point of high leverage, which in practice
almost always means that they are detected as early as possible. Cost-effectiveness
means that, subject to the constraints of completeness and timeliness, one chooses
activities depending on their cost as well as their effectiveness. Cost must be considered
over the whole development cycle and product life, so the dominant factor is likely to
be the cost of repeating an activity through many change cycles.

Activities that one would typically consider as being in the domain of quality as-
surance or quality improvement, that is, activities whose primary goal is to prevent or
detect faults, intertwine and interact with other activities carried out by members of a
software development team. For example, architectural design of a software system
has an enormous impact on the test and analysis approaches that will be feasible and
on their cost. A precise, relatively formal architectural model may form the basis for
several static analyses of the model itself and of the consistency between the model
and its implementation, while another architecture may be inadequate for static analy-
sis and, if insufficiently precise, of little help even in forming an integration test plan.

The intertwining and mutual impact of quality activities on other development ac-
tivities suggests that it would be foolish to put off quality activities until late in a project.
The effects run not only from other development activities to quality activities but also
in the other direction. For example, early test planning during requirements engineer-
ing typically clarifies and improves requirements specifications. Developing a test plan
during architectural design may suggest structures and interfaces that not only facilitate
testing earlier in development, but also make key interfaces simpler and more precisely
defined.

There is also another reason for carrying out quality activities at the earliest oppor-
tunity and for preferring earlier to later activities when either could serve to detect the
same fault: The single best predictor of the cost of repairing a software defect is the
time between its introduction and its detection. A defect introduced in coding is far
cheaper to repair during unit test than later during integration or system test, and most
expensive if it is detected by a user of the fielded system. A defect introduced during
requirements engineering (e.g., an ambiguous requirement) is relatively cheap to repair
at that stage, but may be hugely expensive if it is only uncovered by a dispute about the
results of a system acceptance test.

Planning and Monitoring 41

4.2 Planning and Monitoring

Process visibility is a key factor in software process in general, and software quality
processes in particular. A process is visible to the extent that one can answer the ques- process visibility

tion, “How does our progress compare to our plan?” Typically, schedule visibility is a
main emphasis in process design (“Are we on schedule? How far ahead or behind?”),
but in software quality process an equal emphasis is needed on progress against quality
goals. If one cannot gain confidence in the quality of the software system long before
it reaches final testing, the quality process has not achieved adequate visibility.

A well-designed quality process balances several activities across the whole devel-
opment process, selecting and arranging them to be as cost-effective as possible, and to
improve early visibility. Visibility is particularly challenging and is one reason (among
several) that quality activities are usually placed as early in a software process as possi-
ble. For example, one designs test cases at the earliest opportunity (not “just in time”)
and uses both automated and manual static analysis techniques on software artifacts
that are produced before actual code.

Early visibility also motivates the use of “proxy” measures, that is, use of quantifi-
able attributes that are not identical to the properties that one really wishes to measure,
but that have the advantage of being measurable earlier in development. For example,
we know that the number of faults in design or code is not a true measure of reliability.
Nonetheless, one may count faults uncovered in design inspections as an early indica-
tor of potential quality problems, because the alternative of waiting to receive a more
accurate estimate from reliability testing is unacceptable.

Quality goals can be achieved only through careful planning of activities that are
matched to the identified objectives. Planning is integral to the quality process and
is elaborated and revised through the whole project. It encompasses both an overall
strategy for test and analysis, and more detailed test plans.

The overall analysis and test strategy identifies company- or project-wide standards
that must be satisfied: procedures for obtaining quality certificates required for certain
classes of products, techniques and tools that must be used, and documents that must
be produced. Some companies develop and certify procedures following international A&T strategy

standards such as ISO 9000 or SEI Capability Maturity Model, which require detailed
documentation and management of analysis and test activities and well-defined phases,
documents, techniques, and tools. A&T strategies are described in detail in Chapter 20,
and a sample strategy document for the Chipmunk Web presence is given in Chapter 24.

The initial build plan for Chipmunk Web-based purchasing functionality includes
an analysis and test plan. A complete analysis and test plan is a comprehensive descrip-
tion of the quality process and includes several items: It indicates objectives and scope A&T plan

of the test and analysis activities; it describes documents and other items that must be
available for performing the planned activities, integrating the quality process with the
software development process; it identifies items to be tested, thus allowing for simple
completeness checks and detailed planning; it distinguishes features to be tested from
those not to be tested; it selects analysis and test activities that are considered essential
for success of the quality process; and finally it identifies the staff involved in analysis
and testing and their respective and mutual responsibilities.

42 Test and Analysis Activities Within a Software Process

The final analysis and test plan includes additional information that illustrates con-
straints, pass and fail criteria, schedule, deliverables, hardware and software require-
ments, risks, and contingencies. Constraints indicate deadlines and limits that may be
derived from the hardware and software implementation of the system under analysis
and the tools available for analysis and testing. Pass and fail criteria indicate when a test
or analysis activity succeeds or fails, thus supporting monitoring of the quality process.
The schedule describes the individual tasks to be performed and provides a feasible
schedule. Deliverables specify which documents, scaffolding and test cases must be
produced, and indicate the quality expected from such deliverables. Hardware, envi-
ronment and tool requirements indicate the support needed to perform the scheduled
activities. The risk and contingency plan identifies the possible problems and provides
recovery actions to avoid major failures. The test plan is discussed in more detail in
Chapter 20.

4.3 Quality Goals

Process visibility requires a clear specification of goals, and in the case of quality pro-
cess visibility this includes a careful distinction among dependability qualities. A team
that does not have a clear idea of the difference between reliability and robustness,
for example, or of their relative importance in a project, has little chance of attaining
either. Goals must be further refined into a clear and reasonable set of objectives. If
an organization claims that nothing less than 100% reliability will suffice, it is not set-
ting an ambitious objective. Rather, it is setting no objective at all, and choosing not to
make reasoned trade-off decisions or to balance limited resources across various activi-
ties. It is, in effect, abrogating responsibility for effective quality planning, and leaving
trade-offs among cost, schedule, and quality to an arbitrary, ad hoc decision based on
deadline and budget alone.

The relative importance of qualities and their relation to other project objectives
varies. Time-to-market may be the most important property for a mass market product,
usability may be more prominent for a Web based application, and safety may be the
overriding requirement for a life-critical system.

Product qualities are the goals of software quality engineering, and process qual-
ities are means to achieve those goals. For example, development processes with a
high degree of visibility are necessary for creation of highly dependable products. The
process goals with which software quality engineering is directly concerned are often
on the “cost” side of the ledger. For example, we might have to weigh stringent re-
liability objectives against their impact on time-to-market, or seek ways to improve
time-to-market without adversely impacting robustness.

Software product qualities can be divided into those that are directly visible to a
client and those that primarily affect the software development organization. Reliabil-internal and external

qualities ity, for example, is directly visible to the client. Maintainability primarily affects the
development organization, although its consequences may indirectly affect the client
as well, for example, by increasing the time between product releases. Properties that
are directly visible to users of a software product, such as dependability, latency, us-

Dependability Properties 43

ability, and throughput, are called external properties. Properties that are not directly
visible to end users, such as maintainability, reusability, and traceability, are called in-
ternal properties, even when their impact on the software development and evolution
processes may indirectly affect users.

The external properties of software can ultimately be divided into dependability
(does the software do what it is intended to do?) and usefulness. There is no precise dependability

way to distinguish these, but a rule of thumb is that when software is not dependable,
we say it has a fault, or a defect, or (most often) a bug, resulting in an undesirable
behavior or failure.

It is quite possible to build systems that are very reliable, relatively free from usefulness

hazards, and completely useless. They may be unbearably slow, or have terrible user
interfaces and unfathomable documentation, or they may be missing several crucial
features. How should these properties be considered in software quality? One answer
is that they are not part of quality at all unless they have been explicitly specified, since
quality is the presence of specified properties. However, a company whose products are
rejected by its customers will take little comfort in knowing that, by some definitions,
they were high-quality products.

We can do better by considering quality as fulfillment of required and desired prop-
erties, as distinguished from specified properties. For example, even if a client does not
explicitly specify the required performance of a system, there is always some level of
performance that is required to be useful.

One of the most critical tasks in software quality analysis is making desired proper-
ties explicit, since properties that remain unspecified (even informally) are very likely
to surface unpleasantly when it is discovered that they are not met. In many cases these
implicit requirements can not only be made explicit, but also made sufficiently precise
that they can be made part of dependability or reliability. For example, while it is better
to explicitly recognize usability as a requirement than to leave it implicit, it is better yet
to augment1 usability requirements with specific interface standards, so that a deviation
from the standards is recognized as a defect.

4.4 Dependability Properties

The simplest of the dependability properties is correctness: A program or system is correctness

correct if it is consistent with its specification. By definition, a specification divides
all possible system behaviors2 into two classes, successes (or correct executions) and
failures. All of the possible behaviors of a correct system are successes.

A program cannot be mostly correct or somewhat correct or 30% correct. It is
absolutely correct on all possible behaviors, or else it is not correct. It is very easy
to achieve correctness, since every program is correct with respect to some (very bad)

1Interface standards augment, rather than replace, usability requirements because conformance to the
standards is not sufficient assurance that the requirement is met. This is the same relation that other spec-
ifications have to the user requirements they are intended to fulfill. In general, verifying conformance to
specifications does not replace validating satisfaction of requirements.

2We are simplifying matters somewhat by considering only specifications of behaviors. A specification
may also deal with other properties, such as the disk space required to install the application. A system may
thus also be “incorrect” if it violates one of these static properties.

44 Test and Analysis Activities Within a Software Process

specification. Achieving correctness with respect to a useful specification, on the other
hand, is seldom practical for nontrivial systems. Therefore, while correctness may
be a noble goal, we are often interested in assessing some more achievable level of
dependability.

Reliability is a statistical approximation to correctness, in the sense that 100% reli-reliability

ability is indistinguishable from correctness. Roughly speaking, reliability is a measure
of the likelihood of correct function for some “unit” of behavior, which could be a sin-
gle use or program execution or a period of time. Like correctness, reliability is relative
to a specification (which determines whether a unit of behavior is counted as a success
or failure). Unlike correctness, reliability is also relative to a particular usage profile.
The same program can be more or less reliable depending on how it is used.

Particular measures of reliability can be used for different units of execution and
different ways of counting success and failure. Availability is an appropriate measureavailability

when a failure has some duration in time. For example, a failure of a network router
may make it impossible to use some functions of a local area network until the ser-
vice is restored; between initial failure and restoration we say the router is “down” or
“unavailable.” The availability of the router is the time in which the system is “up”
(providing normal service) as a fraction of total time. Thus, a network router that av-
erages 1 hour of down time in each 24-hour period would have an availability of 23

24 , or
95.8%.

Mean time between failures (MTBF) is yet another measure of reliability, alsoMTBF

using time as the unit of execution. The hypothetical network switch that typically
fails once in a 24-hour period and takes about an hour to recover has a mean time
between failures of 23 hours. Note that availability does not distinguish between two
failures of 30 minutes each and one failure lasting an hour, while MTBF does.

The definitions of correctness and reliability have (at least) two major weaknesses.
First, since the success or failure of an execution is relative to a specification, they are
only as strong as the specification. Second, they make no distinction between a failure
that is a minor annoyance and a failure that results in catastrophe. These are simplify-
ing assumptions that we accept for the sake of precision, but in some circumstances —
particularly, but not only, for critical systems — it is important to consider dependabil-
ity properties that are less dependent on specification and that do distinguish among
failures depending on severity.

Software safety is an extension of the well-established field of system safety intosafety

software. Safety is concerned with preventing certain undesirable behaviors, called
hazards. It is quite explicitly not concerned with achieving any useful behavior aparthazards

from whatever functionality is needed to prevent hazards. Software safety is typically
a concern in “critical” systems such as avionics and medical systems, but the basic
principles apply to any system in which particularly undesirable behaviors can be dis-
tinguished from run-of-the-mill failure. For example, while it is annoying when a word
processor crashes, it is much more annoying if it irrecoverably corrupts document files.
The developers of a word processor might consider safety with respect to the hazard
of file corruption separately from reliability with respect to the complete functional
requirements for the word processor.

Just as correctness is meaningless without a specification of allowed behaviors,

Dependability Properties 45

safety is meaningless without a specification of hazards to be prevented, and in practice
the first step of safety analysis is always finding and classifying hazards. Typically,
hazards are associated with some system in which the software is embedded (e.g., the
medical device), rather than the software alone. The distinguishing feature of safety
is that it is concerned only with these hazards, and not with other aspects of correct
functioning.

The concept of safety is perhaps easier to grasp with familiar physical systems.
For example, lawn-mowers in the United States are equipped with an interlock device,
sometimes called a “dead-man switch.” If this switch is not actively held by the op-
erator, the engine shuts off. The dead-man switch does not contribute in any way to
cutting grass; its sole purpose is to prevent the operator from reaching into the mower
blades while the engine runs.

One is tempted to say that safety is an aspect of correctness, because a good system
specification would rule out hazards. However, safety is best considered as a quality
distinct from correctness and reliability for two reasons. First, by focusing on a few
hazards and ignoring other functionality, a separate safety specification can be much
simpler than a complete system specification, and therefore easier to verify. To put it
another way, while a good system specification should rule out hazards, we cannot be
confident that either specifications or our attempts to verify systems are good enough
to provide the degree of assurance we require for hazard avoidance. Second, even if
the safety specification were redundant with regard to the full system specification, it is
important because (by definition) we regard avoidance of hazards as more crucial than
satisfying other parts of the system specification.

Correctness and reliability are contingent upon normal operating conditions. It is
not reasonable to expect a word processing program to save changes normally when the
file does not fit in storage, or to expect a database to continue to operate normally when
the computer loses power, or to expect a Web site to provide completely satisfactory
service to all visitors when the load is 100 times greater than the maximum for which
it was designed. Software that fails under these conditions, which violate the premises
of its design, may still be “correct” in the strict sense, yet the manner in which the
software fails is important. It is acceptable that the word processor fails to write the robustness

new file that does not fit on disk, but unacceptable to also corrupt the previous version
of the file in the attempt. It is acceptable for the database system to cease to function
when the power is cut, but unacceptable for it to leave the database in a corrupt state.
And it is usually preferable for the Web system to turn away some arriving users rather
than becoming too slow for all, or crashing. Software that gracefully degrades or fails
“softly” outside its normal operating parameters is robust.

Software safety is a kind of robustness, but robustness is a more general notion that
concerns not only avoidance of hazards (e.g., data corruption) but also partial function-
ality under unusual situations. Robustness, like safety, begins with explicit consider-
ation of unusual and undesirable situations, and should include augmenting software
specifications with appropriate responses to undesirable events.

Figure 4.1 illustrates the relation among dependability properties.

Quality analysis should be part of the feasibility study. The sidebar on page 47

46 Test and Analysis Activities Within a Software Process

Reliable Robust

Reliable but not correct:
failures can occur rarely

Robust but not safe:
catastrophic failures can occur

Safe but not correct:
annoying failures can occur

Correct but not safe:
the specification is inadequate

SafeCorrect

Figure 4.1: Relation among dependability properties

shows an excerpt of the feasibility study for the Chipmunk Web presence. The pri-
mary quality requirements are stated in terms of dependability, usability, and security.
Performance, portability and interoperability are typically not primary concerns at this
stage, but they may come into play when dealing with other qualities.

4.5 Analysis

Analysis techniques that do not involve actual execution of program source code play a
prominent role in overall software quality processes. Manual inspection techniques and
automated analyses can be applied at any development stage. They are particularly well
suited at the early stages of specifications and design, where the lack of executability
of many intermediate artifacts reduces the efficacy of testing.

Inspection, in particular, can be applied to essentially any document including re-
quirements documents, architectural and more detailed design documents, test plans
and test cases, and of course program source code. Inspection may also have secondary
benefits, such as spreading good practices and instilling shared standards of quality. On
the other hand, inspection takes a considerable amount of time and requires meetings,
which can become a scheduling bottleneck. Moreover, re-inspecting a changed compo-
nent can be as expensive as the initial inspection. Despite the versatility of inspection,
therefore, it is used primarily where other techniques are either inapplicable or where
other techniques do not provide sufficient coverage of common faults.

Automated static analyses are more limited in applicability (e.g., they can be ap-
plied to some formal representations of requirements models but not to natural lan-
guage documents), but are selected when available because substituting machine cy-
cles for human effort makes them particularly cost-effective. The cost advantage of
automated static analyses is diminished by the substantial effort required to formalize
and properly structure a model for analysis, but their application can be further mo-

Analysis 47

Excerpt of Web Presence Feasibility Study

Purpose of this document
This document was prepared for the Chipmunk IT management team. It describes

the results of a feasibility study undertaken to advise Chipmunk corporate management
whether to embark on a substantial redevelopment effort to add online shopping func-
tionality to the Chipmunk Computers’ Web presence.

Goals
The primary goal of a Web presence redevelopment is to add online shopping facili-

ties. Marketing estimates an increase of 15% over current direct sales within 24 months,
and an additional 8% savings in direct sales support costs from shifting telephone price
inquiries to online price inquiries. [. . .]

Architectural Requirements
The logical architecture will be divided into three distinct subsystems: human in-

terface, business logic, and supporting infrastructure. Each major subsystem must be
structured for phased development, with initial features delivered 6 months from in-
ception, full features at 12 months, and a planned revision at 18 months from project
inception. [. . .]

Quality Requirements

Dependability: With the introduction of direct sales and customer relationship man-
agement functions, dependability of Chipmunk’s Web services becomes business-
critical. A critical core of functionality will be identified, isolated from less critical func-
tionality in design and implementation, and subjected to the highest level of scrutiny.
We estimate that this will be approximately 20% of new development and revisions, and
that the V&V costs for those portions will be approximately triple the cost of V&V for
noncritical development.

Usability: The new Web presence will be, to a much greater extent than before, the
public face of Chipmunk Computers. [. . .]

Security: Introduction of online direct ordering and billing raises a number of secu-
rity issues. Some of these can be avoided initially by contracting with one of several
service companies that provide secure credit card transaction services. Nonetheless,
order tracking, customer relationship management, returns, and a number of other func-
tions that cannot be effectively outsourced raise significant security and privacy issues.
Identifying and isolating security concerns will add a significant but manageable cost to
design validation. [. . .]

48 Test and Analysis Activities Within a Software Process

tivated by their ability to thoroughly check for particular classes of faults for which
checking with other techniques is very difficult or expensive. For example, finite state
verification techniques for concurrent systems requires construction and careful struc-
turing of a formal design model, and addresses only a particular family of faults (faulty
synchronization structure). Yet it is rapidly gaining acceptance in some application do-
mains because that family of faults is difficult to detect in manual inspection and resists
detection through dynamic testing.

Sometimes the best aspects of manual inspection and automated static analysis can
be obtained by carefully decomposing properties to be checked. For example, suppose
a desired property of requirements documents is that each special term in the appli-
cation domain appear in a glossary of terms. This property is not directly amenable
to an automated static analysis, since current tools cannot distinguish meaningful do-
main terms from other terms that have their ordinary meanings. The property can be
checked with manual inspection, but the process is tedious, expensive, and error-prone.
A hybrid approach can be applied if each domain term is marked in the text. Manually
checking that domain terms are marked is much faster and therefore less expensive than
manually looking each term up in the glossary, and marking the terms permits effective
automation of cross-checking with the glossary.

4.6 Testing

Despite the attractiveness of automated static analyses when they are applicable, and
despite the usefulness of manual inspections for a variety of documents including but
not limited to program source code, dynamic testing remains a dominant technique. A
closer look, though, shows that dynamic testing is really divided into several distinct
activities that may occur at different points in a project.

Tests are executed when the corresponding code is available, but testing activities
start earlier, as soon as the artifacts required for designing test case specifications are
available. Thus, acceptance and system test suites should be generated before integra-
tion and unit test suites, even if executed in the opposite order.

Early test design has several advantages. Tests are specified independently from
code and when the corresponding software specifications are fresh in the mind of ana-
lysts and developers, facilitating review of test design. Moreover, test cases may high-
light inconsistencies and incompleteness in the corresponding software specifications.
Early design of test cases also allows for early repair of software specifications, pre-
venting specification faults from propagating to later stages in development. Finally,
programmers may use test cases to illustrate and clarify the software specifications,
especially for errors and unexpected conditions.

No engineer would build a complex structure from parts that have not themselves
been subjected to quality control. Just as the “earlier is better” rule dictates using in-
spection to reveal flaws in requirements and design before they are propagated to pro-
gram code, the same rule dictates module testing to uncover as many program faults
as possible before they are incorporated in larger subsystems of the product. At Chip-
munk, developers are expected to perform functional and structural module testing be-
fore a work assignment is considered complete and added to the project baseline. The

Improving the Process 49

test driver and auxiliary files are part of the work product and are expected to make re-
execution of test cases, including result checking, as simple and automatic as possible,
since the same test cases will be used over and over again as the product evolves.

4.7 Improving the Process

While the assembly-line, mass production industrial model is inappropriate for soft-
ware, which is at least partly custom-built, there is almost always some commonality
among projects undertaken by an organization over time. Confronted by similar prob-
lems, developers tend to make the same kinds of errors over and over, and consequently
the same kinds of software faults are often encountered project after project. The qual-
ity process, as well as the software development process as a whole, can be improved
by gathering, analyzing, and acting on data regarding faults and failures.

The goal of quality process improvement is to find cost-effective countermeasures
for classes of faults that are expensive because they occur frequently, or because the
failures they cause are expensive, or because, once detected, they are expensive to
repair. Countermeasures may be either prevention or detection and may involve either
quality assurance activities (e.g., improved checklists for design inspections) or other
aspects of software development (e.g., improved requirements specification methods).

The first part of a process improvement feedback loop, and often the most difficult
to implement, is gathering sufficiently complete and accurate raw data about faults and
failures. A main obstacle is that data gathered in one project goes mainly to benefit
other projects in the future and may seem to have little direct benefit for the current
project, much less to the persons asked to provide the raw data. It is therefore helpful to
integrate data collection as well as possible with other, normal development activities,
such as version and configuration control, project management, and bug tracking. It
is also essential to minimize extra effort. For example, if revision logs in the revision
control database can be associated with bug tracking records, then the time between
checking out a module and checking it back in might be taken as a rough guide to cost
of repair.

Raw data on faults and failures must be aggregated into categories and prioritized.
Faults may be categorized along several dimensions, none of them perfect. Fortu-
nately, a flawless categorization is not necessary; all that is needed is some categoriza-
tion scheme that is sufficiently fine-grained and tends to aggregate faults with similar
causes and possible remedies, and that can be associated with at least rough estimates
of relative frequency and cost. A small number of categories — maybe just one or two
— are chosen for further study.

The analysis step consists of tracing several instances of an observed fault or failure
back to the human error from which it resulted, or even further to the factors that led
to that human error. The analysis also involves the reasons the fault was not detected
and eliminated earlier (e.g., how it slipped through various inspections and levels of
testing). This process is known as “root cause analysis,” but the ultimate aim is for root cause

analysisthe most cost-effective countermeasure, which is sometimes but not always the ulti-
mate root cause. For example, the persistence of security vulnerabilities through buffer
overflow errors in network applications may be attributed at least partly to widespread

50 Test and Analysis Activities Within a Software Process

use of programming languages with unconstrained pointers and without array bounds
checking, which may in turn be attributed to performance concerns and a requirement
for interoperability with a large body of legacy code. The countermeasure could involve
differences in programming methods (e.g., requiring use of certified “safe” libraries for
buffer management), or improvements to quality assurance activities (e.g., additions to
inspection checklists), or sometimes changes in management practices.

4.8 Organizational Factors

The quality process includes a wide variety of activities that require specific skills and
attitudes and may be performed by quality specialists or by software developers. Plan-
ning the quality process involves not only resource management but also identification
and allocation of responsibilities.

A poor allocation of responsibilities can lead to major problems in which pursuit
of individual goals conflicts with overall project success. For example, splitting re-
sponsibilities of development and quality-control between a development and a quality
team, and rewarding high productivity in terms of lines of code per person-month dur-
ing development may produce undesired results. The development team, not rewarded
to produce high-quality software, may attempt to maximize productivity to the detri-
ment of quality. The resources initially planned for quality assurance may not suffice if
the initial quality of code from the“very productive” development team is low. On the
other hand, combining development and quality control responsibilities in one undif-
ferentiated team, while avoiding the perverse incentive of divided responsibilities, can
also have unintended effects: As deadlines near, resources may be shifted from quality
assurance to coding, at the expense of product quality.

Conflicting considerations support both the separation of roles (e.g., recruiting
quality specialists), and the mobility of people and roles (e.g, rotating engineers be-
tween development and testing tasks).

At Chipmunk, responsibility for delivery of the new Web presence is distributed
among a development team and a quality assurance team. Both teams are further artic-
ulated into groups. The quality assurance team is divided into the analysis and testing
group, responsible for the dependability of the system, and the usability testing group,
responsible for usability. Responsibility for security issues is assigned to the infras-
tructure development group, which relies partly on external consultants for final tests
based on external attack attempts.

Having distinct teams does not imply a simple division of all tasks between teams
by category. At Chipmunk, for example, specifications, design, and code are inspected
by mixed teams; scaffolding and oracles are designed by analysts and developers; in-
tegration, system, acceptance, and regression tests are assigned to the test and analysis
team; unit tests are generated and executed by the developers; and coverage is checked
by the testing team before starting integration and system testing. A specialist has been
hired for analyzing faults and improving the process. The process improvement spe-
cialist works incrementally while developing the system and proposes improvements
at each release.

Organizational Factors 51

Summary

Test and analysis activities are not a late phase of the development process, but rather
a wide set of activities that pervade the whole process. Designing a quality process
with a suitable blend of test and analysis activities for the specific application domain,
development environment, and quality goals is a challenge that requires skill and expe-
rience.

A well-defined quality process must fulfill three main goals: improving the soft-
ware product during and after development, assessing its quality before delivery, and
improving the process within and across projects. These challenging goals can be
achieved by increasing visibility, scheduling activities as early as practical, and mon-
itoring results to adjust the process. Process visibility — that is, measuring and com-
paring progress to objectives — is a key property of the overall development process.
Performing A&T activities early produces several benefits: It increases control over
the process, it hastens fault identification and reduces the costs of fault removal, it pro-
vides data for incrementally tuning the development process, and it accelerates product
delivery. Feedback is the key to improving the process by identifying and removing
persistent errors and faults.

Further Reading

Qualities of software are discussed in many software engineering textbooks; the dis-
cussion in Chapter 2 of Ghezzi, Jazayeri, and Mandrioli [GJM02] is particularly useful.
Process visibility is likewise described in software engineering textbooks, usually with
an emphasis on schedule. Musa [Mus04] describes a quality process oriented partic-
ularly to establishing a quantifiable level of reliability based on models and testing
before release. Chillarege et al. [CBC+92] present principles for gathering and ana-
lyzing fault data, with an emphasis on feedback within a single process but applicable
also to quality process improvement.

Exercises

4.1. We have stated that 100% reliability is indistinguishable from correctness, but
they are not quite identical. Under what circumstance might an incorrect pro-
gram be 100% reliable? Hint: Recall that a program may be more or less re-
liable depending on how it is used, but a program is either correct or incorrect
regardless of usage.

4.2. We might measure the reliability of a network router as the fraction of all packets
that are correctly routed, or as the fraction of total service time in which packets
are correctly routed. When might these two measures be different?

4.3. If I am downloading a very large file over a slow modem, do I care more about
the availability of my internet service provider or its mean time between failures?

52 Test and Analysis Activities Within a Software Process

4.4. Can a system be correct and yet unsafe?

4.5. Under what circumstances can making a system more safe make it less reliable?

4.6. Software application domains can be characterized by the relative importance of
schedule (calendar time), total cost, and dependability. For example, while all
three are important for game software, schedule (shipping product in September
to be available for holiday purchases) has particular weight, while dependability
can be somewhat relaxed. Characterize a domain you are familiar with in these
terms.

4.7. Consider responsiveness as a desirable property of an Internet chat program. The
informal requirement is that messages typed by each member of a chat session
appear instantaneously on the displays of other users. Refine this informal re-
quirement into a concrete specification that can be verified. Is anything lost in
the refinement?

4.8. Identify some correctness, robustness and safety properties of a word processor.

Part II

Basic Techniques

53

Chapter 5

Finite Models

From wind-tunnels to Navier-Stokes equations to circuit diagrams to finite-element
models of buildings, engineers in all fields of engineering construct and analyze mod-
els. Fundamentally, modeling addresses two problems in engineering. First, analysis
and test cannot wait until the actual artifact is constructed, whether that artifact is a
building or a software system. Second, it is impractical to test the actual artifact as
thoroughly as we wish, whether that means subjecting it to all foreseeable hurricane
and earthquake forces, or to all possible program states and inputs. Models permit us
to start analysis earlier and repeat it as a design evolves, and allows us to apply ana-
lytic methods that cover a much larger class of scenarios than we can explicitly test.
Importantly, many of these analyses may be automated.

This chapter presents some basic concepts in models of software and some families
of models that are used in a wide variety of testing and analysis techniques. Several of
the analysis and testing techniques described in subsequent chapters use and specialize
these basic models. The fundamental concepts and trade-offs in the design of models
is necessary for a full understanding of those test and analysis techniques, and is a
foundation for devising new techniques and models to solve domain-specific problems.

5.1 Overview

A model is a representation that is simpler than the artifact it represents but preserves model

(or at least approximates) some important attributes of the actual artifact. Our concern
in this chapter is with models of program execution, and not with models of other
(equally important) attributes such as the effort required to develop the software or its
usability. A good model of (or, more precisely, a good class of models) must typically
be:

Compact: A model must be representable and manipulable in a reasonably compact
form. What is “reasonably compact” depends largely on how the model will
be used. Models intended for human inspection and reasoning must be small
enough to be comprehensible. Models intended solely for automated analysis

55

56 Finite Models

may be far too large and complex for human comprehension, but must still be
sufficiently small or regular for computer processing.

Predictive: A model used in analysis or design must represent some salient charac-
teristics of the modeled artifact well enough to distinguish between “good” and
“bad” outcomes of analysis, with respect to those characteristics.

Typically, no single model represents all characteristics well enough to be useful
for all kinds of analysis. One does not, for example, use the same model to
predict airflow over an aircraft fuselage and to design internal layout for efficient
passenger loading and safe emergency exit.

Semantically meaningful: Beyond distinguishing between predictions of success and
failure, it is usually necessary to interpret analysis results in a way that permits
diagnosis of the causes of failure. If a finite-element model of a building predicts
collapse in a category five hurricane, we want to know enough about that col-
lapse to suggest revisions to the design. Likewise, if a model of an accounting
system predicts a failure when used concurrently by several clients, we need a
description of that failure sufficient to suggest possible revisions.

Sufficiently general: Models intended for analysis of some important characteristic
(e.g., withstanding earthquakes or concurrent operation by many clients) must
be general enough for practical use in the intended domain of application.

We may sometimes tolerate limits on design imposed by limitations of our mod-
eling and analysis techniques. For example, we may choose a conventional
bridge design over a novel design because we have confidence in analysis tech-
niques for the former but not the latter, and we may choose conventional con-
currency control protocols over novel approaches for the same reason. However,
if a program analysis technique for C programs is applicable only to programs
without pointer variables, we are unlikely to find much use for it.

Since design models are intended partly to aid in making and evaluating design
decisions, they should share these characteristics with models constructed primarily
for analysis. However, some kinds of models — notably the widely used UML design
notations — are designed primarily for human communication, with less attention to
semantic meaning and prediction.

Models are often used indirectly in evaluating an artifact. For example, some mod-
els are not themselves analyzed, but are used to guide test case selection. In such cases,
the qualities of being predictive and semantically meaningful apply to the model to-
gether with the analysis or testing technique applied to another artifact, typically the
actual program or system.

Overview 57

Graph Representations
We often use directed graphs to represent models of programs. Usually we draw

them as “box and arrow” diagrams, but to reason about them it is important to un-
derstand that they have a well-defined mathematical meaning, which we review here.

A directed graph is composed of a set of nodes N and a relation E on the set (that is,
a set of ordered pairs), called the edges. It is conventional to draw the nodes as points
or shapes and to draw the edges as arrows. For example:

Nodes: {a,b,c}
Edges: {(a,b),(a,c),(c,a)}

Drawn as Or drawn as

Typically, the nodes represent entities of some kind, such as procedures or classes
or regions of source code. The edges represent some relation among the entities. For
example, if we represent program control flow using a directed graph model, an edge
(a,b) would be interpreted as the statement “program region a can be directly followed
by program region b in program execution.”

We can label nodes with the names or descriptions of the entities they represent. If
nodes a and b represent program regions containing assignment statements, we might
draw the two nodes and an edge (a,b) connecting them in this way:

x = y + z;

a = f(x),

Sometimes we draw a single diagram to represent more than one directed graph,
drawing the shared nodes only once. For example, we might draw a single diagram in
which we express both that class B extends (is a subclass of) class A and that class B
has a field that is an object of type C. We can do this by drawing edges in the “extends”
relation differently than edges in the “includes” relation.

Nodes and edges of
“extends” relation
h{A,B,C},{(A,B)}i

Nodes and edges of
“includes” relation
h{A,B,C},{(B,C)}i

Drawn together
A

B C

Drawings of graphs can be refined in many ways, for example, depicting some re-
lations as attributes rather than directed edges. Important as these presentation choices
may be for clear communication, only the underlying sets and relations matter for rea-
soning about models.

58 Finite Models

(1a)

(1b)

(2a)

(2b)

Figure 5.1: Abstraction elides details of execution states and in so doing may cause an
abstract model execution state to represent more than one concrete program execution
state. In the illustration, program state is represented by three attributes, each with two
possible values, drawn as light or dark circles. Abstract model states retain the first two
attributes and elide the third. The relation between (1a) and (1b) illustrates coarsening
of the execution model, since the first and third program execution steps modify only
the omitted attribute. The relation between (2a) and (2b) illustrates introduction of
nondeterminism, because program execution states with different successor states have
been merged.

5.2 Finite Abstractions of Behavior

A single program execution can be viewed as a sequence of states alternating with
actions (e.g., machine operations).1 The possible behaviors of a program are a set of
such sequences. If we abstract from the physical limits of a particular machine, for all
but the most trivial programs the set of possible execution sequences is infinite. That
whole set of states and transitions is called the state space of the program. Models ofstate space

program execution are abstractions of that space.
States in the state space of program execution are related to states in a finite model

of execution by an abstraction function. Since an abstraction function suppresses some
details of program execution, it lumps together execution states that differ with respect
to the suppressed details but are otherwise identical. Figure 5.1 illustrates two effects of
abstraction: The execution model is coarsened (sequences of transitions are collapsed
into fewer execution steps), and nondeterminism is introduced (because information
required to make a deterministic choice is sacrificed).

Finite models of program execution are inevitably imperfect. Collapsing the po-

1We put aside, for the moment, the possibility of parallel or concurrent execution. Most but not all models
of concurrent execution reduce it to an equivalent serial execution in which operation by different procedures
are interleaved, but there also exist models for which our treatment here is insufficient.

Control Flow Graphs 59

while (...) {
False True

loop
body

“then”
block

if (...)
False True

“else”
block

switch(...) {

case ...:

case ...:

break;

default:

}

Figure 5.2: Building blocks for constructing intraprocedural control flow graphs.
Other control constructs are represented analogously. For example, the for construct
of C, C++, and Java is represented as if the initialization part appeared before a while
loop, with the increment part at the end of the while loop body.

tentially infinite states of actual execution into a finite number of representative model
states necessarily involves omitting some information. While one might hope that the
omitted information is irrelevant to the property one wishes to verify, this is seldom
completely true. In Figure 5.1, parts 2(a) and 2(b) illustrate how abstraction can cause
a set of deterministic transitions to be modeled by a nondeterministic choice among
transitions, thus making the analysis imprecise. This in turn can lead to “false alarms”
in analysis of models.

5.3 Control Flow Graphs

It is convenient and intuitive to construct models whose states are closely related to
locations in program source code. In general, we will associate an abstract state with
a whole region (that is, a set of locations) in a program. We know that program source
code is finite, so a model that associates a finite amount of information with each of a
finite number of program points or regions will also be finite.

Control flow of a single procedure or method can be represented as an intraproce-
dural control flow graph, often abbreviated as control flow graph or CFG. The intra- D control flow

graphprocedural control flow graph is a directed graph in which nodes represent regions
of the source code and directed edges represent the possibility that program execution
proceeds from the end of one region directly to the beginning of another, either through
sequential execution or by a branch. Figure 5.2 illustrates the representation of typical
control flow constructs in a control flow graph.

In terms of program execution, we can say that a control flow graph model retains

60 Finite Models

some information about the program counter (the address of the next instruction to be
executed), and elides other information about program execution (e.g., the values of
variables). Since information that determines the outcome of conditional branches is
elided, the control flow graph represents not only possible program paths but also some
paths that cannot be executed. This corresponds to the introduction of nondeterminism
illustrated in Figure 5.1.

The nodes in a control flow graph could represent individual program statements,
or even individual machine operations, but it is desirable to make the graph model
as compact and simple as possible. Usually, therefore, nodes in a control flow graph
model of a program represent not a single point but rather a basic block, a maximal
program region with a single entry and single exit point.D basic block

A basic block typically coalesces adjacent, sequential statements of source code,
but in some cases a single syntactic program statement is broken across basic blocks
to model control flow within the statement. Figures 5.3 and 5.4 illustrate construction
of a control flow graph from a Java method. Note that a sequence of two statements
within the loop has been collapsed into a single basic block, but the for statement and
the complex predicate in the if statement have been broken across basic blocks to model
their internal flow of control.

Some analysis algorithms are simplified by introducing a distinguished node to
represent procedure entry and another to represent procedure exit. When these distin-
guished start and end nodes are used in a CFG, a directed edge leads from the start
node to the node representing the first executable block, and a directed edge from each
procedure exit (e.g., each return statement and the last sequential block in the program)
to the distinguished end node. Our practice will be to draw a start node identified with
the procedure or method signature, and to leave the end node implicit.

The intraprocedural control flow graph may be used directly to define thorough-
ness criteria for testing (see Chapters 9 and 12). Often the control flow graph is used
to define another model, which in turn is used to define a thoroughness criterion. For
example, some criteria are defined by reference to linear code sequences and jumps
(LCSAJs), which are essentially subpaths of the control flow graph from one branch
to another. Figure 5.5 shows the LCSAJs derived from the control flow graph of Fig-
ure 5.4.

For use in analysis, the control flow graph is usually augmented with other informa-
tion. For example, the data flow models described in the next chapter are constructed
using a CFG model augmented with information about the variables accessed and mod-
ified by each program statement.

Not all control flow is represented explicitly in program text. For example, if an
empty string is passed to the collapseNewlines method of Figure 5.3, the exception
java.lang.StringIndexOutOfBoundsException will be thrown by String.charAt, and ex-
ecution of the method will be terminated. This could be represented in the CFG as a
directed edge to an exit node. However, if one includes such implicit control flow edges
for every possible exception (for example, an edge from each reference that might lead
to a null pointer exception), the CFG becomes rather unwieldy.

More fundamentally, it may not be simple or even possible to determine which
of the implicit control flow edges can actually be executed. We can reason about the
call to argStr.charAt(cIdx) within the body of the for loop and determine that cIdx must

Control Flow Graphs 61

1 /**
2 * Remove/collapse multiple newline characters.
3 *
4 * @param String string to collapse newlines in.
5 * @return String
6 */
7 public static String collapseNewlines(String argStr)
8 {
9 char last = argStr.charAt(0);

10 StringBuffer argBuf = new StringBuffer();
11

12 for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
13 {
14 char ch = argStr.charAt(cIdx);
15 if (ch != ’\n’ || last != ’\n’)
16 {
17 argBuf.append(ch);
18 last = ch;
19 }
20 }
21

22 return argBuf.toString();
23 }

Figure 5.3: A Java method to collapse adjacent newline characters, from the
StringUtilities class of the Velocity project of the open source Apache project. (c) 2001
Apache Software Foundation, used with permission.

62 Finite Models

 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cIdx = 0 ;

{
 char ch = argStr.charAt(cIdx);
 if (ch != '\n'

cIdx < argStr.length();

True

True

{
 argBuf.append(ch);
 last = ch;
 }

True

}
cIdx++)

return argBuf.toString();
 }

False

False

 || last != '\n')

public static String collapseNewlines(String argStr)

False

b2

b4

b3

b5

b6

b7

b8

b1

jX

jT

jE

jL

Figure 5.4: A control flow graph corresponding to the Java method in Figure 5.3. The
for statement and the predicate of the if statement have internal control flow branches,
so those statements are broken across basic blocks.

From Sequence of Basic Blocks To
entry b1 b2 b3 jX
entry b1 b2 b3 b4 jT
entry b1 b2 b3 b4 b5 jE
entry b1 b2 b3 b4 b5 b6 b7 jL

jX b8 return
jL b3 b4 jT
jL b3 b4 b5 jE
jL b3 b4 b5 b6 b7 jL

Figure 5.5: Linear code sequences and jumps (LCSAJs) corresponding to the Java
method in Figure 5.3 and the control flow graph in Figure 5.4. Note that proceeding to
the next sequential basic block is not considered a “jump” for purposes of identifying
LCSAJs.

Call Graphs 63

always be within bounds, but we cannot reasonably expect an automated tool for ex-
tracting control flow graphs to perform such inferences. Whether to include some or
all implicit control flow edges in a CFG representation therefore involves a trade-off
between possibly omitting some execution paths or representing many spurious paths.
Which is preferable depends on the uses to which the CFG representation will be put.

Even the representation of explicit control flow may differ depending on the uses
to which a model is put. In Figure 5.3, the for statement has been broken into its
constituent parts (initialization, comparison, and increment for next iteration), each of
which appears at a different point in the control flow. For some kinds of analysis, this
breakdown would serve no useful purpose. Similarly, a complex conditional expres-
sion in Java or C is executed by “short-circuit” evaluation, so the single expression
i > 0 && i < 10 can be broken across two basic blocks (the second test is not executed
if the first evaluates to false). If this fine level of execution detail is not relevant to an
analysis, we may choose to ignore short-circuit evaluation and treat the entire condi-
tional expression as if it were fully evaluated.

5.4 Call Graphs

The intraprocedural control flow graph represents possible execution paths through a
single procedure or method. Interprocedural control flow can also be represented as
a directed graph. The most basic model is the call graph, in which nodes represent
procedures (methods, C functions, etc.) and edges represent the “calls” relation. For
example, a call graph representation of the program that includes the collapseNewlines
method above would include a node for StringUtils.collapseNewlines with a directed
edge to method String.charAt.

Call graph representations present many more design issues and trade-offs than
intraprocedural control flow graphs; consequently, there are many variations on the ba-
sic call graph representation. For example, consider that in object-oriented languages,
method calls are typically made through object references and may be bound to meth-
ods in different subclasses depending on the current binding of the object. A call graph
for programs in an object-oriented language might therefore represent the calls relation
to each of the possible methods to which a call might be dynamically bound. More of-
ten, the call graph will explicitly represent only a call to the method in the declared
class of an object, but it will be part of a richer representation that includes inheritance
relations. Constructing an abstract model of executions in the course of analysis will
involve interpreting this richer structure.

Figure 5.6 illustrates overestimation of the calls relation due to dynamic dispatch.
The static call graph includes calls through dynamic bindings that never occur in exe-
cution. The call graph includes an (impossible) call from A.check() to C.foo() because
A.foo() calls myC.foo() and myC’s declared class is C. However, since myC is always an
object of subclass S, and S overrides foo(), the call to myC.foo() can only reach S.foo().
In this case a more precise analysis could show that myC is always bound to an object
of subclass S, but in general such precision is expensive or even impossible.

If a call graph model represents different behaviors of a procedure depending on
where the procedure is called, we call it context-sensitive. For example, a context-

64 Finite Models

1 public class C {
2

3 public static C cFactory(String kind) {
4 if (kind == "C") return new C();
5 if (kind == "S") return new S();
6 return null;
7 }
8

9 void foo() {
10 System.out.println("You called the parent’s method");
11 }
12

13 public static void main(String args[]) {
14 (new A()).check();
15 }
16 }
17

18 class S extends C {
19 void foo() {
20 System.out.println("You called the child’s method");
21 }
22 }
23

24 class A {
25 void check() {
26 C myC = C.cFactory("S");
27 myC.foo();
28 }
29 }

A.check()

C.foo S.foo C.cFactory(String)

Figure 5.6: Overapproximation in a call graph. Although the method A.check() can
never actually call C.foo(), a typical call graph construction will include it as a possible
call.

Finite State Machines 65

sensitive model of collapseNewlines might distinguish between one call in which the
argument string cannot possibly be empty, and another in which it could be. Context-
sensitive analyses can be more precise than context-insensitive analyses when the model
includes some additional information that is shared or passed among procedures. In-
formation not only about the immediate calling context, but about the entire chain of
procedure calls may be needed, as illustrated in Figure 5.7. In that case the cost of
context-sensitive analysis depends on the number of paths from the root (main pro-
gram) to each lowest level procedure. The number of paths can be exponentially larger
than the number of procedures, as illustrated in Figure 5.8.

The Java compiler uses a typical call graph model to enforce the language rule
that all checked exceptions are either handled or declared in each method. The throws
clauses in a method declaration are provided by the programmer, but if they were not,
they would correspond exactly to the information that a context insensitive analysis of
exception propagation would associate with each procedure (which is why the compiler
can check for completeness and complain if the programmer omits an exception that
can be thrown).

5.5 Finite State Machines

Most of the models discussed above can be extracted from programs. Often, though,
models are constructed prior to or independent of source code, and serve as a kind of
specification of allowed behavior. Finite state machines of various kinds are particu-
larly widely used.

In its simplest form, a finite state machine (FSM) is a finite set of states and a set
of transitions among states, that is, a directed graph in which nodes represent program
states and edges represent operations that transform one program state into another.
Since there may be infinitely many program states, the finite set of state nodes must be
an abstraction of the concrete program states.

A transition from one state node a to another state node b denotes the possibility
that a concrete program state corresponding to a can be followed immediately by a
concrete program state corresponding to b. Usually we label the edge to indicate a
program operation, condition, or event associated with the transition. We may label
transitions with both an external event or a condition (what must happen or be true for
the program to make a corresponding state change) and with a program operation that
can be thought of as a “response” to the event. Such a finite state machine with event
/ response labels on transitions is called a Mealy machine. Mealy machine

Figure 5.9 illustrates a specification for a converter among Dos, Unix, and Macin-
tosh line end conventions in the form of a Mealy machine. An “event” for this specifi-
cation is reading a character or encountering end-of-file. The possible input characters
are divided into four categories: carriage return, line feed, end-of-file, and everything
else. The states represent both program control points and some information that may
be stored in program variables.

There are three kinds of correctness relations that we may reason about with respect
to finite state machine models, illustrated in Figure 5.10. The first is internal properties,
such as completeness and determinism. Second, the possible executions of a model,

66 Finite Models

1 public class Context {
2 public static void main(String args[]) {
3 Context c = new Context();
4 c.foo(3);
5 c.bar(17);
6 }
7

8 void foo(int n) {
9 int[] myArray = new int[n];

10 depends(myArray, 2) ;
11 }
12

13 void bar(int n) {
14 int[] myArray = new int[n];
15 depends(myArray, 16) ;
16 }
17

18 void depends(int[] a, int n) {
19 a[n] = 42;
20 }
21 }

main

C.foo C.bar

C.depends

main

C.foo(3) C.bar(17)

C.depends(int[3],a,2) C.depends(int[17],a,16)

Figure 5.7: The Java code above can be represented by the context-insensitive call
graph at left. However, to capture the fact that method depends never attempts to store
into a nonexistent array element, it is necessary to represent parameter values that
differ depending on the context in which depends is called, as in the context-sensitive
call graph on the right.

Finite State Machines 67

A

B C

D

F G

E

H I

J

(1 context: A)

(2 contexts: AB, AC)

(4 contexts: ABD, ABE, ACD, ACE)

(8 contexts: ...)

(16 calling contexts: ...)

Figure 5.8: The number of paths in a call graph — and therefore the number of calling
contexts in a context-sensitive analysis — can be exponentially larger than the number
of procedures, even without recursion.

68 Finite Models

Duals
In a control flow graph, nodes are associated with program regions, that is, with

blocks of program code that perform computation. In a finite state machine represen-
tation, computations are associated with edges rather than nodes. This difference is
unimportant, because one can always exchange nodes with edges without any loss of
information, as illustrated by the following CFG and FSM representations:

A

B

D

E

F

G

C

A

B

C

D

E

F

G

The graph on the right is called the dual of the graph on the left. Taking the dual of
the graph on the right, one obtains again the graph on the left.

The choice between associating nodes or edges with computations performed by
a program is only a matter of convention and convenience, and is not an important
difference between CFG and FSM models. In fact, aside from this minor difference
in customary presentation, the control flow graph is a particular kind of finite state
machine model in which the abstract states preserve some information about control
flow (program regions and their execution order) and elide all other information about
program state.

Finite State Machines 69

Within
line

Empty
buffer

Looking for
optional DOS LF

 LF_
emit

Done

 LF_
emit

Other char
append

LF CR_
emit

EOF

EOF

Other char
apend

 CR_
emit

 EOF
emit

Other char
append

e w

l d

LF CR EOF other
e e / emit l / emit d / – w / append
w e / emit l / emit d / emit w / append
l e / – d / – w / append

Figure 5.9: Finite state machine (Mealy machine) description of line-end conversion
procedure, depicted as a state transition diagram (top) and as a state transition table
(bottom). An omission is obvious in the tabular representation, but easy to overlook in
the state transition diagram.

70 Finite Models

...
public static Table1
getTable1() {
 if (ref == null) {
synchronized(Table1) {
 if (ref == null){

ref = new Table1();
ref.initialize();

 }
 }
}
return ref;
}...

FSM Model

(a)

(b)

(c)

(e)

(d)

(f)

(x)

(y)

Required
Properties

Program

The model satisfies
the specification

The model accurately
represents the program

The model is syntactically
well-fromed, consistent,

and complete

Figure 5.10: Correctness relations for a finite state machine model. Consistency and
completeness are internal properties, independent of the program or a higher-level
specification. If, in addition to these internal properties, a model accurately represents
a program and satisfies a higher-level specification, then by definition the program
itself satisfies the higher-level specification.

described by paths through the FSM, may satisfy (or not) some desired property. Third,
the finite state machine model should accurately represent possible behaviors of the
program. Equivalently, the program should be a correct implementation of the finite
state machine model. We will consider each of the three kinds of correctness relation
in turn with respect to the FSM model of Figure 5.9.

Many details are purposely omitted from the FSM model depicted in Figure 5.9, but
it is also incomplete in an undesirable way. Normally, we require a finite state machine
specification to be complete in the sense that it prescribes the allowed behavior(s) for
any possible sequence of inputs or events. For the line-end conversion specification,
the state transition diagram does not include a transition from state l on carriage return;
that is, it does not specify what the program should do if it encounters a carriage return
immediately after a line feed.

An alternative representation of finite state machines, including Mealy machines, is
the state transition table, also illustrated in Figure 5.9. There is one row in the transition
table for each state node and one column for each event or input. If the FSM is complete
and deterministic, there should be exactly one transition in each table entry. Since this
table is for a Mealy machine, the transition in each table entry indicates both the next
state and the response (e.g., d / emit means “emit and then proceed to state d”). The
omission of a transition from state l on a carriage return is glaringly obvious when the
state transition diagram is written in tabular form.

Analysis techniques for verifying properties of models will be presented in subse-
quent chapters. For the current example, we illustrate with informal reasoning. The
desired property of this program and of its FSM models is that, for every possible
execution, the output file is identical to the input file except that each line ending is
replaced by the line-end convention of the target format. Note, however, that the emit

Finite State Machines 71

action is responsible for emitting a line ending along with whatever text has been ac-
cumulated in a buffer. While emit is usually triggered by a line ending in the input,
it is also used to reproduce any text in the buffer when end-of-file is reached. Thus,
if the last line of an input file is not terminated with a line ending, a line ending will
nonetheless be added. This discrepancy between specification and implementation is
somewhat easier to detect by examining the FSM model than by inspecting the program
text.

To consider the third kind of correctness property, consistency between the model
and the implementation, we must define what it means for them to be consistent. The
most general way to define consistency is by considering behaviors. Given a way
to compare a sequence of program actions to a path through the finite state machine
(which in general will involve interpreting some program events and discarding others),
a program is consistent with a finite state machine model if every possible program
execution corresponds to a path through the model.2

Matching sequences of program actions to paths through a finite state machine
model is a useful notion of consistency if we are testing the program, but it is not a
practical way to reason about all possible program behaviors. For that kind of reason-
ing, it is more helpful to also require a relation between states in the finite state machine
model and concrete program execution states.

It should be possible to describe the association of concrete program states with
abstract FSM states by an abstraction function. The abstraction function maps each
concrete program state to exactly one FSM state. Moreover, if some possible step
op in program execution takes the concrete program state from some state before to
some state after, then one of two conditions must apply: If the FSM model does not
include transitions corresponding to op, then program state before and program state
after must be associated with the same abstract state in the model. If the FSM does
include transitions corresponding to op, then there must be a corresponding transition
in the FSM model that connects program state before to program state after.

Using the second notion of conformance, we can reason about whether the imple-
mentation of the line-end conversion program of Figure 5.11 is consistent with the FSM
of Figure 5.9 or Figure 5.12. Note that, in contrast to the control flow graph models
considered earlier, most of the interesting “state” is in the variables pos and atCR. We
posit that the abstraction function might be described by the following table:

Abstract state Concrete state
Lines atCR pos

e (Empty buffer) 2 – 12 0 0
w (Within line) 12 0 > 0

l (Looking for LF) 12 1 0
d (Done) 35 – –

2As with other abstraction functions used in reasoning about programs, the mapping is from concrete
representation to abstract representation, and not from abstract to concrete. This is because the mapping
from concrete to abstract is many-to-one, and its inverse is therefore not a mathematical function (which by
definition maps each object in the domain set into a single object in the range).

72 Finite Models

1 /** Convert each line from standard input */
2 void transduce() {
3

4 #define BUFLEN 1000
5 char buf[BUFLEN]; /* Accumulate line into this buffer */
6 int pos = 0; /* Index for next character in buffer */
7

8 char inChar; /* Next character from input */
9

10 int atCR = 0; /* 0=”within line”, 1=”optional DOS LF” */
11

12 while ((inChar = getchar()) != EOF) {
13 switch (inChar) {
14 case LF:
15 if (atCR) { /* Optional DOS LF */
16 atCR = 0;
17 } else { /* Encountered CR within line */
18 emit(buf, pos);
19 pos = 0;
20 }
21 break;
22 case CR:
23 emit(buf, pos);
24 pos = 0;
25 atCR = 1;
26 break;
27 default:
28 if (pos >= BUFLEN-2) fail("Buffer overflow");
29 buf[pos++] = inChar;
30 } /* switch */
31 }
32 if (pos > 0) {
33 emit(buf, pos);
34 }
35 }

Figure 5.11: Procedure to convert among Dos, Unix, and Macintosh line ends.

Finite State Machines 73

LF CR EOF other
e e / emit l / emit d / – w / append
w e / emit l / emit d / emit w / append
l e / – l / emit d / – w / append

Figure 5.12: Completed finite state machine (Mealy machine) description of line-end
conversion procedure, depicted as a state-transition table (bottom). The omitted tran-
sition in Figure 5.9 has been added.

With this state abstraction function, we can check conformance between the source
code and each transition in the FSM. For example, the transition from state e to state
l is interpreted to mean that, if execution is at the head of the loop with pos equal to
zero and atCR also zero (corresponding to state e), and the next character encountered
is a carriage return, then the program should perform operations corresponding to the
emit action and then enter a state in which pos is zero and atCR is 1 (corresponding to
state l). It is easy to verify that this transition is implemented correctly. However, if
we examine the transition from state l to state w, we will discover that the code does
not correspond because the variable atCR is not reset to zero, as it should be. If the
program encounters a carriage return, then some text, and then a line feed, the line feed
will be discarded — a program fault.

The fault in the conversion program was actually detected by the authors through
testing, and not through manual verification of correspondence between each transition
and program source code. Making the abstraction function explicit was nonetheless
important to understanding the nature of the error and how to repair it.

Summary

Models play many of the same roles in software development as in engineering of
other kinds of artifacts. Models must be much simpler than the artifacts they describe,
but must preserve enough essential detail to be useful in making choices. For models
of software execution, this means that a model must abstract away enough detail to
represent the potentially infinite set of program execution states by a finite and suitably
compact set of model states.

Some models, such as control flow graphs and call graphs, can be extracted from
programs. The key trade-off for these extracted models is precision (retaining enough
information to be predictive) versus the cost of producing and storing the model. Other
models, including many finite state machine models, may be constructed before the
program they describe, and serve as a kind of intermediate-level specification of in-
tended behavior. These models can be related to both a higher-level specification of
intended behavior and the actual program they are intended to describe.

The relation between finite state models and programs is elaborated in Chapter 6.
Analysis of models, particularly those involving concurrent execution, is described

74 Finite Models

further in Chapter 8.

Further Reading

Finite state models of computation have been studied at least since the neural models
of McColloch and Pitts [MP43], and modern finite state models of programs remain
close to those introduced by Mealy [Mea55] and Moore [Moo56]. Lamport [Lam89]
provides the clearest and most accessible introduction the authors know regarding what
a finite state machine model “means” and what it means for a program to conform to
it. Guttag [Gut77] presents an early explication of the abstraction relation between a
model and a program, and why the abstraction function goes from concrete to abstract
and not vice versa. Finite state models have been particularly important in develop-
ment of reasoning and tools for concurrent (multi-threaded, parallel, and distributed)
systems; Pezzè, Taylor, and Young [PTY95] overview finite models of concurrent pro-
grams.

Exercises

5.1. We construct large, complex software systems by breaking them into manage-
able pieces. Likewise, models of software systems may be decomposed into
more manageable pieces. Briefly describe how the requirements of model com-
pactness, predictiveness, semantic meaningfulness, and sufficient generality ap-
ply to approaches for modularizing models of programs. Give examples where
possible.

5.2. Models are used in analysis, but construction of models from programs often
requires some form of analysis. Why bother, then? If one is performing an
initial analysis to construct a model to perform a subsequent analysis, why not
just merge the initial and subsequent analysis and dispense with defining and
constructing the model? For example, if one is analyzing Java code to construct
a call graph and class hierarchy that will be used to detect overriding of inherited
methods, why not just analyze the source code directly for method overriding?

5.3. Linear code sequence and jump (LCSAJ) makes a distinction between “sequen-
tial” control flow and other control flow. Control flow graphs, on the other hand,
make no distinction between sequential and nonsequential control flow. Consid-
ering the criterion of model predictiveness, is there a justification for this distinc-
tion?

5.4. What upper bound can you place on the number of basic blocks in a program,
relative to program size?

Finite State Machines 75

5.5. A directed graph is a set of nodes and a set of directed edges. A mathematical
relation is a set of ordered pairs.

1. If we consider a directed graph as a representation of a relation, can we
ever have two distinct edges from one node to another?

2. Each ordered pair in the relation corresponds to an edge in the graph. Is the
set of nodes superfluous? In what case might the set of nodes of a directed
graph be different from the set of nodes that appear in the ordered pairs?

5.6. We have described how abstraction can introduce nondeterminism by discarding
some of the information needed to determine whether a particular state transi-
tion is possible. In addition to introducing spurious transitions, abstraction can
introduce states that do not correspond to any possible program execution state
— we say such states are infeasible. Can we still have an abstraction function
from concrete states to model states if some of the model states are infeasible?

5.7. Can the number of basic blocks in the control flow graph representation of a
program ever be greater than the number of program statements? If so, how? If
not, why not?

76 Finite Models

Chapter 6

Dependence and Data

Flow Models

The control flow graph and state machine models introduced in the previous chapter
capture one aspect of the dependencies among parts of a program. They explicitly
represent control flow but deemphasize transmission of information through program
variables. Data flow models provide a complementary view, emphasizing and making
explicit relations involving transmission of information.

Models of data flow and dependence in software were originally developed in the
field of compiler construction, where they were (and still are) used to detect opportuni-
ties for optimization. They also have many applications in software engineering, from
testing to refactoring to reverse engineering. In test and analysis, applications range
from selecting test cases based on dependence information (as described in Chap-
ter 13) to detecting anomalous patterns that indicate probable programming errors,
such as uses of potentially uninitialized values. Moreover, the basic algorithms used
to construct data flow models have even wider application and are of particular interest
because they can often be quite efficient in time and space.

6.1 Definition-Use Pairs

The most fundamental class of data flow model associates the point in a program where
a value is produced (called a “definition”) with the points at which the value may be
accessed (called a “use”). Associations of definitions and uses fundamentally capture
the flow of information through a program, from input to output.

Definitions occur where variables are declared or initialized, assigned values, or
received as parameters, and in general at all statements that change the value of one or
more variables. Uses occur in expressions, conditional statements, parameter passing,
return statements, and in general in all statements whose execution extracts a value
from a variable. For example, in the standard greatest common divisor (GCD) algo-
rithm of Figure 6.1, line 1 contains a definition of parameters x and y, line 3 contains
a use of variable y, line 6 contains a use of variable tmp and a definition of variable y,

77

78 Dependence and Data Flow Models

1 public int gcd(int x, int y) { /* A: def x,y */
2 int tmp; /* def tmp */
3 while (y != 0) { /* B: use y */
4 tmp = x % y; /* C: use x,y, def tmp */
5 x = y; /* D: use y, def x */
6 y = tmp; /* E: use tmp, def y */
7 }
8 return x; /* F: use x */
9 }

Figure 6.1: Java implementation of Euclid’s algorithm for calculating the greatest
common denominator of two positive integers. The labels A–F are provided to relate
statements in the source code to graph nodes in subsequent figures.

and the return in line 8 is a use of variable x.
Each definition-use pair associates a definition of a variable (e.g., the assignment

to y in line 6) with a use of the same variable (e.g., the expression y != 0 in line 3). A
single definition can be paired with more than one use, and vice versa. For example,
the definition of variable y in line 6 is paired with a use in line 3 (in the loop test), as
well as additional uses in lines 4 and 5. The definition of x in line 5 is associated with
uses in lines 4 and 8.

A definition-use pair is formed only if there is a program path on which the value
assigned in the definition can reach the point of use without being overwritten by an-
other value. If there is another assignment to the same value on the path, we say thatD kill

the first definition is killed by the second. For example, the declaration of tmp in line 2
is not paired with the use of tmp in line 6 because the definition at line 2 is killed by the
definition at line 4. A definition-clear path is a path from definition to use on which theD definition-clear

path definition is not killed by another definition of the same variable. For example, with
reference to the node labels in Figure 6.2, path E,B,C,D is a definition-clear path from
the definition of y in line 6 (node E of the control flow graph) to the use of y in line 5
(node D). Path A,B,C,D,E is not a definition-clear path with respect to tmp because
of the intervening definition at node C.

Definition-use pairs record a kind of program dependence, sometimes called direct
data dependence. These dependencies can be represented in the form of a graph, withD direct data

dependence a directed edge for each definition-use pair. The data dependence graph representation
of the GCD method is illustrated in Figure 6.3 with nodes that are program statements.
Different levels of granularity are possible. For use in testing, nodes are typically basic
blocks. Compilers often use a finer-grained data dependence representation, at the
level of individual expressions and operations, to detect opportunities for performance-
improving transformations.

The data dependence graph in Figure 6.3 captures only dependence through flow
of data. Dependence of the body of the loop on the predicate governing the loop is not
represented by data dependence alone. Control dependence can also be represented
with a graph, as in Figure 6.5, which shows the control dependencies for the GCD

Definition-Use Pairs 79

public int gcd(int x, int y) {
int tmp;

tmp = x % y;

while (y != 0)
{

True

return x;
}

x = y;

y = tmp;

public int gcd

A

C

B

D

E

F

False

def = {x, y, tmp }
use = { }

def = {}
use = {y}

def = {tmp }
use = {x, y}

def = { x}
use = {y}

def = {y}
use = {tmp}

def = {}
use = {x}

Figure 6.2: Control flow graph of GCD method in Figure 6.1.

80 Dependence and Data Flow Models

public int gcd(int x, int y) {
int tmp;

tmp = x % y;

y

return x;
}

x = y;

A

C

D

F

xy y
x

ytmp

y y

x

y
y = tmp; E

while (y != 0)
{

B

Figure 6.3: Data dependence graph of GCD method in Figure 6.1, with nodes for
statements corresponding to the control flow graph in Figure 6.2. Each directed edge
represents a direct data dependence, and the edge label indicates the variable that
transmits a value from the definition at the head of the edge to the use at the tail of the
edge.

method. The control dependence graph shows direct control dependencies, that is,
where execution of one statement controls whether another is executed. For example,
execution of the body of a loop or if statement depends on the result of a predicate.

Control dependence differs from the sequencing information captured in the control
flow graph. The control flow graph imposes a definite order on execution even when
two statements are logically independent and could be executed in either order with the
same results. If a statement is control- or data-dependent on another, then their order
of execution is not arbitrary. Program dependence representations typically include
both data dependence and control dependence information in a single graph with the
two kinds of information appearing as different kinds of edges among the same set of
nodes.

A node in the control flow graph that is reached on every execution path from entry
point to exit is control dependent only on the entry point. For any other node N, reached
on some but not all execution paths, there is some branch that controls execution of N in
the sense that, depending on which way execution proceeds from the branch, execution
of N either does or does not become inevitable. It is this notion of control that control
dependence captures.

The notion of dominators in a rooted, directed graph can be used to make thisD dominator

intuitive notion of “controlling decision” precise. Node M dominates node N if every
path from the root of the graph to N passes through M. A node will typically have
many dominators, but except for the root, there is a unique immediate dominator ofD immediate

dominator node N, which is closest to N on any path from the root and which is in turn dominated

Definition-Use Pairs 81

public int gcd(int x, int y) {
int tmp;

while (y != 0){

return x;}

public int gcd

A

B

F

tmp = x % y;

x = y;

y = tmp;

C

D

E

Figure 6.4: Calculating control dependence for node E in the control flow graph of
the GCD method. Nodes C, D, and E in the gray region are post-dominated by E;
that is, execution of E is inevitable in that region. Node B has successors both within
and outside the gray region, so it controls whether E is executed; thus E is control-
dependent on B.

by all the other dominators of N. Because each node (except the root) has a unique
immediate dominator, the immediate dominator relation forms a tree.

The point at which execution of a node becomes inevitable is related to paths from
a node to the end of execution — that is, to dominators that are calculated in the re- D post-dominator

verse of the control flow graph, using a special “exit” node as the root. Dominators
in this direction are called post-dominators, and dominators in the normal direction of D pre-dominator

execution can be called pre-dominators for clarity.
We can use post-dominators to give a more precise definition of control depen-

dence. Consider again a node N that is reached on some but not all execution paths.
There must be some node C with the following property: C has at least two succes-
sors in the control flow graph (i.e., it represents a control flow decision); C is not
post-dominated by N (N is not already inevitable when C is reached); and there is a
successor of C in the control flow graph that is post-dominated by N. When these con-
ditions are true, we say node N is control-dependent on node C. Figure 6.4 illustrates
the control dependence calculation for one node in the GCD example, and Figure 6.5
shows the control dependence relation for the method as a whole.

82 Dependence and Data Flow Models

public int gcd(int x, int y) {
int tmp;

tmp = x % y;

return x;
}

x = y;

A

C

D

F

y = tmp; E

while (y != 0)
{

B

Figure 6.5: Control dependence tree of the GCD method. The loop test and the return
statement are reached on every possible execution path, so they are control-dependent
only on the entry point. The statements within the loop are control-dependent on the
loop test.

6.2 Data Flow Analysis

Definition-use pairs can be defined in terms of paths in the program control flow graph.
As we have seen in the former section, there is an association (d,u) between a definition
of variable v at d and a use of variable v at u if and only if there is at least one control
flow path from d to u with no intervening definition of v. We also say that definitionD reaching definition

vd reaches u, and that vd is a reaching definition at u. If, on the other hand, a control
flow path passes through another definition e of the same variable v, we say that ve kills
vd at that point.

It would be possible to compute definition-use pairs by searching the control flow
graph for individual paths of the form described above. However, even if we consider
only loop-free paths, the number of paths in a graph can be exponentially larger than
the number of nodes and edges. Practical algorithms therefore cannot search every
individual path. Instead, they summarize the reaching definitions at a node over all the
paths reaching that node.

An efficient algorithm for computing reaching definitions (and several other prop-
erties, as we will see below) is based on the way reaching definitions at one node are
related to reaching definitions at an adjacent node. Suppose we are calculating the
reaching definitions of node n, and there is an edge (p,n) from an immediate predeces-
sor node p. We observe:

• If the predecessor node p can assign a value to variable v, then the definition vp
reaches n. We say the definition vp is generated at p.

• If a definition vd of variable v reaches a predecessor node p, and if v is not
redefined at that node (in which case we say the vd is killed at that point), then
the definition is propagated on from p to n.

Data Flow Analysis 83

These observations can be stated in the form of an equation describing sets of reach-
ing definitions. For example, reaching definitions at node E in Figure 6.2 are those at
node D, except that D adds a definition of y and replaces (kills) an earlier definition of
y:

Reach(E) = (Reach(D)\{xA})[{xD}

This rule can be broken down into two parts to make it a little more intuitive and
more efficient to implement. The first part describes how node E receives values from
its predecessor D, and the second describes how it modifies those values for its succes-
sors:

Reach(E) = ReachOut(D)
ReachOut(D) = (Reach(D)\{xA})[{xD}

In this form, we can easily express what should happen at the head of the while
loop (node B in Figure 6.2), where values may be transmitted both from the beginning
of the procedure (node A) and through the end of the body of the loop (node E). The
beginning of the procedure (node A) is treated as an initial definition of parameters
and local variables. (If a local variable is declared but not initialized, it is treated as a
definition to the special value “uninitialized.”)

Reach(B) = ReachOut(A)[ReachOut(E)
ReachOut(A) = gen(A) = {xA,yA, tmpA}
ReachOut(E) = (ReachIn(E)\{yA})[{yE}

In general, for any node n with predecessors pred(n),

Reach(n) =
[

m2pred(n)

ReachOut(m)

ReachOut(n) = (ReachIn(n)\ kill(n))[gen(n)

Remarkably, the reaching definitions can be calculated simply and efficiently, first
initializing the reaching definitions at each node in the control flow graph to the empty
set, and then applying these equations repeatedly until the results stabilize. The algo-
rithm is given as pseudocode in Figure 6.6.

84 Dependence and Data Flow Models

Algorithm Reaching definitions

Input: A control flow graph G = (nodes,edges)
pred(n) = {m 2 nodes | (m,n) 2 edges}
succ(m) = {n 2 nodes | (m,n) 2 edges}
gen(n) = {vn} if variable v is defined at n, otherwise {}
kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n 2 nodes loop
ReachOut(n) = {} ;

end loop;
workList = nodes ;
while (workList 6= {}) loop

// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList\{n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(n) =

S
m2pred(n)ReachOut(m);

ReachOut(n) = (Reach(n)\ kill(n))[gen(n) ;
if (ReachOut(n) 6= oldVal) then

// Propagate changed value to successor nodes
workList = workList[succ(n)

end if;
end loop;

Figure 6.6: An iterative work-list algorithm to compute reaching definitions by apply-
ing each flow equation until the solution stabilizes.

Classic Analyses: Live and Avail 85

6.3 Classic Analyses: Live and Avail

Reaching definition is a classic data flow analysis adapted from compiler construction
to applications in software testing and analysis. Other classical data flow analyses
from compiler construction can likewise be adapted. Moreover, they follow a common
pattern that can be used to devise a wide variety of additional analyses.

Available expressions is another classical data flow analysis, used in compiler con-
struction to determine when the value of a subexpression can be saved and reused rather
than recomputed. This is permissible when the value of the subexpression remains un-
changed regardless of the execution path from the first computation to the second.

Available expressions can be defined in terms of paths in the control flow graph. An
expression is available at a point if, for all paths through the control flow graph from
procedure entry to that point, the expression has been computed and not subsequently
modified. We say an expression is generated (becomes available) where it is computed
and is killed (ceases to be available) when the value of any part of it changes (e.g.,
when a new value is assigned to a variable in the expression).

As with reaching definitions, we can obtain an efficient analysis by describing the
relation between the available expressions that reach a node in the control flow graph
and those at adjacent nodes. The expressions that become available at each node (the
gen set) and the expressions that change and cease to be available (the kill set) can be
computed simply, without consideration of control flow. Their propagation to a node
from its predecessors is described by a pair of set equations:

Avail(n) =
\

m2pred(n)

AvailOut(m)

AvailOut(n) = (Avail(n)\ kill(n))[Gen(n)

The similarity to the set equations for reaching definitions is striking. Both propa-
gate sets of values along the control flow graph in the direction of program execution
(they are forward analyses), and both combine sets propagated along different control forward analysis

flow paths. However, reaching definitions combines propagated sets using set union,
since a definition can reach a use along any execution path. Available expressions com- any-path analysis

bines propagated sets using set intersection, since an expression is considered available
at a node only if it reaches that node along all possible execution paths. Thus we say all-paths analysis

that, while reaching definitions is a forward, any-path analysis, available expressions
is a forward, all-paths analysis. A work-list algorithm to implement available expres-
sions analysis is nearly identical to that for reaching definitions, except for initialization
and the flow equations, as shown in Figure 6.7.

Applications of a forward, all-paths analysis extend beyond the common subexpres-
sion detection for which the Avail algorithm was originally developed. We can think
of available expressions as tokens that are propagated from where they are generated
through the control flow graph to points where they might be used. We obtain different
analyses by choosing tokens that represent some other property that becomes true (is
generated) at some points, may become false (be killed) at some other points, and is

86 Dependence and Data Flow Models

Algorithm Available expressions

Input: A control flow graph G = (nodes,edges), with a distinguished root node start.
pred(n) = {m 2 nodes | (m,n) 2 edges}
succ(m) = {n 2 nodes | (m,n) 2 edges}
gen(n) = all expressions e computed at node n
kill(n) = expressions e computed anywhere, whose value is changed at n;

kill(start) is the set of all e.

Output: Avail(n) = the available expressions at node n

for n 2 nodes loop
AvailOut(n) = set of all e defined anywhere ;

end loop;
workList = nodes ;
while (workList 6= {}) loop

// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList\{n} ;
oldVal = AvailOut(n) ;
// Apply flow equations, propagating values from predecessors
Avail(n) =

T
m2pred(n)AvailOut(m);

AvailOut(n) = (Avail(n)\ kill(n))[gen(n) ;
if (AvailOut(n) 6= oldVal) then

// Propagate changes to successors
workList = workList[succ(n)

end if;
end loop;

Figure 6.7: An iterative work-list algorithm for computing available expressions.

Classic Analyses: Live and Avail 87

1 /** A trivial method with a potentially uninitialized variable.
2 * Java compilers reject the program. The compiler uses
3 * data flow analysis to determine that there is a potential
4 * (syntactic) execution path on which k is used before it
5 * has been assigned an initial value.
6 */
7 static void questionable() {
8 int k;
9 for (int i=0; i < 10; ++i) {

10 if (someCondition(i)) {
11 k = 0;
12 } else {
13 k += i;
14 }
15 }
16 System.out.println(k);
17 }
18 }

Figure 6.8: Function questionable (repeated from Chapter 3) has a potentially unini-
tialized variable, which the Java compiler can detect using data flow analysis.

evaluated (used) at certain points in the graph. By associating appropriate sets of tokens
in gen and kill sets for a node, we can evaluate other properties that fit the pattern

“G occurs on all execution paths leading to U, and there is no intervening
occurrence of K between the last occurrence of G and U.”

G, K, and U can be any events we care to check, so long as we can mark their occur-
rences in a control flow graph.

An example problem of this kind is variable initialization. We noted in Chapter 3
that Java requires a variable to be initialized before use on all execution paths. The
analysis that enforces this rule is an instance of Avail. The tokens propagated through
the control flow graph record which variables have been assigned initial values. Since
there is no way to “uninitialize” a variable in Java, the kill sets are empty. Figure 6.8
repeats the source code of an example program from Chapter 3. The corresponding
control flow graph is shown with definitions and uses in Figure 6.9 and annotated with
gen and kill sets for the initialized variable check in Figure 6.10.

Reaching definitions and available expressions are forward analyses; that is, they
propagate values in the direction of program execution. Given a control flow graph
model, it is just as easy to propagate values in the opposite direction, backward from backward

analysisnodes that represent the next steps in computation. Backward analyses are useful for
determining what happens after an event of interest. Live variables is a backward
analysis that determines whether the value held in a variable may be subsequently

88 Dependence and Data Flow Models

int k;

i < 10;

for (int i=0;

++i) }

true

 if (someCondition(i)) {

else
{k += i;}

static void questionable() {

A

C

B

D

F

G

def = {}
use = {}

def = {i}
use = {}

def = {}
use = {i}

def = {}
use = {i}

def = {k}
use = {i,k}

def = {i}
use = {i}

{k = 0;} E
def = {k}
use = {}

falsetrue

false

System.out.println(k);
}

H

def = {}
use = {k}

Figure 6.9: Control flow graph of the source code in Figure 6.8, annotated with vari-
able definitions and uses.

Classic Analyses: Live and Avail 89

int k;

i < 10;

for (int i=0;

++i) }

true

 if (someCondition(i)) {

else
{k += i;}

static void questionable() {

A

C

B

D

F

G

gen = {i}

gen = {k}
{k = 0;} E

gen = {k}

falsetrue

false

System.out.println(k);
}

H

kill = {i,k}

gen = {i}

Figure 6.10: Control flow graph of the source code in Figure 6.8, annotated with gen
and kill sets for checking variable initialization using a forward, all-paths Avail anal-
ysis. (Empty gen and kill sets are omitted.) The Avail set flowing from node G to node
C will be {i,k}, but the Avail set flowing from node B to node C is {i}. The all-paths
analysis intersects these values, so the resulting Avail(C) is {i}. This value propagates
through nodes C and D to node F, which has a use of k as well as a definition. Since
k 62 Avail(F), a possible use of an uninitialized variable is detected.

90 Dependence and Data Flow Models

used. Because a variable is considered live if there is any possible execution path on
which it is used, a backward, any-path analysis is used.

A variable is live at a point in the control flow graph if, on some execution path, its
current value may be used before it is changed. Live variables analysis can be expressed
as set equations as before. Where Reach and Avail propagate values to a node from its
predecessors, Live propagates values from the successors of a node. The gen sets are
variables used at a node, and the kill sets are variables whose values are replaced. Set
union is used to combine values from adjacent nodes, since a variable is live at a node
if it is live at any of the succeeding nodes.

Live(n) =
[

m2succ(n)

LiveOut(m)

LiveOut(n) = (Live(n)\ kill(n))[Gen(n)

These set equations can be implemented using a work-list algorithm analogous
to those already shown for reaching definitions and available expressions, except that
successor edges are followed in place of predecessors and vice versa.

Like available expressions analysis, live variables analysis is of interest in testing
and analysis primarily as a pattern for recognizing properties of a certain form. A
backward, any-paths analysis allows us to check properties of the following form:

“After D occurs, there is at least one execution path on which G occurs
with no intervening occurrence of K.”

Again we choose tokens that represent properties, using gen sets to mark occurrences
of G events (where a property becomes true) and kill sets to mark occurrences of K
events (where a property ceases to be true).

One application of live variables analysis is to recognize useless definitions, that
is, assigning a value that can never be used. A useless definition is not necessarily a
program error, but is often symptomatic of an error. In scripting languages like Perl and
Python, which do not require variables to be declared before use, a useless definition
typically indicates that a variable name has been misspelled, as in the common gateway
interface (CGI) script of Figure 6.11.

We have so far seen a forward, any-path analysis (reaching definitions), a forward,
all-paths analysis (available definitions), and a backward, any-path analysis (live vari-
ables). One might expect, therefore, to round out the repertoire of patterns with a
backward, all-paths analysis, and this is indeed possible. Since there is no classical
name for this combination, we will call it “inevitability” and use it for properties of the
form

“After D occurs, G always occurs with no intervening occurrence of K”

or, informally,

“D inevitably leads to G before K”

Examples of inevitability checks might include ensuring that interrupts are reenabled
after executing an interrupt-handling routine in low-level code, files are closed after
opening them, and so on.

From Execution to Conservative Flow Analysis 91

1 class SampleForm(FormData):
2 """ Used with Python cgi module
3 to hold and validate data
4 from HTML form """
5

6 fieldnames = (’name’, ’email’, ’comment’)
7

8 # Trivial example of validation. The bug would be
9 # harder to see in a real validation method.

10 def validate(self):
11 valid = 1;
12 if self.name == "" : valid = 0
13 if self.email == "" : vald = 0
14 if self.comment == "" : valid = 0
15 return valid

Figure 6.11: Part of a CGI program (Web form processing) in Python. The misspelled
variable name in the data validation method will be implicitly declared and will not
be rejected by the Python compiler or interpreter, which could allow invalid data to
be treated as valid. The classic live variables data flow analysis can show that the
assignment to valid is a useless definition, suggesting that the programmer probably
intended to assign the value to a different variable.

6.4 From Execution to Conservative Flow Analysis

Data flow analysis algorithms can be thought of as a kind of simulated execution. In
place of actual values, much smaller sets of possible values are maintained (e.g., a
single bit to indicate whether a particular variable has been initialized). All possible
execution paths are considered at once, but the number of different states is kept small
by associating just one summary state at each program point (node in the control flow
graph). Since the values obtained at a particular program point when it is reached
along one execution path may be different from those obtained on another execution
path, the summary state must combine the different values. Considering flow analysis
in this light, we can systematically derive a conservative flow analysis from a dynamic
(that is, run-time) analysis.

As an example, consider the “taint-mode” analysis that is built into the program-
ming language Perl. Taint mode is used to prevent some kinds of program errors that
result from neglecting to fully validate data before using it, particularly where invali-
dated data could present a security hazard. For example, if a Perl script wrote to a file
whose name was taken from a field in a Web form, a malicious user could provide a full
path to sensitive files. Taint mode detects and prevents use of the “tainted” Web form
input in a sensitive operation like opening a file. Other languages used in CGI scripts
do not provide such a monitoring function, but we will consider how an analogous
static analysis could be designed for a programming language like C.

92 Dependence and Data Flow Models

When Perl is running in taint mode, it tracks the sources from which each variable
value was derived, and distinguishes between safe and tainted data. Tainted data is any
input (e.g., from a Web form) and any data derived from tainted data. For example,
if a tainted string is concatenated with a safe string, the result is a tainted string. One
exception is that pattern matching always returns safe strings, even when matching
against tainted data — this reflects the common Perl idiom in which pattern matching
is used to validate user input. Perl’s taint mode will signal a program error if tainted
data is used in a potentially dangerous way (e.g., as a file name to be opened).

Perl monitors values dynamically, tagging data values and propagating the tags
through computation. Thus, it is entirely possible that a Perl script might run with-
out errors in testing, but an unanticipated execution path might trigger a taint mode
program error in production use. Suppose we want to perform a similar analysis, but
instead of checking whether “tainted” data is used unsafely on a particular execution,
we want to ensure that tainted data can never be used unsafely on any execution. We
may also wish to perform the analysis on a language like C, for which run-time tagging
is not provided and would be expensive to add. So, we can consider deriving a conser-
vative, static analysis that is like Perl’s taint mode except that it considers all possible
execution paths.

A data flow analysis for taint would be a forward, any-path analysis with tokens
representing tainted variables. The gen set at a program point would be a set containing
any variable that is assigned a tainted value at that point. Sets of tainted variables would
be propagated forward to a node from its predecessors, with set union where a node in
the control flow graph has more than one predecessor (e.g., the head of a loop).

There is one fundamental difference between such an analysis and the classic data
flow analyses we have seen so far: The gen and kill sets associated with a program
point are not constants. Whether or not the value assigned to a variable is tainted (and
thus whether the variable belongs in the gen set or in the kill set) depends on the set
of tainted variables at that program point, which will vary during the course of the
analysis.

There is a kind of circularity here — the gen set and kill set depend on the set of
tainted variables, and the set of tainted variables may in turn depend on the gen and kill
set. Such circularities are common in defining flow analyses, and there is a standard
approach to determining whether they will make the analysis unsound. To convince
ourselves that the analysis is sound, we must show that the output values computed by
each flow equation are monotonically increasing functions of the input values. We will
say more precisely what “increasing” means below.

The determination of whether a computed value is tainted will be a simple function
of the set of tainted variables at a program point. For most operations of one or more
arguments, the output is tainted if any of the inputs are tainted. As in Perl, we may
designate one or a few operations (operations used to check an input value for validity)
as taint removers. These special operations always return an untainted value regardless
of their inputs.

Suppose we evaluate the taintedness of an expression with the input set of tainted
variables being {a,b}, and again with the input set of tainted variables being {a,b,c}.
Even without knowing what the expression is, we can say with certainty that if the
expression is tainted in the first evaluation, it must also be tainted in the second evalu-

From Execution to Conservative Flow Analysis 93

{ a, b, c }

{ a, b } { a, c } { b, c }

{ a } { b } { c }

{ }

Figure 6.12: The powerset lattice of set {a,b,c}. The powerset contains all subsets of
the set and is ordered by set inclusion.

ation, in which the set of tainted input variables is larger. This also means that adding
elements to the input tainted set can only add elements to the gen set for that point, or
leave it the same, and conversely the kill set can only grow smaller or stay the same.
We say that the computation of tainted variables at a point increases monotonically.

To be more precise, the monotonicity argument is made by arranging the possible
values in a lattice. In the sorts of flow analysis framework considered here, the lattice
is almost always made up of subsets of some set (the set of definitions, or the set of
tainted variables, etc.); this is called a powerset lattice because the powerset of set A is powerset lattice

the set of all subsets of A. The bottom element of the lattice is the empty set, the top is
the full set, and lattice elements are ordered by inclusion as in Figure 6.12. If we can
follow the arrows in a lattice from element x to element y (e.g., from {a} to {a,b,c}),
then we say y > x. A function f is monotonically increasing if

y� x) f (y)� f (x)

Not only are all of the individual flow equations for taintedness monotonic in this
sense, but in addition the function applied to merge values where control flow paths
come together is also monotonic:

A◆ B) A[C ◆ B[C

If we have a set of data flow equations that is monotonic in this sense, and if we
begin by initializing all values to the bottom element of the lattice (the empty set in this
case), then we are assured that an iterative data flow analysis will converge on a unique
minimum solution to the flow equations.

94 Dependence and Data Flow Models

The standard data flow analyses for reaching definitions, live variables, and avail-
able expressions can all be justified in terms of powerset lattices. In the case of available
expressions, though, and also in the case of other all-paths analyses such as the one we
have called “inevitability,” the lattice must be flipped over, with the empty set at the top
and the set of all variables or propositions at the bottom. (This is why we used the set
of all tokens, rather than the empty set, to initialize the Avail sets in Figure 6.7.)

6.5 Data Flow Analysis with Arrays and Pointers

The models and flow analyses described in the preceding section have been limited
to simple scalar variables in individual procedures. Arrays and pointers (including
object references and procedure arguments) introduce additional issues, because it is
not possible in general to determine whether two accesses refer to the same storage
location. For example, consider the following code fragment:

1 a[i] = 13;
2 k = a[j];

Are these two lines a definition-use pair? They are if the values of i and j are equal,
which might be true on some executions and not on others. A static analysis cannot, in
general, determine whether they are always, sometimes, or never equal, so a source of
imprecision is necessarily introduced into data flow analysis.

Pointers and object references introduce the same issue, often in less obvious ways.
Consider the following snippet:

1 a[2] = 42;
2 i = b[2];

It seems that there cannot possibly be a definition-use pair involving these two
lines, since they involve none of the same variables. However, arrays in Java are dy-
namically allocated objects accessed through pointers. Pointers of any kind introduce
the possibility of aliasing, that is, of two different names referring to the same stor-
age location. For example, the two lines above might have been part of the following
program fragment:

1 int [] a = new int[3];
2 int [] b = a;
3 a[2] = 42;
4 i = b[2];

Here a and b are aliases, two different names for the same dynamically allocatedD alias

array object, and an assignment to part of a is also an assignment to part of b.
The same phenomenon, and worse, appears in languages with lower-level pointer

manipulation. Perhaps the most egregious example is pointer arithmetic in C:
1 p = &b;
2 *(p + i) = k;

Data Flow Analysis with Arrays and Pointers 95

It is impossible to know which variable is defined by the second line. Even if
we know the value of i, the result is dependent on how a particular compiler arranges
variables in memory.

Dynamic references and the potential for aliasing introduce uncertainty into data
flow analysis. In place of a definition or use of a single variable, we may have a
potential definition or use of a whole set of variables or locations that could be aliases
of each other. The proper treatment of this uncertainty depends on the use to which
the analysis will be put. For example, if we seek strong assurance that v is always
initialized before it is used, we may not wish to treat an assignment to a potential alias
of v as initialization, but we may wish to treat a use of a potential alias of v as a use of
v.

A useful mental trick for thinking about treatment of aliases is to translate the un-
certainty introduced by aliasing into uncertainty introduced by control flow. After all,
data flow analysis already copes with uncertainty about which potential execution paths
will actually be taken; an infeasible path in the control flow graph may add elements
to an any-paths analysis or remove results from an all-paths analysis. It is usually ap-
propriate to treat uncertainty about aliasing consistently with uncertainty about control
flow. For example, considering again the first example of an ambiguous reference:

1 a[i] = 13;
2 k = a[j];

We can imagine replacing this by the equivalent code:
1 a[i] = 13;
2 if (i == j) {
3 k = a[i];
4 } else {
5 k = a[j];
6 }

In the (imaginary) transformed code, we could treat all array references as distinct,
because the possibility of aliasing is fully expressed in control flow. Now, if we are
using an any-path analysis like reaching definitions, the potential aliasing will result
in creating a definition-use pair. On the other hand, an assignment to a[j] would not
kill a previous assignment to a[i]. This suggests that, for an any-path analysis, gen sets
should include everything that might be referenced, but kill sets should include only
what is definitely referenced.

If we were using an all-paths analysis, like available expressions, we would obtain
a different result. Because the sets of available expressions are intersected where con-
trol flow merges, a definition of a[i] would make only that expression, and none of its
potential aliases, available. On the other hand, an assignment to a[j] would kill a[i]. This
suggests that, for an all-paths analysis, gen sets should include only what is definitely
referenced, but kill sets should include all the possible aliases.

Even in analysis of a single procedure, the effect of other procedures must be con-
sidered at least with respect to potential aliases. Consider, for example, this fragment
of a Java method:

96 Dependence and Data Flow Models

1 public void transfer (CustInfo fromCust, CustInfo toCust) {
2

3 PhoneNum fromHome = fromCust.gethomePhone();
4 PhoneNum fromWork = fromCust.getworkPhone();
5

6 PhoneNum toHome = toCust.gethomePhone();
7 PhoneNum toWork = toCust.getworkPhone();

We cannot determine whether the two arguments fromCust and toCust are refer-
ences to the same object without looking at the context in which this method is called.
Moreover, we cannot determine whether fromHome and fromWork are (or could be)
references to the same object without more information about how CustInfo objects are
treated elsewhere in the program.

Sometimes it is sufficient to treat all nonlocal information as unknown. For ex-
ample, we could treat the two CustInfo objects as potential aliases of each other, and
similarly treat the four PhoneNum objects as potential aliases. Sometimes, though,
large sets of aliases will result in analysis results that are so imprecise as to be use-
less. Therefore data flow analysis is often preceded by an interprocedural analysis to
calculate sets of aliases or the locations that each pointer or reference can refer to.

6.6 Interprocedural Analysis

Most important program properties involve more than one procedure, and as mentioned
earlier, some interprocedural analysis (e.g., to detect potential aliases) is often required
as a prelude even to intraprocedural analysis. One might expect the interprocedural
analysis and models to be a natural extension of the intraprocedural analysis, following
procedure calls and returns like intraprocedural control flow. Unfortunately, this is
seldom a practical option.

If we were to extend data flow models by following control flow paths through
procedure calls and returns, using the control flow graph model and the call graph
model together in the obvious way, we would observe many spurious paths. Figure 6.13
illustrates the problem: Procedure foo and procedure bar each make a call on procedure
sub. When procedure call and return are treated as if they were normal control flow, in
addition to the execution sequences (A,X ,Y,B) and (C,X ,Y,D), the combined graph
contains the impossible paths (A,X ,Y,D) and (C,X ,Y,B).

It is possible to represent procedure calls and returns precisely, for example by
making a copy of the called procedure for each point at which it is called. This would
result in a context-sensitive analysis. The shortcoming of context sensitive analysiscontext-sensitive

analysis was already mentioned in the previous chapter: The number of different contexts in
which a procedure must be considered could be exponentially larger than the number
of procedures. In practice, a context-sensitive analysis can be practical for a small
group of closely related procedures (e.g., a single Java class), but is almost never a
practical option for a whole program.

Some interprocedural properties are quite independent of context and lend them-
selves naturally to analysis in a hierarchical, piecemeal fashion. Such a hierarchical

Interprocedural Analysis 97

A

B

sub(...)

Foo()

call
return

bar(

C

D

sub(...)

bar()

call
returnX

Y

sub()

Figure 6.13: Spurious execution paths result when procedure calls and returns are
treated as normal edges in the control flow graph. The path (A,X ,Y,D) appears in the
combined graph, but it does not correspond to an actual execution order.

analysis can be both precise and efficient. The analyses that are provided as part of
normal compilation are often of this sort. The unhandled exception analysis of Java is
a good example: Each procedure (method) is required to declare the exceptions that it
may throw without handling. If method M calls method N in the same or another class,
and if N can throw some exception, then M must either handle that exception or de-
clare that it, too, can throw the exception. This analysis is simple and efficient because,
when analyzing method M, the internal structure of N is irrelevant; only the results of
the analysis at N (which, in Java, is also part of the signature of N) are needed.

Two conditions are necessary to obtain an efficient, hierarchical analysis like the ex-
ception analysis routinely carried out by Java compilers. First, the information needed
to analyze a calling procedure must be small: It must not be proportional either to the
size of the called procedure, or to the number of procedures that are directly or in-
directly called. Second, it is essential that information about the called procedure be
independent of the caller; that is, it must be context-independent. When these two con-
ditions are true, it is straightforward to develop an efficient analysis that works upward
from leaves of the call graph. (When there are cycles in the call graph from recursive
or mutually recursive procedures, an iterative approach similar to data flow analysis
algorithms can usually be devised.)

Unfortunately, not all important properties are amenable to hierarchical analysis.
Potential aliasing information, which is essential to data flow analysis even within in-
dividual procedures, is one of those that are not. We have seen that potential aliasing
can depend in part on the arguments passed to a procedure, so it does not have the
context-independence property required for an efficient hierarchical analysis. For such
an analysis, additional sacrifices of precision must be made for the sake of efficiency.

Even when a property is context-dependent, an analysis for that property may be
context-insensitive, although the context-insensitive analysis will necessarily be less
precise as a consequence of discarding context information. At the extreme, a linear
time analysis can be obtained by discarding both context and control flow information.

flow-insensitive

Context- and flow-insensitive algorithms for pointer analysis typically treat each

98 Dependence and Data Flow Models

statement of a program as a constraint. For example, on encountering an assignment
1 x = y;

where y is a pointer, such an algorithm simply notes that x may refer to any of the
same objects that y may refer to. References(x) ◆ References(y) is a constraint that is
completely independent of the order in which statements are executed. A procedure
call, in such an analysis, is just an assignment of values to arguments. Using efficient
data structures for merging sets, some analyzers can process hundreds of thousands of
lines of source code in a few seconds. The results are imprecise, but still much better
than the worst-case assumption that any two compatible pointers might refer to the
same object.

The best approach to interprocedural pointer analysis will often lie somewhere be-
tween the astronomical expense of a precise, context- and flow-sensitive pointer anal-
ysis and the imprecision of the fastest context- and flow-insensitive analyses. Unfor-
tunately, there is not one best algorithm or tool for all uses. In addition to context and
flow sensitivity, important design trade-offs include the granularity of modeling refer-
ences (e.g., whether individual fields of an object are distinguished) and the granularity
of modeling the program heap (that is, which allocated objects are distinguished from
each other).

Summary

Data flow models are used widely in testing and analysis, and the data flow analysis
algorithms used for deriving data flow information can be adapted to additional uses.
The most fundamental model, complementary to models of control flow, represents the
ways values can flow from the points where they are defined (computed and stored) to
points where they are used.

Data flow analysis algorithms efficiently detect the presence of certain patterns in
the control flow graph. Each pattern involves some nodes that initiate the pattern and
some that conclude it, and some nodes that may interrupt it. The name “data flow
analysis” reflects the historical development of analyses for compilers, but patterns
may be used to detect other control flow patterns.

An any-path analysis determines whether there is any control flow path from the
initiation to the conclusion of a pattern without passing through an interruption. An all-
paths analysis determines whether every path from the initiation necessarily reaches a
concluding node without first passing through an interruption. Forward analyses check
for paths in the direction of execution, and backward analyses check for paths in the
opposite direction. The classic data flow algorithms can all be implemented using
simple work-list algorithms.

A limitation of data flow analysis, whether for the conventional purpose or to check
other properties, is that it cannot distinguish between a path that can actually be exe-
cuted and a path in the control flow graph that cannot be followed in any execution. A
related limitation is that it cannot always determine whether two names or expressions
refer to the same object.

Fully detailed data flow analysis is usually limited to individual procedures or a few
closely related procedures (e.g., a single class in an object-oriented program). Analyses

Interprocedural Analysis 99

that span whole programs must resort to techniques that discard or summarize some
information about calling context, control flow, or both. If a property is independent
of calling context, a hierarchical analysis can be both precise and efficient. Potential
aliasing is a property for which calling context is significant. There is therefore a trade-
off between very fast but imprecise alias analysis techniques and more precise but much
more expensive techniques.

Further Reading

Data flow analysis techniques were originally developed for compilers, as a systematic
way to detect opportunities for code-improving transformations and to ensure that those
transformations would not introduce errors into programs (an all-too-common experi-
ence with early optimizing compilers). The compiler construction literature remains
an important source of reference information for data flow analysis, and the classic
“Dragon Book” text [ASU86] is a good starting point.

Fosdick and Osterweil recognized the potential of data flow analysis to detect pro-
gram errors and anomalies that suggested the presence of errors more than two decades
ago [FO76]. While the classes of data flow anomaly detected by Fosdick and Oster-
weil’s system has largely been obviated by modern strongly typed programming lan-
guages, they are still quite common in modern scripting and prototyping languages.
Olender and Osterweil later recognized that the power of data flow analysis algo-
rithms for recognizing execution patterns is not limited to properties of data flow,
and developed a system for specifying and checking general sequencing properties
[OO90, OO92].

Interprocedural pointer analyses — either directly determining potential aliasing re-
lations, or deriving a “points-to” relation from which aliasing relations can be derived
— remains an area of active research. At one extreme of the cost-versus-precision
spectrum of analyses are completely context- and flow-insensitive analyses like those
described by Steensgaard [Ste96]. Many researchers have proposed refinements that
obtain significant gains in precision at small costs in efficiency. An important direc-
tion for future work is obtaining acceptably precise analyses of a portion of a large
program, either because a whole program analysis cannot obtain sufficient precision at
acceptable cost or because modern software development practices (e.g., incorporating
externally developed components) mean that the whole program is never available in
any case. Rountev et al. present initial steps toward such analyses [RRL99]. A very
readable overview of the state of the art and current research directions (circa 2001) is
provided by Hind [Hin01].

100 Dependence and Data Flow Models

Exercises

6.1. For a graph G = (N,V) with a root r 2N, node m dominates node n if every path
from r to n passes through m. The root node is dominated only by itself.
The relation can be restated using flow equations.

(a) When dominance is restated using flow equations, will it be stated in the
form of an any-path problem or an all-paths problem? Forward or back-
ward? What are the tokens to be propagated, and what are the gen and kill
sets?

(b) Give a flow equation for Dom(n).
(c) If the flow equation is solved using an iterative data flow analysis, what

should the set Dom(n) be initialized to at each node n?
(d) Implement an iterative solver for the dominance relation in a programming

language of your choosing.

The first line of input to your program is an integer between 1 and 100 in-
dicating the number k of nodes in the graph. Each subsequent line of input
will consist of two integers, m and n, representing an edge from node m
to node n. Node 0 designates the root, and all other nodes are designated
by integers between 0 and k� 1. The end of the input is signaled by the
pseudo-edge (�1,�1).

The output of your program should be a sequences of lines, each containing
two integers separated by blanks. Each line represents one edge of the Dom
relation of the input graph.

(e) The Dom relation itself is not a tree. The immediate dominators relation is
a tree. Write flow equations to calculate immediate dominators, and then
modify the program from part (d) to compute the immediate dominance
relation.

6.2. Write flow equations for inevitability, a backward, all-paths intraprocedural anal-
ysis. Event (or program point) q is inevitable at program point p if every execu-
tion path from p to a normal exit point passes through q.

6.3. The Java language automatically initializes fields of objects, in contrast to local
variables of methods that the programmer is responsible for initializing. Given
what you know of intra- and interprocedural data flow analysis, explain why the
language designers may have made these design choices.

6.4. Show the data and control dependence graphs for the binary search program of
Figure 7.1 on page 103.

Chapter 7

Symbolic Execution and

Proof of Properties

Symbolic execution builds predicates that characterize the conditions under which ex-
ecution paths can be taken and the effect of the execution on program state. Extracting
predicates through symbolic execution is the essential bridge from the complexity of
program behavior to the simpler and more orderly world of logic. It finds important
applications in program analysis, in generating test data, and in formal verification1

(proofs) of program correctness.
Conditions under which a particular control flow path is taken can be determined

through symbolic execution. This is useful for identifying infeasible program paths
(those that can never be taken) and paths that could be taken when they should not. It is
fundamental to generating test data to execute particular parts and paths in a program.

Deriving a logical representation of the effect of execution is essential in methods
that compare a program’s possible behavior to a formal specification. We have noted
in earlier chapters that proving the correctness of a program is seldom an achievable or
useful goal. Nonetheless the basic methods of formal verification, including symbolic
execution, underpin practical techniques in software analysis and testing. Symbolic
execution and the techniques of formal verification find use in several domains:

• Rigorous proofs of properties of (small) critical subsystems, such as a safety
kernel of a medical device;

• Formal verification of critical properties (e.g., security properties) that are par-
ticularly resistant to dynamic testing;

• Formal verification of algorithm descriptions and logical designs that are much
less complex than their implementations in program code.

1Throughout this book we use the term verification in the broad sense of checking whether a program
or system is consistent with some form of specification. The broad sense of verification includes, for ex-
ample, inspection techniques and program testing against informally stated specifications. The term formal
verification is used in the scientific literature in a much narrower sense to denote techniques that construct a
mathematical proof of consistency between some formal representation of a program or design and a formal
specification.

101

102 Symbolic Execution and Proof of Properties

More fundamentally, the techniques of formal reasoning are a conceptual foundation
for a variety of analysis techniques, ranging from informal reasoning about program
behavior and correctness to automated checks for certain classes of errors.

7.1 Symbolic State and Interpretation

Tracing execution is familiar to any programmer who has attempted to understand the
behavior of source code by simulating execution. For example, one might trace a
single statement in the binary search routine of Figure 7.1 as shown on the left side
of Figure 7.2. One can just as easily use symbolic values like L and H in place of
concrete values, as shown on the right side of Figure 7.2. Tracing execution with
symbolic values and expressions is the basis of symbolic execution.

When tracing execution with concrete values, it is clear enough what to do with a
branch statement, for example, an if or while test: The test predicate is evaluated with
the current values, and the appropriate branch is taken. If the values bound to variables
are symbolic expressions, however, both the True and False outcomes of the decision
may be possible. Execution can be traced through the branch in either direction, and
execution of the test is interpreted as adding a constraint to record the outcome. For
example, consider

while (high >= low) {

Suppose the symbolic state after one loop iteration is

low = 0

^ high = H�1
2 �1

^ mid = H�1
2

If we trace execution of the test assuming a True outcome (leading to a second
iteration of the loop), the loop condition becomes a constraint in the symbolic state
immediately after the while test:

low = 0

^ high = H�1
2 �1

^ mid = H�1
2

^ H�1
2 �1� 0

Later, when we consider the branch assuming a False outcome of the test, the new
constraint is negated and becomes ¬(H�1

2 �1� 0) or, equivalently, H�1
2 �1 < 0.

Execution can proceed in this way down any path in the program. One can think
of “satisfying” the predicate by finding concrete values for the symbolic variables that
make it evaluate to True; this corresponds to finding data values that would force execu-
tion of that program path. If no such satisfying values are possible, then that execution
path cannot be executed with any data values; we say it is an infeasible path.

Symbolic State and Interpretation 103

1

2 /** Binary search for key in sorted array dictKeys, returning
3 * corresponding value from dictValues or null if key does
4 * not appear in dictKeys. Standard binary search algorithm
5 * as described in any elementary text on data structures and algorithms.
6 **/
7

8 char * binarySearch(char *key, char *dictKeys[], char *dictValues[],
9 int dictSize) {

10

11 int low = 0;
12 int high = dictSize - 1;
13 int mid;
14 int comparison;
15

16 while (high >= low) {
17 mid = (high + low) / 2;
18 comparison = strcmp(dictKeys[mid], key);
19 if (comparison < 0) {
20 /* dictKeys[mid] too small; look higher */
21 low = mid + 1;
22 } else if (comparison > 0) {
23 /* dictKeys[mid] too large; look lower */
24 high = mid - 1;
25 } else {
26 /* found */
27 return dictValues[mid];
28 }
29 }
30 return 0; /* null means not found */
31 }
32

Figure 7.1: Binary search procedure.

104 Symbolic Execution and Proof of Properties

before
low 12
high 15
mid –

mid = (high + low) / 2;

after
low 12
high 15
mid 13

before
low L
high H
mid –

mid = (high + low) / 2;

after
low L

high H

mid L+H
2

Figure 7.2: Hand-tracing an execution step with concrete values (left) and symbolic
values (right).

7.2 Summary Information

If there were only a finite number of execution paths in a program, then in principle
a symbolic executor could trace each of them and obtain a precise representation of a
predicate that characterizes each one. From even a few execution steps in the preced-
ing small example, one can see that the representation of program state will quickly
become unwieldy. Moreover, there are a potentially infinite number of program exe-
cution paths to consider. An automated symbolic executor can cope with much more
complex symbolic expressions than a human, but even an automated tool will not get
far with brute force evaluation of every program path.

Since the representation of program state is a logical predicate, there is an alterna-
tive to keeping a complete representation of the state at every point: a weaker predicate
can always be substituted for the complete representation. That is, if the representation
of the program state at some point in execution is P, and if W) P, then substituting
W for P will result in a predicate that still correctly describes the execution state, but
with less precision. We call W a summary of P.

Consider the computation of mid in line 17 of the binary search example from
Figure 7.1. If we are reasoning about the performance of binary search, the fact that
the value of mid lies halfway between the values of low and high is important, but if
we are reasoning about functional correctness it matters only that mid lies somewhere
between them. Thus, if we had low = L^high = H ^mid = M, and if we could show
L H, we could replace M = (L+H)/2 by the weaker condition LM  H.

Note that the weaker predicate L  mid  H is chosen based on what must be
true for the program to execute correctly. This is not information that can be derived
automatically from source code; it depends as well on our understanding of the code
and our rationale for believing it to be correct. A predicate stating what should be true
at a given point can be expressed in the form of an assertion. When we assert that
predicate W is true at a point in a program, we mark our intention both to verify it at
that point (by showing that W is implied by the predicates that describe the program
state at that point) and to replace part of the program state description P by W at that

Loops and Assertions 105

point.
One of the prices of weakening the predicate in this way will be that satisfying the

predicate is no longer sufficient to find data that forces the program execution along
that path. If the complete predicate P is replaced by a weaker predicate W, then test
data that satisfies W is necessary to execute the path, but it may not be sufficient.
Showing that W cannot be satisfied is still tantamount to showing that the execution
path is infeasible.

7.3 Loops and Assertions

The number of execution paths through a program with one or more loops is potentially
infinite, or at least unimaginably huge. This may not matter for symbolic execution
along a single, relatively simple execution path. It becomes a major obstacle if sym-
bolic execution is used to reason about a path involving several iterations of a loop, or
to reason about all possible program executions.

To reason about program behavior in a loop, we can place within the loop an asser-
tion that states a predicate that is expected to be true each time execution reaches that
point. Such an assertion is called an invariant. Each time program execution reaches D loop invariant

the invariant assertion, we can weaken the description of program state. If the program
state is represented by P, and the assertion is W , we must first ascertain W) P (the
assertion is satisfied along that path), and then we can substitute W for P.

Suppose every loop contained such an assertion, and suppose in addition there was
an assertion at the beginning of the program (perhaps just the trivial predicate True)
and a final assertion at the end. In that case, every possible execution path would
consist of a sequence of segments from one assertion to the next. The assertion at the
beginning of a segment is the precondition for that segment, and the assertion at the D precondition

end of the segment is the postcondition. If we were able to execute each such segment D postcondition

independently, starting with only the precondition and then checking that the assertion
at the end of the segment is satisfied, we would have shown that every assertion is
satisfied on every possible program execution — that is, we would have verified correct
execution on an infinite number of program paths by verifying the finite number of
segments from which the paths are constructed.

We illustrate the technique by using assertions to check the logic of the binary
search algorithm implemented by the program in Figure 7.1. The first precondition and
the final postcondition serve as a specification of correct behavior as a kind of contract:
If the client ensures the precondition, the program will ensure the postcondition.

The binary search procedure depends on the array dictKeys being sorted. Thus we
might have a precondition assertion like the following:

8i, j,0 i < j < size : dictKeys[i] dictKeys[j]

Here we interpret s  t for strings as indicating lexical order consistent with the C
library strcmp; that is, we assume that s t whenever strcmp(s,t) 0. For convenience
we will abbreviate the predicate above as sorted.

106 Symbolic Execution and Proof of Properties

We can associate the following assertion with the while statement at line 16:

8i,0 i < size : dictkeys[i] = key) low i high

In other words, we assert that the key can appear only between low and high, if it
appears anywhere in the array. We will abbreviate this condition as inrange.

Inrange must be true when we first reach the loop, because at that point the range
low . . .high is the same as 0 . . .size�1. For each path through the body of the loop, the
symbolic executor would begin with the invariant assertion above, and determine that
it is true again after following that path. We say the invariant is preserved.

While the inrange predicate should be true on each iteration, it is not the complete
loop invariant. The sorted predicate remains true and will be used in reasoning. In
principle it is also part of the invariant, although in informal reasoning we may not
bother to write it down repeatedly. The full invariant is therefore sorted^ inrange.

Let us consider the path from line 16 through line 21 and back to the loop test. We
begin by assuming that the loop invariant assertion holds at the beginning of the seg-
ment. Where expressions in the invariant refer to program variables whose values may
change, they are replaced by symbols representing the initial values of those variables.
The variable bindings will be

low = L
^ high = H

We need not introduce symbols to represent the values of dictKeys, dictVals, key, or
size. Since those variables are not changed in the procedure, we can use the variable
names directly. The condition, instantiated with symbolic values, will be

8i, j,0 i < j < size : dictKeys[i] dictKeys[j]
^ 8k,0 k < size : dictkeys[k] = key) L k  H

Passing through the while test into the body of the loop adds the clause H � L to
this condition. Execution of line 17 adds a binding of b(H +L)/2c to variable mid,
where bxc is the integer obtained by rounding x toward zero. As we have discussed,
this can be simplified with an assertion so that the bindings and condition become

low = L (bindings)
^ high = H
^ mid = M
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j] (sorted)
^ 8k,0 k < size : dictkeys[k] = key) L k  H (inrange)
^ H �M � L

Tracing the execution path into the first branch of the if statement to line 21, we
add the constraint that strcmp(dictKeys[mid], key) returns a negative value, which we
interpret as meaning the probed entry is lexically less than the string value of the key.
Thus we arrive at the symbolic constraint

Loops and Assertions 107

low = L
^ high = H
^ mid = M
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j]
^ 8k,0 k < size : dictkeys[k] = key) L k  H
^ H �M � L
^ dictKeys[M] < key

The assignment in line 21 then modifies a variable binding without otherwise dis-
turbing the conditions, giving us

low = M +1
^ high = H
^ mid = M
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j]
^ 8k,0 k < size : dictkeys[k] = key) L k  H
^ H �M � L
^ dictKeys[M] < key

Finally, we trace execution back to the while test at line 16. Now our obligation is
to show that the invariant still holds when instantiated with the changed set of variable
bindings. The sorted condition has not changed, and showing that it is still true is
trivial. The interesting part is the inrange predicate, which is instantiated with a new
value for low and thus becomes

8k,0 k < size : dictkeys[k] = key)M +1 k  H

Now the verification step is to show that this predicate is a logical consequence
of the predicate describing the program state. This step requires purely logical and
mathematical reasoning, and might be carried out either by a human or by a theorem-
proving tool. It no longer depends in any way upon the program. The task performed
by the symbolic executor is essentially to transform a question about a program (is the
invariant preserved on a particular path?) into a question of logic alone.

The path through the loop on which the probed key is too large, rather than too
small, proceeds similarly. The path on which the probed key matches the sought key
returns from the procedure, and our obligation there (trivial in this case) is to verify
that the contract of the procedure has been met.

The other exit from the procedure occurs when the loop terminates without locating
a matching key. The contract of the procedure is that it should return the null pointer
(represented in the C language by 0) only if the key appears nowhere in dictKeys[0..size-
1]. Since the null pointer is returned whenever the loop terminates, the postcondition
of the loop is that key is not present in dictKeys.

The loop invariant is used to show that the postcondition holds when the loop termi-
nates. What symbolic execution can verify immediately after a loop is that the invariant

108 Symbolic Execution and Proof of Properties

is true but the loop test is false. Thus we have

low = L (bindings)
^ high = H
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j] (sorted)
^ 8k,0 k < size : dictkeys[k] = key) L k  H (inrange)
^ L > H

Knowing that presence of the key in the array implies L  H, and that in fact L > H,
we can conclude that the key is not present. Thus the postcondition is established, and
the procedure fulfills its contract by returning the null pointer in this case.

Finding and verifying a complete set of assertions, including an invariant assertion
for each loop, is difficult in practice. Even the small example above is rather tedious
to verify by hand. More realistic examples can be quite demanding even with the aid
of symbolic execution tools. If it were easy or could be fully automated, we might
routinely use this method to prove the correctness of programs. Writing down a full
set of assertions formally, and rigorously verifying them, is usually reserved for small
and extremely critical modules, but the basic approach we describe here can also be
applied in a much less formal manner and is quite useful in finding holes in an informal
correctness argument.

7.4 Compositional Reasoning

The binary search procedure is very simple. There is only one loop, containing a single
if statement. It was not difficult to reason about individual paths through the control
flow. If the procedure contained nested loops or more conditional branches, we could
in principle still proceed in that manner as long as each cycle in the control flow graph
were broken by at least one assertion. It would, however, be very difficult to think
about programs in this manner and to choose appropriate assertions. It is better if our
approach follows the hierarchical structure of the program, both at a small scale (e.g.,
control flow within a single procedure) and at larger scales (across multiple procedures,
classes, subsystems, etc.).

The steps for verifying the binary search procedure above already hint at a hier-
archical approach. The loop invariant was not placed just anywhere in the loop. We
associated it with the beginning of the loop so that we could follow a standard style
of reasoning that allows us to compose facts about individual pieces of a program to
derive facts about larger pieces. In this hierarchical or compositional style, the effect
of any program block is described by a Hoare triple:Hoare triple

(| pre |) block (| post |)

The meaning of this triple is that if the program is in a state satisfying the precondition
pre at entry to the block, then after execution of the block it will be in a state satisfying
the postcondition post.

There are standard templates, or schemata, for reasoning with triples. In the previ-
ous section we were following this schema for reasoning about while loops:

Reasoning about Data Structures and Classes 109

(|I^C|) S (|I|)
(|I|) while(C) { S } (|I^¬C|)

The formula above the line is the premise of an inference, and the formula below
the line is the conclusion. An inference rule states that if we can verify the premise,
then we can infer the conclusion. The premise of this inference rule says that the loop
body preserves invariant I: If the invariant I is true before the loop, and if the condition
C governing the loop is also true, then the invariant is established again after executing
the loop body S. The conclusion says that the loop as a whole takes the program from
a state in which the invariant is true to a state satisfying a postcondition composed of
the invariant and the negation of the loop condition.

The important characteristic of these rules is that they allow us to compose proofs
about small parts of the program into proofs about larger parts. The inference rule for
while allows us to take a triple about the body of a loop and infer a triple about the
whole loop. There are similar rules for building up triples describing other kinds of
program blocks. For example:

(|P^C|) thenpart (|Q|) (|P^¬C|) elsepart (|Q|)
(|P|) if (C) {thenpart } else { elsepart } (|Q|)

This style of reasoning essentially lets us summarize the effect of a block of pro-
gram code by a precondition and a postcondition. Most importantly, we can summarize
the effect of a whole procedure in the same way. The contract of the procedure is a contract

precondition (what the calling client is required to provide) and a postcondition (what
the called procedure promises to establish or return). Once we have characterized the
contract of a procedure in this way, we can use that contract wherever the procedure
is called. For example, we might summarize the effect of the binary search procedure
this way:

(|8i, j,0 i < j < size : keys[i] keys[j]|)
s = binarySearch(k, keys, vals, size)

(| (s = v^9i,0 i < size : keys[i] = k^vals[i] = v)
_ (s = 0^ 6 9i,0 i < size : keys[i] = k) |)

7.5 Reasoning about Data Structures and Classes

The contract of the binary search procedure can be specified in a relatively simple,
self-contained manner. Imagine, though, that it is part of a module that maintains a
dictionary structure (e.g., the relation between postal codes and the nearest airport with
air-freight capability). In that case, the responsibility for keeping the table in sorted
order would belong to the module itself, and not to its clients. If implemented in a
modern object-oriented language, the data structure would not even be visible to the
client, but would rather be encapsulated within a class.

110 Symbolic Execution and Proof of Properties

Modular reasoning about programs must follow the modular structure of program
designs, with the same layering of design secrets. We must have ways of specifying
contracts for classes and other modules that do not expose what the program constructs
encapsulate. Fortunately there are well-developed methods for modular specification
and verification of modules that encapsulate data structures.

A data structure module provides a collection of procedures (methods) whose spec-
ifications are strongly interrelated. Their contracts with clients are specified by relating
them to an abstract model of their (encapsulated) inner state. For example, the behavior
of a dictionary object can be abstractly modeled as a set of hkey,valuei pairs. Reflect-
ing the desired encapsulation and information hiding, the abstract model of the value
of a dictionary structure is the same whether the structure is implemented using sorted
arrays, a hash table, or a tree.

A module may be required to establish and preserve certain structural character-
istics of the data structure it maintains. For example, if the dictionary structure is
maintained as a pair of sorted arrays, then it is the responsibility of the dictionary mod-
ule to maintain the arrays in sorted order. If the structure is a balanced search tree, then
the responsibility is to properly initialize and maintain the tree structure. This is called
a structural invariant, and it is directly analogous to a loop invariant. When reasoningstructural invariant

about a loop invariant, we begin by showing that it is established when execution first
reaches the loop; this corresponds to showing that the data structure is properly initial-
ized. The methods of the data structure module correspond to paths through the body
of the loop. Each method must preserve the structural invariant; that is, if the invariant
holds before invocation of the method, then it must still hold when the method returns.

The second responsibility of a class or other data structure module is that its be-
havior must faithfully reflect the abstract model. To make this precise, one posits an
abstraction function that maps concrete object states to abstract model states. The ab-abstraction function

straction function for a dictionary object would map the object to a set of hkey,valuei
pairs. Using the conventional notation f for an abstraction function, the contract of
the get method of java.util.Map might include a pre- and postcondition that can be ex-
pressed as the Hoare triple

(|hk,vi 2 f(dict)|)
o = dict.get(k)
(|o = v|)

Explicit consideration of the abstract model, abstraction function, and structural
invariant of a class or other data structure model is the basis not only of formal or
informal reasoning about correctness, but also of designing test cases and test oracles.

Summary

Symbolic execution is a bridge from an operational view of program execution to logi-
cal and mathematical statements. The basic symbolic execution technique is like hand
execution using symbols rather than concrete values. To use symbolic execution for
loops, procedure calls, and data structures encapsulated in modules (e.g., classes), it
is necessary to proceed hierarchically, composing facts about small parts into facts

Reasoning about Data Structures and Classes 111

about larger parts. Compositional reasoning is closely tied to strategies for specifying
intended behavior.

Symbolic execution is a fundamental technique that finds many different applica-
tions. Test data generators use symbolic execution to derive constraints on input data.
Formal verification systems combine symbolic execution to derive logical predicates
with theorem provers to prove them. Many development tools use symbolic execution
techniques to perform or check program transformations, for example, unrolling a loop
for performance or refactoring source code.

Human software developers can seldom carry out symbolic execution of program
code in detail, but often use it (albeit informally) for reasoning about algorithms and
data structure designs. The approach to specifying preconditions, postconditions, and
invariants is also widely used in programming, and is at least partially supported by
tools for run-time checking of assertions.

Further Reading

The techniques underlying symbolic execution were developed by Floyd [Flo67] and
Hoare [Hoa69], although the fundamental ideas can be traced all the way back to Tur-
ing and the beginnings of modern computer science. Hantler and King [HK76] provide
an excellent clear introduction to symbolic execution in program verification. Kem-
merer and Eckman [KE85] describe the design of an actual symbolic execution system,
with discussion of many pragmatic details that are usually glossed over in theoretical
descriptions.

Generation of test data using symbolic execution was pioneered by Clarke [Cla76],
and Howden [How77, How78] described an early use of symbolic execution to test
programs. The PREfix tool described by Bush, Pincus, and Sielaff [BPS00] is a modern
application of symbolic testing techniques with several refinements and simplifications
for adequate performance on large programs.

112 Symbolic Execution and Proof of Properties

Exercises

7.1. We introduce symbols to represent variables whose value may change, but we do
not bother to introduce symbols for variables whose value remains unchanged in
the code we are symbolically executing. Why are new symbols necessary in the
former case but not in the latter?

7.2. Demonstrate that the statement return dictValues[mid] at line 27 of the binary
search program of Figure 7.1 always returns the value of the input key.

7.3. Compute an upper bound to the number of iterations through the while loop of
the binary search program of Figure 7.1.

7.4. The body of the loop of the binary search program of Figure 7.1 can be modified
as follows:

1 if (comparison < 0) {
2 /* dictKeys[mid] too small; look higher */
3 low = mid + 1;
4 }
5 if (comparison > 0) {
6 /* dictKeys[mid] too large; look lower */
7 high = mid - 1;
8 }
9 if (comparison = 0) {

10 /* found */
11 return dictValues[mid];
12 }

Demonstrate that the path that traverses the false branch of all three statements
is infeasible.

7.5. Write the pre- and postconditions for a program that finds the index of the max-
imum element in a nonempty set of integers.

Chapter 8

Finite State Verification

Finite state verification techniques are intermediate in power and cost between con-
struction of simple control and data flow models, on the one hand, and reasoning with
the full strength of symbolic execution and theorem proving on the other. They auto-
matically explore finite but potentially very large representations of program behavior
to address important properties. They are particularly useful for checking properties
for which testing is inadequate. For example, synchronization faults in multi-threaded
programs may trigger failures very rarely, or under conditions that are nearly impos-
sible to re-create in testing, but finite state verification techniques can detect them by
exhaustively considering all possible interleavings of concurrent processes. Finite state
verification can similarly be used to systematically explore possible instantiations of a
data model.

8.1 Overview

Most important properties of program execution are undecidable in general, but finite
state verification can automatically prove some significant properties of a finite model
of the infinite execution space. Of course, there is no magic: We must carefully rec-
oncile and balance trade-offs among the generality of the properties to be checked,
the class of programs or models that can be checked, computational effort, and human
effort to use the techniques.

Symbolic execution and formal reasoning can prove many properties of program
behavior, but the power to prove complex properties is obtained at the cost of devising
complex conditions and invariants and expending potentially unbounded computational
effort. Construction of control and data flow models, on the other hand, can be fully
and efficiently automated, but is typically limited to very simple program properties.
Finite state verification borrows techniques from symbolic execution and formal verifi-
cation, but like control and data flow analysis, applies them to models that abstract the
potentially infinite state space of program behavior into finite representations. Finite
state verification techniques fall between basic flow analyses and full-blown formal
verification in the richness of properties they can address and in the human guidance
and computational effort they require.

113

114 Finite State Verification

Since even simple properties of programs are undecidable in general, one cannot
expect an algorithmic technique to provide precise answers in all cases. Often finite
state verification is used to augment or substitute for testing when the optimistic inac-
curacy of testing (due to examining only a sample of the program state space) is unac-
ceptable. Techniques are therefore often designed to provide results that are tantamount
to formal proofs of program properties. In trade for this assurance, both the programs
and properties that can be checked are severely restricted. Restrictions on program
constructs typically appear in procedures for deriving a finite state model from a pro-
gram, generating program code from a design model, or verifying consistency between
a program and a separately constructed model.

Finite state verification techniques include algorithmic checks, but it is misleading
to characterize them as completely automated. Human effort and considerable skill
are usually required to prepare a finite state model and a suitable specification for the
automated analysis step. Very often there is an iterative process in which the first
several attempts at verification produce reports of impossible or unimportant faults,
which are addressed by repeatedly refining the specification or the model.

The automated step can be computationally costly, and the computational cost can
impact the cost of preparing the model and specification. A considerable amount of
manual effort may be expended just in obtaining a model that can be analyzed within
available time and memory, and tuning a model or specification to avoid combinatorial
explosion is itself a demanding task. The manual task of refining a model and spec-
ification to obtain either assurance or useful reports of real faults in design or coding
is much less expensive if the analysis step is near-interactive than if it requires several
minutes or hours.

Some analysis techniques perform quite tolerably on small models, but their com-
putational demands grow very rapidly with model size. These may be perfectly accept-
able for a simple model of a critical component, such as a protocol whose description
does not depend on the size of the system in which it is implemented. In other cases,
scalability of the finite state verification technique is likely to be a limiting factor in its
useful application.

Finite state verification techniques vary widely in the balance they strike on issues
of generality, precision, automation, computational effort, and scalability. A core idea
shared by all is that a question about a program is translated into a simpler question
about a finite state model of the program, as illustrated in Figure 8.1. Ultimately, one
question about the program (Does it conform to the property we want to check?) is
divided into two (Does the model conform to the simpler property we can check? Is it
an accurate model of the program?)

The model may be derived from an actual program, like the control flow and data
flow models described in prior chapters, or from some other design artifact (e.g., a pro-
gram specification). Restrictions on the program may be required to derive a model
automatically from a program. It is also possible to derive program code from anno-
tated models.1 If either the model or the program is derived automatically from the
other, we may be able to do so in a way that guarantees consistency between the two.

1Note that one may independently derive several different models from one program, but deriving one
program from several different models is much more difficult.

Overview 115

PROGRAM or DESIGN

MODEL

PROPERTY OF INTEREST

No concurrent
modifications of

Table1

...
public static Table1
getTable1() {
 if (ref == null) {
synchronized(Table1) {
 if (ref == null){

ref = new Table1();
ref.initialize();

 }
 }
}
return ref;
}...

(a)

(b)

(c)

(e)

(d)

(f)

(x)

(y)

Derive models
of software
or design

Algorithmic check
of the model for the property

PROPERTY OF THE MODEL

Implication

never(<d>and <y>)

Direct check of source/design
(impractical or impossible)

Figure 8.1: The finite state verification framework.

116 Finite State Verification

We may also be able to check consistency automatically even if the derivation is not
automatic. Alternatively, the accuracy of the model may be assessed by conformance
testing, treating the model as a kind of specification. The combination of finite state
verification and conformance testing is often more effective than directly testing for
the property of interest, because a discrepancy that is easily discovered in conformance
testing may very rarely lead to a run-time violation of the property (e.g., it is much
easier to detect that a particular lock is not held during access to a shared data structure
than to catch the occasional data race that the lock protects against).

A property to be checked can be implicit in a finite state verification tool (e.g., a tool
specialized just for detecting potential null pointer references), or it may be expressed
in a specification formalism that is purposely limited to a class of properties that can
be effectively verified using a particular checking technique. Often the real property
of interest is not amenable to efficient automated checking, but a simpler and more
restrictive property is. That is, the property checked by a finite state verification tool
may be sufficient but not necessary for the property of interest. For example, verifying
freedom from race conditions on a shared data structure is much more difficult than
verifying that some lock is always held by threads accessing that structure; the latter
is a sufficient but not necessary condition for the former. This means that we may
exclude correct software that we are not able to verify, but we can be sure that the
accepted software satisfies the property of interest.

8.2 State Space Exploration

While some finite state models of program execution can be derived rather directly
from syntactic program structure (e.g., control flow graph models of individual pro-
cedures), this is not always so. In particular, an adequate finite state machine model
of a program or system with multiple threads of control (Java threads, Ada tasks, op-
erating system processes, etc.) must include all the possible ways execution of the
individual threads can be interleaved. A global model of the reachable system states
and transitions can be systematically explored by tracing all the possible sequences of
interactions.

Let us begin with several simplifying assumptions. We assume that we can deter-
mine in advance how many threads of control, or processes make up the system, and
that we can obtain a finite state machine model of each. We assume also that we can
identify the points at which processes can interact and all the ways that execution of
one process may affect another. A state of the whole system model, then, is a tuple
representing the state of each individual process model, and a transition in the system
model is a transition of one or more of the individual processes, acting individually or
in concert.

From one global system state, several different individual or joint transitions of
the component processes may be possible. That is, execution in the global model is
nondeterministic. This should be no surprise, as it reflects the real situation in multi-
threaded software, with execution dependent on uncontrolled factors like the arrival of
asynchronous interrupts, process scheduler decisions, and the relative execution speed
of different processes. It is these unpredictable and uncontrollable factors that make

State Space Exploration 117

effectively testing programs and systems with multiple threads of control difficult. A
test case may run correctly a million times in a test configuration and fail the first time
a client uses it.

Given an appropriate model and an execution rule, exploring all the possible states
reachable by the system is a completely mechanical process. If “good” states can
be easily distinguished from “bad” states, then the whole process of exploring and
checking the state space model can be automatic. Even the simplest and most brute-
force state space exploration tools can systematically check many times more states in
a minute than a person could in a month.

We illustrate with a simple and somewhat contrived example. In a certain multi-
threaded module of the Chipmunk on-line purchasing system, there is an in-memory
data structure that is initialized by reading configuration tables at system start-up. Ini-
tialization of the data structure must appear atomic (the structure should not be accessed
while initialization is underway). Moreover, it must be reinitialized on occasion. The
structure is kept in memory, rather than read from a database on each use, because it
is small, changes rarely, and is accessed very frequently. A Chipmunk programmer
has noticed that obtaining a monitor lock for each and every access (which is what a
Java “synchronized” method does) substantially reduces concurrency and slows user
response time. The programmer has recently learned of the double-checked locking
idiom to avoid unnecessary locking during data structure initialization. Unfortunately,
the programmer does not fully comprehend the double-check idiom and its underlying
assumptions, and produces the faulty implementation excerpted in Figure 8.2.

The fault in this example is simple: The double-check idiom is applicable only
to initialization, not to modification of a structure after initialization.2 However, it is
not easy for a person to comprehend all the possible ways that multiple threads could
interleave while concurrently executing these methods, and it is surprisingly easy to
convince oneself that the faulty implementation avoids race conditions. Moreover, it is
extremely difficult to find them with conventional testing. Even under heavy load, the
potential race condition in the code of Figure 8.2 very rarely leads to run-time failure
and may not appear at all depending on the scheduling policies and resources of a
particular Java run-time system.

A potential failure is simple to find by systematically tracing through all the pos-
sible interleavings of two threads. We begin by constructing a finite state machine
model of each individual thread. For method lookup in Figure 8.2, the state machines
in Figure 8.3 describe the actions of an individual thread executing methods lookup and
reInit, but we do not know in advance how many distinct threads might be executing
concurrently.

Java threading rules ensure that in a system state in which one thread has obtained a
monitor lock, the other thread cannot make a transition to obtain the same lock. We can
observe that the locking prevents both threads from concurrently calling the initialize
method. However, another race condition is possible, between two concurrent threads
each executing the lookup method.

2In fact even a correctly implemented double-check pattern can fail in Java due to properties of the Java
memory model, as discussed below.

118 Finite State Verification

1 /** A singleton class with mis-application of double-check pattern. */
2 class Table1 {
3 private static Table1 ref = null; // Singleton instance
4 private boolean needsInit = true; // To trigger lazy re-initializatiion
5 private ElementClass [] theValues;
6

7 private Table1() { } // Initialization is separate
8

9 /** Initialization with double-check pattern. */
10 public static Table1 getTable1() {
11 if (ref == null) { synchedInitialize(); }
12 return ref;
13 }
14

15 private static synchronized void synchedInitialize() {
16 if (ref == null) {
17 Table1 tmp = new Table1();
18 tmp.initialize();
19 ref = tmp; }
20 }
21

22 /** Trigger re-initialization on next access */
23 public void reinit() { needsInit = true; }
24

25 /** Initialize or re-initialize. Must appear atomic to lookup. */
26 private synchronized void initialize() {
32 . . .
33 needsInit = false;
34 }
35

36 /** Lookup value, lazily re-init. (WRONG!) */
37 public int lookup(int i) {
38 if (needsInit) {
39 synchronized(this) {
40 if (needsInit) {
41 this.initialize();
42 }
43 }
44 }
45 return theValues[i].getX() + theValues[i].getY();
46 }
47

60 . . .
61 }

Figure 8.2: Double-check pattern, misapplied to reinitialization.

State Space Exploration 119

(a)
lookup()

needsInit==true

(b)

obtain lock

(c)

(f)
reading

needsInit==false

(e)

(d)
modifyingneedsInit==false

needsInit==true

needsInit=false

release lock

E

(x)
reinit()

needsInit=true

(y)

E

Figure 8.3: Finite state models of individual threads executing the lookup and reInit
methods from Figure 8.2. Each state machine may be replicated to represent concurrent
threads executing the same method.

120 Finite State Verification

1 bool needsInit = true, /* Models variable by same name */
2 locked = false, /* To model synchronized block */
3 modifying = false; /* To test for race condition */
4

5 proctype Lookup(int id) {
6 if :: (needsInit) ->
7 /* ”synchonized(this) {” */
8 atomic { ! locked -> locked = true; };
9 if

10 :: (needsInit) ->
11 /* Body of ”intialize()” modeled here */
12 assert (! modifying); /* Test for write/write race */
13 modifying = true;
14 /* The actual modification happens here */
15 modifying = false ;
16 needsInit = false;
17 :: (! needsInit) ->
18 skip;
19 fi;
20 /* ”}” (end synchronized block) */
21 locked = false ;
22 fi;
23 /* Return a value from lookup() */
24 assert (! modifying); /* Test for read/write race */
25 }
26

27 proctype reInit() {
28 needsInit = true;
29 }
30

31 init {
32 run reInit();
33 run Lookup(1);
34 run Lookup(2);
35 }

Figure 8.4: Promela finite state model of faulty double-check implementation.

State Space Exploration 121

Depth= 10 States= 51 Transitions= 92 Memory= 2.302
pan: assertion violated !(modifying) (at depth 17)
pan: wrote pan_in.trail
(Spin Version 4.2.5 -- 2 April 2005)

. . .

0.16 real 0.00 user 0.03 sys

Figure 8.5: Excerpts of Spin verification tool transcript. Spin has performed a depth-
first search of possible executions of the model, exploring 10 states and 51 state tran-
sitions in 0.16 seconds before finding a sequence of 17 transitions from the initial state
of the model to a state in which one of the assertions in the model evaluates to False.

Tracing possible executions by hand — “desk checking” multi-threaded execution
— is capable in principle of finding the race condition between two concurrent threads
executing the lookup method, but it is at best tedious and in general completely im-
practical. Fortunately, it can be automated, and many state space analysis tools can
explore millions of states in a short time. For example, a model of the faulty code from
Figure 8.2 was coded in the Promela modeling language and submitted to the Spin
verification tool. In a few seconds, Spin systematically explored the state space and
reported a race condition, as shown in Figure 8.5.

A few seconds of automated analysis to find a critical fault that can elude exten-
sive testing seems a very attractive option. Indeed, finite state verification should be
a key component of strategies for eliminating faults in multi-threaded and distributed
programs, as well as some kinds of security problems (which are similarly resistant to
systematic sampling in conventional program testing) and some other domains. On the
other hand, we have so far glossed over several limitations and problems of state space
exploration, each of which also appears in other forms of finite state verification. We
will consider two fundamental and related issues in the following sections: the size of
the state space to be explored, and the challenge of obtaining a model that is sufficiently
precise without making the state space explosion worse.

122 Finite State Verification

The Promela Modeling Language
The Promela language for finite state models of communicating processes, which is

interpreted by the verification tool Spin, is described in a book and on-line references
(see Further Reading at the end of this chapter). Here we present a very brief and
partial introduction to aid in reading the example code of Figure 8.4.

A Promela program describes a set of processes, roughly analogous to threads in
Java. A single process type (proctype) can be instantiated more than once with run
statements to create multiple instances of a process, much as thread objects can be
created from a class in a Java program. A Promela model consists of some global data
type and variable declarations, followed by some process type declarations, and finally
a “main” process init.

Many lexical conventions of Promela are borrowed from the C language, and should
be familiar to C and Java programmers. Comments are enclosed in /* and */, syntactic
nesting is indicated by braces { and }, and assignment is indicated by a single = while
an equality comparison is indicated by ==. As in C, nonzero values are interpreted as
True and zero is Boolean False .

Promela borrows syntax and semantics for “guarded commands” from Communi-
cating Sequential Processes (CSP), a formal notation for describing communicating
processes. A guarded command in Promela is written expression -> statements and
means that the statements can be executed only when the guarding expression is true.
If the expression evaluates to zero or is otherwise disabled, execution of the guarded
statement is blocked. Thus, the statement

atomic { ! locked -> locked = true; }

in Figure 8.4 can be used to represent acquiring a monitor lock, because execution
blocks at this point until locked has the value False . The guard is enclosed in an atomic
block to prevent another process taking the lock between evaluation of the guard con-
dition and execution of the statement.

The concept of enabling or blocking in guarded commands is used in conditional
and looping constructs. Alternatives in an if. . . fi construct, marked syntactically with ::,
begin with guarded commands. If none of the alternatives is enabled (all of the guards
evaluate to False), then the whole if construct blocks. If more than one of the guarded
alternatives is enabled, the if construct does not necessarily choose the first among them,
as a programmer might expect from analogous if. . . else if. . . constructs in conventional
programming languages. Any of the enabled alternatives can be nondeterministically
chosen for execution; in fact the Spin tool will consider the possible consequences
of each choice. The do. . . od construct similarly chooses nondeterministically among
enabled alternatives, but repeats until a break or goto is evaluated in one of the guarded
commands.

The simplest way to check properties of a Promela model is with assertions, like the
two assert statements in Figure 8.4. Spin searches for any possible execution sequence
in which an assertion can be violated. Sequencing properties can also be specified in
the form of temporal logic formulas, or encoded as state machines.

State Space Exploration 123

preparing trail, please wait...done
Starting :init: with pid 0
spin: warning, "pan_in", proctype Lookup,

’int id’ variable is never used
Starting reInit with pid 1
1: proc 0 (:init:) line 33 "pan_in" (state 1) [(run reInit())]

Starting Lookup with pid 2
2: proc 0 (:init:) line 34 "pan_in" (state 2) [(run Lookup(1))]

Starting Lookup with pid 3
3: proc 0 (:init:) line 35 "pan_in" (state 3) [(run Lookup(2))]
4: proc 3 (Lookup) line 7 "pan_in" (state 1) [(needsInit)]
5: proc 3 (Lookup) line 9 "pan_in" (state 2) [(!(locked))]

<merge 0 now @3>
5: proc 3 (Lookup) line 9 "pan_in" (state 3) [locked = 1]
6: proc 3 (Lookup) line 11 "pan_in" (state 5) [(needsInit)]
7: proc 3 (Lookup) line 13 "pan_in" (state 6) [assert(!(modifying))]
8: proc 3 (Lookup) line 14 "pan_in" (state 7) [modifying = 1]
9: proc 3 (Lookup) line 16 "pan_in" (state 8) [modifying = 0]
10: proc 3 (Lookup) line 17 "pan_in" (state 9) [needsInit = 0]
11: proc 3 (Lookup) line 22 "pan_in" (state 14) [locked = 0]
12: proc 1 (reInit) line 29 "pan_in" (state 1) [needsInit = 1]
13: proc 2 (Lookup) line 7 "pan_in" (state 1) [(needsInit)]
14: proc 2 (Lookup) line 9 "pan_in" (state 2) [(!(locked))]

<merge 0 now @3>
14: proc 2 (Lookup) line 9 "pan_in" (state 3) [locked = 1]
15: proc 2 (Lookup) line 11 "pan_in" (state 5) [(needsInit)]
16: proc 2 (Lookup) line 13 "pan_in" (state 6) [assert(!(modifying))]
17: proc 2 (Lookup) line 14 "pan_in" (state 7) [modifying = 1]
spin: trail ends after 17 steps
#processes: 4
17: proc 3 (Lookup) line 25 "pan_in" (state 17)
17: proc 2 (Lookup) line 16 "pan_in" (state 8)
17: proc 1 (reInit) line 30 "pan_in" (state 2)
17: proc 0 (:init:) line 36 "pan_in" (state 4)
4 processes created
Exit-Status 0

Figure 8.6: A Spin guided simulation trace describes each of the 17 steps from the
initial model state to the state in which the assertion !(modifying) is violated. For ex-
ample, in step 8, one of the two processes (threads) simulating execution of the Lookup
method sets the global variable modifying to True, represented as the integer value 1.
A graphical representation of this trace is presented in Figure 8.7.

124 Finite State Verification

Read/write
Race condition

States (f) and (d)

…
return

theValues[i].getX()
+ theValues[i].getY();

}

proc 3 (lookup)

public void reinit()
{ needsInit = true; }

(x)

proc 1 (reinit)

public init lookup(int i)
if (needsInit) {

synchronized(this) {
if (needsInit) {

this.initialize();
}

}
}

(y)

proc 2 (lookup)

(a)
(b)

(c)

(d)

(e)

(f)

public init lookup(int i)
if (needsInit) {

synchronized(this) {
if (needsInit) {

this.initialize();
...

(a)
(b)

(c)

(d)

{
...
}

(a)

proc # (procname)

Legend
Process number and name
from Spin trace output

Code from original Java
program

State identifier from FSM
model

Figure 8.7: A graphical interpretation of Spin guided simulation output (Figure 8.6) in
terms of Java source code (Figure 8.2) and state machines (Figure 8.3).

State Space Exploration 125

Safety and Liveness Properties
Properties of concurrent systems can be divided into simple safety properties, se-

quencing safety properties, and liveness properties.
Simple safety properties divide states of the system into “good” (satisfying the prop-

erty) and “bad” (violating the property). They are easiest to specify, and least expensive
to check, because we can simply provide a predicate to be evaluated at each state. Of-
ten simple safety properties relate the local state of one process to local states of other
processes. For example, the assertion assert(! modifying) in the Promela code of Fig-
ure 8.4 states a mutual exclusion property between two instances of the lookup process.
When simple safety properties are expressed in temporal logic, they have the form ⇤p,
where p is a simple predicate with no temporal modalities.

Safety properties about sequences of events are similar, but treat the history of
events preceding a state as an attribute of that state. For example, an assertion that
two operations a and b strictly alternate is a safety property about the history of those
events; a “bad” state is one in which a or b is about to be performed out of order.
Sequencing properties can be specified in temporal logic, but do not require it: They
are always equivalent to simple safety properties embedded in an “observer” process.
Checking a sequencing property adds the same degree of complexity to the verification
process as adding an explicit observer process, whether there is a real observer (which
is straightforward to encode for some kinds of model, and nearly impossible for others)
or whether the observer is implicit in the checking algorithm (as it would be using a
temporal logic predicate with the Spin tool).

True liveness properties, sometimes called “eventuality” properties, are those that
can only be violated by an infinite length execution. For example, if we assert that p
must eventually be true (⌃p), the assertion is violated only by an execution that runs
forever with p continuously false. Liveness properties are useful primarily as a way
of abstracting over sequences of unknown length. For example, fairness properties are
an important class of liveness properties. When we say, for example, that a mutual
exclusion protocol must be fair, we do not generally mean that all processes have an
equal chance to obtain a resource; we merely assert that no process can be starved
forever. Liveness properties (including fairness properties) must generally be stated
in temporal logic, or encoded directly in a Büchi automaton that appears similar to
a deterministic finite state acceptor but has different rules for acceptance. A finite
state verification tool finds violations of liveness properties by searching for execution
loops in which the predicate that should eventually be true remains false; this adds
considerably to the computational cost of verification.

A common mnemonic for safety and liveness is that safety properties say “nothing
bad happens,” while liveness properties say “something good eventually happens.“

Properties involving real time (e.g., “the stop signal is sent within 5 seconds of re-
ceiving the damage signal”) are technically safety properties in which the “bad thing”
is expiration of a timer. However, naive models involving time are so expensive that
it is seldom practical to simply add a clock to a model and use simple safety proper-
ties. Usually it is best to keep reasoning about time separate from verifying untimed
properties with finite state verification.

126 Finite State Verification

8.3 The State Space Explosion Problem

The finite state model of faulty code described in the previous section is very simple:
two processes concurrently executing the lookup method, another executing the trivial
reInit method, and an even more trivial administrative process to start them. While it is
quite tedious to trace out all the potential interleavings of these processes by hand,3 an
automated verification tool can do so almost instantaneously.

Unfortunately, larger and more complex models may cause the same tools to grind
for hours or days without producing a result, typically ending by exhausting all avail-
able memory. The number of states in a concurrent system with P processes, each
with K individual states, is at most the number of possible P-tuples of K values, that is,
KP. Synchronization and other dependencies among processes will limit the number of
reachable states to a somewhat smaller number. Nonetheless, the number of reachable
states does typically grow exponentially with the number of processes.

Figure 8.8 and the sidebar on page 127 illustrate state space explosion with the
classical dining philosophers problem. This exponential blow-up in the number of
reachable states is not just an artifact of a naive modeling methodology. It has been
proved, in a variety of models of concurrent execution, that decision procedures even
for very simple properties like freedom from deadlock or race conditions is PSPACE-
complete. This means that in the worst case, exponential complexity is almost certainly
unavoidable in any procedure that can answer the kinds of questions we use state space
exploration to answer.

The known complexity results strongly imply that, in the worst case, no finite state
verification technique can be practical. Worst case complexity results, however, say
nothing about the performance of verification techniques on typical problems. Experi-
ence with a variety of automated techniques tells us a fair amount about what to expect:
Many techniques work very well when applied on well-designed models, within a lim-
ited domain, but no single finite state verification technique gives satisfactory results
on all problems. Moreover, crafting a model that accurately and succinctly captures the
essential structure of a system, and that can be analyzed with reasonable performance
by a given verification tool, requires creativity and insight as well as understanding of
the verification approach used by that tool.

3It is a useful exercise to try this, because even though the number of reachable states is quite small, it
is remarkably difficult to enumerate them by hand without making mistakes. Programmers who attempt to
devise clever protocols for concurrent operation face the same difficulty, and if they do not use some kind of
automated formal verification, it is not an exaggeration to say they almost never get it right.

The State Space Explosion Problem 127

An Illustration of State Space Explosion
Consider the classic dining philosophers problem, in which an equal number of

philosophers and forks are arranged around a table. A philosopher must lift both ad-
jacent forks before eating. A Promela model of the dining philosophers problem is
shown in Figure 8.8. With 5 philosophers and 5 forks, Spin finds the potential dead-
lock in less than a second of search, exploring only 145 unique states of the system.
With 10 philosophers and 10 forks, Spin with default settings begins to cut off the
search at a depth of 9999 execution steps, but still finds the deadlock at a depth of
9995 steps, generating 18,313 unique states while executing a depth-first search. With
15 philosophers and 15 forks, Spin explores 148,897 states before finding a deadlock,
and again the error trace it creates is too long to be useful in diagnosis. Spin can be
instructed to use a breadth-first search or iterate to find a shorter error trace, but these
options cause it to generate over half a million unique states and exhaust its default
allocation of memory. A version of the model with 10 forks and only 9 philosophers
generates 404,796 unique states with the default settings, with an inconclusive result
since it finds no errors but terminates the search at depth 9999 (after 195 minutes on
the same computer that analyzed the first example in a few seconds). One can increase
the allocation of memory and wait longer for a result, but from the rate of growth it is
evident that an approach of buying bigger and faster machines will not scale to a much
larger model.

Fortunately, the deadlock produced by a system of just three philosophers is a per-
fectly good representation of the potential deadlock in a system of 10 or 15 or 100
philosopher processes. State space enumeration is most effective when the essential
structure of a system can be represented by a much smaller model.

128 Finite State Verification

1 mtype = { Up, Down, /* Fork operations */
2 Thinking, Hungry, Eating /* What philosophers do */ }
3
4 proctype fork(chan opChannel) {
5 do
6 :: opChannel?Up; /* First I can be lifted ... */
7 opChannel?Down; /* Then I can be set down ... */
8 od; /* Then lifted again, and so on */
9 }

10
11 proctype philosopher(chan leftFork, rightFork) {
12 show mtype myState = Thinking;
13 do
14 :: myState = Hungry;
15 leftFork!Up;
16 rightFork!Up;
17 myState = Eating;
18 rightFork!Down;
19 leftFork!Down;
20 myState = Thinking;
21 od;
22 }
23
24 #define NumSeats 10
25 chan forkInterface[NumSeats] = [0] of {mtype} ;
26 init {
27 int i = 0;
28 do :: i < NumSeats ->
29 run fork(forkInterface[i]);
30 i = i+1;
31 :: i >= NumSeats -> break;
32 od;
33 i = 0;
34 do :: i < NumSeats ->
35 run philosopher(forkInterface[i], forkInterface[(i+1)%NumSeats]);
36 i = i+1;
37 :: i >= NumSeats-1 -> break;
38 od;
39 }
40

Figure 8.8: The classic dining philosophers problem in Promela. The number of unique
states explored before finding the potential deadlock (with default settings) grows from
145 with 5 philosophers, to 18,313 with 10 philosophers, to 148,897 with 15 philoso-
phers.

The Model Correspondence Problem 129

8.4 The Model Correspondence Problem

In the simple examples above, we have written Promela models by hand to verify con-
current execution in Java programs. One may ask how we can be sure that the Promela
models accurately represent the possible behaviors of the Java programs, particularly
if there are conceptual errors in the design of the Java programs. This is a serious
problem, and it has no fully satisfactory solution.

We could verify correspondence between a finite state model and a program in one
of three ways. First, we could automatically extract a model from the program source
code (or compiled code, e.g., Java byte code), using procedures that we have verified
once and for all. Second, we could turn the derivation relation around, producing
program source code automatically from a model, treating the model as a kind of design
document. The third option is to apply some combination of static analysis and testing
to verify correspondence between model and program.

Automatically extracting models from programs is an attractive option, with the
important advantage that the correctness of the extraction tool can be verified once and
for all. In this approach, sophisticated and expensive verification can be justified and
carried out by tool developers who are much more expert in finite state verification
than users of the tool. The previous section strongly hints at the chief obstacle to
model extraction: A model that blindly mirrors all details of program execution is
likely to suffer from a much worse state space explosion than a model that has been
carefully crafted to capture just the relevant essence of synchronization structure. A
model that omits some crucial detail, on the other hand, can produce so many “false
alarm” reports (failures that are possible in the model but not in the program) that the
results are useless. The challenge for automatic model extraction, then, is to capture
just enough of the relevant detail to be accurate, while abstracting enough to keep state
space explosion under control.

Some abstraction of program details can be completely automated. For example,
dependence analysis can be used to identify portions of the program that are irrelevant
to checking a particular property. For this reason, it is often worthwhile to extract dif-
ferent models from the same program, to check different properties of interest. Where
the required level of detail cannot be determined a priori by program analysis, some-
times a coarse initial model can be iteratively refined until either a verification or a
counter-example is achieved. This is discussed further in Section 8.7.

Human cleverness in model design and automated support for model extraction are
not mutually exclusive. For example, an important tactic in building finite state models
is abstracting data values. It would be far too expensive to represent all the possible
states of a queue of integers, for instance, but one might be able to capture enough
information in the predicate isEmpty(Q). Sometimes a choice of predicates is strongly
suggested by control structure of the program, and may even be found automatically
by a model extraction tool. In other cases the user may be able to provide much better
predicates to guide automated model extraction.

One can also reverse the model extraction process, starting with a finite state model
and generating program code. Usually what can be generated is not the whole appli-
cation, but it may be a component or skeleton in which the relevant behavior is local-
ized. Essentially, this is equivalent to requiring the developer to manually distinguish

130 Finite State Verification

the finite state model from other aspects of the application, but it can be much easier
to specify how the finite state model is combined with other application details than to
specify how the finite state model is extracted from the completed application. Program
generation from (verifiable) finite state models, like program generation in general, is
most applicable within constrained or well-understood application domains.

If a model is automatically extracted, or a program is automatically generated from
a model, then correspondence between model and program can be verified once and for
all by verifying the method of derivation. If, however, the derivation method is at least
partly manual, then it will be necessary to gain confidence in their consistency by some
other approach. Static program analysis can be helpful, but in the worst case a static
analysis that verifies consistency between a model and a program can be as complex
as a static analysis for extracting a model. More typically, conformance is verified by
testing.

The details of an approach to conformance testing depend primarily on the form of
the model and on what can be observed from program execution. A typical scenario is
that the program model is equivalent to a deterministic finite state machine (FSM), and
the only relevant observable aspect of program execution is a set of events (e.g., system
calls or instrumented points) that correspond to event labels in the FSM model. A
single execution is then consistent with the model if the observed sequence of execution
events corresponds to a sequence of state transitions in a traversal of the model. The
basic approach can be extended in several ways, for example, by testing against each of
several communicating state machines separately or in parallel, by checking portions
of program state against model state, or by considering multiple possible traversals
in parallel if the model is inherently nondeterministic or the correspondence between
observed program events and model state transitions is ambiguous. There is a well-
developed body of testing techniques based on state machine models, some of which
are discussed further in Chapter 14.

One may ask what advantage finite state verification has over simply testing the
program for the property of interest, if we must still resort to conformance testing to
verify the accuracy of a model. For example, if we are using finite state verification to
show absence of race conditions, and then testing the program for conformance to the
verified model, why not simply use testing to check for race conditions directly in the
program?

In fact, the combination of finite state verification with testing can be both less ex-
pensive and more effective than testing alone. Consider again our simple example of
misapplication of the double-check pattern in Figure 8.2. Tens of thousands of test ex-
ecutions can fail to reveal the race condition in this code, depending on the way threads
are scheduled on a particular hardware platform and Java virtual machine implementa-
tion. Testing for a discrepancy between model and program, on the other hand, is fairly
straightforward because the model of each individual state machine can be checked
independently (in fact all but one are trivial). The complexity that stymies testing
comes from nondeterministic interleaving of their execution, but this interleaving is
completely irrelevant to conformance testing.

Granularity of Modeling 131

1 /** Trivial race between two increments. A version of this program
2 * appears in many books on concurrency or operating systems; it is
3 * the ”hello world” of race conditions.
4 */
5 class Unsafe implements Runnable {
6 static int i = 1; /* Before increments, value is 1. And after? */
7

8 /** Each thread increments i by 1 */
9 public void run() {

10 i = i + 1;
11 }
12

13 /** Two threads interleave their updates */
14 public static void main(String[] argv) {
15 Unsafe unsafe = new Unsafe();
16 Thread racerP = new Thread(unsafe);
17 racerP.start();
18 Thread racerQ = new Thread(unsafe);
19 racerQ.start();
20

21 /* Wait for both to finish */
22 try {
23 racerP.join(); racerQ.join();
24 } catch (InterruptedException e) {
25 System.err.println("Unexpected interruption");
26 }
27

28 /* What values could i possibly have? */
29 System.out.println("i: " + i);
30 }
31

32 }

Figure 8.9: A simple data race in Java. The possible ending values of i depend on how
the statement i = i+1 in one thread is interleaved with the same sequence in the other
thread.

8.5 Granularity of Modeling

Showing that each thread or process in a program performs actions in an order con-
sistent with its FSM model, and that the effect of each sequence of actions is modeled
correctly, is not quite enough. We also need to consider the granularity of those actions
— the points at which actions from one thread can be interrupted by actions of another.

Consider the trivial program of Figure 8.9. The race condition is apparent: Both
threads RacerP and RacerQ increment shared variable i. The possible ending values

132 Finite State Verification

(a)

(d)

i = i+1

E

(a)

(b)

t=i;

E

(c)

t=t+1;

(d)

i=t;

(w)

(x)

u=i;

E

(y)

u=u+1;

(z)

i=u;

(w)

(z)

i = i+1

E

Figure 8.10: Coarse and fine-grain models of the same program from Figure 8.9. In
the coarse-grain model, i will be increased by 2, but other outcomes are possible in the
finer grain model in which the shared variable i is loaded into temporary variable or
register, updated locally, and then stored.

of i depend on whether i=i+1 is an atomic (indivisible) action, or a sequence of smaller
operations. The coarse-grain FSM of Figure 8.10 treats each statement as an atomic
action, while the fine-grain FSM in the same figure breaks the increment operation
into separate load, add, and store steps. Only the finer grain FSM can reveal the “lost
update” problem illustrated in Figure 8.11.

Even representing each memory access as an individual action is not always suf-
ficient. Programming language definitions usually allow compilers to perform some
rearrangements in the order of instructions. What appears to be a simple store of a
value into a memory cell may be compiled into a store into a local register, with the
actual store to memory appearing later (or not at all, if the value is replaced first).
Two loads or stores to different memory locations may also be reordered for reasons
of efficiency. Moreover, when a machine instruction to store a value into memory is
executed by a parallel or distributed computer, the value may initially be placed in the
cache memory of a local processor, and only later written into a memory area accessed
by other processors. These reorderings are not under programmer control, nor are they
directly visible, but they can lead to subtle and unpredictable failures in multi-threaded
programs.

As an example, consider once again the flawed program of Figure 8.2. Suppose
we corrected it to use the double-check idiom only for lazy initialization and not for
updates of the data structure. It would still be wrong, and unfortunately it is unlikely

Granularity of Modeling 133

RacerP RacerQ

t = i;
(a)

racerP

Legend
Thread name from Java
code and FSM model

Fine-grain model of
operations from Java code

State identifier from FSM
model (fine grain)

t = t+1;
(b)

i = t;
(c)

(d)

u = i;
(w)

u = u+1;
(x)

i = u;
(y)

(z)

i=t
(a)

Figure 8.11: The lost update problem, in which only one of the two increments affects
the final value of i. The illustrated sequence of operations from the program of Fig-
ure 8.9 can be found using the finer grain model of Figure 8.10, but is not revealed by
the coarser grain model.

134 Finite State Verification

we would discover the flaw through finite state verification. Our model in Promela
assumes that memory accesses occur in the order given in the Java program, but Java
does not guarantee that they will be executed in that order. In particular, while the
programmer may assume that initialization invoked in line 18 of the Java program is
completed before field ref is set in line 19, Java makes no such guarantee.

Breaking sequences of operations into finer pieces exacerbates the state explosion
problem, but as we have seen, making a model too coarse risks failure to detect some
possible errors. Moreover, conformance testing may not be much help in determining
whether a model depends on unjustified assumptions of atomicity. Interruptions in a
sequence of program operations that are mistakenly modeled as an atomic action may
not only be extremely rare and dependent on uncontrolled features of the execution
environment, such as system load or the activity of connected devices, but may also
depend on details of a particular language compiler.

Conformance testing is not generally effective in detecting that a finite state model
of a program relies on unwarranted assumptions of atomicity and ordering of memory
accesses, particularly when those assumptions may be satisfied by one compiler or
machine (say, in the test environment) and not by another (as in the field). Tools for
extracting models, or for generating code from models, have a potential advantage in
that they can be constructed to assume no more than is actually guaranteed by the
programming language.

Many state space analysis tools will attempt to dynamically determine when a se-
quence of operations in one process can be treated as if it were atomic without affecting
the results of analysis. For example, the Spin verification tool uses a technique called
partial order reduction to recognize when the next event from one process can be freely
reordered with the next event from another, so only one of the orders need be checked.
Many finite state verification tools provide analogous facilities, and though they cannot
completely compensate for the complexity of a model that is more fine-grained than
necessary, they reduce the penalty imposed on the cautious model-builder.

8.6 Intensional Models

The computational cost of enumerating reachable states, particularly the storage re-
quired to recognize states that have already been explored, is often a limiting factor in
applying finite state verification tools. Sometimes (but not always) this expense can be
significantly reduced by using intensional (symbolic) representations that describe sets
of reachable states without enumerating each one individually.

The idea of symbolic or intensional representations can be illustrated with sets of
integers. Consider the set

{2,4,6,8,10,12,14,16,18}

The extensional representation, given above, lists the elements of the set. The same set
can be represented intensionally as

{x 2 N | x mod 2 = 0 ^ 0 < x < 20}

Intensional Models 135

The predicate x mod 2 = 0 ^ 0 < x < 20, which is true for elements included in the
set and false for excluded elements, is called a characteristic function. The length of
the representation of the characteristic function does not necessarily grow with the size
of the set it describes. For example, the set

{x 2 N | x mod 2 = 0 ^ 0 < x < 80}

contains four times as many elements as the one above, and yet the length of the repre-
sentation is the same.

It could be advantageous to use similarly compact representations for sets of reach-
able states and transitions among them. For example, ordered binary decision diagrams
(OBDDs) are a representation of Boolean functions that can be used to describe the
characteristic function of a transition relation. Transitions in the model state space are
pairs of states (the state before and the state after executing the transition), and the
Boolean function represented by the OBDD takes a pair of state descriptions and re-
turns True exactly if there is a transition between such a pair of states. The OBDD is
built by an iterative procedure that corresponds to a breadth-first expansion of the state
space (i.e., creating a representation of the whole set of states reachable in k + 1 steps
from the set of states reachable in k steps). If the OBDD representation does not grow
too large to be manipulated in memory, it stabilizes when all the transitions that can
occur in the next step are already represented in the OBDD form.

Finding a compact intensional representation of the model state space is not, by
itself, enough. In addition we must have an algorithm for determining whether that
set satisfies the property we are checking. For example, an OBDD can be used to
represent not only the transition relation of a set of communicating state machines, but
also a class of temporal logic specification formulas. The OBDD representations of
model and specification can be combined to produce a representation of just the set of
transitions leading to a violation of the specification. If that set is empty, the property
has been verified. This approach is known as symbolic model checking, and has been
spectacularly successful in dealing with some models of concurrent system (primarily
for hardware, but sometimes also for software).

Encoding transition relations as OBDDs can be divided into two parts: represent-
ing transition relations as Boolean functions, and representing Boolean functions as
OBDDs. Representing Boolean functions as OBDDs is straightforward, as illustrated
in Figure 8.12. Essentially the BDD is a decision tree that has been transformed into
an acyclic graph by merging nodes leading to identical subtrees. The merging is made
efficient by ordering the decisions in the same way on all paths from the root of the
decision tree to the leaves, which represent outcomes. Constructing the representation
of transition relations as Boolean functions, on the other hand, can be quite involved.
Figure 8.13 illustrates some of the basic ideas.

In the worst case, intensional representations are no more compact than listing the
elements of a set. In fact, information theory tells us that if we have a large set S of
states, a representation capable of distinguishing each subset of S (all elements of 2S)
cannot be more compact on average than the representation that simply lists elements of
the chosen subset. When intensional representations work well, it is because we do not
produce arbitrary sets of reachable states; rather, there is a good deal of structure and
regularity in the state space, and that regularity is exploited in symbolic representations.

136 Finite State Verification

a
F T

b
F T

c
F T

F T

Figure 8.12: Ordered binary decision diagram (OBDD) encoding of the Boolean
proposition a) b^ c, which is equivalent to ¬a_ (b^ c). The formula and OBDD
structure can be thought of as a function from the Boolean values of a, b, and c to a
single Boolean value True or False.

Intensional Models 137

x0
0 T

F T

s0 (00)

s1 (01)

s2 (10)

b (x0=1)

b (x0=1)

b (x0=1)

00 00
00 01
01 10

0
1
1

x1x2 x3x4x0

from state to statesym

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x1
0 1

x2
0 1

x3
0 1

x4
0 1

x3
0 1

(A)

(B)

(C)

Figure 8.13: Ordered binary decision diagram (OBDD) representation of a transition
relation, in three steps. In part (A), each state and symbol in the state machine is
assigned a Boolean label. For example, state s0 is labeled 00. In part (B), transitions
are encoded as tuples hsym, from, toi indicating a transition from state from to state to
on input symbol sym. In part (C), the transition tuples correspond to paths leading to
the True leaf of the OBDD, while all other paths lead to False. The OBDD represents
a characteristic function that takes valuations of x0 . . .x4 and returns True only if it
corresponds to a state transition.

138 Finite State Verification

A good rule of thumb is that finite state verification tools that use intensional rep-
resentations (typically called symbolic model checkers) are more effective, the more
regularity is captured in the model, while an explicit model checker (like Spin) is apt
to be at least as effective where little regularity can be captured, or where the kinds
of regularity that can be captured can also be exploited in explicit state space explo-
ration (e.g., the partial order reductions used by Spin). Unfortunately, this advice is
rather vague, because we do not know a precise way to describe or measure the kinds
of regularity that affect verification tool performance.

Whether a finite state verification tool performs explicit state enumeration or ma-
nipulates an intensional representation can be partly hidden from the tool user, and it is
possible for a single tool “front end” for building or extracting models to be connected
to multiple “back end” verification engines.

8.7 Model Refinement

Because construction of finite state models requires a delicate balance between preci-
sion and efficiency, often the first model we construct will be unsatisfactory — either
the verification tool will produce reports of potential failures that are obviously impos-
sible, or it will exhaust resources before producing any result at all. Minor differences
in the model can have large effects on tractability of the verification procedure, so in
practice finite state verification is often an iterative process of constructing a model,
attempting verification, and then either abstracting the model further (if the verification
exhausts computational resources or the user’s patience before obtaining a conclusive
result) or making the model more precise to eliminate spurious results (i.e., a report of
a potential error that cannot actually occur).

An iterative process of model refinement can be at least partly automated. We begin
with a very coarse model that can be efficiently constructed and analyzed, and then we
add detail specifically aimed at ruling out spurious error reports. There are two main
approaches: adding detail directly to the model, or adding premises to the property to
be checked.

Initially, we try to verify that a very coarse model M1 satisfies property P:

M1 |= P

However, M is only an approximation of the real system, and we find that the veri-
fication finds a violation of P because of some execution sequences that are possible in
M1 but not in the real system. In the first approach, we examine the counter-example
(an execution trace of M1 that violates P but is impossible in the real system) and create
a new model M2 that is more precise in a way that will eliminate that particular exe-
cution trace (and many similar traces). We attempt verification again with the refined
model:

M2 |= P

If verification fails again, we repeat the process to obtain a new model M3, and
so on, until verification succeeds with some “good enough” model Mk or we obtain a
counter-example that corresponds to an execution of the actual program.

Model Refinement 139

One kind of model that can be iteratively refined in this way is Boolean pro-
grams. The initial Boolean program model of an (ordinary) program omits all vari-
ables; branches (if, while, etc.) refer to a dummy Boolean variable whose value is un-
known. Boolean programs are refined by adding variables, with assignments and tests
— but only Boolean variables. For instance, if a counter-example produced by trying to
verify a property of a pump controller shows that the waterLevel variable cannot be ig-
nored, a Boolean program might be refined by adding a Boolean variable corresponding
to a predicate in which waterLevel is tested (say, waterLevel < highLimit), rather than
adding the variable waterLevel itself. For some kinds of interprocedural control flow
analysis, it is possible to completely automate the step of choosing additional Boolean
variables to refine Mi into Mi+1 and eliminate some spurious executions.

In the second approach, M remains fixed,4 but premises that constrain executions
to be checked are added to the property P. When bogus behaviors of M violate P, we
add a constraint C1 to rule them out and try the modified verification problem:

M |= C1) P

If the modified verification problem fails because of additional bogus behaviors,
we try again with new constraints C2:

M |= (C1^C2)) P

so on until verification either succeeds or produces a valid counter-example.
The FLAVERS finite state verification tool is an example of the second approach,

adding constraints to refine a model of concurrent execution. A FLAVERS model ap-
proximates concurrent execution with a pairwise “may immediately precede” (MIP)
relation among operations in different threads. Because MIP relates only pairs of indi-
vidual process states, rather than k-tuples for a model with k processes, its size is only
quadratic in the size of the state machine model, rather than exponential in the number
of processes. Moreover, a reasonably good approximation of the MIP relation can be
obtained in cubic time.5

If one thinks of each MIP edge in the program model as representing possible inter-
ruption of one thread and continuation of another, it is apparent that paths combining
transitions within individual processes and MIP transitions between processes can rep-
resent all paths through the global state space. Many additional paths, which would
not appear in a more precise global model of possible executions, are also represented.
The overapproximation leads to spurious error reports involving impossible execution
paths.

Additional spurious error reports result from eliding details of data variables. In
the Boolean programs approach to model refinement, we would refine the model by

4In practice the model M may be augmented slightly to facilitate observing significant events in the
constraint, but the augmentation does not restrict or change the possible behaviors of the model M.

5Published algorithms for computing the “may immediately precede” relation, or the closely related “may
happen in parallel” (MHP) relation, range from O(n3) to O(n6) where n is the sum of the sizes of the indi-
vidual state machine models or control flow graphs. They differ depending on the thread interactions under
consideration (e.g., a MIP calculation for Ada tasks would use diffferent constraints than a MIP calculation
for Java threads) as well as algorithmic approach.

140 Finite State Verification

expanding the finite state representation of the process. With FLAVERS, in contrast, in-
formation about the variable value is represented in a separate constraint state machine,
which may be provided by the user or extracted automatically from the program to be
verified. Only violations of property P that satisfy all the constraints Ci are reported.
The same approach of adding constraints is used to eliminate spurious error reports
resulting from the MIP overestimation of possible concurrency.

8.8 Data Model Verification with Relational Algebra

Many information systems have relatively simple logic and algorithms, with much of
their complexity in the structure of the data they maintain. A data model is a key design
description for such systems. It is typically described, for example, in the class and
object diagrams of a Unified Modeling Language (UML) design document, possibly
augmented by assertions in the Object Constraint Language (OCL). The finite state
verification techniques we have described are suited to reasoning about complex or
subtle program logic, but are quite limited in dealing with complex data. Fortunately,
suitable finite state verification techniques can also be devised for reasoning about data
models.

The data model consists of sets of data and relations among them. Often a data
model describes many individual relations and constraints; the challenge is in know-
ing whether all of the individual constraints are consistent, and whether together they
ensure the desired properties of the system as a whole. Constructing and testing a
portion or partial version of the system may provide some increased confidence in the
realizability of the system, but even with incremental development it can happen that a
fundamental problem in the data model is discovered only after a great deal of devel-
opment effort has been invested in the flawed model. Reasoning about the model itself
is a more timely and cost-effective way to find and correct these flaws.

Let us consider, for example, a simple Web site with a data model described as sets
and relations as follows:

• A set of pages, divided among restricted, unrestricted, and maintenance pages.
Unrestricted pages are freely accessible, while restricted pages are accessible
only to registered users, and pages in maintenance are currently inaccessible to
both sets of users.

• A set of users, classified as administrator, registered, and unregistered users.

• A set of links relations among pages. Different relations describe different kinds
of links. Private links lead to restricted pages, public links lead to unrestricted
pages, and maintenance links lead to pages undergoing maintenance.

• A set of access rights relations between users and pages, relating different classes
of users to the pages they can access. Unregistered users can access only unre-
stricted pages, registered users can access both restricted and unrestricted pages,
and an administrator can access all pages, including pages under maintenance.

Data Model Verification with Relational Algebra 141

r
A

B

A B

users

administrator registered

unregistered

page

unrestricted

restricted maintenancecan access

can access

can access
maintenance

maintenance

private

private

public

public

LEGEND

Set B
specializes

set A There is a relation r
between sets A and B

can access

can access

can access

Figure 8.14: The data model of a simple Web site.

So far we have identified the sets involved in the relations, which we call their
signature. To complete the description we need to indicate the rules that constrain
relations among specific elements. For example we may:

• Exclude self loops from “links” relations; that is, specify that a page should not
be directly linked to itself.

• Allow at most one type of link between two pages. Note that relations need not
be symmetric; that is, the relation between A and B is distinct from the relation
between B and A, so there can be a link of type private from A to B and a link of
type public from B back to A.

• Require the Web site to be connected; that is, require that there be at least one
way of following links from the home page to each other page of the site.

A data model can be visualized as a diagram with nodes corresponding to sets and
edges representing relations, as in Figure 8.14.

142 Finite State Verification

1 module WebSite
2

3 // Pages include three disjoint sets of links
4 sig Page{ disj linksPriv, linksPub, linksMain: set Page }
5 // Each type of link points to a particular class of page
6 fact connPub{ all p: Page, s: Site | p.linksPub in s.unres }
7 fact connPriv{ all p: Page, s: Site | p.linksPriv in s.res }
8 fact connMain{ all p: Page, s: Site | p.linksMain in s.main }
9 // Self loops are not allowed

10 fact noSelfLoop{ no p: Page| p in p.linksPriv+p.linksPub+p.linksMain }
11

12 // Users are characterized by the set of pages that they can access
13 sig User{ pages: set Page }
14 // Users are partitioned into three sets
15 part sig Administrator, Registered, Unregistered extends User {}
16 // Unregistered users can access only the home page, and unrestricted pages
17 fact accUnregistered{
18 all u: Unregistered, s: Site| u.pages = (s.home+s.unres) }
19 // Registered users can access home, restricted and unrestricted pages
20 fact accRegistered{
21 all u: Registered, s: Site|
22 u.pages = (s.home+s.res+s.unres)
23 }
24 // Administrators can access all pages
25 fact accAdministrator{
26 all u: Administrator, s: Site|
27 u.pages = (s.home+s.res+s.unres+s.main)
28 }
29

30 // A web site includes one home page and three disjoint sets
31 // of pages: restricted, unrestricted and maintenance
32 static sig Site{
33 home: Page,
34 disj res, unres, main: set Page
35 } {
36 // All pages are accessible from the home page (’ˆ’ is transitive closure)
37 all p: (res+unres+main)| p in home.ˆ(linksPub+linksPriv+linksMain)
38 }
39

Figure 8.15: Alloy model of a Web site with different kinds of pages, users, and access
rights (data model part). Continued in Figure 8.16.

Data Model Verification with Relational Algebra 143

1 module WebSite
39 . . .
40 // We consider one Web site that includes one home page
41 // and some other pages
42 fun initSite() {
43 one s: Site| one s.home and
44 some s.res and
45 some s.unres and
46 some s.main
47 }
48

49 // We consider one administrator and some registered and unregistered users
50 fun initUsers() {one Administrator and
51 some Registered and
52 some Unregistered}
53

54 fun init() {
55 initSite() and initUsers()
56 }
57

58 // ANALYSIS
59

60 // Verify if there exists a solution
61 // with sets of cardinality at most 5
62 run init for 5
63

64 // check if unregistered users can visit all unrestrited pages,
65 // i.e., all unrestricted pages are connected to the home page with
66 // at least a path of public links.
67 // Perform analysis with sets of at most 3 objects.
68 // ’*’ indicates the transtivie closure including the source element.
69

70 assert browsePub{
71 all p: Page, s: Site| p in s.unres implies s.home in p.* linksPub
72 }
73 check browsePub for 3

Figure 8.16: Alloy model of a Web site with different kinds of pages, users, and access
rights, continued from Figure 8.15.

144 Finite State Verification

We can reason about sets and relations using mathematical laws. For example,
set union and set intersection obey many of the same algebraic laws as addition and
subtraction of integers:

A[B = B[A commutative law
A\B = B\A " "
(A[B)[C = A[(B[C) associative law
(A\B)\C = A\ (B\C) " "
A\ (B[C) = (A\B)[(A\C) distributive law
etc.

These and many other laws together make up relational algebra, which is used
extensively in database processing and has many other uses.

It would be inconvenient to write down a data model directly as a collection of
mathematical formulas. Instead, we use some notation whose meaning is the same as
the mathematical formulas, but is easier to write, maintain, and comprehend. Alloy is
one such modeling notation, with the additional advantage that it can be processed by
a finite state verification tool.

The definition of the data model as sets and relations can be formalized and verified
with relational algebra by specifying signatures and constraints. Figure 8.15 presents a
formalization of the data model of the Web site in Alloy. Keyword sig (signature) iden-
tifies three sets: Pages, User, and Site. The definition of set Pages also defines three
disjoint relations among pages: linksPriv (private links), linksPub (public links), and
linksMain (maintenance links). The definition of User also defines a relation between
users and pages. User is partitioned into three disjoint sets (Administrator, Registered,
and Unregistered). The definition of Site aggregates pages into the site and identifies
the home page. Site is defined static since it is a fixed classification of objects.

The keyword facts introduces constraints.6 The constraints connPub, connPriv and
connMain restrict the target of the links relations, while noSelfLoop excludes links from
a page to itself. The constraints accAdministrator, accRegistered, and accUnregistered
map users to pages. The constraint that follows the definition of Site forces the Web
site to be connected by requiring each page to belong to the transitive closure of links
starting from the Web page (operator ‘ˆ’).

A relational algebra specification may be over- or underconstrained. Overcon-
strained specifications are not satisfiable by any implementation, while underconstrained
specifications allow undesirable implementations; that is, implementations that violate
important properties.

In general, specifications identify infinite sets of solutions, each characterized by
a different set of objects and relations (e.g., the infinite set of Web sites with different
sets of pages, users and correct relations among them). Thus in general, properties of a
relational specification are undecidable because proving them would require examining
an infinite set of possible solutions. While attempting to prove absence of a solution
may be inconclusive, often a (counter) example that invalidates a property can be found
within a finite set of small models.

We can verify a specification over a finite set of solutions by limiting the cardinality

6The order in which relations and constraints are given is irrelevant. We list constraints after the relations
they refer to.

Data Model Verification with Relational Algebra 145

User_2

Page_1

Page_0

Page_2

home unres

Site_0

unres

pages

pages
linkPriv

res

linksPub

linksPub

Figure 8.17: A Web site that violates the “browsability” property, because public page
Page 2 is not reachable from the home page using only unrestricted links. This diagram
was generated by the Alloy tool.

of the sets. In the example, we first verify that the model admits solutions for sets with
at most five elements (run init for 5 issued after an initialization of the system.) A
positive outcome indicates that the specification is not overconstrained — there are no
logical contradictions. A negative outcome would not allow us to conclude that no
solution exists, but tells us that no “reasonably small” solution exists.

We then verify that the example is not underconstrained with respect to property
browsePub that states that unregistered users must be able to visit all unrestricted pages
by accessing the site from the home page. The property is asserted by requiring that
all unrestricted pages belong to the reflexive transitive closure of the linkPub relation
from the home page (here we use operator ‘*’ instead of ’ˆ’ because the home page
is included in the closure). If we check whether the property holds for sets with at
most three elements (check browsePub for 3) we obtain a counter-example like the one
shown in Figure 8.17, which shows how the property can be violated.

The simple Web site in the example consists of two unrestricted pages (page 1,
the home page, and page 2), one restricted page (page 0), and one unregistered user
(user 2). User 2 cannot visit one of the unrestricted pages (page 2) because the only
path from the home page to page 2 goes through the restricted page page 0. The prop-
erty is violated because unrestricted browsing paths can be “interrupted” by restricted
pages or pages under maintenance, for example, when a previously unrestricted page
is reserved or disabled for maintenance by the administrator.

The problem appears only when there are public links from maintenance or re-

146 Finite State Verification

served pages, as we can check by excluding them:
1 fact descendant{
2 all p: Page, s: Site| p in s.main+s.res implies no p.linksPub
3 }

This new specification would not find any counter-example in a space of cardinality 3.
We cannot conclude that no larger counter-example exists, but we may be satisfied that
there is no reason to expect this property to be violated only in larger models.

Summary

Finite state verification techniques fill an important niche in verifying critical proper-
ties of programs. They are particularly crucial where nondeterminism makes program
testing ineffective, as in concurrent execution. In principle, finite state verification of
concurrent execution and of data models can be seen as systematically exploring an
enormous space of possible program states. From a user’s perspective, the challenge
is to construct a suitable model of the software that can be analyzed with reasonable
expenditure of human and computational resources, captures enough significant detail
for verification to succeed, and can be shown to be consistent with the actual software.

Further Reading

There is a large literature on finite state verification techniques reaching back at least to
the 1960s, when Bartlett et al. [BSW69] employed what is recognizably a manual ver-
sion of state space exploration to justify the corrrectness of a communication protocol.
A number of early state space verification tools were developed initially for commu-
nication protocol verification, including the Spin tool. Holzmann’s journal description
of Spin’s design and use [Hol97], though now somewhat out of date, remains an ade-
quate introduction to the approach, and a full primer and reference manual [Hol03] is
available in book form.

The ordered binary decision diagram representation of Boolean functions, used in
the first symbolic model checkers, was introduced by Randal Bryant [Bry86]. The
representation of transition relations as OBDDs in this chapter is meant to illustrate
basic ideas but is simplified and far from complete; Bryant’s survey paper [Bry92] is
a good source for understanding applications of OBDDs, and Huth and Ryan [HR00]
provide a thorough and clear step-by-step description of how OBDDs are used in the
SMV symbolic model checker.

Model refinement based on iterative refinements of an initial coarse model was
introduced by Ball and Rajamani in the tools Slam [BR01a] and Bebop [BR01b], and
by Henzinger and his colleagues in Blast [HJMS03]. The complementary refinement
approach of FLAVERS was introduced by Dwyer and colleagues [DCCN04].

Automated analysis of relational algebra for data modeling was introduced by
Daniel Jackson and his students with the Alloy notation and associated tools [Jac02].

Data Model Verification with Relational Algebra 147

Exercises

8.1. We stated, on the one hand, that finite state verification falls between basic flow
analysis and formal verification in power and cost, but we also stated that fi-
nite state verification techniques are often designed to provide results that are
tantamount to formal proofs of program properties. Are these two statements
contradictory? If not, how can a technique that is less powerful than formal
verification produce results that are tantamount to formal proofs?

8.2. Construct an ordered binary decision diagram (OBDD) for the proposition

x) y_ z

8.3. (a) How does the size of the OBDD representation of

(x_ y)^¬(x^ y^ z)

differ depending on which variable (x, y, or z) is first in the variable ordering
(i.e., appears in the root node of the OBDD representation)? Is the size of
the OBDD equivalent for some different orderings of the variables? Why
or why not?

(b) Predict whether the order of variables would make a difference for

(x_ y_ z)^¬(x^ y^ z)

8.4. A property like “if the button is pressed, then eventually the elevator will come”
is classified as a liveness property. However, the stronger real-time version “if the
button is pressed, then the elevator will arrive within 30 seconds” is technically
a safety property rather than a liveness property. Why?

148 Finite State Verification

Part III

Problems and Methods

149

Chapter 9

Test Case Selection and

Adequacy

A key problem in software testing is selecting and evaluating test cases. This chapter
introduces basic approaches to test case selection and corresponding adequacy criteria.
It serves as a general introduction to the problem and provides a conceptual framework
for functional and structural approaches described in subsequent chapters.

Required Background

• Chapter 2
The fundamental problems and limitations of test case selection are a conse-
quence of the undecidability of program properties. A grasp of the basic problem
is useful in understanding Section 9.3.

9.1 Overview

Experience suggests that software that has passed a thorough set of systematic tests
is likely to be more dependable than software that has been only superficially or hap-
hazardly tested. Surely we should require that each software module or subsystem
undergo thorough, systematic testing before being incorporated into the main product.
But what do we mean by thorough testing? What is the criterion by which we can
judge the adequacy of a suite of tests that a software artifact has passed?

Ideally, we should like an “adequate” test suite to be one that ensures correctness
of the product. Unfortunately, that goal is not attainable. The difficulty of proving that
some set of test cases is adequate in this sense is equivalent to the difficulty of proving
that the program is correct. In other words, we could have “adequate” testing in this
sense only if we could establish correctness without any testing at all.

In practice we settle for criteria that identify inadequacies in test suites. For ex-
ample, if the specification describes different treatment in two cases, but the test suite
does not check that the two cases are in fact treated differently, then we may conclude

151

152 Test Case Selection and Adequacy

that the test suite is inadequate to guard against faults in the program logic. If no test
in the test suite executes a particular program statement, we might similarly conclude
that the test suite is inadequate to guard against faults in that statement. We may use a
whole set of (in)adequacy criteria, each of which draws on some source of information
about the program and imposes a set of obligations that an adequate set of test cases
ought to satisfy. If a test suite fails to satisfy some criterion, the obligation that has not
been satisfied may provide some useful information about improving the test suite. If
a set of test cases satisfies all the obligations by all the criteria, we still do not know
definitively that it is a well-designed and effective test suite, but we have at least some
evidence of its thoroughness.

9.2 Test Specifications and Cases

A test case includes not only input data but also any relevant execution conditions and
procedures, and a way of determining whether the program has passed or failed the
test on a particular execution. The term input is used in a very broad sense, which
may include all kinds of stimuli that contribute to determining program behavior. For
example, an interrupt is as much an input as is a file. The pass/fail criterion might be
given in the form of expected output, but could also be some other way of determining
whether a particular program execution is correct.

A test case specification is a requirement to be satisfied by one or more actual test
cases. The distinction between a test case specification and a test case is similar to the
distinction between a program specification and a program. A test case specification
might be met by several different test cases, and vice versa. Suppose, for example, we
are testing a program that sorts a sequence of words. “The input is two or more words”
would be a test case specification, while test cases with the input values “alpha beta”
and “Milano Paris London” would be two among many test cases satisfying the test
case specification. A test case with input “Milano Paris London” would satisfy both the
test case specification “the input is two or more words” and the test case specification
“the input contains a mix of lower- and upper-case alphabetic characters.”

Characteristics of the input are not the only thing that might be mentioned in a
test case specification. A complete test case specification includes pass/fail criteria
for judging test execution and may include requirements, drawn from any of several
sources of information, such as system, program, and module interface specifications;
source code or detailed design of the program itself; and records of faults encountered
in other software systems.

Test specifications drawn from system, program, and module interface specifica-
tions often describe program inputs, but they can just as well specify any observable be-
havior that could appear in specifications. For example, the specification of a database
system might require certain kinds of robust failure recovery in case of power loss, and
test specifications might therefore require removing system power at certain critical
points in processing. If a specification describes inputs and outputs, a test specification
could prescribe aspects of the input, the output, or both. If the specification is mod-
eled as an extended finite state machine, it might require executions corresponding to
particular transitions or paths in the state-machine model. The general term for such

Test Specifications and Cases 153

Testing Terms
While the informal meanings of words like “test” may be adequate for everyday

conversation, in this context we must try to use terms in a more precise and consistent
manner. Unfortunately, the terms we will need are not always used consistently in the
literature, despite the existence of an IEEE standard that defines several of them. The
terms we will use are defined as follows.

Test case: A test case is a set of inputs, execution conditions, and a pass/fail criterion.
(This usage follows the IEEE standard.)

Test case specification: A test case specification is a requirement to be satisfied by
one or more actual test cases. (This usage follows the IEEE standard.)

Test obligation: A test obligation is a partial test case specification, requiring some
property deemed important to thorough testing. We use the term obligation to
distinguish the requirements imposed by a test adequacy criterion from more
complete test case specifications.

Test suite: A test suite is a set of test cases. Typically, a method for functional testing
is concerned with creating a test suite. A test suite for a program, system, or
individual unit may be made up of several test suites for individual modules,
subsystems, or features. (This usage follows the IEEE standard.)

Test or test execution: We use the term test or test execution to refer to the activity
of executing test cases and evaluating their results. When we refer to “a test,” we
mean execution of a single test case, except where context makes it clear that the
reference is to execution of a whole test suite. (The IEEE standard allows this
and other definitions.)

Adequacy criterion: A test adequacy criterion is a predicate that is true (satisfied)
or false (not satisfied) of a hprogram, test suitei pair. Usually a test adequacy
criterion is expressed in the form of a rule for deriving a set of test obligations
from another artifact, such as a program or specification. The adequacy criterion
is then satisfied if every test obligation is satisfied by at least one test case in the
suite.

154 Test Case Selection and Adequacy

test specifications is functional testing, although the term black-box testing and more
specific terms like specification-based testing and model-based testing are also used.

Test specifications drawn from program source code require coverage of particular
elements in the source code or some model derived from it. For example, we might
require a test case that traverses a loop one or more times. The general term for testing
based on program structure is structural testing, although the term white-box testing or
glass-box testing is sometimes used.

Previously encountered faults can be an important source of information regard-
ing useful test cases. For example, if previous products have encountered failures or
security breaches due to buffer overflows, we may formulate test requirements specif-
ically to check handling of inputs that are too large to fit in provided buffers. These
fault-based test specifications usually draw also from interface specifications, design
models, or source code, but add test requirements that might not have been otherwise
considered. A common form of fault-based testing is fault-seeding, purposely inserting
faults in source code and then measuring the effectiveness of a test suite in finding the
seeded faults, on the theory that a test suite that finds seeded faults is likely also to find
other faults.

Test specifications need not fall cleanly into just one of the categories. For example,
test specifications drawn from a model of a program might be considered specification-
based if the model is produced during program design, or structural if it is derived from
the program source code.

Consider the Java method of Figure 9.1. We might apply a general rule that requires
using an empty sequence wherever a sequence appears as an input; we would thus
create a test case specification (a test obligation) that requires the empty string as input.1
If we are selecting test cases structurally, we might create a test obligation that requires
the first clause of the if statement on line 15 to evaluate to true and the second clause to
evaluate to false, and another test obligation on which it is the second clause that must
evaluate to true and the first that must evaluate to false.

9.3 Adequacy Criteria

We have already noted that adequacy criteria are just imperfect but useful indicators of
inadequacies, so we may not always wish to use them directly to generate test specifi-
cations from which actual test cases are drawn. We will use the term test obligation for
test specifications imposed by adequacy criteria, to distinguish them from test specifi-
cations that are actually used to derive test cases. Thus, the usual situation will be that
a set of test cases (a test suite) is created using a set of test specifications, but then the
adequacy of that test suite is measured using a different set of test obligations.

We say a test suite satisfies an adequacy criterion if all the tests succeed and if
every test obligation in the criterion is satisfied by at least one of the test cases in
the test suite. For example, the statement coverage adequacy criterion is satisfied by a
particular test suite for a particular program if each executable statement in the program
(i.e., excluding comments and declarations) is executed by at least one test case in the

1Constructing and using catalogs of general rules like this is described in Chapter 10.

Adequacy Criteria 155

1 /**
2 * Remove/collapse multiple spaces.
3 *
4 * @param String string to remove multiple spaces from.
5 * @return String
6 */
7 public static String collapseSpaces(String argStr)
8 {
9 char last = argStr.charAt(0);

10 StringBuffer argBuf = new StringBuffer();
11

12 for (int cIdx = 0 ; cIdx < argStr.length(); cIdx++)
13 {
14 char ch = argStr.charAt(cIdx);
15 if (ch != ’ ’ || last != ’ ’)
16 {
17 argBuf.append(ch);
18 last = ch;
19 }
20 }
21

22 return argBuf.toString();
23 }

Figure 9.1: A Java method for collapsing sequences of blanks, excerpted from the
StringUtils class of Velocity version 1.3.1, an Apache Jakarta project. c� Apache
Group, used by permission.

156 Test Case Selection and Adequacy

test suite. A fault-based adequacy criterion that seeds a certain set of faults would be
satisfied if, for each of the seeded faults, there is a test case that passes for the original
program but fails for the program with (only) that seeded fault.

It is quite possible that no test suite will satisfy a particular test adequacy criterion
for a particular program. For example, if the program contains statements that can
never be executed (perhaps because it is part of a sanity check that can be executed
only if some other part of the program is faulty), then no test suite can satisfy the
statement coverage criterion. Analogous situations arise regardless of the sources of
information used in devising test adequacy criteria. For example, a specification-based
criterion may require combinations of conditions drawn from different parts of the
specification, but not all combinations may be possible.

One approach to overcoming the problem of unsatisfiable test obligations is to sim-
ply exclude any unsatisfiable obligation from a criterion. For example, the statement
coverage criterion can be modified to require execution only of statements that can
be executed. The question of whether a particular statement or program path is exe-
cutable, or whether a particular combination of clauses in a specification is satisfiable,
or whether a program with a seeded error actually behaves differently from the original
program, are all provably undecidable in the general case. Thus, while tools may be
some help in distinguishing feasible from infeasible test obligations, in at least some
cases the distinction will be left to fallible human judgment.

If the number of infeasible test obligations is modest, it can be practical to identify
each of them, and to ameliorate human fallibility through peer review. If the number
of infeasible test obligations is large, it becomes impractical to carefully reason about
each to avoid excusing an obligation that is feasible but difficult to satisfy. A common
practice is to measure the extent to which a test suite approaches an adequacy criterion.
For example, if an adequacy criterion based on control flow paths in a program unit
induced 100 distinct test obligations, and a test suite satisfied 85 of those obligations,
then we would say that we had reached 85% coverage of the test obligations.

Quantitative measures of test coverage are widely used in industry. They are simple
and cheap to calculate, provide some indication of progress toward thorough testing,
and project an aura of objectivity. In managing software development, anything that
produces a number can be seductive. One must never forget that coverage is a rough
proxy measure for the thoroughness and effectiveness of test suites. The danger, as
with any proxy measure of some underlying goal, is the temptation to improve the
proxy measure in a way that does not actually contribute to the goal. If, for example,
80% coverage of some adequacy criterion is required to declare a work assignment
complete, developers under time pressure will almost certainly yield to the temptation
to design tests specifically to that criterion, choosing the simplest test cases that achieve
the required coverage level. One cannot entirely avoid such distortions, but to the
extent possible one should guard against them by ensuring that the ultimate measure
of performance is preventing faults from surviving to later stages of development or
deployment.

Comparing Criteria 157

9.4 Comparing Criteria

It would be useful to know whether one test adequacy criterion was more effective
than another in helping find program faults, and whether its extra effectiveness was
worthwhile with respect to the extra effort expended to satisfy it. One can imagine
two kinds of answers to such a question, empirical and analytical. An empirical an-
swer would be based on extensive studies of the effectiveness of different approaches
to testing in industrial practice, including controlled studies to determine whether the
relative effectiveness of different testing methods depends on the kind of software be-
ing tested, the kind of organization in which the software is developed and tested, and
a myriad of other potential confounding factors. The empirical evidence available falls
short of providing such clear-cut answers. An analytical answer to questions of relative
effectiveness would describe conditions under which one adequacy criterion is guar-
anteed to be more effective than another, or describe in statistical terms their relative
effectiveness.

Analytic comparisons of the strength of test coverage depends on a precise defini-
tion of what it means for one criterion to be “stronger” or “more effective” than another.
Let us first consider single test suites. In the absence of specific information, we cannot
exclude the possibility that any test case can reveal a failure. A test suite TA that does
not include all the test cases of another test suite TB may fail revealing the potential
failure exposed by the test cases that are in TB but not in TA. Thus, if we consider only
the guarantees that a test suite provides, the only way for one test suite TA to be stronger
than another suite TB is to include all test cases of TB plus additional ones.

Many different test suites might satisfy the same coverage criterion. To compare
criteria, then, we consider all the possible ways of satisfying the criteria. If every test
suite that satisfies some criterion A is a superset of some test suite that satisfies criterion
B, or equivalently, every suite that satisfies A also satisfies B, then we can say that A
“subsumes” B. D subsumes

Test coverage criterion A subsumes test coverage criterion B iff, for every program
P, every test set satisfying A with respect to P also satisfies B with respect to P.

In this case, if we satisfy criterion C1, there is no point in measuring adequacy with
respect to C2. For example, a structural criterion that requires exploring all outcomes
of conditional branches subsumes statement coverage. Likewise, a specification-based
criterion that requires use of a set of possible values for attribute A and, independently,
for attribute B, will be subsumed by a criterion that requires all combinations of those
values.

Consider again the example of Figure 9.1. Suppose we apply an adequacy criterion
that imposes an obligation to execute each statement in the method. This criterion can
be met by a test suite containing a single test case, with the input value (value of argStr)
being “doesn’tEvenHaveSpaces.” Requiring both the true and false branches of each
test to be taken subsumes the previous criterion and forces us to at least provide an
input with a space that is not copied to the output, but it can still be satisfied by a suite
with just one test case. We might add a requirement that the loop be iterated zero times,
once, and several times, thus requiring a test suite with at least three test cases. The
obligation to execute the loop body zero times would force us to add a test case with the

158 Test Case Selection and Adequacy

empty string as input, and like the specification-based obligation to consider an empty
sequence, this would reveal a fault in the code.

Should we consider a more demanding adequacy criterion, as indicated by the sub-
sumes relation among criteria, to be a better criterion? The answer would be “yes” if
we were comparing the guarantees provided by test adequacy criteria: If criterion A
subsumes criterion B, and if any test suite satisfying B in some program is guaranteed
to find a particular fault, then any test suite satisfying A is guaranteed to find the same
fault in the program. This is not as good as it sounds, though. Twice nothing is nothing.
Adequacy criteria do not provide useful guarantees for fault detection, so comparing
guarantees is not a useful way to compare criteria.

A better statistical measure of test effectiveness is whether the probability of find-
ing at least one program fault is greater when using one test coverage criterion than
another. Of course, such statistical measures can be misleading if some test coverage
criteria require much larger numbers of test cases than others. It is hardly surprising
if a criterion that requires at least 300 test cases for program P is more effective, on
average, than a criterion that requires at least 50 test cases for the same program. It
would be better to know, if we have 50 test cases that satisfy criterion B, is there any
value in finding 250 test cases to finish satisfying the “stronger” criterion A, or would
it be just as profitable to choose the additional 250 test cases at random?

Although theory does not provide much guidance, empirical studies of particular
test adequacy criteria do suggest that there is value in pursuing stronger criteria, par-
ticularly when the level of coverage attained is very high. Whether the extra value of
pursuing a stronger adequacy criterion is commensurate with the cost almost certainly
depends on a plethora of particulars, and can only be determined by monitoring results
in individual organizations.

Open Research Issues

A good deal of theoretical research has been done on what one can conclude about
test effectiveness from test adequacy criteria. Most of the results are negative. In
general, one cannot be certain that a test suite that meets any practical test adequacy
criterion ensures correctness, or even that it is more effective at finding faults than
another test suite that does not meet the criterion. While theoretical characterization of
test adequacy criteria and their properties was once an active research area, interest has
waned, and it is likely that future theoretical progress must begin with a quite different
conception of the fundamental goals of a theory of test adequacy.

The trend in research is toward empirical, rather than theoretical, comparison of
the effectiveness of particular test selection techniques and test adequacy criteria. Em-
pirical approaches to measuring and comparing effectiveness are still at an early stage.
A major open problem is to determine when, and to what extent, the results of an em-
pirical assessment can be expected to generalize beyond the particular programs and
test suites used in the investigation. While empirical studies have to a large extent dis-
placed theoretical investigation of test effectiveness, in the longer term useful empirical
investigation will require its own theoretical framework.

Comparing Criteria 159

Further Reading

Goodenough and Gerhart made the original attempt to formulate a theory of “ade-
quate” testing [GG75]; Weyuker and Ostrand extended this theory to consider when a
set of test obligations is adequate to ensure that a program fault is revealed [WO80].
Gourlay’s exposition of a mathematical framework for adequacy criteria is among the
most lucid developments of purely analytic characterizations [Gou83]. Hamlet and
Taylor show that, if one takes statistical confidence in (absolute) program correctness
as the goal, none of the standard coverage testing techniques improve on random testing
[HT90], from which an appropriate conclusion is that confidence in absolute correct-
ness is not a reasonable goal of systematic testing. Frankl and Iakounenko’s study of
test effectiveness [FI98] is a good example of the development of empirical methods
for assessing the practical effectiveness of test adequacy criteria.

Related Topics

Test adequacy criteria and test selection techniques can be categorized by the sources
of information they draw from. Functional testing draws from program and system
specifications, and is described in Chapters 10, 11, and 14. Structural testing draws
from the structure of the program or system, and is described in Chapters 12 and 13.
The techniques for testing object-oriented software described in Chapter 15 draw on
both functional and structural approaches. Selection and adequacy criteria based on
consideration of hypothetical program faults are described in Chapter 16.

Exercises

9.1. Deterministic finite state machines (FSMs), with states representing classes of
program states and transitions representing external inputs and observable pro-
gram actions or outputs, are sometimes used in modeling system requirements.
We can design test cases consisting of sequences of program inputs that trigger
FSM transitions and the predicted program actions expected in response. We can
also define test coverage criteria relative to such a model. Which of the following
coverage criteria subsume which others?

State coverage: For each state in the FSM model, there is a test case that visits
that state.

Transition coverage: For each transition in the FSM model, there is a test case
that traverses that transition.

Path coverage: For all finite-length subpaths from a distinguished start state in
the FSM model, there is at least one test case that includes a corresponding
subpath.

State-pair coverage: For each state r in the FSM model, for each state s reach-
able from r along some sequence of transitions, there is at least one test
case that passes through state r and then reaches state s.

160 Test Case Selection and Adequacy

9.2. Adequacy criteria may be derived from specifications (functional criteria) or
code (structural criteria). The presence of infeasible elements in a program may
make it impossible to obtain 100% coverage. Since we cannot possibly cover in-
feasible elements, we might define a coverage criterion to require 100% coverage
of feasible elements (e.g., execution of all program statements that can actually
be reached in program execution). We have noted that feasibility of program
elements is undecidable in general. Suppose we instead are using a functional
test adequacy criterion, based on logical conditions describing inputs and out-
puts. It is still possible to have infeasible elements (logical condition A might be
inconsitent with logical condition B, making the conjunction A^B infeasible).
Would you expect distinguishing feasible from infeasible elements to be easier
or harder for functional criteria, compared to structural criteria? Why?

9.3. Suppose test suite A satisfies adequacy criterion C1. Test suite B satisfies ade-
quacy criterion C2, and C2 subsumes C1. Can we be certain that faults revealed
by A will also be revealed by B?

Chapter 10

Functional Testing

A functional specification is a description of intended program1 behavior, distinct from
the program itself. Whatever form the functional specification takes — whether formal
or informal — it is the most important source of information for designing tests.
Deriving test cases from program specifications is called functional testing.

Functional testing, or more precisely, functional test case design, attempts to an-
swer the question “What test cases shall I use to exercise my program?” considering
only the specification of a program and not its design or implementation structure. Be-
ing based on program specifications and not on the internals of the code, functional
testing is also called specification-based or black-box testing.

Functional testing is typically the base-line technique for designing test cases, for
a number of reasons. Functional test case design can (and should) begin as part of
the requirements specification process, and continue through each level of design and
interface specification; it is the only test design technique with such wide and early ap-
plicability. Moreover, functional testing is effective in finding some classes of fault that
typically elude so-called white-box or glass-box techniques of structural or fault-based
testing. Functional testing techniques can be applied to any description of program be-
havior, from an informal partial description to a formal specification, and at any level
of granularity from module to system testing. Finally, functional test cases are typically
less expensive to design and execute than white-box tests.

10.1 Overview

In testing and analysis aimed at verification2 — that is, at finding any discrepancies
between what a program does and what it is intended to do — one must obviously
refer to requirements as expressed by users and specified by software engineers. A

1We use the term program generically for the artifact under test, whether that artifact is a complete
application or an individual unit together with a test harness. This is consistent with usage in the testing
research literature.

2Here we focus on software verification as opposed to validation (see Chapter 2). The problems of
validating the software and its specifications, that is, checking the program behavior and its specifications
with respect to the users’ expectations, is treated in Chapter 22.

161

162 Functional Testing

functional specification, that is, a description of the expected behavior of the program,
is the primary source of information for test case specification.

Functional testing, also known as black-box or specification-based testing, denotesD black-box testing

techniques that derive test cases from functional specifications. Usually functional
testing techniques produce test case specifications that identify classes of test cases
and are instantiated to produce individual test cases.

The core of functional test case design is partitioning3 the possible behaviors of
the program into a finite number of homogeneous classes, where each such class can
reasonably be expected to be consistently correct or incorrect. In practice, the test case
designer often must also complete the job of formalizing the specification far enough to
serve as the basis for identifying classes of behaviors. An important side benefit of test
design is highlighting the weaknesses and incompleteness of program specifications.

Deriving functional test cases is an analytical process that decomposes specifica-
tions into test cases. The myriad aspects that must be taken into account during func-
tional test case specification makes the process error prone. Even expert test designers
can miss important test cases. A methodology for functional test design helps by de-
composing the functional test design process into elementary steps. In this way, it
is possible to control the complexity of the process and to separate human intensive
activities from activities that can be automated.

Sometimes, functional testing can be fully automated. This is possible, for exam-
ple, when specifications are given in terms of some formal model, such as a grammar
or an extended state machine specification. In these (exceptional) cases, the creative
work is performed during specification and design of the software. The test designer’s
job is then limited to the choice of the test selection criteria, which defines the strategy
for generating test case specifications. In most cases, however, functional test design
is a human intensive activity. For example, when test designers must work from infor-
mal specifications written in natural language, much of the work is in structuring the
specification adequately for identifying test cases.

10.2 Random versus Partition Testing Strategies

With few exceptions, the number of potential test cases for a given program is unimag-
inably huge — so large that for all practical purposes it can be considered infinite. For
example, even a simple function whose input arguments are two 32-bit integers has
264 ⇡ 1054 legal inputs. In contrast to input spaces, budgets and schedules are finite,
so any practical method for testing must select an infinitesimally small portion of the
complete input space.

Some test cases are better than others, in the sense that some reveal faults and others
do not.4 Of course, we cannot know in advance which test cases reveal faults. At a
minimum, though, we can observe that running the same test case again is less likely

3We are using the term partition in a common but rather sloppy sense. A true partition would form
disjoint classes, the union of which is the entire space. Partition testing separates the behaviors or input
space into classes whose union is the entire space, but the classes may not be disjoint.

4Note that the relative value of different test cases would be quite different if our goal were to measure
dependability, rather than finding faults so that they can be repaired.

Random versus Partition Testing Strategies 163

Functional vs. Structural Testing
Test cases and test suites can be derived from several sources of information, in-

cluding specifications (functional and model-based testing), detailed design and source
code (structural testing), and hypothesized defects (fault-based testing). Functional test
case design is an indispensable base of a good test suite, complemented but never re-
placed by structural and fault-based testing, because there are classes of faults that only
functional testing effectively detects. Omission of a feature, for example, is unlikely to
be revealed by techniques that refer only to the code structure.

Consider a program that is supposed to accept files in either plain ASCII text, or
HTML, or PDF formats and generate standard Postscript. Suppose the programmer
overlooks the PDF functionality, so that the program accepts only plain text and HTML
files. Intuitively, a functional testing criterion would require at least one test case for
each item in the specification, regardless of the implementation; that is, it would require
the program to be exercised with at least one ASCII, one HTML, and one PDF file, thus
easily revealing the failure due to the missing code. In contrast, criteria based solely on
the code would not require the program to be exercised with a PDF file, since each part
of the code can be exercised without attempting to use that feature. Similarly, fault-
based techniques, based on potential faults in design or coding, would not have any
reason to indicate a PDF file as a potential input even if “missing case” were included
in the catalog of potential faults.

Functional specifications often address semantically rich domains, and we can use
domain information in addition to the cases explicitly enumerated in the program spec-
ification. For example, while a program may manipulate a string of up to nine alphanu-
meric characters, the program specification may reveal that these characters represent
a postal code, which immediately suggests test cases based on postal codes of vari-
ous localities. Suppose the program logic distinguishes only two cases, depending on
whether they are found in a table of U.S. zip codes. A structural testing criterion would
require testing of valid and invalid U.S. zip codes, but only consideration of the specifi-
cation and richer knowledge of the domain would suggest test cases that reveal missing
logic for distinguishing between U.S.-bound mail with invalid U.S. zip codes and mail
bound for other countries.

Functional testing can be applied at any level of granularity where some form of
specification is available, from overall system testing to individual units, although the
level of granularity and the type of software influence the choice of the specification
styles and notations, and consequently the functional testing techniques that can be
used.

In contrast, structural and fault-based testing techniques are invariably tied to pro-
gram structures at some particular level of granularity and do not scale much beyond
that level. The most common structural testing techniques are tied to fine-grain pro-
gram structures (statements, classes, etc.) and are applicable only at the level of mod-
ules or small collections of modules (small subsystems, components, or libraries).

164 Functional Testing

to reveal a fault than running a different test case, and we may reasonably hypothesize
that a test case that is very different from the test cases that precede it is more valuable
than a test case that is very similar (in some sense yet to be defined) to others.

As an extreme example, suppose we are allowed to select only three test cases for
a program that breaks a text buffer into lines of 60 characters each. Suppose the first
test case is a buffer containing 40 characters, and the second is a buffer containing 30
characters. As a final test case, we can choose a buffer containing 16 characters or
a buffer containing 100 characters. Although we cannot prove that the 100-character
buffer is the better test case (and it might not be; the fact that 16 is a power of 2 might
have some unforeseen significance), we are naturally suspicious of a set of tests that is
strongly biased toward lengths less than 60.

Accidental bias may be avoided by choosing test cases from a random distribution.
Random sampling is often an inexpensive way to produce a large number of test cases.
If we assume absolutely no knowledge on which to place a higher value on one test case
than another, then random sampling maximizes value by maximizing the number of test
cases that can be created (without bias) for a given budget. Even if we do possess some
knowledge suggesting that some cases are more valuable than others, the efficiency of
random sampling may in some cases outweigh its inability to use any knowledge we
may have.

Consider again the line-break program, and suppose that our budget is one day of
testing effort rather than some arbitrary number of test cases. If the cost of random
selection and actual execution of test cases is small enough, then we may prefer to run
a large number of random test cases rather than expending more effort on each of a
smaller number of test cases. We may in a few hours construct programs that generate
buffers with various contents and lengths up to a few thousand characters, as well as
an automated procedure for checking the program output. Letting it run unattended
overnight, we may execute a few million test cases. If the program does not correctly
handle a buffer containing a sequence of more than 60 nonblank characters (a single
“word” that does not fit on a line), we are likely to encounter this case by sheer luck if
we execute enough random tests, even without having explicitly considered this case.

Even a few million test cases is an infinitesimal fraction of the complete input space
of most programs. Large numbers of random tests are unlikely to find failures at single
points (singularities) in the input space. Consider, for example, a simple procedure for
returning the two roots of a quadratic equation ax2 +bx+c = 0 and suppose we choose
test inputs (values of the coefficients a, b, and c) from a uniform distribution ranging
from �10.0 to 10.0. While uniform random sampling would certainly cover cases in
which b2� 4ac > 0 (where the equation has no real roots), it would be very unlikely
to test the case in which a = 0 and b = 0, in which case a naive implementation of the
quadratic formula

x =
�b±

p
b2�4ac

2a

will divide by zero (see Figure 10.1).
Of course, it is unlikely that anyone would test only with random values. Regard-

less of the overall testing strategy, most test designers will also try some “special”
values. The test designer’s intuition comports with the observation that random sam-

Random versus Partition Testing Strategies 165

1 /** Find the two roots of axˆ2 + bx + c,
2 * that is, the values of x for which the result is 0.
3 */
4 class Roots {
5 double root one, root two;
6 int num roots;
7 public roots(double a, double b, double c) {
8 double q;
9 double r;

10 // Apply the textbook quadratic formula:
11 // Roots = -b +- sqrt(bˆ2 - 4ac) / 2a
12 q = b*b - 4*a*c;
13 if (q > 0 && a != 0) {
14 // If bˆ2 > 4ac, there are two distinct roots
15 num roots = 2;
16 r = (double) Math.sqrt(q) ;
17 root one = ((0-b) + r)/(2*a);
18 root two = ((0-b) - r)/(2*a);
19 } else if (q==0) { // (BUG HERE)
20 // The equation has exactly one root
21 num roots = 1;
22 root one = (0-b)/(2*a);
23 root two = root one;
24 } else {
25 // The equation has no roots if bˆ2 < 4ac
26 num roots = 0;
27 root one = -1;
28 root two = -1;
29 }
30 }
31 public int num roots() { return num roots; }
32 public double first root() { return root one; }
33 public double second root() { return root two; }
34 }

Figure 10.1: The Java class roots, which finds roots of a quadratic equation. The case
analysis in the implementation is incomplete: It does not properly handle the case
in which b2 � 4ac = 0 and a = 0. We cannot anticipate all such faults, but experi-
ence teaches that boundary values identifiable in a specification are disproportionately
valuable. Uniform random generation of even large numbers of test cases is ineffective
at finding the fault in this program, but selection of a few “special values” based on
the specification quickly uncovers it.

166 Functional Testing

pling is an ineffective way to find singularities in a large input space. The observation
about singularities can be generalized to any characteristic of input data that defines an
infinitesimally small portion of the complete input data space. If again we have just
three real-valued inputs a, b, and c, there is an infinite number of choices for which
b = c, but random sampling is unlikely to generate any of them because they are an
infinitesimal part of the complete input data space.

The observation about special values and random samples is by no means limited
to numbers. Consider again, for example, breaking a text buffer into lines. Since
line breaks are permitted at blanks, we would consider blanks a “special” value for
this problem. While random sampling from the character set is likely to produce a
buffer containing a sequence of at least 60 nonblank characters, it is much less likely
to produce a sequence of 60 blanks.

The reader may justifiably object that a reasonable test designer would not create
text buffer test cases by sampling uniformly from the set of all characters. The designer
would instead classify characters depending on their treatment, lumping alphabetic
characters into one class and white space characters into another. In other words, a test
designer will partition the input space into classes and will then generate test data in
a manner that is likely to choose data from each partition. Test designers seldom use
pure random sampling; usually they exploit some knowledge of application semantics
to choose samples that are more likely to include “special” or trouble-prone regions of
the input space.

Partition testing separates the input space into classes whose union is the entire
space, but the classes may not be disjoint (and thus the term partition is not mathemati-
cally accurate, although it has become established in testing terminology). Figure 10.2
illustrates a desirable case: All inputs that lead to a failure belong to at least one class
that contains only inputs that lead to failures. In this case, sampling each class in the
quasi-partition selects at least one input that leads to a failure, revealing the fault. We
could easily turn the quasi-partition of Figure 10.2 into a true partition, by considering
intersections among the classes, but sampling in a true partition would not improve the
efficiency or effectiveness of testing.

A testing method that divides the infinite set of possible test cases into a finite set
of classes, with the purpose of drawing one or more test cases from each class, is called
a partition testing method. When partitions are chosen according to information inD partition testing

the specification, rather than the design or implementation, it is called specification-
based partition testing, or more briefly, functional testing. Note that not all testing of
product functionality is “functional testing.” Rather, the term is used specifically toD

specification-based
testing

refer to systematic testing based on a functional specification. It excludes ad hoc and
random testing, as well as testing based on the structure of a design or implementation.

D functional testing Partition testing typically increases the cost of each test case, since in addition
to generation of a set of classes, creation of test cases from each class may be more
expensive than generating random test data. In consequence, partition testing usually
produces fewer test cases than random testing for the same expenditure of time and
money. Partitioning can therefore be advantageous only if the average value (fault
detection effectiveness) is greater.

If we were able to group together test cases with such perfect knowledge that the
outcome of test cases in each class were uniform (either all successes or all failures),

A Systematic Approach 167

Figure 10.2: A quasi-partition of a program’s input space. Black circles represent
inputs that lead to failures. All elements of the input domain belong to at least one
class, but classes are not disjoint.

then partition testing would be at its theoretical best. In general we cannot do that,
nor can we even quantify the uniformity of classes of test cases. Partitioning by any
means, including specification-based partition testing, is always based on experience
and judgment that leads one to believe that certain classes of test case are “more alike”
than others, in the sense that failure-prone test cases are likely to be concentrated in
some classes. When we appealed earlier to the test designer’s intuition that one should
try boundary cases and special values, we were actually appealing to a combination
of experience (many failures occur at boundary and special cases) and knowledge that
identifiable cases in the specification often correspond to classes of input that require
different treatment by an implementation.

Given a fixed budget, the optimum may not lie in only partition testing or only
random testing, but in some mix that makes use of available knowledge. For example,
consider again the simple numeric problem with three inputs, a, b, and c. We might
consider a few special cases of each input, individually and in combination, and we
might consider also a few potentially significant relationships (e.g., a = b). If no faults
are revealed by these few test cases, there is little point in producing further arbitrary
partitions — one might then turn to random generation of a large number of test cases.

10.3 A Systematic Approach

Deriving test cases from functional specifications is a complex analytical process that
partitions the input space described by the program specification. Brute force genera-
tion of test cases, that is, direct generation of test cases from program specifications,

168 Functional Testing

seldom produces acceptable results: Test cases are generated without particular cri-
teria, and determining the adequacy of the generated test cases is almost impossible.
Brute force generation of test cases relies on test designers’ expertise and is a process
that is difficult to monitor and repeat. A systematic approach simplifies the overall pro-
cess by dividing it into elementary steps, thus decoupling different activities, dividing
brain-intensive from automatable steps, suggesting criteria to identify adequate sets of
test cases, and providing an effective means of monitoring the testing activity.

Although suitable functional testing techniques can be found for any granularity
level, a particular functional testing technique may be effective only for some kinds
of software or may require a given specification style. For example, a combinatorial
approach may work well for functional units characterized by a large number of rela-
tively independent inputs, but may be less effective for functional units characterized
by complex interrelations among inputs. Functional testing techniques designed for a
given specification notation, for example, finite state machines or grammars, are not
easily applicable to other specification styles. Nonetheless, we can identify a general
pattern of activities that captures the essential steps in a variety of different functional
test design techniques. By describing particular functional testing techniques as instan-
tiations of this general pattern, relations among the techniques may become clearer, and
the test designer may gain some insight into adapting and extending these techniques
to the characteristics of other applications and situations.

Figure 10.3 identifies the general steps of systematic approaches. The steps may
be difficult or trivial depending on the application domain and the available program
specifications. Some steps may be omitted depending on the application domain, the
available specifications and the test designers’ expertise. Instances of the process can
be obtained by suitably instantiating different steps. Although most techniques are
presented and applied as stand-alone methods, it is also possible to mix and match
steps from different techniques, or to apply different methods for different parts of the
system to be tested.

Identify Independently Testable Features Functional specifications can be large
and complex. Usually, complex specifications describe systems that can be decom-
posed into distinct features. For example, the specification of a Web site may include
features for searching the site database, registering users’ profiles, getting and storing
information provided by the users in different forms, and so on. The specification of
each of these features may comprise several functionalities. For example, the search
feature may include functionalities for editing a search pattern, searching the database
with a given pattern, and so on. Although it is possible to design test cases that exercise
several functionalities at once, designing different test cases for different functionalities
can simplify the test generation problem, allowing each functionality to be examined
separately. Moreover, it eases locating faults that cause the revealed failures. It is
thus recommended to devise separate test cases for each functionality of the system,
whenever possible.

The preliminary step of functional testing consists in partitioning the specifications
into features that can be tested separately. This can be an easy step for well-designed,
modular specifications, but informal specifications of large systems may be difficult to

A Systematic Approach 169

Functional Specifications

Independently Testable Feature

ModelRepresentative Values

Test Case Specifications

Test Cases

Identify

Representative

Values

 Id
en

tif
y

In
de

pe
nd

en
tly

Te

st
ab

le

Fe
at

ur
es

Derivea Model

Generate Test-Case

Specifications Generate Test-
Case

Specifi
ca

tio
ns

G
en

er
at

e
Te

st
 C

as
es

Scaffolding

In
st

an
tia

te
Te

st
s

Brute
Force

Testing

Finite State Machine
Grammar
Algebraic Specification
Logic Specification
Control/Data Flow Graph

Semantic Constraints
Combinatorial Selection
Exhaustive Enumeration
Random Selection

Test Selection Criteria

Manual Mapping
Symbolic Execution
A-posteriori Satisfaction

Figure 10.3: The main steps of a systematic approach to functional program testing.

170 Functional Testing

Units and Features
Programs and software systems can be decomposed in different ways. For test-

ing, we may consider externally observable behavior (features), or the structure of the
software system (units, subsystems, and components).

Independently testable feature: An independently testable feature (ITF) is a func-
tionality that can be tested independently of other functionalities of the software
under test. It need not correspond to a unit or subsystem of the software. For
example, a file sorting utility may be capable of merging two sorted files, and it
may be possible to test the sorting and merging functionalities separately, even
though both features are implemented by much of the same source code. (The
nearest IEEE standard term is test item.)

As functional testing can be applied at many different granularity levels, from
unit testing through integration and system testing, so ITFs may range from the
functionality of an individual Java class or C function up to features of an inte-
grated system composed of many complete programs. The granularity of an ITF
depends on the exposed interface at whichever granularity is being tested. For
example, individual methods of a class are part of the interface of the class, and a
set of related methods (or even a single method) might be an ITF for unit testing,
but for system testing the ITFs would be features visible through a user interface
or application programming interface.

Unit: We reserve the term unit, not for any fixed syntactic construct in a particular pro-
gramming language, but for the smallest unit of work assignment in a software
project. Defining “unit” in this manner, rather than (for example) equating units
with individual Java classes or packages, or C files or functions, reflects a phi-
losophy about test and analysis. A work unit is the smallest increment by which
a software system grows or changes, the smallest unit that appears in a project
schedule and budget, and the smallest unit that may reasonably be associated
with a suite of test cases.

It follows from our definition of “unit” that, when we speak of unit testing, we
mean the testing associated with an individual work unit.

We reserve the term function for the mathematical concept, that is, a set of ordered
pairs having distinct first elements. When we refer to “functions” as syntactic elements
in some programming language, we will qualify it to distinguish that usage from the
mathematical concept. A “function” is a set of ordered pairs but a “C function” is a
syntactic element in the C programming language.

A Systematic Approach 171

decompose into independently testable features. Some degree of formality, at least to
the point of careful definition and use of terms, is usually required.

Identification of functional features that can be tested separately is different from
module decomposition. In both cases we apply the divide and conquer principle, but
in the former case, we partition specifications according to the functional behavior as
perceived by the users of the software under test,5 while in the latter, we identify logical
units that can be implemented separately. For example, a Web site may require a sort
function, as a service routine, that does not correspond to an external functionality.
The sort function may be a functional feature at module testing, when the program
under test is the sort function itself, but is not a functional feature at system test, while
deriving test cases from the specifications of the whole Web site. On the other hand, the
registration of a new user profile can be identified as one of the functional features at
system-level testing, even if such functionality is spread across several modules. Thus,
identifying functional features does not correspond to identifying single modules at the
design level, but rather to suitably slicing the specifications to attack their complexity
incrementally.

Independently testable features are described by identifying all the inputs that form
their execution environments. Inputs may be given in different forms depending on the
notation used to express the specifications. In some cases they may be easily identifi-
able. For example, they can be the input alphabet of a finite state machine specifying
the behavior of the system. In other cases, they may be hidden in the specification.
This is often the case for informal specifications, where some inputs may be given ex-
plicitly as parameters of the functional unit, but other inputs may be left implicit in the
description. For example, a description of how a new user registers at a Web site may
explicitly indicate the data that constitutes the user profile to be inserted as parameters
of the functional unit, but may leave implicit the collection of elements (e.g., database)
in which the new profile must be inserted.

Trying to identify inputs may help in distinguishing different functions. For exam-
ple, trying to identify the inputs of a graphical tool may lead to a clearer distinction
between the graphical interface per se and the associated callbacks to the application.
With respect to the Web-based user registration function, the data to be inserted in the
database are part of the execution environment of the functional unit that performs the
insertion of the user profile, while the combination of fields that can be used to con-
struct such data is part of the execution environment of the functional unit that takes
care of the management of the specific graphical interface.

Identify Representative Classes of Values or Derive a Model The execution envi-
ronment of the feature under test determines the form of the final test cases, which are
given as combinations of values for the inputs to the unit. The next step of a testing
process consists of identifying which values of each input should be selected to form
test cases. Representative values can be identified directly from informal specifications
expressed in natural language. Alternatively, representative values may be selected in-

5Here the word “user” designates the individual using the specified service. It can be the user of the
system, when dealing with a system specification, but it can be another module of the system, when dealing
with detailed design specifications.

172 Functional Testing

directly through a model, which can either be produced only for the sake of testing
or be available as part of the specification. In both cases, the aim of this step is to
identify the values for each input in isolation, either explicitly through enumeration or
implicitly trough a suitable model, but not to select suitable combinations of such val-
ues (i.e., test case specifications). In this way, we separate the problem of identifying
the representative values for each input from the problem of combining them to obtain
meaningful test cases, thus splitting a complex step into two simpler steps.

Most methods that can be applied to informal specifications rely on explicit enu-
meration of representative values by the test designer. In this case, it is very impor-
tant to consider all possible cases and take advantage of the information provided by
the specification. We may identify different categories of expected values, as well as
boundary and exceptional or erroneous values. For example, when considering oper-
ations on a nonempty list of elements, we may distinguish the cases of the empty list
(an error value) and a singleton element (a boundary value) as special cases. Usually
this step determines characteristics of values (e.g., any list with a single element) rather
than actual values.

Implicit enumeration requires the construction of a (partial) model of the specifi-
cations. Such a model may be already available as part of a specification or design
model, but more often it must be constructed by the test designer, in consultation with
other designers. For example, a specification given as a finite state machine implicitly
identifies different values for the inputs by means of the transitions triggered by the
different values. In some cases, we can construct a partial model as a means of iden-
tifying different values for the inputs. For example, we may derive a grammar from
a specification and thus identify different values according to the legal sequences of
productions of the given grammar.

Directly enumerating representative values may appear simpler and less expensive
than producing a suitable model from which values may be derived. However, a formal
model may also be valuable in subsequent steps of test case design, including selection
of combinations of values. Also, a formal model may make it easier to select a larger
or smaller number of test cases, balancing cost and thoroughness, and may be less
costly to modify and reuse as the system under test evolves. Whether to invest effort in
producing a model is ultimately a management decision that depends on the application
domain, the skills of test designers, and the availability of suitable tools.

Generate Test Case Specifications Test specifications are obtained by suitably com-
bining values for all inputs of the functional unit under test. If representative values
were explicitly enumerated in the previous step, then test case specifications will be
elements of the Cartesian product of values selected for each input. If a formal model
was produced, then test case specifications will be specific behaviors or combinations
of parameters of the model, and a single test case specification could be satisfied by
many different concrete inputs. Either way, brute force enumeration of all combina-
tions is unlikely to be satisfactory.

The number of combinations in the Cartesian product of independently selected
values grows as the product of the sizes of the individual sets. For a simple functional
unit with five inputs each characterized by six values, the size of the Cartesian product

A Systematic Approach 173

is 65 = 7776 test case specifications, which may be an impractical number for test
cases for a simple functional unit. Moreover, if (as is usual) the characteristics are not
completely orthogonal, many of these combinations may not even be feasible.

Consider the input of a procedure that searches for occurrences of a complex pattern
in a Web database. Its input may be characterized by the length of the pattern and the
presence of special characters in the pattern, among other aspects. Interesting values
for the length of the pattern may be zero, one, or many. Interesting values for the
presence of special characters may be zero, one, or many. However, the combination
of value “zero” for the length of the pattern and value “many” for the number of special
characters in the pattern is clearly impossible.

The test case specifications represented by the Cartesian product of all possible
inputs must be restricted by ruling out illegal combinations and selecting a practical
subset of the legal combinations. Illegal combinations are usually eliminated by con-
straining the set of combinations. For example, in the case of the complex pattern
presented above, we can constrain the choice of one or more special characters to a
positive length of the pattern, thus ruling out the illegal cases of patterns of length zero
containing special characters.

Selection of a practical subset of legal combination can be done by adding infor-
mation that reflects the hazard of the different combinations as perceived by the test
designer or by following combinatorial considerations. In the former case, for exam-
ple, we can identify exceptional values and limit the combinations that contain such
values. In the pattern example, we may consider only one test for patterns of length
zero, thus eliminating many combinations that would otherwise be derived for patterns
of length zero. Combinatorial considerations reduce the set of test cases by limiting
the number of combinations of values of different inputs to a subset of the inputs. For
example, we can generate only tests that exhaustively cover all combinations of values
for inputs considered pair by pair.

Depending on the technique used to reduce the space represented by the Cartesian
product, we may be able to estimate the number of generated test cases generated and
modify the selected subset of test cases according to budget considerations. Subsets of
combinations of values (i.e., potential special cases) can often be derived from models
of behavior by applying suitable test selection criteria that identify subsets of interest-
ing behaviors among all behaviors represented by a model, for example by constraining
the iterations on simple elements of the model itself. In many cases, test selection cri-
teria can be applied automatically.

Generate Test Cases and Instantiate Tests The test generation process is com-
pleted by turning test case specifications into test cases and instantiating them. Test
case specifications can be turned into test cases by selecting one or more test cases for
each test case specification. Test cases are implemented by creating the scaffolding
required for their execution.

174 Functional Testing

10.4 Choosing a Suitable Approach

In the next chapters we will see several approaches to functional testing, each applying
to different kinds of specifications. Given a specification, there may be one or more
techniques well suited for deriving functional test cases, while some other techniques
may be hard or even impossible to apply or may lead to unsatisfactory results. Some
techniques can be interchanged; that is, they can be applied to the same specification
and lead to similar results. Other techniques are complementary; that is, they apply to
different aspects of the same specification or at different stages of test case generation.

The choice of approach for deriving functional test cases depends on several fac-
tors: the nature of the specification, form of the specification, expertise and experience
of test designers, structure of the organization, availability of tools, budget and quality
constraints, and costs of designing and implementing scaffolding.

Nature and form of the specification Different approaches exploit different charac-
teristics of the specification. For example, the presence of several constraints on the
input domain may suggest using a partitioning method with constraints, such as the
category-partition method described in Chapter 11, while unconstrained combinations
of values may suggest a pairwise combinatorial approach. If transitions among a finite
set of system states are identifiable in the specification, a finite state machine approach
may be indicated, while inputs of varying and unbounded size may be tackled with
grammar-based approaches. Specifications given in a specific format (e.g., as deci-
sion structures) suggest corresponding techniques. For example, functional test cases
for SDL6 specifications of protocols are often derived with finite state machine-based
criteria.

Experience of test designers and organization The experience of testers and com-
pany procedures may drive the choice of the testing technique. For example, test de-
signers expert in category partition may prefer that technique over a catalog-based ap-
proach when both are applicable, while a company that works in a specific application
area may require the use of domain-specific catalogs.

Tools Some techniques may require the use of tools, whose availability and cost
should be taken into account when choosing a testing technique. For example, several
tools are available for deriving test cases from SDL specifications. The availability of
one of these tools may suggest the use of SDL for capturing a subset of the requirements
expressed in the specification.

Budget and quality constraints Different quality and budget constraints may lead
to different choices. For example, if the primary constraint is rapid, automated testing,
and reliability requirements are not stringent, random test case generation may be ap-
propriate. In contrast, thorough testing of a safety critical application may require the

6SDL (Specification Description Language) is a formal specification notation based on extended finite
state machines, widely used in telecommunication systems and standardized by the International Telecom-
munication Union.

Choosing a Suitable Approach 175

use of sophisticated methods for functional test case generation. When choosing an
approach, it is important to evaluate all relevant costs. For example, generating a large
number of random test cases may necessitate design and construction of sophisticated
test oracles, or the cost of training to use a new tool may exceed the advantages of
adopting a new approach.

Scaffolding costs Each test case specification must be converted to a concrete test
case, executed many times over the course of development, and checked each time for
correctness. If generic scaffolding code required to generate, execute, and judge the
outcome of a large number of test cases can be written just once, then a combinatorial
approach that generates a large number of test case specifications is likely to be afford-
able. If each test case must be realized in the form of scaffolding code written by hand
— or worse, if test execution requires human involvement — then it is necessary to
invest more care in selecting small suites of test case specifications.

Many engineering activities require careful analysis of trade-offs. Functional test-
ing is no exception: Successfully balancing the many aspects is a difficult and often
underestimated problem that requires skilled designers. Functional testing is not an
exercise of choosing the optimal approach, but a complex set of activities for finding a
suitable combination of models and techniques that yield a set of test cases to satisfy
cost and quality constraints. This balancing extends beyond test design to software de-
sign for test. Appropriate design not only improves the software development process,
but can greatly facilitate the job of test designers and lead to substantial savings.

Open Research Issues

Functional testing is by far the most common way of deriving test cases in industry, but
neither industrial practice nor research has established general and satisfactory method-
ologies. Research in functional testing is increasingly active and progressing in many
directions.

Deriving test cases from formal models is an active research area. In the past three
decades, formal methods have been studied mainly as a means of proving software
properties. Recently, attention has moved toward using formal methods for deriving
test cases. There are three main open research topics in this area:

• Definition of techniques for automatically deriving test cases from particular
formal models. Formal methods present new challenges and opportunities for
deriving test cases. We can both adapt existing techniques borrowed from other
disciplines or research areas and define new techniques for test case generation.
Formal notations can support automatic generation of test cases, thus opening
additional problems and research challenges.

• Adaptation of formal methods to be more suitable for test case generation. As
illustrated in this chapter, test cases can be derived in two broad ways, either by
identifying representative values or by deriving a model of the unit under test. A
variety of formal models could be used in testing. The research challenge lies in

176 Functional Testing

identifying a trade-off between costs of creating formal models and savings in
automatically generating test cases.

• Development of a general framework for deriving test cases from a range of
formal specifications. Currently research addresses techniques for generating
test cases from individual formal methods. Generalization of techniques will
allow more combinations of formal methods and testing.

Another important research area is fed by interest in different specification and
design paradigms (e.g., software architectures, software design patterns, and service-
oriented applications). Often these approaches employ new graphical or textual nota-
tions. Research is active in investigating different approaches to automatically or semi-
automatically deriving test cases from these artifacts and studying the effectiveness of
existing test case generation techniques.

Increasing size and complexity of software systems is a challenge to testing. Exist-
ing functional testing techniques do not take advantage of test cases available for parts
of the artifact under test. Compositional approaches for deriving test cases for a given
system taking advantage of test cases available for its subsystems is an important open
research problem.

Further Reading

Functional testing techniques, sometimes called black-box testing or specification-
based testing, are presented and discussed by several authors. Ntafos [DN81] makes
the case for random rather than systematic testing; Frankl, Hamlet, Littlewood, and
Strigini [FHLS98] is a good starting point to the more recent literature considering the
relative merits of systematic and statistical approaches.

Related topics

Readers interested in practical technique for deriving functional test specifications from
informal specifications and models may continue with the next two chapters, which de-
scribe several functional testing techniques. Readers interested in the complementari-
ties between functional and structural testing may continue with Chapters 12 and 13,
which describe structural and data flow testing.

Choosing a Suitable Approach 177

Exercises

10.1. In the Extreme Programming (XP) methodology (see the sidebar on page 381), a
written description of a desired feature may be a single sentence, and the first step
to designing the implementation of that feature is designing and implementing a
set of test cases. Does this aspect of the XP methodology contradict our assertion
that test cases are a formalization of specifications?

10.2. (a) Compute the probability of selecting a test case that reveals the fault in line
19 of program Root of Figure 10.1 by randomly sampling the input domain,
assuming that type double has range �231 . . . 231�1.

(b) Compute the probability of randomly selecting a test case that reveals a
fault if lines 13 and 19 were both missing the condition a 6= 0.

10.3. Identify independently testable units in the following specification.

Desk calculator Desk calculator performs the following algebraic operations:
sum, subtraction, product, division, and percentage on integers and real num-
bers. Operands must be of the same type, except for percentage, which allows
the first operator to be either integer or real, but requires the second to be an
integer that indicates the percentage to be computed. Operations on integers pro-
duce integer results. Program Calculator can be used with a textual interface
that provides the following commands:

Mx=N, where Mx is a memory location, that is, M0 . . . M9, and N is a number.
Integers are given as nonempty sequences of digits, with or without sign.
Real numbers are given as nonempty sequences of digits that include a dot
“.”, with or without sign. Real numbers can be terminated with an optional
exponent, that is, character “E” followed by an integer. The command
displays the stored number.

Mx=display, where Mx is a memory location and display indicates the value
shown on the last line.

operand1 operation operand2, where operand1 and operand2 are numbers or
memory locations or display and operation is one of the following symbols:
“+”, “-”, “*”, “/”, “%”, where each symbol indicates a particular operation.
Operands must follow the type conventions. The command displays the
result or the string Error.

or with a graphical interface that provides a display with 12 characters and the
following keys:

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , the 10 digits

+ , - , * , / , % , the operations
= to display the result of a sequence of operations

178 Functional Testing

C , to clear display

M , M+ , MS , MR , MC , where M is pressed before a digit to indicate
the target memory, 0. . . 9, keys M+ , MS , MR , MC pressed after
M and a digit indicate the operation to be performed on the target memory:

add display to memory, store display in memory, retrieve memory; that
is, move the value in memory to the display and clear memory.
Example: 5 + 1 0 M 3 MS 8 0 - M 3 MR = prints
65 (the value 15 is stored in memory cell 3 and then retrieved to compute
80�15).

Chapter 11

Combinatorial Testing

Requirements specifications typically begin in the form of natural language statements.
The flexibility and expressiveness of natural language, which are so important for hu-
man communication, represent an obstacle to automatic analysis. Combinatorial ap-
proaches to functional testing consist of a manual step of structuring the specification
statement into a set of properties or attributes that can be systematically varied and an
automatizable step of producing combinations of choices.

Simple “brute force” synthesis of test cases by test designers squanders the intel-
ligence of expert staff on tasks that can be partly automated. Even the most expert of
test designers will perform suboptimally and unevenly when required to perform the
repetitive and tedious aspects of test design, and quality will vary widely and be dif-
ficult to monitor and control. In addition, estimation of the effort and number of test
cases required for a given functionality will be subjective.

Combinatorial approaches decompose the “brute force” work of the test designers
into steps, to attack the problem incrementally by separating analysis and synthesis
activities that can be quantified and monitored, and partially supported by tools. They
identify the variability of elements involved in the execution of a given functionality,
and select representative combinations of relevant values for test cases. Repetitive
activities such as the combination of different values can be easily automated, thus
allowing test designers to focus on more creative and difficult activities.

Required Background

• Chapter 10
Understanding the limits of random testing and the needs of a systematic ap-
proach motivates the study of combinatorial as well as model-based testing tech-
niques. The general functional testing process illustrated in Section 10.3 helps
position combinatorial techniques within the functional testing process.

179

180 Combinatorial Testing

11.1 Overview

In this chapter, we introduce three main techniques that are successfully used in indus-
trial environments and represent modern approaches to systematically derive test cases
from natural language specifications: the category-partition approach to identifying at-
tributes, relevant values, and possible combinations; combinatorial sampling to test a
large number of potential interactions of attributes with a relatively small number of
inputs; and provision of catalogs to systematize the manual aspects of combinatorial
testing.

The category-partition approach separates identification of the values that charac-
terize the input space from the combination of different values into complete test cases.
It provides a means of estimating the number of test cases early, size a subset of cases
that meet cost constraints, and monitor testing progress.

Pairwise and n-way combination testing provide systematic ways to cover inter-
actions among particular attributes of the program input space with a relatively small
number of test cases. Like the category-partition method, it separates identification of
characteristic values from generation of combinations, but it provides greater control
over the number of combinations generated.

The manual step of identifying attributes and representative sets of values can be
made more systematic using catalogs that aggregate and synthesize the experience of
test designers in a particular organization or application domain. Some repetitive steps
can be automated, and the catalogs facilitate training for the inherently manual parts.

These techniques address different aspects and problems in designing a suite of test
cases from a functional specification. While one or another may be most suitable for a
specification with given characteristics, it is also possible to combine ideas from each.

11.2 Category-Partition Testing

Category-partition testing is a method for generating functional tests from informal
specifications. The following steps comprise the core part of the category-partition
method:

A. Decompose the specification into independently testable features: Test designers
identify features to be tested separately, and identify parameters and any other
elements of the execution environment the unit depends on. Environment de-
pendencies are treated identically to explicit parameters. For each parameter and
environment element, test designers identify the elementary parameter charac-
teristics, which in the category-partition method are usually called categories.D parameter

characteristic
D category B. Identify Representative Values: Test designers select a set of representative clas-

ses of values for each parameter characteristic. Values are selected in isolation,D classes of values

independent of other parameter characteristics. In the category-partition method,
classes of values are called choices, and this activity is called partitioning theD choice

categories into choices.

Category-Partition Testing 181

C. Generate Test Case Specifications: Test designers impose semantic constraints on
values to indicate invalid combinations and restrict valid combinations (e.g., lim-
iting combinations involving exceptional and invalid values).

Categories, choices, and constraints can be provided to a tool to automatically gen-
erate a set of test case specifications. Automating trivial and repetitive activities such as
these makes better use of human resources and reduces errors due to distraction. Just as
important, it is possible to determine the number of test cases that will be generated (by
calculation, or by actually generating them) before investing human effort in test exe-
cution. If the number of derivable test cases exceeds the budget for test execution and
evaluation, test designers can reduce the number of test cases by imposing additional
semantic constraints. Controlling the number of test cases before test execution begins
is preferable to ad hoc approaches in which one may at first create very thorough test
suites and then test less and less thoroughly as deadlines approach.

We illustrate the category-partition method using a specification of a feature from
the direct sales Web site of Chipmunk Computers. Customers are allowed to select
and price custom configurations of Chipmunk Computers. A configuration is a set of
selected options for a particular model of computer. Some combinations of model and
options are not valid (e.g., digital LCD monitor with analog video card), so config-
urations are tested for validity before they are priced. The check configuration func-
tion (Figure 11.1) is given a model number and a set of components, and returns the
Boolean value True if the configuration is valid or False otherwise. This function has
been selected by the test designers as an independently testable feature.

A. Identify Independently Testable Features and Parameter Characteristics We
assume that step A starts by selecting the Check configuration feature to be tested inde-
pendently of other features. This entails choosing to separate testing of the configura-
tion check per se from its presentation through a user interface (e.g., a Web form), and
depends on the architectural design of the software system.

Step A requires the test designer to identify the parameter characteristics, that is,
the elementary characteristics of the parameters and environment elements that affect
the unit’s execution. A single parameter may have multiple elementary characteristics.
A quick scan of the functional specification would indicate model and components as
the parameters of check configuration. More careful consideration reveals that what is
“valid” must be determined by reference to additional information. In fact, the func-
tional specification assumes the existence of a database of models and components.
The database is an environment element that, though not explicitly mentioned in the
functional specification, is required for executing and thus testing the feature, and partly
determines its behavior. Note that our goal is not to test a particular configuration of
the system with a fixed database, but to test the generic system that may be configured
through different database contents.

Having identified model, components, and product database as the parameters and
environment elements required to test the check configuration functionality, the test
designer would next identify the parameter characteristics of each.

Model may be represented as an integer, but we know that it is not to be used arith-
metically, but rather serves as a key to the database and other tables. The specification

182 Combinatorial Testing

Check Configuration: Check the validity of a computer configuration. The pa-
rameters of check configuration are:

Model: A model identifies a specific product and determines a set of constraints
on available components. Models are characterized by logical slots for com-
ponents, which may or may not be implemented by physical slots on a bus.
Slots may be required or optional. Required slots must be assigned a suit-
able component to obtain a legal configuration, while optional slots may be
left empty or filled depending on the customer’s needs.
Example: The required “slots” of the Chipmunk C20 laptop computer include
a screen, a processor, a hard disk, memory, and an operating system. (Of
these, only the hard disk and memory are implemented using actual hard-
ware slots on a bus.) The optional slots include external storage devices
such as a CD/DVD writer.

Set of Components: A set of hslot,componenti pairs, which must correspond
to the required and optional slots associated with the model. A component
is a choice that can be varied within a model and that is not designed to be
replaced by the end user. Available components and a default for each slot
is determined by the model. The special value “empty” is allowed (and may
be the default selection) for optional slots.
In addition to being compatible or incompatible with a particular model and
slot, individual components may be compatible or incompatible with each
other.
Example: The default configuration of the Chipmunk C20 includes 20 giga-
bytes of hard disk; 30 and 40 gigabyte disks are also available. (Since the
hard disk is a required slot, “empty” is not an allowed choice.) The default
operating system is RodentOS 3.2, personal edition, but RodentOS 3.2 mo-
bile server edition may also be selected. The mobile server edition requires
at least 30 gigabytes of of hard disk.

Figure 11.1: Functional specification of the feature Check configuration of the Web
site of a computer manufacturer.

Category-Partition Testing 183

mentions that a model is characterized by a set of slots for required components and
a set of slots for optional components. We may identify model number, number of
required slots, and number of optional slots as characteristics of parameter model.

Parameter components is a collection of hslot,selectioni pairs. The size of a collec-
tion is always an important characteristic, and since components are further categorized
as required or optional, the test designer may identify number of required components
with nonempty selection and number of optional components with nonempty selection
as characteristics. The matching between the tuple passed to check configuration and
the one actually required by the selected model is important and may be identified as
category correspondence of selection with model slots. The actual selections are also
significant, but for now the test designer simply identifies required component selection
and optional component selection, postponing selection of relevant values to the next
stage in test design.

The environment element product database is also a collection, so number of mod-
els in the database and number of components in the database are parameter charac-
teristics. Actual values of database entries are deferred to the next step in test design.

There are no hard-and-fast rules for choosing categories, and it is not a trivial task.
Categories reflect the test designer’s judgment regarding which classes of values may
be treated differently by an implementation, in addition to classes of values that are ex-
plicitly identified in the specification. Test designers must also use their experience and
knowledge of the application domain and product architecture to look under the surface
of the specification and identify hidden characteristics. For example, the specification
fragment in Figure 11.1 makes no distinction between configurations of models with
several required slots and models with none, but the experienced test designer has seen
enough failures on “degenerate” inputs to test empty collections wherever a collection
is allowed.

The number of options that can (or must) be configured for a particular model of
computer may vary from model to model. However, the category-partition method
makes no direct provision for structured data, such as sets of hslot,selectioni pairs.
A typical approach is to “flatten” collections and describe characteristics of the whole
collection as parameter characteristics. Typically the size of the collection (the length
of a string, for example, or in this case the number of required or optional slots) is one
characteristic, and descriptions of possible combinations of elements (occurrence of
special characters in a string, for example, or in this case the selection of required and
optional components) are separate parameter characteristics.

Suppose the only significant variation among hslot,selectioni pairs was between
pairs that are compatible and pairs that are incompatible. If we treated each pair as
a separate characteristic, and assumed n slots, the category-partition method would
generate all 2n combinations of compatible and incompatible slots. Thus we might have
a test case in which the first selected option is compatible, the second is compatible,
and the third incompatible, and a different test case in which the first is compatible
but the second and third are incompatible, and so on. Each of these combinations
could be combined in several ways with other parameter characteristics. The number
of combinations quickly explode. Moreover, since the number of slots is not actually
fixed, we cannot even place an upper bound on the number of combinations that must
be considered. We will therefore choose the flattening approach and select possible

184 Combinatorial Testing

Identifying and Bounding Variation
It may seem that drawing a boundary between a fixed program and a variable set of

parameters would be the simplest of tasks for the test designer. It is not always so.
Consider a program that produces HTML output. Perhaps the HTML is based on a

template, which might be encoded in constants in C or Java code, or might be provided
through an external data file, or perhaps both: it could be encoded in a C or source
code file that is generated at compile time from a data file. If the HTML template
is identified in one case as a parameter to varied in testing, it seems it should be so
identified in all three of these variations, or even if the HTML template is embedded
directly in print statements of the program, or in an XSLT transformation script.

The underlying principle for identifying parameters to be varied in testing is an-
ticipation of variation in use. Anticipating variation is likewise a key part of archi-
tectural and detailed design of software. In a well-designed software system, module
boundaries reflect “design secrets,” permitting one part of a system to be modified
(and retested) with minimum impact on other parts. The most frequent changes are
facilitated by making them input or configurable options. The best software designers
identify and document not only what is likely to change, but how often and by whom.
For example, a configuration or template file that may be modified by a user will be
clearly distinguished from one that is considered a fixed part of the system.

Ideally the scope of anticipated change is both clearly documented and consonant
with the program design. For example, we expect to see client-customizable aspects of
HTML output clearly isolated and documented in a configuration file, not embedded
in an XSLT script file and certainly not scattered about in print statements in the code.
Thus, the choice to encode something as “data” rather than “program” should at least
be a good hint that it may be a parameter for testing, although further consideration
of the scope of variation may be necessary. Conversely, defining the parameters for
variation in test design can be part of the architectural design process of setting the
scope of variation anticipated for a given product or release.

Category-Partition Testing 185

patterns for the collection as a whole.
Should the representative values of the flattened collection of pairs be one compat-

ible selection, one incompatible selection, all compatible selections, all incompatible
selections, or should we also include mix of 2 or more compatible and 2 or more incom-
patible selections? Certainly the latter is more thorough, but whether there is sufficient
value to justify the cost of this thoroughness is a matter of judgment by the test designer.

We have oversimplified by considering only whether a selection is compatible with
a slot. It might also happen that the selection does not appear in the database. More-
over, the selection might be incompatible with the model, or with a selected component
of another slot, in addition to the possibility that it is incompatible with the slot for
which it has been selected. If we treat each such possibility as a separate parameter
characteristic, we will generate many combinations, and we will need semantic con-
straints to rule out combinations like there are three options, at least two of which are
compatible with the model and two of which are not, and none of which appears in the
database. On the other hand, if we simply enumerate the combinations that do make
sense and are worth testing, then it becomes more difficult to be sure that no important
combinations have been omitted. Like all design decisions, the way in which collec-
tions and complex data are broken into parameter characteristics requires judgment
based on a combination of analysis and experience.

B. Identify Representative Values This step consists of identifying a list of repre-
sentative values (more precisely, a list of classes of values) for each of the parameter
characteristics identified during step A. Representative values should be identified for
each category independently, ignoring possible interactions among values for different
categories, which are considered in the next step.

Representative values may be identified by manually applying a set of rules known
as boundary value testing or erroneous condition testing. The boundary value testing
rule suggests selection of extreme values within a class (e.g., maximum and minimum
values of the legal range), values outside but as close as possible to the class, and
“interior” (non-extreme) values of the class. Values near the boundary of a class are
often useful in detecting “off by one” errors in programs. The erroneous condition
rule suggests selecting values that are outside the normal domain of the program, since
experience suggests that proper handling of error cases is often overlooked.

Table 11.1 summarizes the parameter characteristics and the corresponding value
choices identified for feature Check configuration.1 For numeric characteristics whose
legal values have a lower bound of 1, i.e., number of models in database and number
of components in database, we identify 0, the erroneous value, 1, the boundary value,
and many, the class of values greater than 1, as the relevant value classes. For numeric
characteristics whose lower bound is zero, i.e., number of required slots for selected
model and number of optional slots for selected model, we identify 0 as a boundary
value, 1 and many as other relevant classes of values. Negative values are impossible
here, so we do not add a negative error choice. For numeric characteristics whose legal
values have definite lower and upper-bounds, i.e., number of optional components with

1At this point, readers may ignore the items in square brackets, which indicate constraints identified in
step C of the category-partition method.

186 Combinatorial Testing

non-empty selection and number of optional components with non-empty selection,
we identify boundary and (when possible) erroneous conditions corresponding to both
lower and upper bounds.

Identifying relevant values is an important but tedious task. Test designers may
improve manual selection of relevant values by using the catalog approach described
in Section 11.4, which captures the informal approaches used in this section with a
systematic application of catalog entries.

C. Generate Test Case Specifications A test case specification for a feature is given
as a combination of value classes, one for each identified parameter characteristic.
Unfortunately, the simple combination of all possible value classes for each parameter
characteristic results in an unmanageable number of test cases (many of which are
impossible) even for simple specifications. For example, in the Table 11.1 we find 7
categories with 3 value classes, 2 categories with 6 value classes, and one with four
value classes, potentially resulting in 37 ⇥ 62 ⇥ 4 = 314,928 test cases, which would
be acceptable only if the cost of executing and checking each individual test case were
very small. However, not all combinations of value classes correspond to reasonable
test case specifications. For example, it is not possible to create a test case from a test
case specification requiring a valid model (a model appearing in the database) where
the database contains zero models.

The category-partition method allows one to omit some combinations by indicating
value classes that need not be combined with all other values. The label [error] indi-
cates a value class that need be tried only once, in combination with non-error values
of other parameters. When [error] constraints are considered in the category-partition
specification of Table 11.1, the number of combinations to be considered is reduced to
1⇥3⇥3⇥1⇥1⇥3⇥5⇥5⇥2⇥2+11 = 2711. Note that we have treated “component
not in database” as an error case, but have treated “incompatible with slot” as a normal
case of an invalid configuration; once again, some judgment is required.

Although the reduction from 314,928 to 2,711 is impressive, the number of derived
test cases may still exceed the budget for testing such a simple feature. Moreover,
some values are not erroneous per se, but may only be useful or even valid in particular
combinations. For example, the number of optional components with non-empty se-
lection is relevant to choosing useful test cases only when the number of optional slots
is greater than 1. A number of non-empty choices of required component greater than
zero does not make sense if the number of required components is zero.

Erroneous combinations of valid values can be ruled out with the property and
if-property constraints. The property constraint groups values of a single parameter
characteristic to identify subsets of values with common properties. The property con-
straint is indicated with label property PropertyName, where PropertyName identi-
fies the property for later reference. For example, property RSNE (required slots non-
empty) in Table 11.1 groups values that correspond to non-empty sets of required slots
for the parameter characteristic Number of Required Slots for Selected Model (#SMRS),
i.e., values 1 and many. Similarly, property OSNE (optional slots non-empty) groups
non-empty values for the parameter characteristic Number of Optional Slots for Se-
lected Model (#SMOS).

Category-Partition Testing 187

Parameter: Model

Model number
malformed [error]
not in database [error]
valid

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]
many [property RSNE], [property RSMANY]

Number of optional slots
for selected model (#SMOS)

0 [single]
1 [property OSNE] [single]
many [property OSNE][property OSMANY]

Parameter: Components

Correspondence of selection with model slots
omitted slots [error]
extra slots [error]
mismatched slots [error]
complete correspondence

Number of required components with non-empty
selection

0 [if RSNE] [error]
< number of required slots [if RSNE] [error]
= number of required slots [if RSMANY]

Number of optional components with non-empty
selection

0
< number of optional slots [if OSNE]
= number of optional slots [if OSMANY]

Required component selection
some default [single]
all valid
� 1 incompatible with slot
� 1 incompatible with another selection
� 1 incompatible with model
� 1 not in database [error]

Optional component selection
some default [single]
all valid
� 1 incompatible with slot
� 1 incompatible with

another selection
� 1 incompatible with model
� 1 not in database [error]

Environment element: Product database

Number of models in database (#DBM)
0 [error]
1 [single]
many

Number of components in database (#DBC)
0 [error]
1 [single]
many

Table 11.1: Categories and value classes derived with the category-partition method
from the specification of Figure 11.1

188 Combinatorial Testing

The if-property constraint bounds the choices of values for a parameter characteris-
tic that can be combined with a particular value selected for a different parameter char-
acteristic. The if-property constraint is indicated with label if PropertyName, where
PropertyName identifies a property defined with the property constraint. For example,
the constraint if RSNE attached to value 0 of parameter characteristic Number of re-
quired components with non-empty selection limits the combination of this value with
values 1 and many of the parameter characteristics Number of Required Slots for Se-
lected Model (#SMRS). In this way, we rule out illegal combinations like Number of
required components with non-empty selection = 0 with Number of Required Slots for
Selected Model (#SMRS) = 0.

The property and if-property constraints introduced in Table 11.1 further reduce the
number of combinations to be considered to 1⇥3⇥1⇥1⇥ (3 + 2 + 1)⇥5⇥5⇥2⇥
2+11 = 1811.

The number of combinations can be further reduced by iteratively adding property
and if-property constraints and by introducing the new single constraint, which is in-
dicated with label single and acts like the error constraint, i.e., it limits the number of
occurrences of a given value in the selected combinations to 1.

Test designers can introduce new property, if-property, and single constraints to
reduce the total number of combinations when needed to meet budget and schedule
limits. Placement of these constraints reflects the test designer’s judgment regarding
combinations that are least likely to require thorough coverage.

The single constraints introduced in Table 11.1 reduces the number of combinations
to be considered to 1⇥1⇥1⇥1⇥1⇥3⇥4⇥4⇥1⇥1+19 = 67, which may be a rea-
sonable balance between cost and quality for the considered functionality. The number
of combinations can also be reduced by applying the pairwise and n-way combination
testing techniques, as explained in the next section.

The set of combinations of value classes for the parameter characteristics can be
turned into test case specifications by simply instantiating the identified combinations.
Table 11.2 shows an excerpt of test case specifications. The error tag in the last column
indicates test case specifications corresponding to the error constraint. Corresponding
test cases should produce an error indication. A dash indicates no constraints on the
choice of values for the parameter or environment element.

Choosing meaningful names for parameter characteristics and value classes allows
(semi)automatic generation of test case specifications.

11.3 Pairwise Combination Testing

However one obtains sets of value classes for each parameter characteristic, the next
step in producing test case specifications is selecting combinations of classes for test-
ing. A simple approach is to exhaustively enumerate all possible combinations of
classes, but the number of possible combinations rapidly explodes.

Some methods, such as the category-partition method described in the previous
section, take exhaustive enumeration as a base approach to generating combinations,
but allow the test designer to add constraints that limit growth in the number of combi-
nations. This can be a reasonable approach when the constraints on test case generation

Pairwise Combination Testing 189

Model#

#required
slots

#optional
slots

#Corr.w/
modelslots

#required
components

#optional
components

Required
components
selection

Optional
components
selection

#Modelsin
DB

#
Components
inDB

Expresult

m
al

fo
rm

ed
m

an
y

m
an

y
sa

m
e

E
Q

R
0

al
lv

al
id

al
lv

al
id

m
an

y
m

an
y

E
rr

N
ot

in
D

B
m

an
y

m
an

y
sa

m
e

E
Q

R
0

al
lv

al
id

al
lv

al
id

m
an

y
m

an
y

E
rr

va
lid

0
m

an
y

sa
m

e
-

0
al

lv
al

id
al

lv
al

id
m

an
y

m
an

y
A

cc
ep

t

··
·

··
·

..
.

va
lid

m
an

y
m

an
y

sa
m

e
E

Q
R

E
Q

O
in

-o
th

er
in

-m
od

m
an

y
m

an
y

R
ej

ec
t

va
lid

m
an

y
m

an
y

sa
m

e
E

Q
R

E
Q

O
in

-m
od

al
lv

al
id

m
an

y
m

an
y

R
ej

ec
t

va
lid

m
an

y
m

an
y

sa
m

e
E

Q
R

E
Q

O
in

-m
od

in
-s

lo
t

m
an

y
m

an
y

R
ej

ec
t

va
lid

m
an

y
m

an
y

sa
m

e
E

Q
R

E
Q

O
in

-m
od

in
-o

th
er

m
an

y
m

an
y

R
ej

ec
t

va
lid

m
an

y
m

an
y

sa
m

e
E

Q
R

E
Q

O
in

-m
od

in
-m

od
m

an
y

m
an

y
R

ej
ec

t

Le
ge

nd

E
Q

R
=

#
re

q
sl

ot
E

Q
O

=
#

op
ts

lo
t

in
-m

od
�

1
in

co
m

pa
tw

/m
od

el
in

-o
th

er
�

1
in

co
m

pa
tw

/a
no

th
er

sl
ot

in
-s

lo
t

�
1

in
co

m
pa

tw
/s

lo
t

Ta
bl

e
11

.2
:

An
ex

ce
rp

to
ft

es
tc

as
e

sp
ec

ifi
ca

tio
ns

de
ri

ve
d

fro
m

th
e

va
lu

e
cl

as
se

s
gi

ve
n

in
Ta

bl
e

11
.1

190 Combinatorial Testing

Display Mode
full-graphics
text-only
limited-bandwidth

Language
English
French
Spanish
Portuguese

Fonts
Minimal
Standard
Document-loaded

Color
Monochrome
Color-map
16-bit
True-color

Screen size
Hand-held
Laptop
Full-size

Table 11.3: Parameters and values controlling Chipmunk Web site display

reflect real constraints in the application domain, and eliminate many redundant com-
binations (for example, the “error” entries in category-partition testing). It is less sat-
isfactory when, lacking real constraints from the application domain, the test designer
is forced to add arbitrary constraints (e.g., “single” entries in the category-partition
method) whose sole purpose is to reduce the number of combinations.

Consider the parameters that control the Chipmunk Web site display, shown in Ta-
ble 11.3. Exhaustive enumeration produces 432 combinations, which is too many if the
test results (e.g., judging readability) involve human judgment. While the test designer
might hypothesize some constraints, such as observing that monochrome displays are
limited mostly to hand-held devices, radical reductions require adding several “single”
and “property” constraints without any particular rationale.

Exhaustive enumeration of all n-way combinations of value classes for n param-
eters, on the one hand, and coverage of individual classes, on the other, are only the
extreme ends of a spectrum of strategies for generating combinations of classes. Be-
tween them lie strategies that generate all pairs of classes for different parameters,
all triples, and so on. When it is reasonable to expect some potential interaction be-
tween parameters (so coverage of individual value classes is deemed insufficient), but
covering all combinations is impractical, an attractive alternative is to generate k-way
combinations for k < n, typically pairs or triples.

How much does generating possible pairs of classes save, compared to generating
all combinations? We have already observed that the number of all combinations is
the product of the number of classes for each parameter, and that this product grows
exponentially with the number of parameters. It turns out that the number of combina-
tions needed to cover all possible pairs of values grows only logarithmically with the
number of parameters — an enormous saving.

A simple example may suffice to gain some intuition about the efficiency of gener-
ating tuples that cover pairs of classes, rather than all combinations. Suppose we have
just the three parameters display mode, screen size, and fonts from Table 11.3. If we
consider only the first two, display mode and screen size, the set of all pairs and the set

Pairwise Combination Testing 191

Display mode⇥Screen size Fonts
Full-graphics Hand-held Minimal
Full-graphics Laptop Standard
Full-graphics Full-size Document-loaded
Text-only Hand-held Standard
Text-only Laptop Document-loaded
Text-only Full-size Minimal
Limited-bandwidth Hand-held Document-loaded
Limited-bandwidth Laptop Minimal
Limited-bandwidth Full-size Standard

Table 11.4: Covering all pairs of value classes for three parameters by extending the
cross-product of two parameters

of all combinations are identical, and contain 3⇥3 = 9 pairs of classes. When we add
the third parameter, fonts, generating all combinations requires combining each value
class from fonts with every pair of display mode⇥ screen size, a total of 27 tuples; ex-
tending from n to n + 1 parameters is multiplicative. However, if we are generating
pairs of values from display mode, screen size, and fonts, we can add value classes
of fonts to existing elements of display mode⇥ screen size in a way that covers all the
pairs of fonts⇥ screen size and all the pairs of fonts⇥display mode without increasing
the number of combinations at all (see Table 11.4). The key is that each tuple of three
elements contains three pairs, and by careful selecting value classes of the tuples we
can make each tuple cover up to three different pairs.

Table 11.3 shows 17 tuples that cover all pairwise combinations of value classes
of the five parameters. The entries not specified in the table (“–”) correspond to open
choices. Each of them can be replaced by any legal value for the corresponding param-
eter. Leaving them open gives more freedom for selecting test cases.

Generating combinations that efficiently cover all pairs of classes (or triples, or
. . .) is nearly impossible to perform manually for many parameters with many value
classes (which is, of course, exactly when one really needs to use the approach). For-
tunately, efficient heuristic algorithms exist for this task, and they are simple enough to
incorporate in tools.

The tuples in Table 11.3 cover all pairwise combinations of value choices for
the five parameters of the example. In many cases not all choices may be allowed.
For example, the specification of the Chipmunk Web site display may indicate that
monochrome displays are limited to hand-held devices. In this case, the tuples cov-
ering the pairs hMonochrome,Laptopi and hMonochrome,Full-sizei, i.e., the fifth and
ninth tuples of Table 11.3, would not correspond to legal inputs. We can restrict the
set of legal combinations of value classes by adding suitable constraints. Constraints
can be expressed as tuples with wild-cards that match any possible value class. The
patterns describe combinations that should be omitted from the sets of tuples.

192 Combinatorial Testing

Language Color Display Mode Fonts Screen Size
English Monochrome Full-graphics Minimal Hand-held
English Color-map Text-only Standard Full-size
English 16-bit Limited-bandwidth – Full-size
English True-color Text-only Document-loaded Laptop
French Monochrome Limited-bandwidth Standard Laptop
French Color-map Full-graphics Document-loaded Full-size
French 16-bit Text-only Minimal –
French True-color – – Hand-held
Spanish Monochrome – Document-loaded Full-size
Spanish Color-map Limited-bandwidth Minimal Hand-held
Spanish 16-bit Full-graphics Standard Laptop
Spanish True-color Text-only – Hand-held
Portuguese Monochrome Text-only – –
Portuguese Color-map – Minimal Laptop
Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held
Portuguese True-color Full-graphics Minimal Full-size
Portuguese True-color Limited-bandwidth Standard Hand-held

Table 11.5: Covering all pairs of value classes for the five parameters

For example, the constraints

OMITh⇤,⇤,⇤,Monochrome,Laptopi

OMITh⇤,⇤,⇤,Monochrome,Full-sizei

indicate that tuples containing the pair hMonochrome,Hand-heldi as values for the
fourth and fifth parameter are not allowed in the relation of Table 11.3.

Tuples that cover all pairwise combinations of value classes without violating the
constraints can be generated by simply removing the illegal tuples and adding legal
tuples that cover the removed pairwise combinations. Open choices must be bound
consistently in the remaining tuples, e.g., tuple

hPortuguese,Monochrome,Text-only, -, -i

must become

hPortuguese,Monochrome,Text-only, -,Hand-heldi

Constraints can also be expressed with sets of tables to indicate only the legal com-
binations, as illustrated in Table 11.6, where the first table indicates that the value class
Hand-held for parameter Screen can be combined with any value class of parameter
Color, including Monochrome, while the second table indicates that the value classes
Laptop and Full-size for parameter Screen size can be combined with all values classes
except Monochrome for parameter Color.

Pairwise Combination Testing 193

Hand-held devices

Display Mode
full-graphics
text-only
limited-bandwidth

Language
English
French
Spanish
Portuguese

Fonts
Minimal
Standard
Document-loaded

Color
Color-map
16-bit
True-color

Screen size
Hand-held

Laptop and Full-size devices

Display Mode
full-graphics
text-only
limited-bandwidth

Language
English
French
Spanish
Portuguese

Fonts
Minimal
Standard
Document-loaded

Color
Monochrome
Color-map
16-bit
True-color

Screen size
Laptop
Full size

Table 11.6: Pairs of tables that indicate valid value classes for the Chipmunk Web site
display

If constraints are expressed as a set of tables that give only legal combinations,
tuples can be generated without changing the heuristic. Although the two approaches
express the same constraints, the number of generated tuples can be different, since
different tables may indicate overlapping pairs and thus result in a larger set of tuples.
Other ways of expressing constraints may be chosen according to the characteristics of
the specification and the preferences of the test designer.

So far we have illustrated the combinatorial approach with pairwise coverage. As
previously mentioned, the same approach can be applied for triples or larger combina-
tions. Pairwise combinations may be sufficient for some subset of the parameters, but
not enough to uncover potential interactions among other parameters. For example, in
the Chipmunk display example, the fit of text fields to screen areas depends on the com-
bination of language, fonts, and screen size. Thus, we may prefer exhaustive coverage
of combinations of these three parameters, but be satisfied with pairwise coverage of

194 Combinatorial Testing

other parameters. In this case, we first generate tuples of classes from the parameters to
be most thoroughly covered, and then extend these with the parameters which require
less coverage.

11.4 Catalog-Based Testing

The test design techniques described above require judgment in deriving value classes.
Over time, an organization can build experience in making these judgments well. Gath-
ering this experience in a systematic collection can speed up the process and routinize
many decisions, reducing human error and better focusing human effort. Catalogs
capture the experience of test designers by listing all cases to be considered for each
possible type of variable that represents logical inputs, outputs, and status of the com-
putation. For example, if the computation uses a variable whose value must belong to a
range of integer values, a catalog might indicate the following cases, each correspond-
ing to a relevant test case:

1. The element immediately preceding the lower bound of the interval

2. The lower bound of the interval

3. A non-boundary element within the interval

4. The upper bound of the interval

5. The element immediately following the upper bound

The catalog would in this way cover the intuitive cases of erroneous conditions
(cases 1 and 5), boundary conditions (cases 2 and 4), and normal conditions (case 3).

The catalog-based approach consists in unfolding the specification, i.e., decompos-
ing the specification into elementary items, deriving an initial set of test case specifica-
tions from pre-conditions, post-conditions, and definitions, and completing the set of
test case specifications using a suitable test catalog.

STEP 1: identify elementary items of the specification The initial specification is
transformed into a set of elementary items. Elementary items belong to a small set of
basic types:

Preconditions represent the conditions on the inputs that must be satisfied before in-
vocation of the unit under test. Preconditions may be checked either by the unit
under test (validated preconditions) or by the caller (assumed preconditions).

Postconditions describe the result of executing the unit under test.

Variables indicate the values on which the unit under test operates. They can be input,
output, or intermediate values.

Operations indicate the main operations performed on input or intermediate variables
by the unit under test

Definitions are shorthand used in the specification

Catalog-Based Testing 195

cgi decode: Function cgi decode translates a cgi-encoded string to a plain ASCII
string, reversing the encoding applied by the common gateway interface (CGI)
of most Web servers.

CGI translates spaces to ‘+’, and translates most other non-alphanumeric charac-
ters to hexadecimal escape sequences. cgi decode maps ‘+’ to ‘ ’, “%xy” (where x
and y are hexadecimal digits) to to the corresponding ASCII character, and other
alphanumeric characters to themselves.

INPUT: encoded A string of characters, representing the input CGI sequence. It can
contain:

• alphanumeric characters

• the character ‘+’

• the substring “%xy”, where x and y are hexadecimal digits.

encoded is terminated by a null character.

OUTPUT: decoded A string containing the plain ASCII characters corresponding to
the input CGI sequence.

• Alphanumeric characters are copied into the output in the corresponding
position

• A blank is substituted for each ‘+’ character in the input.

• A single ASCII character with hexadecimal value xy16 is substituted for each
substring “%xy” in the input.

OUTPUT: return value cgi decode returns

• 0 for success

• 1 if the input is malformed

Figure 11.2: An informal (and imperfect) specification of C function cgi decode

As in other approaches that begin with an informal description, it is not possible to
give a precise recipe for extracting the significant elements. The result will depend on
the capability and experience of the test designer.

Consider the informal specification of a function for converting URL-encoded form
data into the original data entered through an html form. An informal specification is
given in Figure 11.2.2

The informal description of cgi decode uses the concept of hexadecimal digit, hex-
adecimal escape sequence, and element of a cgi encoded sequence. This leads to the
identification of the following three definitions:

2The informal specification is ambiguous and inconsistent, i.e., it is the kind of spec one is most likely to
encounter in practice.

196 Combinatorial Testing

DEF 1 hexadecimal digits are: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘A’, ‘B’, ‘C’,
‘D’, ‘E’, ‘F’, ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’

DEF 2 a CGI-hexadecimal is a sequence of three characters: “%xy”, where x and y
are hexadecimal digits

DEF 3 a CGI item is either an alphanumeric character, or character ‘+’, or a CGI-
hexadecimal

In general, every concept introduced in the description to define the problem can
be represented as a definition.

The description of cgi decode mentions some elements that are inputs and outputs
of the computation. These are identified as the following variables:

VAR 1 Encoded: string of ASCII characters

VAR 2 Decoded: string of ASCII characters

VAR 3 return value: Boolean

Note the distinction between a variable and a definition. Encoded and decoded are
actually used or computed, while hexadecimal digits, CGI-hexadecimal, and CGI item
are used to describe the elements but are not objects in their own right. Although not
strictly necessary for the problem specification, explicit identification of definitions can
help in deriving a richer set of test cases.

The description of cgi decode indicates some conditions that must be satisfied upon
invocation, represented by the following preconditions:

PRE 1 (Assumed) the input string Encoded is a null-terminated string of characters.

PRE 2 (Validated) the input string Encoded is a sequence of CGI items.

In general, preconditions represent all the conditions that should be true for the
intended functioning of a module. A condition is labeled as validated if it is checked
by the module (in which case a violation has a specified effect, e.g., raising an exception
or returning an error code). Assumed preconditions must be guaranteed by the caller,
and the module does not guarantee a particular behavior in case they are violated.

The description of cgi decode indicates several possible results. These can be rep-
resented as a set of postconditions:

POST 1 if the input string Encoded contains alphanumeric characters, they are copied
to the corresponding position in the output string.

POST 2 if the input string Encoded contains ‘+’ characters, they are replaced by
ASCII space characters in the corresponding positions in the output string.

POST 3 if the input string Encoded contains CGI-hexadecimals, they are replaced by
the corresponding ASCII characters.

POST 4 if the input string Encoded is a valid sequence, cgi decode returns 0.

Catalog-Based Testing 197

POST 5 if the input string Encoded contains a malformed CGI-hexadecimal, i.e., a
substring “%xy”, where either x or y is absent or are not hexadecimal digits,
cgi decode returns 1

POST 6 if the input string Encoded contains any illegal character, cgi decode returns
1.

The postconditions should, together, capture all the expected outcomes of the mod-
ule under test. When there are several possible outcomes, it is possible to capture all of
them in one complex postcondition or in several simple postconditions; here we have
chosen a set of simple contingent postconditions, each of which captures one case. The
informal specification does not distinguish among cases of malformed input strings,
but the test designer may make further distinctions while refining the specification.

Although the description of cgi decode does not mention explicitly how the results
are obtained, we can easily deduce that it will be necessary to scan the input sequence.
This is made explicit in the following operation:

OP 1 Scan the input string Encoded.

In general, a description may refer either explicitly or implicitly to elementary oper-
ations which help to clearly describe the overall behavior, like definitions help to clearly
describe variables. As with variables, they are not strictly necessary for describing the
relation between pre- and postconditions, but they serve as additional information for
deriving test cases.

The result of step 1 for cgi decode is summarized in Figure 11.3.

STEP 2 Derive a first set of test case specifications from preconditions, postcon-
ditions and definitions The aim of this step is to explicitly describe the partition of
the input domain:

Validated Preconditions: A simple precondition, i.e., a precondition that is expressed
as a simple Boolean expression without and or or, identifies two classes of input:
values that satisfy the precondition and values that do not. We thus derive two
test case specifications.

A compound precondition, given as a Boolean expression with and or or, iden-
tifies several classes of inputs. Although in general one could derive a different
test case specification for each possible combination of truth values of the ele-
mentary conditions, usually we derive only a subset of test case specifications
using the modified condition decision coverage (MC/DC) approach, which is
illustrated in Section 14.3 and in Chapter 12. In short, we derive a set of com-
binations of elementary conditions such that each elementary condition can be
shown to independently affect the outcome of each decision. For each elemen-
tary condition C, there are two test case specifications in which the truth values
of all conditions except C are the same, and the compound condition as a whole
evaluates to True for one of those test cases and False for the other.

198 Combinatorial Testing

PRE 1 (Assumed) the input string Encoded is a null-terminated string of charac-
ters

PRE 2 (Validated) the input string Encoded is a sequence of CGI items
POST 1 if the input string Encoded contains alphanumeric characters, they are

copied to the output string in the corresponding positions.
POST 2 if the input string Encoded contains ‘+’ characters, they are replaced in the

output string by ASCII space characters in the corresponding positions
POST 3 if the input string Encoded contains CGI-hexadecimals, they are replaced

by the corresponding ASCII characters.
POST 4 if the input string Encoded is well-formed, cgi decode returns 0
POST 5 if the input string Encoded contains a malformed CGI hexadecimal, i.e.,

a substring “%xy”, where either x or y are absent or are not hexadecimal
digits, cgi decode returns 1

POST 6 if the input string Encoded contains any illegal character, cgi decode re-
turns 1

VAR 1 Encoded: a string of ASCII characters
VAR 2 Decoded: a string of ASCII characters
VAR 3 Return value: a Boolean
DEF 1 hexadecimal digits are ASCII characters in range [‘0’ .. ‘9’, ‘A’ .. ‘F’, ‘a’

.. ‘f’]
DEF 2 CGI-hexadecimals are sequences “%xy”, where x and y are hexadecimal

digits
DEF 3 A CGI item is an alphanumeric character, or ‘+’, or a CGI-hexadecimal
OP 1 Scan Encoded

Figure 11.3: Elementary items of specification cgi decode

Catalog-Based Testing 199

Assumed Preconditions: We do not derive test case specifications for cases that vio-
late assumed preconditions, since there is no defined behavior and thus no way
to judge the success of such a test case. We also do not derive test cases when
the whole input domain satisfies the condition, since test cases for these would
be redundant. We generate test cases from assumed preconditions only when
the MC/DC criterion generates more than one class of valid combinations (i.e.,
when the condition is a logical disjunction of more elementary conditions).

Postconditions: In all cases in which postconditions are given in a conditional form,
the condition is treated like a validated precondition, i.e., we generate a test case
specification for cases that satisfy and cases that do not satisfy the condition.

Definition: Definitions that refer to input or output values and are given in conditional
form are treated like validated preconditions. We generate a set of test case
specification for cases that satisfy and cases that do not satisfy the specification.
The test cases are generated for each variable that refers to the definition.

The elementary items of the specification identified in step 1 are scanned sequen-
tially and a set of test cases is derived applying these rules. While scanning the speci-
fications, we generate test case specifications incrementally. When new test case spec-
ifications introduce a refinement of an existing case, or vice versa, the more general
case becomes redundant and can be eliminated. For example, if an existing test case
specification requires a non-empty set, and we have to add two test case specifications
that require a size that is a power of two and one which is not, the existing test case
specification can be deleted because the new test cases must include a non-empty set.

Scanning the elementary items of the cgi decode specification given in Figure 11.3,
we proceed as follows:

PRE 1: The first precondition is a simple assumed precondition. We do not generate
any test case specification. The only condition would be “encoded: a null termi-
nated string of characters,” but this matches every test case and thus it does not
identify a useful test case specification.

PRE 2: The second precondition is a simple validated precondition. We generate two
test case specifications, one that satisfies the condition and one that does not:

TC-PRE2-1 Encoded: a sequence of CGI items
TC-PRE2-2 Encoded: not a sequence of CGI items

All postconditions in the cgi decode specification are given in a conditional form with
a simple condition. Thus, we generate two test case specifications for each of them.
The generated test case specifications correspond to a case that satisfies the condition
and a case that violates it.

POST 1:

TC-POST1-1 Encoded: contains one or more alphanumeric characters
TC-POST1-2 Encoded: does not contain any alphanumeric characters

200 Combinatorial Testing

POST 2:

TC-POST2-1 Encoded: contains one or more character ‘+’
TC-POST2-2 Encoded: does not any contain character ‘+’

POST 3:

TC-POST3-1 Encoded: contains one or more CGI-hexadecimals
TC-POST3-2 Encoded: does not contain any CGI-hexadecimal

POST 4: We do not generate any new useful test case specifications, because the two
specifications are already covered by the specifications generated from PRE 2.

POST 5: We generate only the test case specification that satisfies the condition. The
test case specification that violates the specification is redundant with respect to
the test case specifications generated from POST 3

TC-POST5-1 : Encoded contains one or more malformed CGI-hexadecimals

POST 6: As for POST 5, we generate only the test case specification that satisfies the
condition. The test case specification that violates the specification is redundant
with respect to several of the test case specifications generated so far.

TC-POST6-1 Encoded: contains one or more illegal characters

None of the definitions in the specification of cgi decode is given in conditional terms,
and thus no test case specifications are generated at this step.

The test case specifications generated from postconditions refine test case specifi-
cation TC-PRE2-1, which can thus be eliminated from the checklist. The result of step
2 for cgi decode is summarized in Figure 11.4.

STEP 3 Complete the test case specifications using catalogs The aim of this step
is to generate additional test case specifications from variables and operations used or
defined in the computation. The catalog is scanned sequentially. For each entry of the
catalog we examine the elementary components of the specification and add cases to
cover all values in the catalog. As when scanning the test case specifications during
step 2, redundant test case specifications are eliminated.

Table 11.7 shows a simple catalog that we will use for the cgi decode example. A
catalog is structured as a list of kinds of elements that can occur in a specification. Each
catalog entry is associated with a list of generic test case specifications appropriate for
that kind of element. We scan the specification for elements whose type is compatible
with the catalog entry, then generate the test cases defined in the catalog for that entry.
For example, the catalog of Table 11.7 contains an entry for Boolean variables. When
we find a Boolean variable in the specification, we instantiate the catalog entry by
generating two test case specifications, one that requires a True value and one that
requires a False value.

Each generic test case in the catalog is labeled in, out, or in/out, meaning that a
test case specification is appropriate if applied to an input variable, or to an output

Catalog-Based Testing 201

PRE 2 Validated) the input string Encoded is a sequence of CGI items
[TC-PRE2-2] Encoded: not a sequence of CGI items

POST 1 if the input string Encoded contains alphanumeric characters, they are copied
to the output string in the corresponding positions

[TC-POST1-1] Encoded: contains alphanumeric characters
[TC-POST1-2] Encoded: does not contain alphanumeric characters

POST 2 if the input string Encoded contains ‘+’ characters, they are replaced in the
output string by ‘ ’ in the corresponding positions

[TC-POST2-1] Encoded: contains ‘+’
[TC-POST2-2] Encoded: does not contain ‘+’

POST 3 if the input string Encoded contains CGI-hexadecimals, they are replaced by
the corresponding ASCII characters.

[TC-POST3-1] Encoded: contains CGI-hexadecimals
[TC-POST3-2] Encoded: does not contain a CGI-hexadecimal

POST 4 if the input string Encoded is well-formed, cgi decode returns 0

POST 5 if the input string Encoded contains a malformed CGI-hexadecimal, i.e., a
substring “%xy”, where either x or y are absent or non hexadecimal digits,
cgi decode returns 1

[TC-POST5-1] Encoded: contains malformed CGI-hexadecimals

POST 6 if the input string Encoded contains any illegal character, cgi decode returns
a positive value

[TC-POST6-1] Encoded: contains illegal characters

VAR 1 Encoded: a string of ASCII characters

VAR 2 Decoded: a string of ASCII characters

VAR 3 Return value: a Boolean

DEF 1 hexadecimal digits are in range [’0’ .. ‘9’, ‘A’ .. ‘F’, ‘a’ .. ‘f’]

DEF 2 CGI-hexadecimals are sequences ‘%xy’, where x and y are hexadecimal dig-
its

DEF 3 CGI items are either alphanumeric characters, or ‘+’, or CGI-hexadecimals

OP 1 Scan Encoded

Figure 11.4: Test case specifications for cgi decode generated after step 2
.

202 Combinatorial Testing

Boolean
[in/out] True
[in/out] False

Enumeration
[in/out] Each enumerated value
[in] Some value outside the enumerated set

Range L . . .U
[in] L�1 (the element immediately preceding the lower bound)
[in/out] L (the lower bound)
[in/out] A value between L and U
[in/out] U (the upper bound)
[in] U +1 (the element immediately following the upper bound)

Numeric Constant C
[in/out] C (the constant value)
[in] C�1 (the element immediately preceding the constant value)
[in] C +1 (the element immediately following the constant value)
[in] Any other constant compatible with C

Non-Numeric Constant C
[in/out] C (the constant value)
[in] Any other constant compatible with C
[in] Some other compatible value

Sequence
[in/out] Empty
[in/out] A single element
[in/out] More than one element
[in/out] Maximum length (if bounded) or very long
[in] Longer than maximum length (if bounded)
[in] Incorrectly terminated

Scan with action on elements P
[in] P occurs at beginning of sequence
[in] P occurs in interior of sequence
[in] P occurs at end of sequence
[in] PP occurs contiguously
[in] P does not occur in sequence
[in] pP where p is a proper prefix of P
[in] Proper prefix p occurs at end of sequence

Table 11.7: Part of a simple test catalog.

Catalog-Based Testing 203

variable, or in both cases. In general, erroneous values should be used when testing
the behavior of the system with respect to input variables, but are usually impossible
to produce when testing the behavior of the system with respect to output variables.
For example, when the value of an input variable can be chosen from a set of values,
it is important to test the behavior of the system for all enumerated values and some
values outside the enumerated set, as required by entry ENUMERATION of the catalog.
However, when the value of an output variable belongs to a finite set of values, we
should derive a test case for each possible outcome, but we cannot derive a test case
for an impossible outcome, so entry ENUMERATION of the catalog specifies that the
choice of values outside the enumerated set is limited to input variables. Intermediate
variables, if present, are treated like output variables.

Entry Boolean of the catalog applies to Return value (VAR 3). The catalog re-
quires a test case that produces the value True and one that produces the value False .
Both cases are already covered by test cases TC-PRE2-1 and TC-PRE2-2 generated for
precondition PRE 2, so no test case specification is actually added.

Entry Enumeration of the catalog applies to any variable whose values are chosen
from an explicitly enumerated set of values. In the example, the values of CGI item
(DEF 3) and of improper CGI hexadecimals in POST 5 are defined by enumeration.
Thus, we can derive new test case specifications by applying entry enumeration to
POST 5 and to any variable that can contain CGI items.

The catalog requires creation of a test case specification for each enumerated value
and for some excluded values. For encoded, which should consist of CGI-items as de-
fined in DEF 3, we generate a test case specification where a CGI-item is an alphanu-
meric character, one where it is the character ‘+’, one where it is a CGI-hexadecimal,
and one where it is an illegal value. We can easily ascertain that all the required cases
are already covered by test case specifications for TC-POST1-1, TC-POST1-2, TC-
POST2-1, TC-POST2-2, TC-POST3-1, and TC-POST3-2, so any additional test case
specifications would be redundant.

From the enumeration of malformed CGI-hexadecimals in POST 5, we derive the
following test cases: %y, %x, %ky, %xk, %xy (where x and y are hexadecimal digits
and k is not). Note that the first two cases, %x (the second hexadecimal digit is missing)
and %y (the first hexadecimal digit is missing) are identical, and %x is distinct from
%xk only if %x are the last two characters in the string. A test case specification
requiring a correct pair of hexadecimal digits (%xy) is a value out of the range of the
enumerated set, as required by the catalog.

The added test case specifications are:

TC-POST5-2 encoded: terminated with %x, where x is a hexadecimal digit

TC-POST5-3 encoded: contains %ky, where k is not a hexadecimal digit and y is a
hexadecimal digit.

TC-POST5-4 encoded: contains %xk, where x is a hexadecimal digit and k is not.

The test case specification corresponding to the correct pair of hexadecimal digits is
redundant, having already been covered by TC-POST3-1. The test case TC-POST5-1

204 Combinatorial Testing

can now be eliminated because it is more general than the combination of TC-POST5-
2, TC-POST5-3, and TC-POST5-4.

Entry Range applies to any variable whose values are chosen from a finite range. In
the example, ranges appear three times in the definition of hexadecimal digit. Ranges
also appear implicitly in the reference to alphanumeric characters (the alphabetic and
numeric ranges from the ASCII character set) in DEF 3. For hexadecimal digits we will
try the special values ‘/’ and ‘:’ (the characters that appear before ‘0’ and after ‘9’ in the
ASCII encoding), the values ‘0’ and ’9’ (upper and lower bounds of the first interval),
some value between ’0’ and ‘9’; similarly ‘@’, ‘G’, ‘A’, ‘F’, and some value between
’A’ and ‘F’ for the second interval; and ‘‘’, ‘g’, ‘a’, ‘f’, and some value between ‘a’
and ‘f’ for the third interval.

These values will be instantiated for variable encoded, and result in 30 additional
test case specifications (5 values for each subrange, giving 15 values for each hexadec-
imal digit and thus 30 for the two digits of CGI-hexadecimal). The full set of test case
specifications is shown in Table 11.8. These test case specifications are more specific
than (and therefore replace) test case specifications TC-POST3-1, TC-POST5-3, and
TC-POST5-4.

For alphanumeric characters we will similarly derive boundary, interior and ex-
cluded values, which result in 15 additional test case specifications, also given in Ta-
ble 11.8. These test cases are more specific than (and therefore replace) TC-POST1-1,
TC-POST1-2, and TC-POST6-1.

Entry Numeric Constant does not apply to any element of this specification.
Entry Non-Numeric Constant applies to ‘+’ and ‘%’, occurring in DEF 3 and DEF

2 respectively. Six test case specifications result, but all are redundant.
Entry Sequence applies to encoded (VAR 1), decoded (VAR 2), and cgi-item (DEF

2). Six test case specifications result for each, of which only five are mutually non-
redundant and not already in the list. From VAR 1 (encoded) we generate test case
specifications requiring an empty sequence, a sequence containing a single element,
and a very long sequence. The catalog entry requiring more than one element generates
a redundant test case specification, which is discarded. We cannot produce reasonable
test cases for incorrectly terminated strings (the behavior would vary depending on the
contents of memory outside the string), so we omit that test case specification.

All test case specifications that would be derived for decoded (VAR 2) would be
redundant with respect to test case specifications derived for encoded (VAR 1).

From CGI-hexadecimal (DEF 2) we generate two additional test case specifications
for variable encoded: a sequence that terminates with ‘%’ (the only way to produce
a one-character subsequence beginning with ‘%’) and a sequence containing ‘%xyz’,
where x, y, and z are hexadecimal digits.

Entry Scan applies to Scan Encoded (OP 1) and generates 17 test case specifica-
tions. Three test case specifications (alphanumeric, ‘+’, and CGI item) are generated
for each of the first 5 items of the catalog entry. One test case specification is generated
for each of the last two items of the catalog entry when Scan is applied to CGI item.
The last two items of the catalog entry do not apply to alphanumeric characters and
‘+’, since they have no non-trivial prefixes. Seven of the 17 are redundant. The ten
generated test case specifications are summarized in Table 11.8.

Catalog-Based Testing 205

TC-POST2-1 Encoded contains character ‘+’
TC-POST2-2 Encoded does not contain char-

acter ‘+’
TC-POST3-2 Encoded does not contain a

CGI-hexadecimal
TC-POST5-2 Encoded terminates with %x
TC-VAR1-1 Encoded is the empty sequence
TC-VAR1-2 Encoded is a sequence consist-

ing of a single character
TC-VAR1-3 Encoded is a very long

sequence

Encoded contains . . .
TC-DEF2-1 . . . ‘%/y’
TC-DEF2-2 . . . ‘%0y’
TC-DEF2-3 . . . ‘%xy’, with x in [‘1’..‘8’]
TC-DEF2-4 . . . ‘%9y’
TC-DEF2-5 . . . ‘%:y’
TC-DEF2-6 . . . ‘%@y’
TC-DEF2-7 . . . ‘%Ay’
TC-DEF2-8 . . . ‘%xy’, with x in [‘B’..‘E’]
TC-DEF2-9 . . . ‘%Fy’
TC-DEF2-10 . . . ‘%Gy’
TC-DEF2-11 . . . ‘%‘y’
TC-DEF2-12 . . . ‘%ay’
TC-DEF2-13 . . . ‘%xy’, with x in [‘b’..‘e’]
TC-DEF2-14 . . . ‘%fy’
TC-DEF2-15 . . . ‘%gy’
TC-DEF2-16 . . . ‘%x/’
TC-DEF2-17 . . . ‘%x0’
TC-DEF2-18 . . . ‘%xy’, with y in [‘1’..‘8’]
TC-DEF2-19 . . . ‘%x9’
TC-DEF2-20 . . . ‘%x:’
TC-DEF2-21 . . . ‘%x@’
TC-DEF2-22 . . . ‘%xA’
TC-DEF2-23 . . . ‘%xy’, with y in [‘B’..‘E’]

TC-DEF2-24 . . . ‘%xF’
TC-DEF2-25 . . . ‘%xG’
TC-DEF2-26 . . . ‘%x‘’
TC-DEF2-27 . . . ‘%xa’
TC-DEF2-28 . . . ‘%xy’, with y in [‘b’..‘e’]
TC-DEF2-29 . . . ‘%xf’
TC-DEF2-30 . . . ‘%xg’
TC-DEF2-31 . . . ‘%$’
TC-DEF2-32 . . . ‘%xyz’
TC-DEF3-1 . . . ‘/’
TC-DEF3-2 . . . ‘0’
TC-DEF3-3 . . . c, with c in [‘1’..‘8’]
TC-DEF3-4 . . . ‘9’
TC-DEF3-5 . . . ‘:’
TC-DEF3-6 . . . ‘@’
TC-DEF3-7 . . . ‘A’
TC-DEF3-8 . . . a, with a in [‘B’..‘Y’]
TC-DEF3-9 . . . ‘Z’
TC-DEF3-10 . . . ‘[’
TC-DEF3-11 . . . ‘‘’
TC-DEF3-12 . . . ‘a’
TC-DEF3-13 . . . a, with a in [‘b’..‘y’]
TC-DEF3-14 . . . ‘z’
TC-DEF3-15 . . . ‘{’
TC-OP1-1 . . . ‘ˆa’
TC-OP1-2 . . . ‘ˆ+’
TC-OP1-3 . . . ˆ%xy’
TC-OP1-4 . . . ‘a$’
TC-OP1-5 . . . ‘+$’
TC-OP1-6 . . . ‘%xy$’
TC-OP1-7 . . . ‘aa’
TC-OP1-8 . . . ‘++’
TC-OP1-9 . . . ‘%xy%zw’
TC-OP1-10 . . . ‘%x%yz’

Where w,x,y,z are hexadecimal digits, a is an alphanumeric character, ˆ represents the beginning of the
string, and $ represents the end of the string.

Table 11.8: Summary table: Test case specifications for cgi decode generated with a catalog.

206 Combinatorial Testing

Test catalogs, like other check lists used in test and analysis (e.g., inspection check
lists), are an organizational asset that can be maintained and enhanced over time. A
good test catalog will be written precisely and suitably annotated to resolve ambiguity.
Catalogs should also be specialized to an organization and application domain, typi-
cally using a process such as defect causal analysis or root cause analysis (Chapters
20 and 18). Entries are added to detect particular classes of faults that have been en-
countered frequently or have been particularly costly to remedy in previous projects.
Refining check lists is a typical activity carried out as part of process improvement.
When a test reveals a program fault, it is useful to make a note of which catalog entries
the test case originated from, as an aid to measuring the effectiveness of catalog entries.
Catalog entries that are not effective should be removed.

Open research issues

In the last decades, structured languages replaced natural language in software specifi-
cations, and today unstructured specifications written in natural language are becoming
less common. Unstructured natural language specifications are still commonly used in
informal development environments that lack expertise and tools, and often do not
adopt rigorous development methodologies. Deriving structure from natural language
is not a main focus of the research community, which pays more attention to exploiting
formal and semi-formal models that may be produced in the course of a project.

Combinatorial methods per se is a niche research area that attracts relatively little
attention from the research community. One issue that has received too little atten-
tion to date is adapting combinatorial test techniques to cope with constantly changing
specifications.

Further Reading

Category partition testing is described by Ostrand and Balcer [OB88]. The combina-
torial approach described in this chapter is due to Cohen, Dalal, Fredman, and Patton
[CDFP97]; the algorithm described by Cohen et al. is patented by Bellcore. Catalog-
based testing of subsystems is described in Marick’s The Craft of Software Testing
[Mar97].

Related topics

Readers interested in learning additional functional testing techniques may continue
with the next Chapter that describes model-based testing techniques. Readers inter-
ested in the complementarities between functional and structural testing as well as
readers interested in testing the decision structures and control and data flow graphs
may continue with the following chapters that describe structural and data flow testing.
Readers interested in the quality of specifications may proceed to Chapter 18, which
describes inspection techniques.

Catalog-Based Testing 207

Exercises

11.1. When designing a test suite with the category partition method, sometimes it is
useful to determine the number of test case specifications that would be generated
from a set of parameter characteristics (categories) and value classes (choices)
without actually generating or enumerating them. Describe how to quickly de-
termine the number of test cases in these cases:

(a) Parameter characteristics and value classes are given, but no constraints
(error, single, property, or if-property) are used.

(b) Only the constraints error and single are used (without property and if-
property).

When the property and if-property are also used, they can interact in ways that
make a quick closed-form calculation of the number of test cases difficult or
impossible.

(c) Sketch an algorithm for counting the number of test cases that would be
generated when if and if-property are used. Your algorithm should be sim-
ple, and may not be more efficient than actually generating each test case
specification.

11.2. Suppose we have a tool to generate combinatorial tests with pairwise coverage
from a specification of the same form as category partition specifications, and
it interprets property constraints and single and error cases in the same way.
Also assume the tool for pairwise testing never generates two identical test case
specifications. Given the same specification of parameter values and constraints,
can a suite of test case specifications generated by the pairwise tool ever be larger
than the set of test case specifications generated by the tool for category partition
testing?

11.3. Suppose we are constructing a tool for combinatorial testing. Our tool will read a
specification in exactly the same form as the input of a tool for the category parti-
tion method, except that it will achieve pairwise coverage rather than exhaustive
coverage of values. However, we notice that it is sometimes not possible to cover
all pairs of choices. For example, we might encounter the following specifica-
tion:

C1
V1 [property P1]
V2 [property P2]

C2
V3 [property P3]
V4 [property P4]

208 Combinatorial Testing

C3
V5 [if P1]
V6 [if P4]

Our tool prints a warning that it is unable to create any complete test case speci-
fication that pairs value V2 with V3.

(a) Explain why the values V2 and V3 cannot be paired in a test case specifica-
tion.

(b) Suppose the parameter characteristic V3 were instead described as follows:

C3
V5 [if P1]
V6 [if P4]
V7 [error]

Would it be satisfactory to cover the test obligation hC1 = V2,C2 = V3i
with the complete test case specification hC1 = V2,C2 = V3,C3 = V7i? In
general, should values marked error be used to cover pairs of parameter
characteristics?

(c) Suppose, instead, the otherwise unconstrained value V7 is marked single,
like this:

C3
V5 [if P1]
V6 [if P4]
V7 [single]

Would it be a good idea to use V7 to complete a test case specification
matching V2 with V3? Does your answer depend on whether the single
constraint has been used just to reduce the total number of test cases or
to identify situations that are really treated as special cases in the program
specification and code?

11.4. Derive parameter characteristics, representative values, and semantic constraints
from the following specification of an Airport connection check function, suit-
able for generating a set of test case specifications using the category partition
method.

Airport connection check: The airport connection check is part of an
(imaginary) travel reservation system. It is intended to check the validity
of a single connection between two flights in an itinerary. It is described
here at a fairly abstract level, as it might be described in a preliminary
design before concrete interfaces have been worked out.

Specification Signature: Valid Connection (Arriving Flight: flight, De-
parting Flight: flight) returns Validity Code
Validity Code 0 (OK) is returned if Arriving Flight and Departing Flight
make a valid connection (the arriving airport of the first is the depart-
ing airport of the second) and there is sufficient time between arrival

Catalog-Based Testing 209

and departure according to the information in the airport database de-
scribed below.
Otherwise, a validity code other than 0 is returned, indicating why the
connection is not valid.
Data types
Flight: A ”flight” is a structure consisting of
• A unique identifying flight code, three alphabetic characters fol-

lowed by up to four digits. (The flight code is not used by the valid
connection function.)

• The originating airport code (3 characters, alphabetic)
• The scheduled departure time of the flight (in universal time)
• The destination airport code (3 characters, alphabetic)
• The scheduled arrival time at the destination airport.

Validity Code: The validity code is one of a set of integer values with
the following interpretations
0: The connection is valid.
10: Invalid airport code (airport code not found in database)
15: Invalid connection, too short: There is insufficient time between

arrival of first flight and departure of second flight.
16: Invalid connection, flights do not connect. The destination air-

port of Arriving Flight is not the same as the originating airport of
Departing Flight.

20: Another error has been recognized (e.g., the input arguments may
be invalid, or an unanticipated error was encountered).

Airport Database
The Valid Connection function uses an internal, in-memory table of
airports which is read from a configuration file at system initialization.
Each record in the table contains the following information:
• Three-letter airport code. This is the key of the table and can be

used for lookups.
• Airport zone. In most cases the airport zone is a two-letter coun-

try code, e.g., ”us” for the United States. However, where passage
from one country to another is possible without a passport, the
airport zone represents the complete zone in which passport-free
travel is allowed. For example, the code ”eu” represents the Euro-
pean countries which are treated as if they were a single country
for purposes of travel.

• Domestic connect time. This is an integer representing the mini-
mum number of minutes that must be allowed for a domestic con-
nection at the airport. A connection is ”domestic” if the originat-
ing and destination airports of both flights are in the same airport
zone.

• International connect time. This is an integer representing the
minimum number of minutes that must be allowed for an inter-

210 Combinatorial Testing

national connection at the airport. The number -1 indicates that
international connections are not permitted at the airport. A con-
nection is ”international” if any of the originating or destination
airports are in different zones.

11.5. Derive a set of test cases for the Airport Connection Check example of Exercise
11.4 using the catalog based approach.
Extend the catalog of Table 11.7 as needed to deal with specification constructs.

Chapter 12

Structural Testing

The structure of the software itself is a valuable source of information for selecting test
cases and determining whether a set of test cases has been sufficiently thorough. We
can ask whether a test suite has “covered” a control flow graph or other model of the
program.1 It is simplest to consider structural coverage criteria as addressing the test
adequacy question: “Have we tested enough.” In practice we will be interested not so
much in asking whether we are done, but in asking what the unmet obligations with
respect to the adequacy criteria suggest about additional test cases that may be needed;
that is, we will often treat the adequacy criterion as a heuristic for test case selection
or generation. For example, if one statement remains unexecuted despite execution
of all the test cases in a test suite, we may devise additional test cases that exercise
that statement. Structural information should not be used as the primary answer to the
question, “How shall I choose tests,” but it is useful in combination with other test
selection criteria (particularly functional testing) to help answer the question “What
additional test cases are needed to reveal faults that may not become apparent through
black-box testing alone.”

Required Background

• Chapter 5

The material on control flow graphs and related models of program structure is
required to understand this chapter.

• Chapter 9

The introduction to test case adequacy and test case selection in general sets the
context for this chapter. It is not strictly required for understanding this chapter,
but is helpful for understanding how the techniques described in this chapter
should be applied.

1In this chapter we use the term program generically for the artifact under test, whether that artifact is a
complete application or an individual unit together with a test harness. This is consistent with usage in the
testing research literature.

211

212 Structural Testing

12.1 Overview

Testing can reveal a fault only when execution of the faulty element causes a failure.
For example, if there were a fault in the statement at line 31 of the program in Figure
12.1, it could be revealed only with test cases in which the input string contains the
character % followed by two hexadecimal digits, since only these cases would cause
this statement to be executed. Based on this simple observation, a program has not been
adequately tested if some of its elements have not been executed.2 Control flow testing
criteria are defined for particular classes of elements by requiring the execution of all
such elements of the program. Control flow elements include statements, branches,
conditions, and paths.

Unfortunately, a set of correct program executions in which all control flow ele-
ments are exercised does not guarantee the absence of faults. Execution of a faulty
statement may not always result in a failure. The state may not be corrupted when
the statement is executed with some data values, or a corrupt state may not propagate
through execution to eventually lead to failure. Let us assume, for example, to have
erroneously typed 6 instead of 16 in the statement at line 31 of the program in Figure
12.1. Test cases that execute the faulty statement with value 0 for variable digit high
would not corrupt the state, thus leaving the fault unrevealed despite having executed
the faulty statement.

The statement at line 26 of the program in Figure 12.1 contains a fault, since vari-
able eptr used to index the input string is incremented twice without checking the size
of the string. If the input string contains a character % in one of the last two positions,
eptr* will point beyond the end of the string when it is later used to index the string.
Execution of the program with a test case where string encoded terminates with char-
acter % followed by at most one character causes the faulty statement to be executed.
However, due to the memory management of C programs, execution of this faulty state-
ment may not cause a failure, since the program will read the next character available
in memory, ignoring the end of the string. Thus, this fault may remain hidden during
testing despite having produced an incorrect intermediate state. Such a fault could be
revealed using a dynamic memory checking tool that identifies memory violations.

Control flow testing complements functional testing by including cases that may
not be identified from specifications alone. A typical case is implementation of a single
item of the specification by multiple parts of the program. For example, a good speci-
fication of a table would leave data structure implementation decisions to the program-
mer. If the programmer chooses a hash table implementation, then different portions of
the insertion code will be executed depending on whether there is a hash collision. Se-
lection of test cases from the specification would not ensure that both the collision case
and the noncollision case are tested. Even the simplest control flow testing criterion
would require that both of these cases are tested.

On the other hand, test suites satisfying control flow adequacy criteria could fail in
revealing faults that can be caught with functional criteria. The most notable example
is the class of so-called missing path faults. Such faults result from the missing im-

2This is an oversimplification, since some of the elements may not be executed by any possible input.
The issue of infeasible elements is discussed in Section 12.8

Overview 213

1 #include "hex values.h"
2 /**
3 * @title cgi decode
4 * @desc
5 * Translate a string from the CGI encoding to plain ascii text
6 * ’+’ becomes space, %xx becomes byte with hex value xx,
7 * other alphanumeric characters map to themselves
8 *
9 * returns 0 for success, positive for erroneous input

10 * 1 = bad hexadecimal digit
11 */
12 int cgi decode(char *encoded, char *decoded) {
13 char *eptr = encoded;
14 char *dptr = decoded;

? 15 int ok=0;
? 16 while (*eptr) {

17 char c;
? 18 c = *eptr;

19 /* Case 1: ’+’ maps to blank */
? 20 if (c == ’+’) {
? 21 *dptr = ’ ’;
? 22 } else if (c == ’%’) {

23 /* Case 2: ’%xx’ is hex for character xx */
? 24 int digit high = Hex Values[*(++eptr)];
? 25 int digit low = Hex Values[*(++eptr)];

26 /* Hex Values maps illegal digits to -1 */
? 27 if (digit high == -1 || digit low == -1) {

28 /* *dptr=’?’; */
? 29 ok=1; /* Bad return code */

30 } else {
? 31 *dptr = 16* digit high + digit low;

32 }
33 /* Case 3: All other characters map to themselves */

? 34 } else {
? 35 *dptr = *eptr;

36 }
? 37 ++dptr;
? 38 ++eptr;

39 }
? 40 *dptr = ’\0’; /* Null terminator for string */
? 41 return ok;

42 }

Figure 12.1: The C function cgi decode, which translates a cgi-encoded string to a
plain ASCII string (reversing the encoding applied by the common gateway interface
of most Web servers).

214 Structural Testing

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {
True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

Figure 12.2: Control flow graph of function cgi decode from Figure 12.1

Statement Testing 215

T0 = { “ ”, “test”, “test+case%1Dadequacy” }
T1 = { “adequate+test%0Dexecution%7U” }
T2 = { “%3D”, “%A”, “a+b”, “test” }
T3 = { “ ”, “+%0D+%4J” }
T4 = { “first+test%9Ktest%K9” }

Table 12.1: Sample test suites for C function cgi decode from Figure 12.1

plementation of some items in the specification. For example, the program in Figure
12.1 transforms all hexadecimal ASCII codes to the corresponding characters. Thus, it
is not a correct implementation of a specification that requires control characters to be
identified and skipped. A test suite designed only to adequately cover the control struc-
ture of the program will not explicitly include test cases to test for such faults, since no
elements of the structure of the program correspond to this feature of the specification.

In practice, control flow testing criteria are used to evaluate the thoroughness of test
suites derived from functional testing criteria by identifying elements of the programs
not adequately exercised. Unexecuted elements may be due to natural differences be-
tween specification and implementation, or they may reveal flaws of the software or its
development process: inadequacy of the specifications that do not include cases present
in the implementation; coding practice that radically diverges from the specification;
or inadequate functional test suites.

Control flow adequacy can be easily measured with automatic tools. The degree of
control flow coverage achieved during testing is often used as an indicator of progress
and can be used as a criterion of completion of the testing activity.3

12.2 Statement Testing

The most intuitive control flow elements to be exercised are statements, that is, nodes
of the control flow graph. The statement coverage criterion requires each statement
to be executed at least once, reflecting the idea that a fault in a statement cannot be
revealed without executing the faulty statement.

D statement
adequacy
criterion

Let T be a test suite for a program P. T satisfies the statement adequacy criterion
for P, iff, for each statement S of P, there exists at least one test case in T that causes
the execution of S.

This is equivalent to stating that every node in the control flow graph model of
program P is visited by some execution path exercised by a test case in T .

D statement
coverageThe statement coverage CStatement of T for P is the fraction of statements of program

P executed by at least one test case in T .

CStatement =
number of executed statements

number of statements
3Application of test adequacy criteria within the testing process is discussed in Chapter 20.

216 Structural Testing

T satisfies the statement adequacy criterion if CStatement = 1. The ratio of visited
control flow graph nodes to total nodes may differ from the ratio of executed statements
to all statements, depending on the granularity of the control flow graph representation.
Nodes in a control flow graph often represent basic blocks rather than individual state-D basic block

coverage ments, and so some standards (notably DOD-178B) refer to basic block coverage, thus
indicating node coverage for a particular granularity of control flow graph. For the
standard control flow graph models discussed in Chapter 5, the relation between cov-
erage of statements and coverage of nodes is monotonic: If the statement coverage
achieved by test suite T1 is greater than the statement coverage achieved by test suite
T2, then the node coverage is also greater. In the limit, statement coverage is 1 exactly
when node coverage is 1.

Let us consider, for example, the program of Figure 12.1. The program contains 18
statements. A test suite T0

T0 = {“ ”, “test”, “test+case%1Dadequacy”}

does not satisfy the statement adequacy criterion because it does not execute statement
ok = 1 at line 29. The test suite T0 results in statement coverage of .94 (17/18), or
node coverage of .91 (10/11) relative to the control flow graph of Figure 12.2. On the
other hand, a test suite with only test case

T1 = {“adequate+test%0Dexecution%7U”}

causes all statements to be executed and thus satisfies the statement adequacy criterion,
reaching a coverage of 1.

Coverage is not monotone with respect to the size of test suites; test suites that
contain fewer test cases may achieve a higher coverage than test suites that contain
more test cases. T1 contains only one test case, while T0 contains three test cases, but
T1 achieves a higher coverage than T0. (Test suites used in this chapter are summarized
in Table 12.1.)

Criteria can be satisfied by many test suites of different sizes. A test suite Both T1
and Both T1 and

T2 = {“%3D”, “%A”, “a+b”, “test”}

cause all statements to be executed and thus satisfy the statement adequacy criterion for
program cgi decode, although one consists of a single test case and the other consists
of four test cases.

Notice that while we typically wish to limit the size of test suites, in some cases we
may prefer a larger test suite over a smaller suite that achieves the same coverage. A
test suite with fewer test cases may be more difficult to generate or may be less helpful
in debugging. Let us suppose, for example, that we omitted the 1 in the statement at
line 31 of the program in Figure 12.1. Both test suites T1 and T2 would reveal the fault,
resulting in a failure, but T2 would provide better information for localizing the fault,
since the program fails only for test case “%1D”, the only test case of T2 that exercises
the statement at line 31.

Branch Testing 217

On the other hand, a test suite obtained by adding test cases to T2 would satisfy the
statement adequacy criterion, but would not have any particular advantage over T2 with
respect to the total effort required to reveal and localize faults. Designing complex
test cases that exercise many different elements of a unit is seldom a good way to
optimize a test suite, although it may occasionally be justifiable when there is large
and unavoidable fixed cost (e.g., setting up equipment) for each test case regardless of
complexity.

Control flow coverage may be measured incrementally while executing a test suite.
In this case, the contribution of a single test case to the overall coverage that has been
achieved depends on the order of execution of test cases. For example, in test suite
T2, execution of test case “%1D” exercises 16 of the 18 statements of the program
cgi decode, but it exercises only 1 new statement if executed after “%A.” The incre-
ment of coverage due to the execution of a specific test case does not measure the
absolute efficacy of the test case. Measures independent from the order of execution
may be obtained by identifying independent statements. However, in practice we are
only interested in the coverage of the whole test suite, and not in the contribution of
individual test cases.

12.3 Branch Testing

A test suite can achieve complete statement coverage without executing all the possible
branches in a program. Consider, for example, a faulty program cgi decode0 obtained
from program cgi decode by removing line 34. The control flow graph of program
cgi decode0 is shown in Figure 12.3. In the new program there are no statements fol-
lowing the false branch exiting node D. Thus, a test suite that tests only translation
of specially treated characters but not treatment of strings containing other characters
that are copied without change satisfies the statement adequacy criterion, but would not
reveal the missing code in program cgi decode0. For example, a test suite T3

T3 = {“ ”, “+%0D+%4J”}

satisfies the statement adequacy criterion for program cgi decode0 but does not exercise
the false branch from node D in the control flow graph model of the program.

The branch adequacy criterion requires each branch of the program to be executed
by at least one test case.

D branch
adequacy
criterion

Let T be a test suite for a program P. T satisfies the branch adequacy criterion
for P, iff, for each branch B of P, there exists at least one test case in T that causes
execution of B.

This is equivalent to stating that every edge in the control flow graph model of
program P belongs to some execution path exercised by a test case in T .

D branch
coverageThe branch coverage CBranch of T for P is the fraction of branches of program P

executed by at least one test case in T .

CBranch =
number of executed branches

number of branches

218 Structural Testing

 {char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

char c;
c = *eptr;
if (c == '+') {

*dptr = ' ';
}

while (*eptr) {

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True

else {
*dptr = 16 * digit_high +
digit_low;
}

False

++dptr;
++eptr;
}

False

False

 elseif (c == '%') {

else {
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

A

C

B

D E

F G

H I

LM

Figure 12.3: The control flow graph of C function cgi decode0 which is obtained from
the program of Figure 12.1 after removing node F.

Condition Testing 219

T satisfies the branch adequacy criterion if CBranch = 1.
Test suite T3 achieves branch coverage of .88 since it executes 7 of the 8 branches of

program cgi decode0. Test suite T2 satisfies the branch adequacy criterion, and would
reveal the fault. Intuitively, since traversing all edges of a graph causes all nodes to
be visited, test suites that satisfy the branch adequacy criterion for a program P also
satisfy the statement adequacy criterion for the same program.4 The contrary is not
true, as illustrated by test suite T3 for the program cgi decode0 presented earlier.

12.4 Condition Testing

Branch coverage is useful for exercising faults in the way a computation has been de-
composed into cases. Condition coverage considers this decomposition in more detail,
forcing exploration not only of both possible results of a Boolean expression control-
ling a branch, but also of different combinations of the individual conditions in a com-
pound Boolean expression.

Assume, for example, that we have forgotten the first operator ‘�’ in the conditional
statement at line 27 resulting in the faulty expression

(digit high == 1 || digit low == -1).

As trivial as this fault seems, it can easily be overlooked if only the outcomes of com-
plete Boolean expressions are explored. The branch adequacy criterion can be satis-
fied, and both branches exercised, with test suites in which the first comparison eval-
uates always to False and only the second is varied. Such tests do not systematically
exercise the first comparison and will not reveal the fault in that comparison. Condi-
tion adequacy criteria overcome this problem by requiring different basic conditions of
the decisions to be separately exercised. The basic conditions, sometimes also called
elementary conditions, are comparisons, references to Boolean variables, and other
Boolean-valued expressions whose component subexpressions are not Boolean values.

The simplest condition adequacy criterion, called basic condition coverage requires
each basic condition to be covered. Each basic condition must have a True and a False
outcome at least once during the execution of the test suite.

D basic condition
adequacy
criterion

A test suite T for a program P covers all basic conditions of P, that is, it satisfies
the basic condition adequacy criterion, iff each basic condition in P has a true outcome
in at least one test case in T and a false outcome in at least one test case in T .

D basic condition
coverageThe basic condition coverage CBasic Condition of T for P is the fraction of the to-

tal number of truth values assumed by the basic conditions of program P during the
execution of all test cases in T .

CBasic Condition =
total number of truth values assumed by all basic conditions

2 ⇥ number of basic conditions
4We can consider entry and exit from the control flow graph as branches, so that branch adequacy will

imply statement adequacy even for units with no other control flow.

220 Structural Testing

T satisfies the basic condition adequacy criterion if CBasic Conditions = 1. Notice
that the total number of truth values that the basic conditions can take is twice the
number of basic conditions, since each basic condition can assume value true or false.
For example, the program in Figure 12.1 contains five basic conditions, which in sum
may take ten possible truth values. Three basic conditions correspond to the simple
decisions at lines 18, 22, and 24 — decisions that each contain only one basic condition.
Thus they are covered by any test suite that covers all branches. The remaining two
conditions occur in the compound decision at line 27. In this case, test suites T1 and
T3 cover the decisions without covering the basic conditions. Test suite T1 covers the
decision since it has an outcome True for the substring %0D and an outcome False for
the substring %7U of test case “adequate+test%0Dexecution%7U.” However test suite
T1 does not cover the first condition, since it has only outcome True . To satisfy the
basic condition adequacy criterion, we need to add an additional test case that produces
outcome false for the first condition (e.g., test case “basic%K7”).

The basic condition adequacy criterion can be satisfied without satisfying branch
coverage. For example, the test suite

T4 = {“first+test%9Ktest%K9”}

satisfies the basic condition adequacy criterion, but not the branch condition adequacy
criterion, since the outcome of the decision at line 27 is always False . Thus branch and
basic condition adequacy criteria are not directly comparable.

An obvious extension that includes both the basic condition and the branch ade-
quacy criteria is called branch and condition adequacy criterion, with the obvious def-
inition: A test suite satisfies the branch and condition adequacy criterion if it satisfiesD branch and

condition adequacy both the branch adequacy criterion and the condition adequacy criterion.
A more complete extension that includes both the basic condition and the branch

adequacy criteria is the compound condition adequacy criterion,5 which requires a testD compound
condition adequacy for each possible evaluation of compound conditions. It is most natural to visualize

compound condition adequacy as covering paths to leaves of the evaluation tree for the
expression. For example, the compound condition at line 27 would require covering
the three paths in the following tree:

digit_high == -1

digit_low == 1

true false

FALSE

TRUE

true false

FALSE

Notice that due to the left-to-right evaluation order and short-circuit evaluation of
logical OR expressions in the C language, the value True for the first condition does

5Compound condition adequacy is also known as multiple condition coverage.

Condition Testing 221

not need to be combined with both values False and True for the second condition. The
number of test cases required for compound condition adequacy can, in principle, grow
exponentially with the number of basic conditions in a decision (all 2N combinations
of N basic conditions), which would make compound condition coverage impractical
for programs with very complex conditions. Short-circuit evaluation is often effective
in reducing this to a more manageable number, but not in every case. The number of
test cases required to achieve compound condition coverage even for expressions built
from N basic conditions combined only with short-circuit Boolean operators like the
&& and || of C and Java can still be exponential in the worst case.

Consider the number of cases required for compound condition coverage of the
following two Boolean expressions, each with five basic conditions. For the expression
a && b && c && d && e, compound condition coverage requires:

Test Case a b c d e
(1) True True True True True
(2) True True True True False
(3) True True True False –
(4) True True False – –
(5) True False – – –
(6) False – – – –

For the expression (((a || b) && c) || d) && e, however, compound
condition adequacy requires many more combinations:

Test Case a b c d e
(1) True – True – True
(2) False True True – True
(3) True – False True True
(4) False True False True True
(5) False False – True True
(6) True – True – False
(7) False True True – False
(8) True – False True False
(9) False True False True False

(10) False False – True False
(11) True – False False –
(12) False True False False –
(13) False False – False –

An alternative approach that can be satisfied with the same number of test cases
for Boolean expressions of a given length regardless of short-circuit evaluation is the
modified condition/decision coverage or MC/DC, also known as the modified condi-
tion adequacy criterion. The modified condition/decision criterion requires that each D modified condi-

tion/decision
coverage
(MC/DC)

basic condition be shown to independently affect the outcome of each decision. That
is, for each basic condition C, there are two test cases in which the truth values of all
evaluated conditions except C are the same, and the compound condition as a whole
evaluates to True for one of those test cases and False for the other. The modified
condition adequacy criterion can be satisfied with N +1 test cases, making it an attrac-

222 Structural Testing

tive compromise between number of required test cases and thoroughness of the test.
It is required by important quality standards in aviation, including RTCA/DO-178B,
“Software Considerations in Airborne Systems and Equipment Certification,” and its
European equivalent EUROCAE ED-12B.

Recall the expression (((a || b) && c) || d) && e, which required 13
different combinations of condition values for compound condition adequacy. For
modified condition/decision adequacy, only 6 combinations are required. Here they
have been numbered for easy comparison with the previous table:

a b c d e Decision
(1) True – True – True True
(2) False True True – True True
(3) True – False True True True
(6) True – True – False False

(11) True – False False – False
(13) False False – False – False

The values underlined in the table independently affect the outcome of the decision.
Note that the same test case can cover the values of several basic conditions. For
example, test case (1) covers value True for the basic conditions a, c and e. Note also
that this is not the only possible set of test cases to satisfy the criterion; a different
selection of Boolean combinations could be equally effective.

12.5 Path Testing

Decision and condition adequacy criteria force consideration of individual program de-
cisions. Sometimes, though, a fault is revealed only through exercise of some sequence
of decisions (i.e., a particular path through the program). It is simple (but impractical,
as we will see) to define a coverage criterion based on complete paths rather than indi-
vidual program decisions

D path adequacy
criterion A test suite T for a program P satisfies the path adequacy criterion iff, for each path

p of P, there exists at least one test case in T that causes the execution of p.

This is equivalent to stating that every path in the control flow graph model of
program P is exercised by a test case in T .

D path coverage
The path coverage CPath of T for P is the fraction of paths of program P executed

by at least one test case in T .

CPath =
number of executed paths

number of paths

Unfortunately, the number of paths in a program with loops is unbounded, so this
criterion cannot be satisfied for any but the most trivial programs. For a program with
loops, the denominator in the computation of the path coverage becomes infinite, and
thus path coverage is zero no matter how many test cases are executed.

Path Testing 223

A

C

B

D E

F G

H I

L

M

LL

B B B

L

B

A

C

B

D E

F G

H I

L

M

(i) (ii)

Figure 12.4: Deriving a tree from a control flow graph to derive subpaths for bound-
ary/interior testing. Part (i) is the control flow graph of the C function cgi decode,
identical to Figure 12.1 but showing only node identifiers without source code. Part
(ii) is a tree derived from part (i) by following each path in the control flow graph up
to the first repeated node. The set of paths from the root of the tree to each leaf is the
required set of subpaths for boundary/interior coverage.

To obtain a practical criterion, it is necessary to partition the infinite set of paths
into a finite number of classes and require only that representatives from each class be
explored. Useful criteria can be obtained by limiting the number of paths to be covered.
Relevant subsets of paths to be covered can be identified by limiting the number of
traversals of loops, the length of the paths to be traversed, or the dependencies among
selected paths.

The boundary interior criterion groups together paths that differ only in the subpath
they follow when repeating the body of a loop. D boundary

interior criterionFigure 12.4 illustrates how the classes of subpaths distinguished by the boundary
interior coverage criterion can be represented as paths in a tree derived by “unfolding”
the control flow graph of function cgi decode.

Figures 12.5 – 12.7 illustrate a fault that may not be uncovered using statement or
decision testing, but will assuredly be detected if the boundary interior path criterion is
satisfied. The program fails if the loop body is executed exactly once — that is, if the
search key occurs in the second position in the list.

Although the boundary/interior coverage criterion bounds the number of paths that
must be explored, that number can grow quickly enough to be impractical. The number

224 Structural Testing

1 typedef struct cell {
2 itemtype itemval;
3 struct cell *link;
4 } *list;
5 #define NIL ((struct cell *) 0)
6

7 itemtype search(list *l, keytype k)
8 {
9 struct cell *p = *l;

10 struct cell *back = NIL;
11

12 /* Case 1: List is empty */
13 if (p == NIL) {
14 return NULLVALUE;
15 }
16

17 /* Case 2: Key is at front of list */
18 if (k == p->itemval) {
19 return p->itemval;
20 }
21

22 /* Default: Simple (but buggy) sequential search */
23 p=p->link;
24 while (1) {
25 if (p == NIL) {
26 return NULLVALUE;
27 }
28 if (k==p->itemval) { /* Move to front */
29 back->link = p->link;
30 p->link = *l;
31 *l = p;
32 return p->itemval;
33 }
34 back=p; p=p->link;
35 }
36 }

Figure 12.5: A C function for searching and dynamically rearranging a linked list,
excerpted from a symbol table package. Initialization of the back pointer is missing,
causing a failure only if the search key is found in the second position in the list.

Path Testing 225

itemtype search(list *l, keytype k)

 { struct cell *p = *l;
 struct cell *back = NIL;
 if (p == NIL) {

A
True

 return NULLVALUE;
}

B

 if (k == p->itemval) { C

False

True

 return p->itemval;
}

D
 back = p;
 p = p->link;

E

False

 while (1) { F

{ struct cell *p = *l;
 struct cell *back = NIL;
 if (p == NIL) {

G
True

 return NULLVALUE;
}

H

 if (k == p->itemval) { I

False

True

 back->link = p->link;
 p->link = *l;
 *l = p;
 return p->itemval;

J
 back = p;
 p = p->link;

K

False

Figure 12.6: The control flow graph of C function search with move-to-front feature.

226 Structural Testing

BC

E

F

H

A

I

JK

D

G

F

Figure 12.7: The boundary/interior subpaths for C function search.

of subpaths that must be covered can grow exponentially in the number of statements
and control flow graph nodes, even without any loops at all. Consider, for example, the
following pseudocode:

if (a) {
S1;

}
if (b) {

S2;
}
if (c) {

S3;
}

...
if (x) {

Sn;
}

The subpaths through this control flow can include or exclude each of the state-
ments Si, so that in total N branches result in 2N paths that must be traversed. Moreover,
choosing input data to force execution of one particular path may be very difficult, or
even impossible if the conditions are not independent.6

Since coverage of non-looping paths is expensive, we can consider a variant of

6Section 12.8 discusses infeasible paths.

Path Testing 227

the boundary/interior criterion that treats loop boundaries similarly but is less stringent
with respect to other differences among paths.

D loop boundary
adequacy
criterion

A test suite T for a program P satisfies the loop boundary adequacy criterion iff,
for each loop l in P,

• In at least one execution, control reaches the loop, and then the loop control
condition evaluates to False the first time it is evaluated.7

• In at least one execution, control reaches the loop, and then the body of the loop
is executed exactly once before control leaves the loop.

• In at least one execution, the body of the loop is repeated more than once.

One can define several small variations on the loop boundary criterion. For ex-
ample, we might excuse from consideration loops that are always executed a definite
number of times (e.g., multiplication of fixed-size transformation matrices in a graphics
application). In practice we would like the last part of the criterion to be “many times
through the loop” or “as many times as possible,” but it is hard to make that precise
(how many is “many?”).

It is easy enough to define such a coverage criterion for loops, but how can we
justify it? Why should we believe that these three cases — zero times through, once
through, and several times through — will be more effective in revealing faults than,
say, requiring an even and an odd number of iterations? The intuition is that the loop
boundary coverage criteria reflect a deeper structure in the design of a program. This
can be seen by their relation to the reasoning we would apply if we were trying to
formally verify the correctness of the loop. The basis case of the proof would show
that the loop is executed zero times only when its postcondition (what should be true
immediately following the loop) is already true. We would also show that an invariant
condition is established on entry to the loop, that each iteration of the loop maintains
this invariant condition, and that the invariant together with the negation of the loop
test (i.e., the condition on exit) implies the postcondition. The loop boundary criterion
does not require us to explicitly state the precondition, invariant, and postcondition, but
it forces us to exercise essentially the same cases that we would analyze in a proof.

There are additional path-oriented coverage criteria that do not explicitly consider
loops. Among these are criteria that consider paths up to a fixed length. The most
common such criteria are based on Linear Code Sequence and Jump (LCSAJ). An D linear code

sequence and
jump (LCSAJ)

LCSAJ is defined as a body of code through which the flow of control may proceed
sequentially, terminated by a jump in the control flow. Coverage of LCSAJ sequences
of length 1 is almost, but not quite, equivalent to branch coverage. Stronger criteria can
be defined by requiring N consecutive LCSAJs to be covered. The resulting criteria
are also referred to as T ERN+2, where N is the number of consecutive LCSAJs to be
covered. Conventionally, T ER1 and T ER2 refer to statement and branch coverage,
respectively.

The number of paths to be exercised can also be limited by identifying a subset
that can be combined (in a manner to be described shortly) to form all the others.

7For a while or for loop, this is equivalent to saying that the loop body is executed zero times.

228 Structural Testing

Such a set of paths is called a basis set, and from graph theory we know that every
connected graph with n nodes, e edges, and c connected components has a basis set of
only e�n+ c independent subpaths. Producing a single connected component from a
program flow graph by adding a “virtual edge” from the exit to the entry, the formula
becomes e�n+2, which is called the cyclomatic complexity of the control flow graph.
Cyclomatic testing consists of attempting to exercise any set of execution paths that is
a basis set for the control flow graph.D cyclomatic testing

To be more precise, the sense in which a basis set of paths can be combined to form
other paths is to consider each path as a vector of counts indicating how many times
each edge in the control flow graph was traversed. For example, the third element of
the vector might be the number of times a particular branch is taken. The basis set
is combined by adding or subtracting these vectors (and not, as one might intuitively
expect, by concatenating paths). Consider again the pseudocode

if (a) {
S1;

}
if (b) {

S2;
}
if (c) {

S3;
}

...
if (x) {

Sn;
}

While the number of distinct paths through this code is exponential in the number
of if statements, the number of basis paths is small: only n + 1 if there are n if state-
ments. We can represent one basis set (of many possible) for a sequence of four such if
statements by indicating whether each predicate evaluates to True or False:

1 False False False False
2 True False False False
3 False True False False
4 False False True False
5 False False False True

The path represented as hTrue,False,True,Falsei is formed from these by adding
paths 2 and 4 and then subtracting path 1.

Cyclomatic testing does not require that any particular basis set is covered. Rather,
it counts the number of independent paths that have actually been covered (i.e., count-
ing a new execution path as progress toward the coverage goal only if it is independent
of all the paths previously exercised), and the coverage criterion is satisfied when this
count reaches the cyclomatic complexity of the code under test.

Procedure Call Testing 229

12.6 Procedure Call Testing

The criteria considered to this point measure coverage of control flow within individual
procedures. They are not well suited to integration testing or system testing. It is
difficult to steer fine-grained control flow decisions of a unit when it is one small part
of a larger system, and the cost of achieving fine-grained coverage for a system or
major component is seldom justifiable. Usually it is more appropriate to choose a
coverage granularity commensurate with the granularity of testing. Moreover, if unit
testing has been effective, then faults that remain to be found in integration testing will
be primarily interface faults, and testing effort should focus on interfaces between units
rather than their internal details.

In some programming languages (FORTRAN, for example), a single procedure
may have multiple entry points, and one would want to test invocation through each of
the entry points. More common are procedures with multiple exit points. For example,
the code of Figure 12.5 has four different return statements. One might want to check D procedure

entry and exit
testing

that each of the four returns is exercised in the actual context in which the procedure is
used. Each of these would have been exercised already if even the simplest statement
coverage criterion were satisfied during unit testing, but perhaps only in the context of
a simple test driver; testing in the real context could reveal interface faults that were
previously undetected.

Exercising all the entry points of a procedure is not the same as exercising all the
calls. For example, procedure A may call procedure C from two distinct points, and
procedure B may also call procedure C. In this case, coverage of calls of C means
exercising calls at all three points. If the component under test has been constructed D call coverage

in a bottom-up manner, as is common, then unit testing of A and B may already have
exercised calls of C. In that case, even statement coverage of A and B would ensure
coverage of the calls relation (although not in the context of the entire component).

The search function in Figure 12.5 was originally part of a symbol table package in
a small compiler. It was called at only one point, from one other C function in the same
unit.8 That C function, in turn, was called from tens of different points in a scanner and
a parser. Coverage of calls requires exercising each statement in which the parser and
scanner access the symbol table, but this would almost certainly be satisfied by a set of
test cases exercising each production in the grammar accepted by the parser.

When procedures maintain internal state (local variables that persist from call to
call), or when they modify global state, then properties of interfaces may only be re-
vealed by sequences of several calls. In object-oriented programming, local state is
manipulated by procedures called methods, and systematic testing necessarily concerns
sequences of method calls on the same object. Even simple coverage of the “calls” re-
lation becomes more challenging in this environment, since a single call point may be
dynamically bound to more than one possible procedure (method). While these com-
plications may arise even in conventional procedural programs (e.g., using function
pointers in C), they are most prevalent in object-oriented programming. Not surpris-
ingly, then, approaches to systematically exercising sequences of procedure calls are

8The “unit” in this case is the C source file, which provided a single data abstraction through several
related C functions, much as a C++ or Java class would provide a single abstraction through several methods.
The search function was analogous in this case to a private (internal) method of a class.

230 Structural Testing

beginning to emerge mainly in the field of object-oriented testing, and we therefore
cover them in Chapter 15.

12.7 Comparing Structural Testing Criteria

The power and cost of the structural test adequacy criteria described in this chapter
can be formally compared using the subsumes relation introduced in Chapter 9. The
relations among these criteria are illustrated in Figure 12.8. They are divided into two
broad categories: practical criteria that can always be satisfied by test sets whose size
is at most a linear function of program size; and criteria that are of mainly theoretical
interest because they may require impractically large numbers of test cases or even (in
the case of path coverage) an infinite number of test cases.

The hierarchy can be roughly divided into a part that relates requirements for cov-
ering program paths and another part that relates requirements for covering combina-
tions of conditions in branch decisions. The two parts come together at branch cov-
erage. Above branch coverage, path-oriented criteria and condition-oriented criteria
are generally separate, because there is considerable cost and little apparent benefit in
combining them. Statement coverage is at the bottom of the subsumes hierarchy for
systematic coverage of control flow. Applying any of the structural coverage criteria,
therefore, implies at least executing all the program statements.

Procedure call coverage criteria are not included in the figure, since they do not
concern internal control flow of procedures and are thus incomparable with the control
flow coverage criteria.

12.8 The Infeasibility Problem

Sometimes no set of test cases is capable of satisfying some test coverage criterion for
a particular program, because the criterion requires execution of a program element
that can never be executed. This is true even for the statement coverage criterion, weak
as it is. Unreachable statements can occur as a result of defensive programming (e.g.,
checking for error conditions that never occur) and code reuse (reusing code that is
more general than strictly required for the application). Large amounts of “fossil” code
may accumulate when a legacy application becomes unmanageable. In that case, they
may indicate serious maintainability problems, but some unreachable code is common
even in well-designed, well-maintained systems, and must be accommodated in testing
processes that otherwise require satisfaction of coverage criteria.

Stronger coverage criteria tend to call for coverage of more elements that may be
infeasible. For example, in discussing multiple condition coverage, we implicitly as-
sumed that basic conditions were independent and could therefore occur in any combi-
nation. In reality, basic conditions may be comparisons or other relational expressions
and may be interdependent in ways that make certain combinations infeasible. For
example, in the expression (a > 0 && a < 10), it is not possible for both basic condi-
tions to be False . Fortunately, short-circuit evaluation rules ensure that the combination

The Infeasibility Problem 231

Path Testing

Boundary interior testing Compound condition testing

Cyclomatic testing

LCSAJ testing

MC/DC testing

Branch and condition testing

Basic condition testing

Branch testing

Statement testingLoop boundary testing

T
H

E
O

R
E

T
IC

A
L
 C

R
IT

E
R

IA
P

R
A

C
T

IC
A

L
 C

R
IT

E
R

IA

Figure 12.8: The subsumption relation among structural test adequacy criteria de-
scribed in this chapter.

232 Structural Testing

hFalse,Falsei is not required for multiple condition coverage of this particular expres-
sion in a C or Java program.

The infeasibility problem is most acute for path-based structural coverage criteria,
such as the boundary/interior coverage criterion. Consider, for example, the following
simple code sequence:

if (a < 0) {
a = 0;

}
if (a > 10) {

a = 10;
}

It is not possible to traverse the subpath on which the True branch is taken for both if
statements. In the trivial case where these if statements occur together, the problem is
both easy to understand and to avoid (by placing the second if within an else clause),
but essentially the same interdependence can occur when the decisions are separated
by other code.

An easy but rather unsatisfactory solution to the infeasibility problem is to make
allowances for it by setting a coverage goal less than 100%. For example, we could
require 90% coverage of basic blocks, on the grounds that no more than 10% of the
blocks in a program should be infeasible. A 10% allowance for infeasible blocks may
be insufficient for some units and too generous for others.

The other main option is requiring justification of each element left uncovered.
This is the approach taken in some quality standards, notably RTCA/DO-178B and
EUROCAE ED-12B for modified condition/decision coverage (MC/DC). Explaining
why each element is uncovered has the salutary effect of distinguishing between defen-
sive coding and sloppy coding or maintenance, and may also motivate simpler coding
styles. However, it is more expensive (because it requires manual inspection and under-
standing of each element left uncovered) and is unlikely to be cost-effective for criteria
that impose test obligations for large numbers of infeasible paths. This problem, even
more than the large number of test cases that may be required, leads us to conclude that
stringent path-oriented coverage criteria are seldom cost-effective.

Open Research Issues

Devising and comparing structural criteria was a hot topic in the 1980s. It is no longer
an active research area for imperative programming, but new programming paradigms
or design techniques present new challenges. Polymorphism, dynamic binding, and
object-oriented and distributed code open new problems and require new techniques, as
discussed in other chapters. Applicability of structural criteria to architectural design
descriptions is still under investigation. Usefulness of structural criteria for implicit
control flow has been addressed only recently.

Early testing research, including research on structural coverage criteria, was con-
cerned largely with improving the fault-detection effectiveness of testing. Today, the
most pressing issues are cost and schedule. Better automated techniques for identifying
infeasible paths will be necessary before more stringent structural coverage criteria can

The Infeasibility Problem 233

be seriously considered in any but the most critical of domains. Alternatively, for many
applications it may be more appropriate to gather evidence of feasibility from actual
product use; this is called residual test coverage monitoring and is a topic of current
research.

Further Reading

The main structural adequacy criteria are presented in Myers’ The Art of Software Test-
ing [Mye79], which has been a preeminent source of information for more than two
decades. It is a classic despite its age, which is evident from the limited set of tech-
niques addressed and the programming language used in the examples. The excellent
survey by Adrion et al. [ABC82] remains the best overall survey of testing techniques,
despite similar age. Frankl and Weyuker [FW93] provide a modern treatment of the
subsumption hierarchy among structural coverage criteria.

Boundary/interior testing is presented by Howden [How75]. Woodward et al. [WHH80]
present LCSAJ testing. Cyclomatic testing is described by McCabe [McC83]. Residual
test coverage measurement is described by Pavlopoulou and Young [PY99].

Related Topics

Readers with a strong interest in coverage criteria should continue with the next chap-
ter, which presents data flow testing criteria. Others may wish to proceed to Chapter 15,
which addresses testing object-oriented programs. Readers wishing a more compre-
hensive view of unit testing may continue with Chapters 17 on test scaffolding and test
data generation. Tool support for structural testing is discussed in Chapter 23.

Exercises

12.1. Let us consider the following loop, which appears in C lexical analyzers gener-
ated by the tool flex:9

1 for (n = 0;
2 n < max size && (c = getc(yyin)) != EOF && c != ’\n’;
3 ++n)
4 buf[n] = (char) c;

Devise a set of test cases that satisfy the compound condition adequacy criterion
and a set of test cases that satisfy the modified condition adequacy criterion with
respect to this loop.

9Flex is a widely used generator of lexical analyzers. Flex was written by Vern Paxson and is compatible
with the original AT&T lex written by M.E. Lesk. This excerpt is from version 2.5.4 of flex, distributed with
the Linux operating system.

234 Structural Testing

12.2. The following if statement appears in the Java source code of Grappa,10 a graph
layout engine distributed by AT&T Laboratories:

1 if(pos < parseArray.length
2 && (parseArray[pos] == ’{’
3 || parseArray[pos] == ’}’
4 || parseArray[pos] == ’|’)) {
5 continue;
6 }

(a) Derive a set of test case specifications and show that it satisfies the MC/DC
criterion for this statement. For brevity, abbreviate each of the basic condi-
tions as follows:

Room for pos < parseArray.length
Open for parseArray[pos] == ’{’
Close for parseArray[pos] == ’}’
Bar for parseArray[pos] == ’|’

(b) Do the requirements for compound condition coverage and modified condi-
tion/decision coverage differ in this case? Aside from increasing the num-
ber of test cases, what difference would it make if we attempted to exhaus-
tively cover all combinations of truth values for the basic conditions?

12.3. Prove that the number of test cases required to satisfy the modified condition
adequacy criterion for a predicate with N basic conditions is N +1.

12.4. The number of basis paths (cyclomatic complexity) does not depend on whether
nodes of the control flow graph are individual statements or basic blocks that
may contain several statements. Why?

12.5. Derive the subsumption hierarchy for the call graph coverage criteria described
in this chapter, and justify each of the relationships.

12.6. If the modified condition/decision adequacy criterion requires a test case that is
not feasible because of interdependent basic conditions, should this always be
taken as an indication of a defect in design or coding? Why or why not?

10The statement appears in file Table.java. This source code is copyright 1996, 1997, 1998 by AT&T
Corporation. Grappa is distributed as open source software, available at the time of this writing from http:
//www.graphviz.org. Formatting of the line has been altered for readability in this printed form.

Chapter 13

Data Flow Testing

Exercising every statement or branch with test cases is a practical goal, but exercising
every path is impossible. Even the number of simple (that is, loop-free) paths can be
exponential in the size of the program. Path-oriented selection and adequacy criteria
must therefore select a tiny fraction of control flow paths. Some control flow adequacy
criteria, notably the loop boundary interior condition, do so heuristically. Data flow
test adequacy criteria improve over pure control flow criteria by selecting paths based
on how one syntactic element can affect the computation of another.

Required Background

• Chapter 6

At least the basic data flow models presented in Chapter 6, Section 6.1, are re-
quired to understand this chapter, although algorithmic details of data flow anal-
ysis can be deferred. Section 6.5 of that chapter is important background for
Section 13.4 of the current chapter. The remainder of Chapter 6 is useful back-
ground but not strictly necessary to understand and apply data flow testing.

• Chapter 9

The introduction to test case adequacy and test case selection in general sets the
context for this chapter. It is not strictly required for understanding this chapter,
but is helpful for understanding how the techniques described in this chapter
should be applied.

• Chapter 12

The data flow adequacy criteria presented in this chapter complement control
flow adequacy criteria. Knowledge about control flow adequacy criteria is desir-
able but not strictly required for understanding this chapter.

235

236 Data Flow Testing

13.1 Overview

We have seen in Chapter 12 that structural testing criteria are practical for single ele-
ments of the program, from simple statements to complex combinations of conditions,
but become impractical when extended to paths. Even the simplest path testing criteria
require covering large numbers of paths that tend to quickly grow far beyond test suites
of acceptable size for nontrivial programs.

Close examination of paths that need to be traversed to satisfy a path selection
criterion often reveals that, among a large set of paths, only a few are likely to uncover
faults that could have escaped discovery using condition testing coverage. Criteria that
select paths based on control structure alone (e.g., boundary interior testing) may not be
effective in identifying these few significant paths because their significance depends
not only on control flow but on data interactions.

Data flow testing is based on the observation that computing the wrong value leads
to a failure only when that value is subsequently used. Focus is therefore moved from
control flow to data flow. Data flow testing criteria pair variable definitions with uses,
ensuring that each computed value is actually used, and thus selecting from among
many execution paths a set that is more likely to propagate the result of erroneous
computation to the point of an observable failure.

Consider, for example, the C function cgi decode of Figure 13.1, which decodes a
string that has been transmitted through the Web’s Common Gateway Interface. Data
flow testing criteria would require one to execute paths that first define (change the
value of) variable eptr (e.g., by incrementing it at line 37) and then use the new value
of variable eptr (e.g., using variable eptr to update the array indexed by dptr at line 34).
Since a value defined in one iteration of the loop is used on a subsequent iteration, we
are obliged to execute more than one iteration of the loop to observe the propagation
of information from one iteration to the next.

13.2 Definition-Use Associations

Data flow testing criteria are based on data flow information — variable definitions and
uses. Table 13.1 shows definitions and uses for the program cgi decode of Figure 13.1.
Recall that when a variable occurs on both sides of an assignment, it is first used and
then defined, since the value of the variable before the assignment is used for comput-
ing the value of the variable after the assignment. For example, the ++eptr increment
operation in C is equivalent to the assignment eptr = eptr + 1, and thus first uses and
then defines variable eptr.

We will initially consider treatment of arrays and pointers in the current example
in a somewhat ad hoc fashion and defer discussion of the general problem to Sec-
tion 13.4. Variables eptr and dptr are used for indexing the input and output strings.
In program cgi decode, we consider the variables as both indexes (eptr and dptr) and
strings (*eptr and *dptr). The assignment *dptr = *eptr is treated as a definition of the
string *dptr as well as a use of the index dptr, the index eptr, and the string *eptr, since
the result depends on both indexes as well as the contents of the source string. A
change to an index is treated as a definition of both the index and the string, since a

Definition-Use Associations 237

1

2 /* External file hex values.h defines Hex Values[128]
3 * with value 0 to 15 for the legal hex digits (case-insensitive)
4 * and value -1 for each illegal digit including special characters
5 */
6

7 #include "hex values.h"
8 /** Translate a string from the CGI encoding to plain ascii text.
9 * ’+’ becomes space, %xx becomes byte with hex value xx,

10 * other alphanumeric characters map to themselves.
11 * Returns 0 for success, positive for erroneous input
12 * 1 = bad hexadecimal digit
13 */
14 int cgi decode(char *encoded, char *decoded) {
15 char *eptr = encoded;
16 char *dptr = decoded;
17 int ok=0;
18 while (*eptr) {
19 char c;
20 c = *eptr;
21

22 if (c == ’+’) { /* Case 1: ’+’ maps to blank */
23 *dptr = ’ ’;
24 } else if (c == ’%’) { /* Case 2: ’%xx’ is hex for character xx */
25 int digit high = Hex Values[*(++eptr)];
26 int digit low = Hex Values[*(++eptr)];
27 if (digit high == -1 || digit low == -1) {
28 /* *dptr=’?’; */
29 ok=1; /* Bad return code */
30 } else {
31 *dptr = 16* digit high + digit low;
32 }
33 } else { /* Case 3: All other characters map to themselves */
34 *dptr = *eptr;
35 }
36 ++dptr;
37 ++eptr;
38 }
39 *dptr = ’\0’; /* Null terminator for string */
40 return ok;
41 }

Figure 13.1: The C function cgi decode, which translates a cgi-encoded string to a
plain ASCII string (reversing the encoding applied by the common gateway interface
of most Web servers). This program is also used in Chapter 12 and also presented in
Figure 12.1 of Chapter 12.

238 Data Flow Testing

Variable Definitions Uses
encoded 14 15
decoded 14 16
*eptr 15, 25, 26, 37 18, 20, 25, 26, 34
eptr 15, 25, 26, 37 15, 18, 20, 25, 26, 34, 37
*dptr 16, 23, 31, 34, 36, 39 40
dptr 16 36 16, 23, 31, 34, 36, 39
ok 17, 29 40
c 20 22, 24
digit high 25 27, 31
digit low 26 27, 31
Hex Values – 25, 26

Table 13.1: Definitions and uses for C function cgi decode. *eptr and *dptr indicate the
strings, while eptr and dptr indicate the indexes.

change of the index changes the value accessed by it. For example, in the statement at
line 36 (++dptr), we have a use of variable dptr followed by a definition of variables dptr
and *dptr.

It is somewhat counterintuitive that we have definitions of the string *eptr, since
it is easy to see that the program is scanning the encoded string without changing
it. For the purposes of data flow testing, though, we are interested in interactions
between computation at different points in the program. Incrementing the index eptr is
a “definition” of *eptr in the sense that it can affect the value that is next observed by a
use of *eptr.

Pairing definitions and uses of the same variable v identifies potential data inter-
actions through v — definition-use pairs (DU pairs). Table 13.2 shows the DU pairsD DU pair

in program cgi decode of Figure 13.1. Some pairs of definitions and uses from Ta-
ble 13.1 do not occur in Table 13.2, since there is no definition-clear path between
the two statements. For example, the use of variable eptr at line 15 cannot be reached
from the increment at line 37, so there is no DU pair h37,15i. The definitions of vari-
ables *eptr and eptr at line 25, are paired only with the respective uses at line 26, since
successive definitions of the two variables at line 26 kill the definition at line 25 and
eliminate definition-clear paths to any other use.

A DU pair requires the existence of at least one definition-clear path from definition
to use, but there may be several. Additional uses on a path do not interfere with the
pair. We sometimes use the term DU path to indicate a particular definition-clear pathD DU path

between a definition and a use. For example, let us consider the definition of *eptr at
line 37 and the use at line 34. There are infinitely many paths that go from line 37 to
the use at line 34. There is one DU path that does not traverse the loop while going
from 37 to 34. There are infinitely many paths from 37 back to 37, but only two DU
paths, because the definition at 37 kills the previous definition at the same point.

Data flow testing, like other structural criteria, is based on information obtained
through static analysis of the program. We discard definitions and uses that cannot
be statically paired, but we may select pairs even if none of the statically identifiable

Data Flow Testing Criteria 239

Variable DU Pairs
*eptr h 15, 18 i, h 15, 20 i, h 15, 25 i, h 15, 34 i h 25, 26 i, h 26, 37 i

h 37, 18 i, h 37, 20 i, h 37, 25 i, h 37, 34 i
eptr h 15, 15 i, h 15, 18 i, h 15, 20 i, h 15, 25 i, h 15, 34 i, h 15, 37 i,

h 25, 26 i, h 26, 37 i h 37, 18 i, h 37, 20 i, h 37, 25 i, h 37, 34 i, h 37, 37 i
*dptr h 39, 40 i
dptr h 16, 16 i, h 16, 23 i, h 16, 31 i, h 16, 34 i, h 16, 36 i, h 16, 39 i,

h 36, 23 i, h 36, 31 i, h 36, 34 i, h 36, 36 i, h 36, 39 i
ok h 17, 40 i, h 29, 40 i
c h 20, 22 i, h 20 24 i
digit high h 25, 27 i, h 25, 31 i
digit low h 26, 27 i, h 26, 31 i
encoded h 14, 15i
decoded h 14, 16i

Table 13.2: DU pairs for C function cgi decode. Variable Hex Values does not appear
because it is not defined (modified) within the procedure.

definition-clear paths is actually executable. In the current example, we have made
use of information that would require a quite sophisticated static data flow analyzer, as
discussed in Section 13.4.

13.3 Data Flow Testing Criteria

Various data flow testing criteria can be defined by requiring coverage of DU pairs in
various ways.

The All DU pairs adequacy criterion requires each DU pair to be exercised in at
least one program execution, following the idea that an erroneous value produced by
one statement (the definition) might be revealed only by its use in another statement.

D all DU pairs
adequacy
criterion

A test suite T for a program P satisfies the all DU pairs adequacy criterion iff, for
each DU pair du of P, at least one test case in T exercises du.

The corresponding coverage measure is the proportion of covered DU pairs:
D all DU pairs
coverageThe all DU pairs coverage CDU pairs of T for P is the fraction of DU pairs of program

P exercised by at least one test case in T .

CDU pairs =
number of exercised DU pairs

number of DU pairs

The all DU pairs adequacy criterion assures a finer grain coverage than statement
and branch adequacy criteria. If we consider, for example, function cgi decode, we can
easily see that statement and branch coverage can be obtained by traversing the while
loop no more than once, for example, with the test suite Tbranch = {“+”, “%3D”, “%FG”, “t”}
while several DU pairs cannot be covered without executing the while loop at least

240 Data Flow Testing

twice. The pairs that may remain uncovered after statement and branch coverage cor-
respond to occurrences of different characters within the source string, and not only at
the beginning of the string. For example, the DU pair h37, 25i for variable *eptr can be
covered with a test case TCDU pairs“test%3D” where the hexadecimal escape sequence
occurs inside the input string, but not with “%3D.” The test suite TDU pairs obtained by
adding the test case TCDU pairs to the test suite Tbranch satisfies the all DU pairs ade-
quacy criterion, since it adds both the cases of a hexadecimal escape sequence and an
ASCII character occurring inside the input string.

One DU pair might belong to many different execution paths. The All DU paths
adequacy criterion extends the all DU pairs criterion by requiring each simple (non
looping) DU path to be traversed at least once, thus including the different ways of
pairing definitions and uses. This can reveal a fault by exercising a path on which a
definition of a variable should have appeared but was omitted.

D all DU paths
adequacy criterion A test suite T for a program P satisfies the all DU paths adequacy criterion iff, for

each simple DU path dp of P, there exists at least one test case in T that exercises a
path that includes dp.

The corresponding coverage measure is the fraction of covered simple DU paths:
D all DU paths
coverage The all DU pair coverage CDU paths of T for P is the fraction of simple DU paths of

program P executed by at least one test case in T .

CDU paths =
number of exercised simple DU paths

number of simple DU paths

The test suite TDU pairs does not satisfy the all DU paths adequacy criterion, since
both DU pairs h37,37i for variable eptr and h36,23i for variable dptr correspond each
to two simple DU paths, and in both cases one of the two paths is not covered by test
cases in TDU pairs. The uncovered paths correspond to a test case that includes character
’+’ occurring within the input string (e.g., test case TCDU paths = “test+case”).

Although the number of simple DU paths is often quite reasonable, in the worst
case it can be exponential in the size of the program unit. This can occur when the code
between the definition and use of a particular variable is essentially irrelevant to that
variable, but contains many control paths, as illustrated by the example in Figure 13.2:
The code between the definition of ch in line 2 and its use in line 12 does not modify
ch, but the all DU paths coverage criterion would require that each of the 256 paths be
exercised.

We normally consider both All DU paths and All DU pairs adequacy criteria as
relatively powerful and yet practical test adequacy criteria, as depicted in Figure 12.8
on page 231. However, in some cases, even the all DU pairs criterion may be too costly.
In these cases, we can refer to a coarser grain data flow criterion, the All definitions
adequacy criterion, which requires pairing each definition with at least one use.

D all definitions
adequacy criterion A test suite T for a program P satisfies the all definitions adequacy criterion for P

iff, for each definition def of P, there exists at least one test case in T that exercises a
DU pair that includes def.

Data Flow Coverage with Complex Structures 241

1

2 void countBits(char ch) {
3 int count = 0;
4 if (ch & 1) ++count;
5 if (ch & 2) ++count;
6 if (ch & 4) ++count;
7 if (ch & 8) ++count;
8 if (ch & 16) ++count;
9 if (ch & 32) ++count;

10 if (ch & 64) ++count;
11 if (ch & 128) ++count;
12 printf("’%c’ (0X%02x) has %d bits set to 1\n",
13 ch, ch, count);
14 }

Figure 13.2: A C procedure with a large number of DU paths. The number of DU
paths for variable ch is exponential in the number of if statements, because the use in
each increment and in the final print statement can be paired with any of the preceding
definitions. The number of DU paths for variable count is the same as the number of
DU pairs. For variable ch, there is only one DU pair, matching the procedure header
with the final print statement, but there are 256 definition-clear paths between those
statements — exponential in the number of intervening if statements.

The corresponding coverage measure is the proportion of covered definitions, where
we say a definition is covered only if the value is used before being killed:

D all definitions
coverageThe all definitions coverage CDe f of T for P is the fraction of definitions of program

P covered by at least one test case in T .

Cde f s =
number of covered definitions

number of definitions

13.4 Data Flow Coverage with Complex Structures

Like all static analysis techniques, data flow analysis approximates the effects of pro-
gram executions. It suffers imprecision in modeling dynamic constructs, in particular
dynamic access to storage, such as indexed access to array elements or pointer access
to dynamically allocated storage. We have seen in Chapter 6 (page 94) that the proper
treatment of potential aliases involving indexes and pointers depends on the use to
which analysis results will be put. For the purpose of choosing test cases, some risk of
underestimating alias sets may be preferable to gross overestimation or very expensive
analysis.

The precision of data flow analysis depends on the precision of alias information
used in the analysis. Alias analysis requires a trade-off between precision and compu-

242 Data Flow Testing

1 void pointer abuse() {
2 int i=5, j=10, k=20;
3 int *p, *q;
4 p = &j + 1;
5 q = &k;
6 *p = 30;
7 *q = *q + 55;
8 printf("p=%d, q=%d\n", *p, *q);
9 }

Figure 13.3: Pointers to objects in the program stack can create essentially arbitrary
definition-use associations, particularly when combined with pointer arithmetic as in
this example.

tational expense, with significant overestimation of alias sets for approaches that can be
practically applied to real programs. In the case of data flow testing, imprecision can
be mitigated by specializing the alias analysis to identification of definition-clear paths
between a potentially matched definition and use. We do not need to compute aliases
for all possible behaviors, but only along particular control flow paths. The risk of un-
derestimating alias sets in a local analysis is acceptable considering the application in
choosing good test cases rather than offering hard guarantees of a property.

In the cgi decode example we have made use of information that would require
either extra guidance from the test designer or a sophisticated tool for data flow and
alias analysis. We may know, from a global analysis, that the parameters encoded and
decoded never refer to the same or overlapping memory regions, and we may infer that
initially eptr and dptr likewise refer to disjoint regions of memory, over the whole range
of values that the two pointers take. Lacking this information, a simple static data flow
analysis might consider *dptr a potential alias of *eptr and might therefore consider the
assignment *dptr = *eptr a potential definition of both *dptr and *eptr. These spurious
definitions would give rise to infeasible DU pairs, which produce test obligations that
can never be satisfied. A local analysis that instead assumes (without verification) that
*eptr and *dptr are distinct could fail to require an important test case if they can be
aliases. Such underestimation may be preferable to creating too many infeasible test
obligations.

A good alias analysis can greatly improve the applicability of data flow testing but
cannot eliminate all problems. Undisciplined use of dynamic access to storage can
make precise alias analysis extremely hard or impossible. For example, the use of
pointer arithmetic in the program fragment of Figure 13.3 results in aliases that depend
on the way the compiler arranges variables in memory.

The Infeasibility Problem 243

13.5 The Infeasibility Problem

Not all elements of a program are executable, as discussed in Section 12.8 of Chap-
ter 12. The path-oriented nature of data flow testing criteria aggravates the problem
since infeasibility creates test obligations not only for isolated unexecutable elements,
but also for infeasible combinations of feasible elements.

Complex data structures may amplify the infeasibility problem by adding infeasible
paths as a result of alias computation. For example, while we can determine that x[i]
is an alias of x[j] exactly when i = j, we may not be able to determine whether i can be
equal to j in any possible program execution.

Fortunately, the problem of infeasible paths is usually modest for the all definitions
and all DU pairs adequacy criteria, and one can typically achieve levels of coverage
comparable to those achievable with simpler criteria like statement and branch ade-
quacy during unit testing. The all DU paths adequacy criterion, on the other hand,
often requires much larger numbers of control flow paths. It presents a greater prob-
lem in distinguishing feasible from infeasible paths and should therefore be used with
discretion.

Open Research Issues

Data flow test adequacy criteria are close to the border between techniques that can be
applied at low cost with simple tools and techniques that offer more power but at much
higher cost. While in principle data flow test coverage can be applied at modest cost (at
least up to the all DU adequacy criterion), it demands more sophisticated tool support
than test coverage monitoring tools based on control flow alone.

Fortunately, data flow analysis and alias analysis have other important applications.
Improved support for data flow testing may come at least partly as a side benefit of re-
search in the programming languages and compilers community. In particular, finding
a good balance of cost and precision in data flow and alias analysis across procedure
boundaries (interprocedural or “whole program” analysis) is an active area of research.

The problems presented by pointers and complex data structures cannot be ignored.
In particular, modern object-oriented languages like Java use reference semantics —
an object reference is essentially a pointer — and so alias analysis (preferably inter-
procedural) is a prerequisite for applying data flow analysis to object-oriented pro-
grams.

Further Reading

The concept of test case selection using data flow information was apparently first sug-
gested in 1976 by Herman [Her76], but that original paper is not widely accessible. The
more widely known version of data flow test adequacy criteria was developed indepen-
dently by Rapps and Weyuker [RW85] and by Laski and Korel [LK83]. The variety of
data flow testing criteria is much broader than the handful of criteria described in this
chapter; Clarke et al. present a formal comparison of several criteria [CPRZ89]. Frankl

244 Data Flow Testing

and Weyuker consider the problem of infeasible paths and how they affect the relative
power of data flow and other structural test adequacy criteria [FW93].

Marx and Frankl consider the problem of aliases and application of alias analysis
on individual program paths [MF96]. A good example of modern empirical research on
costs and effectiveness of structural test adequacy criteria, and data flow test coverage
in particular, is Frankl and Iakounenko [FI98].

Related Topics

The next chapter discusses model-based testing. Section 14.4 shows how control and
data flow models can be used to derive test cases from specifications. Chapter 15 illus-
trates the use of data flow analysis for structural testing of object oriented programs.

Readers interested in the use of data flow for program analysis can proceed with
Chapter 19.

Exercises

13.1. Sometimes a distinction is made between uses of values in predicates (p-uses)
and other “computational” uses in statements (c-uses). New criteria can be de-
fined using that distinction, for example:

all p-use some c-use: for all definitions and uses, exercise all (def, p-use) pairs
and at least one (def, c-use) pair

all c-use some p-use: for all definitions and uses, exercise all (def, c-use) pairs
and at least one (def, p-use) pair

(a) provide a precise definition of these criteria.

(b) describe the differences in the test suites derived applying the different cri-
teria to function cgi decode in Figure 13.1.

13.2. Demonstrate the subsume relation between all p-use some c-use, all c-use some
p-use, all DU pairs, all DU paths and all definitions.

13.3. How would you treat the buf array in the transduce procedure shown in Fig-
ure 16.1?

Chapter 14

Model-Based Testing

Models are often used to express requirements, and embed both structure and fault in-
formation that can help generate test case specifications. Control flow and data flow
testing are based on models extracted from program code. Models can also be ex-
tracted from specifications and design, allowing us to make use of additional informa-
tion about intended behavior. Model-based testing consists in using or deriving models
of expected behavior to produce test case specifications that can reveal discrepancies
between actual program behavior and the model.

Required Background

• Chapter 10
The rationale of systematic approaches to functional testing is a key motivation
for the techniques presented in this chapter.

• Chapters 12 and 13
The material on control and data flow graphs is required to understand Sec-
tion 14.4, but it is not necessary to comprehend the rest of the chapter.

14.1 Overview

Combinatorial approaches to specification-based testing (Chapter 11) primarily se-
lect combinations of orthogonal choices. They can accommodate constraints among
choices, but their strength is in systematically distributing combinations of (purport-
edly) independent choices. The human effort in applying those techniques is primarily
in characterizing the elements to be combined and constraints on their combination,
often starting from informal or semistructured specifications.

Specifications with more structure can be exploited to help test designers identify
input elements, constraints, and significant combinations. The structure may be explicit
and available in a specification, for example, in the form of a finite state machine or
grammar. It may be derivable from a semiformal model, such as class and object

245

246 Model-Based Testing

diagrams, with some guidance by the designer. Even if the specification is expressed
in natural language, it may be worthwhile for the test designer to manually derive
one or more models from it, to make the structure explicit and suitable for automatic
derivation of test case specifications.

Models can be expressed in many ways. Formal models (e.g., finite state machines
or grammars) provide enough information to allow one to automatically generate test
cases. Semiformal models (e.g, class and object diagrams) may require some human
judgment to generate test cases. This chapter discusses some of the most common
models used to express requirements specifications. Models used for object-oriented
design are discussed in Chapter 15.

Models can provide two kinds of help. They describe the structure of the input
space and thus allow test designers to take advantage of work done in software require-
ments analysis and design. Moreover, discrepancies from the model can be used as an
implicit fault model to help identify boundary and error cases.

The utility of models for generating test cases is an important factor in determining
the cost-effectiveness of producing formal or semiformal specifications. The return
on investment for model building should be evaluated not only in terms of reduced
specification errors and avoided misinterpretation, but also improved effectiveness and
reduced effort and cost in test design.

14.2 Deriving Test Cases from Finite State Machines

Finite state machines are often used to specify sequences of interactions between a
system and its environment. State machine specifications in one form or another are
common for control and reactive systems, such as embedded systems, communication
protocols, menu-driven applications, and threads of control in a system with multiple
threads or processes.

Specifications may be expressed directly as some form of finite state machine. For
example, embedded control systems are frequently specified with Statecharts, com-
munication protocols are commonly described with SDL diagrams, and menu driven
applications are sometimes modeled with simple diagrams representing states and tran-
sitions.

Sometimes the finite state essence of systems is left implicit in informal specifica-
tions. For instance, the informal specification of feature Maintenance of the Chipmunk
Web site given in Figure 14.1 describes a set of interactions between the maintenance
system and its environment that can be modeled as transitions through a finite set of
process states. The finite state nature of the interaction is made explicit by the finite
state machine shown in Figure 14.2. Note that some transitions appear to be labeled by
conditions rather than events, but they can be interpreted as shorthand for an event in
which the condition becomes true or is discovered (e.g., “lack component” is shorthand
for “discover that a required component is not in stock”).

Many control or interactive systems have a potentially infinite set of states. Fortu-
nately, the non-finite state parts of the specification are often simple enough that finite
state machines remain a useful model for testing as well as specification. For exam-
ple, communication protocols are frequently specified using finite state machines, often

Deriving Test Cases from Finite State Machines 247

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.

Once repaired, the product is returned to the customer.

Figure 14.1: Functional specification of feature Maintenance of the Chipmunk Web
site.

248 Model-Based Testing

NO
Maintenance

 Maintenance
(no warranty)

es
tim

at
e

co
st

s

request at

maintenance station

(no warranty)

request
by phone or web

[US or EU resident]

(contract number)

Wait for
pick up

Repair
(maintenance

station)

pick up
re

qu
es

t a
t

m
ai

nt
en

an
ce

 s
ta

tio
n

or
 b

y
ex

pr
es

s
co

ur
ie

r
(c

on
tra

ct
 n

um
be

r)

Wait for
acceptance

accept
estimate

Wait for
returning

reject estimate

pick up

Repairedrepair completed

return

Repair
(regional

headquarters)

Repair
(main

headquarters)

succe
ssf

ul re
pair

unable to repair

(US or EU resident)

su
cc

es
sfu

l r
ep

air

unable to
repair

Wait for
component

lack
co

mponent (a
)

lack component (b)

lack component (c)
component
arrives (c)

component
arrives (b)

component
arrives (a)

invalidcontract
number

unable to repair
(not US or EU resident)

1 2 3

0

4 5 6

7 8

9

Figure 14.2: A finite state machine corresponding to functionality Maintenance specified in Figure 14.1

Deriving Test Cases from Finite State Machines 249

T-Cover
TC-1 0 – 2 – 4 – 1 – 0
TC-2 0 – 5 – 2 – 4 – 5 – 6 – 0
TC-3 0 – 3 – 5 – 9 – 6 – 0
TC-4 0 – 3 – 5 – 7 – 5 – 8 – 7 – 8 – 9 – 7 – 9 – 6 – 0

States numbers refer to
Figure 14.2. For example,
TC-1 represents the path
(0,2), (2,4), (4,1), (1,0).

Table 14.1: A test suite satisfying the transition coverage criterion with respect to the
finite state machine of Figure 14.2

with some extensions that make them not truly finite state. Even a state machine that
simply receives a message on one port and then sends the same message on another
port is not really finite state unless the set of possible messages is finite, but is often
rendered as a finite state machine, ignoring the contents of the exchanged messages.

State-machine specifications can be used both to guide test selection and in con-
struction of an oracle that judges whether each observed behavior is correct. There
are many approaches for generating test cases from finite state machines, but most are
variations on a basic strategy of checking each state transition. One way to understand
this basic strategy is to consider that each transition is essentially a specification of a
precondition and postcondition, for example, a transition from state S to state T on
stimulus i means “if the system is in state S and receives stimulus i, then after reacting
it will be in state T .” For instance, the transition labeled accept estimate from state
Wait for acceptance to state Repair (maintenance station) of Figure 14.2 indicates that
if an item is on hold waiting for the customer to accept an estimate of repair costs, and
the customer accepts the estimate, then the item is designated as eligible for repair.

A faulty system could violate any of these precondition, postcondition pairs, so
each should be tested. For example, the state Repair (maintenance station) can be
arrived at through three different transitions, and each should be checked.

Details of the approach taken depend on several factors, including whether system
states are directly observable or must be inferred from stimulus/response sequences,
whether the state machine specification is complete as given or includes additional,
implicit transitions, and whether the size of the (possibly augmented) state machine is
modest or very large.

The transition coverage criterion requires each transition in a finite state model to
be traversed at least once. Test case specifications for transition coverage are often D transition

coveragegiven as state sequences or transition sequences. For example, the test suite T-Cover
in Table 14.1 is a set of four paths, each beginning at the initial state, which together
cover all transitions of the finite state machine of Figure 14.2. T-Cover thus satisfies
the transition coverage criterion.

The transition coverage criterion depends on the assumption that the finite state
machine model is a sufficient representation of all the “important” state, for example,
that transitions out of a state do not depend on how one reached that state. Although it
can be considered a logical flaw, in practice one often finds state machines that exhibit
“history sensitivity,” (i.e., the transitions from a state depend on the path by which one
reached that state). For example, in Figure 14.2, the transition taken from state Wait
for component when the component becomes available depends on how the state was

250 Model-Based Testing

entered. This is a flaw in the model — there really should be three distinct Wait for
component states, each with a well-defined action when the component becomes avail-
able. However, sometimes it is more expedient to work with a flawed state machine
model than to repair it, and in that case test suites may be based on more than the
simple transition coverage criterion.

Coverage criteria designed to cope with history sensitivity include single state path
coverage, single transition path coverage, and boundary interior loop coverage. Each
of these criteria requires execution of paths that include certain subpaths in the FSM.
The single state path coverage criterion requires each subpath that traverses states at
most once to be included in a path that is exercised. The single transition path coverageD single state path

coverage criterion requires each subpath that traverses transitions at most once to be included in
a path that is exercised. The boundary interior loop coverage criterion requires eachD single transition

path coverage

D boundary interior
loop coverage

distinct loop of the state machine to be exercised the minimum, an intermediate, and the
maximum or a large number of times1. These criteria may be practical for very small
and simple finite state machine specifications, but since the number of even simple
paths (without repeating states) can grow exponentially with the number of states, they
are often impractical.

Specifications given as finite state machines are typically incomplete: They do not
include a transition for every possible (state, stimulus) pair. Often the missing transi-
tions are implicitly error cases. Depending on the system, the appropriate interpretation
may be that these are don’t care transitions (since no transition is specified, the system
may do anything or nothing), self transitions (since no transition is specified, the sys-
tem should remain in the same state), or (most commonly) error transitions that enter a
distinguished state and possibly trigger some error-handling procedure. In at least the
latter two cases, thorough testing includes the implicit as well as the explicit state tran-
sitions. No special techniques are required: The implicit transitions are simply added
to the representation before test cases are selected.

The presence of implicit transitions with a don’t care interpretation is typically
an implicit or explicit statement that those transitions are impossible (e.g., because of
physical constraints). For example, in the specification of the maintenance procedure
of Figure 14.2, the effect of event lack of component is specified only for the states that
represent repairs in progress because only in those states might we discover a needed
is missing.

Sometimes it is possible to test don’t care transitions even if they are believed to
be impossible in the fielded system, because the system does not prevent the triggering
event from occurring in a test configuration. If it is not possible to produce test cases for
the don’t care transitions, then it may be appropriate to pass them to other validation or
verification activities, for example, by including explicit assumptions in a requirements
or specification document that will undergo inspection.

1The boundary interior path coverage was originally proposed for structural coverage of program control
flow, and is described in Chapter 12.

Testing Decision Structures 251

Terminology: Predicates and Conditions
A predicate is a function with a Boolean (True or False) value. When the input

argument of the predicate is clear, particularly when it describes some property of the
input of a program, we often leave it implicit. For example, the actual representation
of account types in an information system might be as three-letter codes, but in a spec-
ification we may not be concerned with that representation — we know only that there
is some predicate educational-account that is either True or False .

A basic condition is a single predicate that cannot be decomposed further.
A complex condition is made up of basic conditions, combined with Boolean con-

nectives.
The Boolean connectives include “and” (^), “or” (_), “not” (¬), and several less

common derived connectives such as “implies” and “exclusive or.”

14.3 Testing Decision Structures

Specifications are often expressed as decision structures, such as sets of conditions on
input values and corresponding actions or results. A model of the decision structure
can be used to choose test cases that may reveal discrepancies between the decisions
actually made in the code and the intended decision structure.

The example specification of Figure 14.3 describes outputs that depend on type of
account (either educational, or business, or individual), amount of current and yearly
purchases, and availability of special prices. These can be considered as Boolean con-
ditions, for example, the condition educational account is either true or false (even
if the type of account is actually represented in some other manner). Outputs can be
described as Boolean expressions over the inputs, for example, the output no discount
can be associated with the Boolean expression

(individual account
^¬ current purchase > tier 1 individual threshold
^¬ special offer price < individual scheduled price)

_ (business account
^¬ current purchase > tier 1 business threshold
^¬ current purchase > tier 1 business yearly threshold
^¬ special offer price < business scheduled price)

When functional specifications can be given as Boolean expressions, we can apply
any of the condition testing approaches described in Chapter 12, Section 12.4. A good
test suite should at least exercise all elementary conditions occurring in the expression.
For simple conditions we might derive test case specifications for all possible combina-
tions of truth values of the elementary conditions. For complex formulas, when testing
all 2n combinations of n elementary conditions is apt to be too expensive, the modified
decision/condition coverage criterion (page 12.4) derives a small set of test conditions
such that each elementary condition independently affects the outcome.

We can produce different models of the decision structure of a specification de-
pending on the original specification and on the technique we want to use for deriving

252 Model-Based Testing

Pricing: The pricing function determines the adjusted price of a configuration for a particular
customer. The scheduled price of a configuration is the sum of the scheduled price of
the model and the scheduled price of each component in the configuration. The adjusted
price is either the scheduled price, if no discounts are applicable, or the scheduled price
less any applicable discounts.
There are three price schedules and three corresponding discount schedules, Business,
Educational, and Individual. The Business price and discount schedules apply only if the
order is to be charged to a business account in good standing. The Educational price and
discount schedules apply to educational institutions. The Individual price and discount
schedules apply to all other customers. Account classes and rules for establishing business
and educational accounts are described further in [. . .].
A discount schedule includes up to three discount levels, in addition to the possibility of
“no discount.” Each discount level is characterized by two threshold values, a value for
the current purchase (configuration schedule price) and a cumulative value for purchases
over the preceding 12 months (sum of adjusted price).

Educational prices The adjusted price for a purchase charged to an educational account in good
standing is the scheduled price from the educational price schedule. No further discounts
apply.

Business account discounts Business discounts depend on the size of the current purchase as
well as business in the preceding 12 months. A tier 1 discount is applicable if the sched-
uled price of the current order exceeds the tier 1 current order threshold, or if total paid
invoices to the account over the preceding 12 months exceeds the tier 1 year cumulative
value threshold. A tier 2 discount is applicable if the current order exceeds the tier 2 cur-
rent order threshold, or if total paid invoices to the account over the preceding 12 months
exceeds the tier 2 cumulative value threshold. A tier 2 discount is also applicable if both
the current order and 12 month cumulative payments exceed the tier 1 thresholds.

Individual discounts Purchase by individuals and by others without an established account in
good standing is based on current value alone (not on cumulative purchases). A tier 1
individual discount is applicable if the scheduled price of the configuration in the current
order exceeds the tier 1 current order threshold. A tier 2 individual discount is applicable
if the scheduled price of the configuration exceeds the tier 2 current order threshold.

Special-price nondiscountable offers Sometimes a complete configuration is offered at a spe-
cial, non-discountable price. When a special, nondiscountable price is available for a
configuration, the adjusted price is the nondiscountable price or the regular price after
any applicable discounts, whichever is less.

Figure 14.3: The functional specification of feature Pricing of the Chipmunk Web site.

Testing Decision Structures 253

test cases. If the original specification is expressed informally as in Figure 14.3, we
can transform it into either a Boolean expression, a graph, or a tabular model before
applying a test case generation technique.

Techniques for deriving test case specifications from decision structures were orig-
inally developed for graph models, and in particular cause-effect graphs, which have
been used since the early 1970s. Cause-effect graphs are tedious to derive and do not
scale well to complex specifications. Tables, on the other hand, are easy to work with
and scale well.

The rows of a decision table represent basic conditions, and columns represent
combinations of basic conditions. The last row of the table indicates the expected
outputs for each combination. Cells of the table are labeled either True , False , or
don’t care (usually written –), to indicate the truth value of the basic condition. Thus,
each column is equivalent to a logical expression joining the required values (negated,
in the case of False entries) and omitting the basic conditions with don’t care values.2

Decision tables can be augmented with a set of constraints that limit the possible
combinations of basic conditions. A constraint language can be based on Boolean
logic. Often it is useful to add some shorthand notations for common combinations
such as at-most-one(C1, . . . , Cn) and exactly-one(C1, . . . , Cn), which are tedious to
express with the standard Boolean connectives.

Figure 14.4 shows the decision table for the functional specification of feature pric-
ing of the Chipmunk Web site presented in Figure 14.3.

The informal specification of Figure 14.3 identifies three customer profiles: ed-
ucational, business, and individual. Figure 14.4 has only rows Educational account
(EduAc) and Business account (BusAc). The choice individual corresponds to the
combination False , False for choices EduAc and BusAc, and is thus redundant. The
informal specification of Figure 14.3 indicates different discount policies depending
on the relation between the current purchase and two progressive thresholds for the
current purchase and the yearly cumulative purchase. These cases correspond to rows
3 through 6 of Figure 14.4. Conditions on thresholds that do not correspond to individ-
ual rows in the table can be defined by suitable combinations of values for these rows.
Finally, the informal specification of Figure 14.3 distinguishes the cases in which spe-
cial offer prices do not exceed either the scheduled or the tier 1 or tier 2 prices. Rows
7 through 9 of the table, suitably combined, capture all possible cases of special prices
without redundancy.

Constraints formalize the compatibility relations among different basic conditions
listed in the table. For example, a cumulative purchase exceeding threshold tier 2 also
exceeds threshold tier 1.

The basic condition adequacy criterion requires generation of a test case specifi-
cation for each column in the table. Don’t care entries of the table can be filled out D basic condition

coveragearbitrarily, as long as constraints are not violated.
The compound condition adequacy criterion requires a test case specification for

each combination of truth values of basic conditions. The compound condition ade- D compound
condition
coverage2The set of columns sharing a label is therefore equivalent to a logical expression in sum-of-products

form.

254 Model-Based Testing

Education Individual
EduAc T T F F F F F F
BusAc - - F F F F F F
CP > CT1 - - F F T T - -
YP > YT1 - - - - - - - -
CP > CT2 - - - - F F T T
YP > YT2 - - - - - - - -
SP > Sc F T F T - - - -
SP > T1 - - - - F T - -
SP > T2 - - - - - - F T
Out Edu SP ND SP T1 SP T2 SP

Business
EduAc - - - - - - - - - - - -
BusAc T T T T T T T T T T T T
CP > CT1 F F T T F F T T - - - -
YP > YT1 F F F F T T T T - - - -
CP > CT2 - - F F - - - - T T - -
YP > YT2 - - - - F F - - - - T T
SP > Sc F T - - - - - - - - - -
SP > T1 - - F T F T - - - - - -
SP > T2 - - - - - - F T F T F T
Out ND SP T1 SP T1 SP T2 SP T2 SP T2 SP

Constraints

at-most-one(EduAc, BusAc) at-most-one(YP < YT1, YP > YT2)
YP > YT2) YP > YT1 at-most-one(CP < CT1, CP > CT2)
CP > CT2) CP > CT1 at-most-one(SP < T1, SP > T2)
SP > T2) SP > T1

Abbreviations

EduAc Educational account Edu Educational price
BusAc Business account ND No discount
CP > CT1 Current purchase greater than threshold 1 T1 Tier 1
YP > YT1 Year cumulative purchase greater than threshold 1 T2 Tier 2
CP > CT2 Current purchase greater than threshold 2 SP Special Price
YP > YT2 Year cumulative purchase greater than threshold 2
SP > Sc Special Price better than scheduled price
SP > T1 Special Price better than tier 1
SP > T2 Special Price better than tier 2

Figure 14.4: A decision table for the functional specification of feature Pricing of the
Chipmunk Web site of Figure 14.3.

Testing Decision Structures 255

quacy criterion generates a number of cases exponential in the number of basic condi-
tions (2n combinations for n conditions) and can thus be applied only to small sets of
basic conditions.

For the modified condition/decision adequacy criterion (MC/DC), each column
in the table represents a test case specification. In addition, for each of the original
columns, MC/DC generates new columns by modifying each of the cells containing
True or False . If modifying a truth value in one column results in a test case specifi- D modified condi-

tion/decision
coverage

cation consistent with an existing column (agreeing in all places where neither is don’t
care), the two test cases are represented by one merged column, provided they can be
merged without violating constraints.

The MC/DC criterion formalizes the intuitive idea that a thorough test suite would
not only test positive combinations of values — combinations that lead to specified
outputs — but also negative combinations of values — combinations that differ from
the specified ones — thus, they should produce different outputs, in some cases among
the specified ones, in some other cases leading to error conditions.

Applying MC/DC to column 1 of Figure 14.4 generates two additional columns:
one for Educational Account = False and Special Price better than scheduled price
= False , and the other for Educational Account = True and Special Price better than
scheduled price = True . Both columns are already in the table (columns 3 and 2,
respectively) and thus need not be added.

Similarly, from column 2, we generate two additional columns corresponding to
Educational Account = False and Special Price better than scheduled price = True ,
and Educational Account = True and Special Price better than scheduled price = False ,
also already in the table.

Generation of a new column for each possible variation of the Boolean values in the
columns, varying exactly one value for each new column, produces 78 new columns,
21 of which can be merged with columns already in the table. Figure 14.5 shows a
table obtained by suitably joining the generated columns with the existing ones. Many
don’t care cells from the original table are assigned either True or False values, to
allow merging of different columns or to obey constraints. The few don’t-care entries
left can be set randomly to obtain a complete test case.

There are many ways of merging columns that generate different tables. The table
in Figure 14.5 may not be the optimal one — the one with the fewest columns. The
objective in test design is not to find an optimal test suite, but rather to produce a
cost effective test suite with an acceptable trade-off between the cost of generating and
executing test cases and the effectiveness of the tests.

The table in Figure 14.5 fixes the entries as required by the constraints, while the
initial table in Figure 14.4 does not. Keeping constraints separate from the table cor-
responding to the initial specification increases the number of don’t care entries in the
original table, which in turn increases the opportunity for merging columns when gen-
erating new cases with the MC/DC criterion. For example, if business account (BusAc)
= False , the constraint at-most-one(EduAc, BusAc) can be satisfied by assigning either
True or False to entry educational account. Fixing either choice prematurely may later
make merging with a newly generated column impossible.

256 Model-Based Testing

EduAc T T F F F F F F F F F F F F F
BusAc F F F F F F F F T T T T T T T
CP > CT1 T T F F T T T T F F T T F F T
YP > YT1 F - F - - F T T F F F F T T T
CP > CT2 F F F F F F T T F F F F F F F
YP > YT2 - - - - - - - - - - - - F F F
SP > Sc F T F T F T - - F T F - F T -
SP > T1 F T F T F T F T F T F T F T F
SP > T2 F - F - F - F T F - F - F - F
Out Edu SP ND SP T1 SP T2 SP ND SP T1 SP T1 SP T2

EduAc F F F F F T T T T F -
BusAc T T T T T F F F F F F
CP > CT1 T T T F F F F T - - F
YP > YT1 T F F T T T - - - T T
CP > CT2 F T T F F F F T T F F
YP > YT2 F - - T T F - - - T F
SP > Sc T - T - T F T - - - -
SP > T1 T F T F T F - - T T T
SP > T2 T F T F T F F F T T -
Out SP T2 SP T2 SP Edu SP Edu SP SP SP

Abbreviations

EduAc Educational account Edu Educational price
BusAc Business account ND No discount
CP > CT1 Current purchase greater than threshold 1 T1 Tier 1
YP > YT1 Year cumulative purchase greater than threshold 1 T2 Tier 2
CP > CT2 Current purchase greater than threshold 2 SP Special Price
YP > YT2 Year cumulative purchase greater than threshold 2
SP > Sc Special Price better than scheduled price
SP > T1 Special Price better than tier 1
SP > T2 Special Price better than tier 2

Figure 14.5: The set of test cases generated for feature Pricing of the Chipmunk Web site applying the
modified adequacy criterion.

Deriving Test Cases from Control and Data Flow Graphs 257

14.4 Deriving Test Cases from Control and Data Flow
Graphs

Functional specifications are seldom given as control or data flow graphs, but some-
times they describe a set of mutually dependent steps to be executed in a given (partial)
order, and can thus be modeled with flow graphs.

The specification in Figure 14.6 describes the Chipmunk functionality that prepares
orders for shipping. The specification indicates a set of steps to check the validity of
fields in the order form. Type and validity of some of the values depend on other fields
in the form. For example, shipping methods are different for domestic and international
customers, and payment methods depend on customer type.

The informal specification in Figure 14.6 can be modeled with a control flow graph,
where the nodes represent computations and branches represent control flow consistent
with the dependencies among computations, as illustrated in Figure 14.7. Given a
control or a data flow graph model, we can generate test case specifications using the
criteria originally devised for structural testing and described in Chapters 12 and 13.

Control flow testing criteria require test cases that exercise all elements of a par-
ticular kind in a graph model. The node adequacy criterion requires each node to be
exercised at least once, and corresponds to statement testing. It is easy to verify that D node adequacy

criteriontest suite T-node in Figure 14.8, consisting of test case specifications TC-1 and TC-
2, causes all nodes of the control flow graph of Figure 14.7 to be traversed, and thus
T-node satisfies the node adequacy criterion.

The branch adequacy criterion requires each branch to be exercised at least once:
each edge of the graph must be traversed by at least one test case. Test suite T-branch D branch

adequacy
criterion

(Figure 14.9) covers all branches of the control flow graph of Figure 14.7 and thus
satisfies the branch adequacy criterion.

In principle, other test adequacy criteria described in Chapters 12 and 13 can be
applied to more complex control structures derived from specifications, such as loops.
A good functional specification should rarely result in a complex control structure, but
data flow testing may be useful at a much coarser structure (e.g., to test interaction of
transactions through a database).

14.5 Deriving Test Cases from Grammars

Functional specifications for complex documents or domain-specific notations, as well
as for conventional compilers and interpreters, are often structured as an annotated
grammar or set of regular expressions. Test suites can be systematically derived from
these grammatical structures.

The informal specification of the Chipmunk Web site advanced search, shown in
Figure 14.10, defines the syntax of a search pattern. Not surprisingly, this specification
can easily be expressed as a grammar. Figure 14.11 expresses the specification as a
grammar in Backus Naur Form (BNF).

A second example is given in Figure 14.12, which specifies a product configuration
of the Chipmunk Web site. In this case, the syntactic structure of product configuration

258 Model-Based Testing

Process shipping order: The Process shipping order function checks the validity of
orders and prepares the receipt.

A valid order contains the following data:

cost of goods If the cost of goods is less than the minimum processable order
(MinOrder), then the order is invalid.

shipping address The address includes name, address, city, postal code, and
country.

preferred shipping method If the address is domestic, the shipping method
must be either land freight, or expedited land freight, or overnight air. If
the address is international, the shipping method must be either air freight
or expedited air freight; a shipping cost is computed based on address and
shipping method.

type of customer A customer can be individual, business, or educational.

preferred method of payment Individual customers can use only credit cards,
while business and educational customers can choose between credit card
and invoice.

card information If the method of payment is credit card, fields credit card
number, name on card, expiration date, and billing address, if different
from shipping address, must be provided. If credit card information is not
valid, the user can either provide new data or abort the order.

The outputs of Process shipping order are

validity Validity is a Boolean output that indicates whether the order can be
processed.

total charge The total charge is the sum of the value of goods and the computed
shipping costs (only if validity = true).

payment status If all data are processed correctly and the credit card informa-
tion is valid or the payment method is by invoice, payment status is set to
valid, the order is entered, and a receipt is prepared; otherwise validity =
false.

Figure 14.6: Functional specification of the feature Process shipping order of the Chip-
munk Web site.

Deriving Test Cases from Grammars 259

preferred shipping method = land freight OR
expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address

no

yes

domestic

preferred shipping method = air
freight OR expedited air freight

international

calculate domestic shipping chargecalculate international shipping charge

total charge = goods + shipping

individual customer no

yes

obtain credit card data: number, name on card, expiration date

method of payment

credit card

invoice

billing address = shipping address

obtain billing address
noyes

valid credit card information

no

yes

payment status = valid
enter order

prepare receipt
invalid order

nono

abort order?
no

yes

Figure 14.7: A control flow graph model corresponding to functionality Process shipping order of Figure
14.6.

260 Model-Based Testing

T-node

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Air Ind CC – No (abort)
Abbreviations:
Too small CostOfGoods < MinOrder ?
Ship where Shipping address, Int = international, Dom = domestic
Ship how Air = air freight, Land = land freight
Cust type Bus = business, Edu = educational, Ind = individual
Pay method CC = credit card, Inv = invoice
Same addr Billing address = shipping address ?
CC Valid Credit card information passes validity check?

Figure 14.8: Test suite T-node, comprising test case specifications TC-1 and TC-2,
exercises each of the nodes in a control flow graph model of the specification in Fig-
ure 14.6.

T-branch

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land – – – –
TC-3 Yes – – – – – –
TC-4 No Dom Air – – – –
TC-5 No Int Land – – – –
TC-6 No – – Edu Inv – –
TC-7 No – – – CC Yes –
TC-8 No – – – CC – No (abort)
TC-9 No – – – CC – No (no abort)
Abbreviations:
Too small CostOfGoods < MinOrder ?
Ship where Shipping address, Int = international, Dom = domestic
Ship how Air = air freight, Land = land freight
Cust type Bus = business, Edu = educational, Ind = individual
Pay method CC = credit card, Inv = invoice
Same addr Billing address = shipping address ?
CC Valid Credit card information passes validity check?

Figure 14.9: Test suite T-branch exercises each of the decision outcomes in a control
flow graph model of the specification in Figure 14.6.

Deriving Test Cases from Grammars 261

Advanced search: The Advanced search function allows for searching elements in the Web site
database.

The key for searching can be:

a simple string, i.e., a simple sequence of characters

a compound string, i.e.,

• a string terminated with character *, used as wild character, or
• a string composed of substrings included in braces and separated with com-

mas, used to indicate alternatives

a combination of strings, i.e., a set of strings combined with the Boolean operators
NOT, AND, OR, and grouped within parentheses to change the priority of oper-
ators.

Examples:

laptop The routine searches for string “laptop”

{DVD*,CD*} The routine searches for strings that start with substring “DVD” or “CD”
followed by any number of characters.

NOT (C2021*) AND C20* The routine searches for strings that start with substring
“C20” followed by any number of characters, except substring “21.”

Figure 14.10: Functional specification of the feature Advanced search of the Chipmunk
Web site.

hsearchi ::= hsearchi hbinopi htermi | not hsearchi | htermi

hbinopi ::= and | or

htermi ::= hregexpi | (hsearchi)

hregexpi ::= Char hregexpi | Char | { hchoicesi } | *
hchoicesi ::= hregexpi | hregexpi , hchoicesi

Figure 14.11: BNF description of functionality Advanced search
.

262 Model-Based Testing

is described by an XML schema, which defines an element Model of type ProductCon-
figurationType. XML schemata are essentially a variant of BNF, so it is not difficult to
render the schema in the same BNF notation, as shown in Figure 14.11.

Grammars are well suited to represent inputs of varying and unbounded size, with
recursive structures and boundary conditions. These characteristics are not easily ad-
dressed with the fixed lists of parameters required by conventional combinatoric tech-
niques described in Chapter 11, or by other model-based techniques presented in this
chapter.D production

coverage criterion Generating test cases from grammar specifications is straightforward and can easily
be automated. Each test case is a string generated from the grammar. To produce a
string, we start from a non terminal symbol and progressively apply productions to
substitute substrings for non terminals occurring in the current string, until we obtain a
string composed only of terminal symbols.

In general, we must choose among several applicable production rules at each step.
A simple criterion requires each production to be exercised at least once in producing
a set of test cases.

The number and complexity of the generated test cases depend on the order of
application of the productions. If we first apply productions with non terminals on the
right-hand side, we generate a smaller set of large test cases. First applying productions
with only terminals on the right-hand side generates larger sets of smaller test cases.
An algorithm that favors non terminals applied to the BNF for advanced search of
Figure 14.10, exercises all the productions to generate the single test case

not Char {*, Char} and (Char or Char)
The derivation tree for this test case is given in Figure 14.14. It shows that each

production of the BNF is exercised at least once.D boundary
condition
grammar-based
criterion

The simple production coverage criterion is subsumed by a richer criterion that
applies boundary conditions on the number of times each recursive production is ap-
plied successively. To generate test cases for boundary conditions we need to choose a
minimum and maximum number of applications of each recursive production and then
generate a test case for the minimum, maximum, one greater than minimum and one
smaller than maximum. The approach is essentially similar to boundary interior path
testing of program loops (see Section 12.5 of Chapter 12, page 222), where the “loop”
in this case is in repeated applications of a production.

To apply the boundary condition criterion, we need to annotate recursive produc-
tions with limits. Names and limits are shown in Figure 14.15, which extends the
grammar of Figure 14.13. Alternatives within compound productions are broken out
into individual productions. Production names are added for reference, and limits are
added to recursive productions. In the example of Figure 14.15, the limit of produc-
tions compSeq1 and optCompSeq1 is set to 16; we assume that each model can have at
most 16 required and 16 optional components.

The boundary condition grammar-based criterion would extend the minimal set by
adding test cases that cover the following choices:

• zero required components (compSeq1 applied 0 times)

• one required component (compSeq1 applied 1 time)

Deriving Test Cases from Grammars 263

1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2000/08/XMLSchema">

3

4 <xsd:annotation>

5 <xsd:documentation>

6 Chipmunk Computers - Product Configuration Schema
7 Copyright 2001 D. Seville, Chipmunk Computers Inc.
8 </xsd:documentation>

9 </xsd:annotation>

10

11 <xsd:element name="Model" type="ProductConfigurationType"/>
12

13 <xsd:complexType name="ProductConfigurationType">

14 <xsd:attribute name="modelNumber"
15 type="xsd:string" use="required"/>
16 <xsd:element name="Component"
17 minoccurs="0" maxoccurs="unbounded">

18 <xsd:sequence>

19 <xsd:element name="ComponentType" type="string"/>
20 <xsd:element name="ComponentValue" type="string"/>
21 </xsd:sequence>

22 </xsd:element>
23 <xsd:element name="OptionalComponent"
24 minoccurs="0" maxoccurs="unbounded">

25 <xsd:element name="ComponentType" type="string"/>
26 </xsd:element>
27 </xsd:complexType>

28 </xsd:schema>

Figure 14.12: An XML schema description of a Product configuration on the Chip-
muk Web site. Items are enclosed in matching tags (htagi text h/tagi) or incorpo-
rated in a self-terminating tag (htag attribute=”value” /i). The schema describes
type ProductConfigurationType as a tuple composed of a required field modelNumber
of type string; a set (possibly empty) of Components, each of which is composed of
two string-valued fields ComponentType and ComponentValue; and a possibly empty
set of OptionalComponents, each of which is composed of a single string-valued
ComponentType.

264 Model-Based Testing

hModeli ::= hmodelNumberi hcompSequencei hoptCompSequencei

hcompSequencei ::= hComponenti hcompSequencei | empty

hoptCompSequencei ::= hOptionalComponenti hoptCompSequencei | empty

hComponenti ::= hComponentTypei hComponentValuei

hOptionalComponenti ::= hComponentTypei

hmodelNumberi ::= string

hComponentTypei ::= string

hComponentValuei ::= string

Figure 14.13: BNF description of Product configuration.

<search>

<search> <binop> <term>

not <search> and (<search>)

<term>

<regexp>

Char <regexp>

<regexp> , <choices>

*

Char

or

{<choices>}

<regexp>

<term>

<search> <binop> <term>

<regexp>

Char

<regexp>

Char

Figure 14.14: The derivation tree of a test case for functionality Advanced Search
derived from the BNF specification of Figure 14.11.

Deriving Test Cases from Grammars 265

Model hModeli ::= hmodelNumberi hcompSequencei hoptCompSequencei

compSeq1 limit=16 hcompSequencei ::= hComponenti hcompSequencei

compSeq2 hcompSequencei ::= empty

optCompSeq1 limit=16 hoptCompSequencei ::= hOptionalComponenti hoptCompSequencei

optCompSeq2 hoptCompSequencei ::= empty

Comp hComponenti ::= hComponentTypei hComponentValuei

OptComp hOptionalComponenti ::= hComponentTypei

modNum hmodelNumberi ::= string

CompTyp hComponentTypei ::= string

CompVal hComponentValuei ::= string

Figure 14.15: The BNF description of Product Configuration extended with production
names and limits.

• fifteen required components (compSeq1 applied n�1 times)

• sixteen required components (compSeq1 applied n times)

• zero optional components (optCompSeq1 applied 0 times)

• one optional component (optCompSeq1 applied 1 time)

• fifteen optional components (optCompSeq1 applied n�1 times)

• sixteen optional components (optCompSeq1 applied n times)
D probabilistic
grammar-based
criteria

Probabilistic grammar-based criteria assign probabilities to productions, indicating
which production to select at each step to generate test cases. Unlike names and limits,
probabilities are attached to grammar productions as a separate set of annotations. We
can generate several sets of test cases from the same grammar with different sets of
probabilities, called “seeds.” Figure 14.16 shows a sample seed for the grammar that
specifies the product configuration functionality of the Chipmunk Web site presented
in Figure 14.15.

Probabilities are interpreted as weights that determine how frequently each produc-
tion is used to generate a test case. The equal weight for compSeq1 and optCompSeq1
in Figure 14.16 indicates that test cases are generated by balancing use of these two
productions; they contain approximately the same number of required and optional
components. Weight 0 disables the productions, which are then applied only when
application of competing productions reaches the limit indicated in the grammar.

266 Model-Based Testing

weight Model 1
weight compSeq1 10
weight compSeq2 0
weight optCompSeq1 10
weight optCompSeq2 0
weight Comp 1
weight OptComp 1
weight modNum 1
weight CompTyp 1
weight CompVal 1

Figure 14.16: Sample seed probabilities for BNF productions of Product configuration.

Open Research Issues

As long as there have been models of software, there has been model-based testing.
A recent and ongoing ferment of activity in model-based testing is partly the result
of wider use of models throughout software development. Ongoing research will cer-
tainly include test design based on software architecture, domain-specific models, and
models of emerging classes of systems such as service-oriented architectures and adap-
tive systems, as well as additional classes of systems and models that we cannot yet
anticipate.

As well as following the general trend toward greater use of models in develop-
ment, though, research in model-based testing reflects greater understanding of the
special role that models of software can play in test design and in combining conven-
tional testing with analysis. A model is often the best way — perhaps the only way
— to divide one property to be verified into two, one part that is best verified with
static analysis and another part that is best verified with testing. Conformance testing
of all kinds exploits models in this way, focusing analysis techniques where they are
most necessary (e.g., nondeterministic scheduling decisions in concurrent software)
and using testing to cost-effectively verify consistency between model and program.

Models are also used to specify and describe system structure at levels of orga-
nization beyond those that are directly accommodated in conventional programming
languages (e.g., components and subsystems). Analysis, and to a lesser extent testing,
have been explicit concerns in development of architecture description languages. Still
there remains a divide between models developed primarily for people to communicate
and record design decisions (e.g., UML) and models developed primarily for verifica-
tion (e.g., various FSM notations). Today we see a good deal of research re-purposing
design models for test design, which involves adding or disambiguating the semantics
of notations intended for human communication. A challenge for future design nota-
tions is to provide a better foundation for analysis and testing without sacrificing the
characteristics that make them useful for communicating and recording design deci-
sions.

An important issue in modeling, and by extension in model-based testing, is how

Deriving Test Cases from Grammars 267

to use multiple model “views” to together form a comprehensive model of a program.
More work is needed on test design that uses more than one modeling view, or on the
potential interplay between test specifications derived from different model views of
the same program.

As with many other areas of software testing and analysis, more empirical research
is also needed to characterize the cost and effectiveness of model-based testing ap-
proaches. Perhaps even more than in other areas of testing research, this is not only a
matter of carrying out experiments and case studies, but is at least as much a matter of
understanding how to pose questions that can be effectively answered by experiments
and whose answers generalize in useful ways.

Further Reading

Myers’ classic text [Mye79] describes a number of techniques for testing decision
structures. Richardson, O’Malley, and Tittle [ROT89] and Stocks and Carrington
[SC96] among others attempt to generate test cases based on the structure of (formal)
specifications. Beizer’s Black Box Testing [Bei95] is a popular presentation of tech-
niques for testing based on control and data flow structure of (informal) specifications.

Test design based on finite state machines has long been important in the do-
main of communication protocol development and conformance testing; Fujiwara, von
Bochmann, Amalou, and Ghedamsi [FvBK+91] is a good introduction. Gargantini
and Heitmeyer [GH99] describe a related approach applicable to software systems in
which the finite state machine is not explicit but can be derived from a requirements
specification.

Generating test suites from context-free grammars is described by Celentano et
al. [CCD+80] and apparently goes back at least to Hanford’s test generator for an
IBM PL/I compiler [Han70]. The probabilistic approach to grammar-based testing is
described by Sirer and Bershad [SB99], who use annotated grammars to systematically
generate tests for Java virtual machine implementations.

Heimdahl et al. [HDW04] provide a cautionary note regarding how naive model-
based testing can go wrong, while a case study by Pretschner et al. [PPW+05] suggests
that model based testing is particularly effective in revealing errors in informal specifi-
cations.

Related Topics

Readers interested in testing based on finite state machines may proceed to Chapter 15,
in which finite state models are applied to testing object-oriented programs.

268 Model-Based Testing

Exercises

14.1. Derive sets of test cases for functionality Maintenance from the FSM specifica-
tion in Figure 14.2.

(a) Derive a test suite that satisfies the Transition Coverage criterion.

(b) Derive a test suite that satisfies the Single State Path Coverage criterion.

(c) Indicate at least one element of the program that must be covered by a test
suite satisfying the Single Transition Path Coverage, but need not be cov-
ered by a test suite that satisfies the Single State Path Coverage criterion.
Derive a test case that covers that element.

(d) Describe at least one element that must be covered by a test suite that satis-
fies both the Single Transition Path Coverage and Boundary Interior Loop
Coverage criteria, but need not be covered by a test suite that satisfies the
Transition Coverage and Single State Path Coverage criteria. Derive a test
case that covers that element.

14.2. Discuss how the test suite derived for functionality Maintenance applying Tran-
sition Coverage to the FSM specification of Figure 14.2 (Exercise 14.1) must be
modified under the following assumptions.

(a) How must it be modified if the implicit transitions ar error conditions?

(b) How must it be modified if the implicit transitions are self-transitions?

14.3. Finite state machine specifications are often augumented with variables that may
be tested and changed by state transitions. The same system can often be de-
scribed by a machine with more or fewer states, depending on how much in-
formation is represented by the states themselves and how much is represented
by extra variables. For example, in Figure 5.9 (page 69), the state of the buffer
(empty or not) is represented directly by the states, but we could also represent
that information with a variable empty and merge states Empty buffer and Within
line of the finite state machine into a single Gathering state to obtain a more
compact finite state machine, as in this diagram:

Deriving Test Cases from Grammars 269

returnCmp arrives
Cmp arrives

Cmp arroves

unable to rep.

 Maint
(no warranty)

2

NO
Maintenance

0

Wait for
pick up

3

Wait for
acceptance

4

NO
Maintenance

0

Wait for
returning

1

Repair
(maintenance

station)

5

Repaired
6Wait for

component

7
Repair

(main head)

9Repair
(regional

head)

8

Repair
(maint.
station)

5

Repair
(maint.
station)

5

 Maint
(no warranty)

2

unable to rep.Lack cmp

NO
Maintenance

0Repair
(maint.
station)

5 Repair
(regional

head)

8
Repair

(main head)

9 Repaired
6

Wait for
component

7

Invalid No.

Repair
(main head)

9
Repaired

6

Lack cmpSucc. Rep.

Succ. Rep.

unable to rep.

Pick up

Repair compl.

Pick up

acceptreject

Est. costs

Req. no warr.

Req. Maint/courier

Req. Phone/web

For the following questions, consider only scalar variables with a limited set of
possible values, like the Boolean variable empty in the example.

(a) How can we systematically transform a test case for one version of the
specification into a test suite for the other? Under what conditions is this
transformation possible? Consider transformation in both directions, merg-
ing states by adding variables and splitting states to omit variables.

(b) If a test suite satisfies the transition coverage criterion for the version with
more states, will a corresponding test suite (converting each test case as you
described in part (a)) necessarily satisfy the transition coverage criterion for
the version with a suite that satisfies the transition coverage criterion for the
version with fewer states?

(c) Conversely, if a test suite satisfies the transition coverage criterion for the
version of the specification with fewer states, will a corresponding test suite
(converted as you described in part (a)) necessarily satisfy the transition
coverage criterion for the version with more states?

(d) How might you combine transition coverage with decision structure test-
ing methods to select test suites independently from the information coded
explicitly in the states or implicitly in the state variable?

270 Model-Based Testing

Chapter 15

Testing Object-Oriented

Software

Systematic testing of object-oriented software is fundamentally similar to systematic
testing approaches for procedural software: We begin with functional tests based on
specification of intended behavior, add selected structural test cases based on the soft-
ware structure, and work from unit testing and small-scale integration testing toward
larger integration and then system testing. Nonetheless, the differences between pro-
cedural software and object-oriented software are sufficient to make specialized tech-
niques appropriate.

Required Background

• Chapters 11, 12, 13, and 14
This chapter builds on basic functional, structural, and model-based testing tech-
niques, including data flow testing techniques. Some basic techniques, described
more thoroughly in earlier chapters, are recapped very briefly here to provide
flexibility in reading order.

• Chapter 5
Many of the techniques described here employ finite state machines for modeling
object state.

15.1 Overview

Object-oriented software differs sufficiently from procedural software to justify recon-
sidering and adapting approaches to software test and analysis. For example, methods
in object-oriented software are typically shorter than procedures in other software, so
faults in complex intraprocedural logic and control flow occur less often and merit
less attention in testing. On the other hand, short methods together with encapsula-
tion of object state suggest greater attention to interactions among method calls, while

271

272 Testing Object-Oriented Software

polymorphism, dynamic binding, generics, and increased use of exception handling
introduce new classes of fault that require attention.

Some traditional test and analysis techniques are easily adapted to object-oriented
software. For example, code inspection can be applied to object-oriented software
much as it is to procedural software, albeit with different checklists. In this chapter we
will be concerned mostly with techniques that require more substantial revision (like
conventional structural testing techniques) and with the introduction of new techniques
for coping with problems associated with object-oriented software.

15.2 Issues in Testing Object-Oriented Software

The characteristics of object-oriented software that impact test design are summarized
in the sidebar on page 273 and discussed in more detail below.

The behavior of object-oriented programs is inherently stateful: The behavior ofstate-dependent
behavior a method depends not only on the parameters passed explicitly to the method, but also

on the state of the object. For example, method CheckConfiguration() of class Model,
shown in Figure 15.1, returns True or False depending on whether all components are
bound to compatible slots in the current object state.

In object-oriented programs, public and private parts of a class (fields and meth-encapsulation

ods) are distinguished. Private state and methods are inaccessible to external entities,
which can only change or inspect private state by invoking public methods.1 For ex-
ample, the instance variable modelID of class Model in Figure 15.1 is accessible by
external entities, but slots and legalConfig are accessible only within methods of the
same class. The constructor Model() and the method checkConfiguration() can be used
by external entities to create new objects and to check the validity of the current con-
figuration, while method openDB() can be invoked only by methods of this class.

Encapsulated information creates new problems in designing oracles and test cases.
Oracles must identify incorrect (hidden) state, and test cases must exercise objects in
different (hidden) states.

Object-oriented programs include classes that are defined by extending or spe-inheritance

cializing other classes through inheritance. For example, class Model in Figure 15.1
extends class CompositeItem, as indicated in the class declaration. A child class can
inherit variables and methods from its ancestors, overwrite others, and add yet oth-
ers. For example, the class diagram of Figure 15.3 shows that class Model inherits the
instance variables sku, units and parts, and methods validItem(), getUnitPrice() and ge-
tExtendedPrice(). It overwrites methods getHeightCm(), getWidthCm(), getDepthCm()
and getWeightGm(). It adds the instance variables baseWeight, modelID, heightCm,
widthCm, DepthCm, slots and legalConfig, and the methods selectModel(), deselect-
Model(), addComponent(), removeComponent() and isLegalConfiguration().

1Object-oriented languages differ with respect to the categories of accessibility they provide. For exam-
ple, nothing in Java corresponds exactly to the “friend” functions in C++ that are permitted to access the
private state of other objects. But while details vary, encapsulation of state is fundamental to the object-
oriented programming paradigm, and all major object-oriented languages have a construct comparable to
Java’s private field declarations.

Issues in Testing Object-Oriented Software 273

Summary: Relevant Characteristics of Object-Oriented Software
State Dependent Behavior: Testing techniques must consider the state in which

methods are invoked. Testing techniques that are oblivious to state (e.g., tradi-
tional coverage of control structure) are not effective in revealing state-dependent
faults.

Encapsulation: The effects of executing object-oriented code may include outputs,
modification of object state, or both. Test oracles may require access to private
(encapsulated) information to distinguish between correct and incorrect behav-
ior.

Inheritance: Test design must consider the effects of new and overridden methods on
the behavior of inherited methods, and distinguish between methods that require
new test cases, ancestor methods that can be tested by reexecuting existing test
cases, and methods that do not need to be retested.

Polymorphism and Dynamic Binding: A single method call may be dynamically
bound to different methods depending on the state of the computation. Tests
must exercise different bindings to reveal failures that depend on a particular
binding or on interactions between bindings for different calls.

Abstract Classes: Abstract classes cannot be directly instantiated and tested, yet they
may be important interface elements in libraries and components. It is necessary
to test them without full knowledge of how they may be instantiated.

Exception Handling: Exception handling is extensively used in modern object-
oriented programming. The textual distance between the point where an excep-
tion is thrown and the point where it is handled, and the dynamic determination
of the binding, makes it important to explicitly test exceptional as well as normal
control flow.

Concurrency: Modern object-oriented languages and toolkits encourage and some-
times even require multiple threads of control (e.g., the Java user interface con-
struction toolkits AWT and Swing). Concurrency introduces new kinds of pos-
sible failures, such as deadlock and race conditions, and makes the behavior of a
system dependent on scheduler decisions that are not under the tester’s control.

274 Testing Object-Oriented Software

1 public class Model extends Orders.CompositeItem {
2 public String modelID; // Database key for slots
3 private int baseWeight; // Weight excluding optional components
4 private int heightCm, widthCm, depthCm; // Dimensions if boxed
5 private Slot[] slots; // Component slots
6

7 private boolean legalConfig = false; // memoized result of isLegalConf
8 private static final String NoModel = "NO MODEL SELECTED";

12 . . .
13 /** Constructor, which should be followed by selectModel */
14 public Model(Orders.Order order) {
15 super(order);
16 modelID = NoModel;
17 }
99 . . .

100 /** Is the current binding of components to slots a legal
101 * configuration? Memo-ize the result for repeated calls */
102 public boolean isLegalConfiguration() {
103 if (! legalConfig) {
104 checkConfiguration();
105 }
106 return legalConfig;
107 }
108

109 /** Are all required slots filled with compatible components?
110 * It is impossible to assign an incompatible component,
111 * so just to check that every required slot is filled. */
112 private void checkConfiguration() {
113 legalConfig = true;
114 for (int i=0; i < slots.length; ++i) {
115 Slot slot = slots[i];
116 if (slot.required && ! slot.isBound()) {
117 legalConfig = false;
118 }
119 }
120 }
241 . . .
242 }

Figure 15.1: Part of a Java implementation of class Model.

Issues in Testing Object-Oriented Software 275

1 public class Model extends Orders.CompositeItem {
61 . . .
62 /** Bind a component to a slot.
63 * @param slotIndex Which slot (integer index)?
64 * @param sku Key to component database.
65 * Choices should be constrained by web interface, so we don’t
66 * need to be graceful in handling bogus parameters.
67 */
68 public void addComponent(int slotIndex, String sku) {
69 Slot slot =slots[slotIndex];
70 if (componentDB.contains(sku)) {
71 Component comp = new Component(order, sku);
72 if (comp.isCompatible(slot.slotID)) {
73 slot.bind(comp);
74 // Note this cannot have made the
75 // configuration illegal.
76 } else {
77 slot.unbind();
78 legalConfig = false;
79 }
80 } else {
81 slot.unbind();
82 legalConfig = false;
83 }
84 }
85

86

87 /** Unbind a component from a slot. */
88 public void removeComponent(int slotIndex) {
89 // assert slotIndex in 0..slots.length
90 if (slots[slotIndex].isBound()) {
91 slots[slotIndex].unbind();
92 }
93 legalConfig = false;
94 }

215 . . .
216 }

Figure 15.2: More of the Java implementation of class Model. Because of the way
method isLegalConfig is implemented (see Figure 15.1), all methods that modify slots
must reset the private variable legalConfig.

276 Testing Object-Oriented Software

+selectModel()
+deselectModel()
+addComponent()
+removeComponent()
+isLegalConfiguration() : boolean
+getHeightCm() : integer
+getWidthCm() : integer
+getDepthCm() : integer
+getWeightGm() : integer

-baseWeight : integer
+modelID : string
-heightCm : integer
-widthCm : integer
-depthCm : integer
-slots : Slot
-legalConfig : boolean

Model

+getWeightCm() : integer
+getHeightCm() : integer
+getWidthCm() : integer
+getDepthCm() : integer
+isCompatible() : boolean

-weightGm : integer
-heightGm : integer
-widthCm : integer
-depthCm : integer
-slotCompat : string

Component

+validItem() : boolean
+getUnitPrice() : integer
+getExtendedPrice() : integer
+getHeightCm() : integer
+getWidthCm() : integer
+getDepthCm() : integer
+getWeightGm() : integer

+sku : string
+units : integer

LineItem

+getUnitPrice() : integer
+parts : Vector

CompositeItem

+getUnitPrice() : integer

SimpleItem

Figure 15.3: An excerpt from the class diagram of the Chipmunk Web presence that
shows the hierarchy rooted in class LineItem.

Issues in Testing Object-Oriented Software 277

Inheritance brings in optimization issues. Child classes may share several methods
with their ancestors. Sometimes an inherited method must be retested in the child class,
despite not having been directly changed, because of interaction with other parts of the
class that have changed. Many times, though, one can establish conclusively that the
behavior of an inherited method is really unchanged and need not be retested. In other
cases, it may be necessary to rerun tests designed for the inherited method, but not
necessary to design new tests.

Most object-oriented languages allow variables to dynamically change their type, polymorphism

dynamic bindingas long as they remain within a hierarchy rooted at the declared type of the variable.
For example, variable subsidiary of method getYTDPurchased() in Figure 15.4 can be
dynamically bound to different classes of the Account hierarchy, and thus the invoca-
tion of method subsidiary.getYTDPurchased() can be bound dynamically to different
methods.

Dynamic binding to different methods may affect the whole computation. Testing a
call by considering only one possible binding may not be enough. Test designers need
testing techniques that select subsets of possible bindings that cover a sufficient range
of situations to reveal faults in possible combinations of bindings.

Some classes in an object-oriented program are intentionally left incomplete and abstract classes

cannot be directly instantiated. These abstract classes2 must be extended through sub-
classes; only subclasses that fill in the missing details (e.g., method bodies) can be
instantiated. For example, both classes LineItem of Figure 15.3 and Account of Fig-
ure 15.4 are abstract.

If abstract classes are part of a larger system, such as the Chipmunk Web presence,
and if they are not part of the public interface to that system, then they can be tested
by testing all their child classes: classes Model, Component, CompositeItem, and Sim-
pleItem for class LineItem and classes USAccount, UKAccount, JPAccount, EUAccount
and OtherAccount for class Account. However, we may need to test an abstract class
either prior to implementing all child classes, for example if not all child classes will be
implemented by the same engineers in the same time frame, or without knowing all its
implementations, for example if the class is included in a library whose reuse cannot
be fully foreseen at development time. In these cases, test designers need techniques
for selecting a representative set of instances for testing the abstract class.

Exceptions were originally introduced in programming languages independently exceptions

of object-oriented features, but they play a central role in modern object-oriented pro-
gramming languages and in object-oriented design methods. Their prominent role in
object-oriented programs, and the complexity of propagation and handling of excep-
tions during program execution, call for careful attention and specialized techniques in
testing.

The absence of a main execution thread in object-oriented programs makes them concurrency

well suited for concurrent and distributed implementations. Although many object-
oriented programs are designed for and executed in sequential environments, the design

2Here we include the Java interface construct as a kind of abstract class.

278 Testing Object-Oriented Software

1 public abstract class Account {
151 . . .
152 /**
153 * The YTD Purchased amount for an account is the YTD
154 * total of YTD purchases of all customers using this account
155 * plus the YTD purchases of all subsidiaries of this account;
156 * currency is currency of this account.
157 */
158 public int getYTDPurchased() {
159

160 if (ytdPurchasedValid) { return ytdPurchased; }
161

162 int totalPurchased = 0;
163 for (Enumeration e = subsidiaries.elements() ; e.hasMoreElements();)
164 {
165 Account subsidiary = (Account) e.nextElement();
166 totalPurchased += subsidiary.getYTDPurchased();
167 }
168 for (Enumeration e = customers.elements(); e.hasMoreElements();)
169 {
170 Customer aCust = (Customer) e.nextElement();
171 totalPurchased += aCust.getYearlyPurchase();
172 }
173 ytdPurchased = totalPurchased;
174 ytdPurchasedValid = true;
175 return totalPurchased;
176 }
332 . . .
333 }

Figure 15.4: Part of a Java implementation of Class Account. The abstract class is
specialized by the regional markets served by Chipmunk into USAccount, UKAccount,
JPAccount, EUAccount and OtherAccount, which differ with regard to shipping meth-
ods, taxes, and currency. A corporate account may be associated with several individ-
ual customers, and large companies may have different subsidiaries with accounts in
different markets. Method getYTDPurchased() sums the year-to-date purchases of all
customers using the main account and the accounts of all subsidiaries.

Issues in Testing Object-Oriented Software 279

Actual Needs and
Constraints

System Test

Integration Test

Module Test

User Acceptance (alpha, beta test)

R
ev

ie
w

Analysis /
Review

Analysis /
Review

User review of external behavior as it is
determined or becomes visible

Unit/
Components

Subsystem
Design/Specs Subsystem

System
Integration

System
Specifications

Delivered
Package

A&T Activities that
require specific

approaches for OO SW

Unit/Component
Specs

Figure 15.5: The impact of object-oriented design and coding on analysis and testing.

of object-oriented applications for concurrent and distributed environments is becom-
ing very frequent.

Object-oriented design and programming greatly impact analysis and testing. How-
ever, test designers should not make the mistake of ignoring traditional technology and
methodologies. A specific design approach mainly affects detailed design and code, but
there are many aspects of software development and quality assurance that are largely
independent of the use of a specific design approach. In particular, aspects related to
planning, requirements analysis, architectural design, deployment and maintenance can
be addressed independently of the design approach. Figure 15.5 indicates the scope of
the impact of object-oriented design on analysis and testing.

280 Testing Object-Oriented Software

15.3 An Orthogonal Approach to Test

Testing all aspects of object-oriented programs simultaneously would be difficult and
expensive; fortunately it is also unnecessary. It is more cost-effective to address dif-
ferent features individually, using appropriate techniques for each, and to explicitly
address significant interactions (e.g., between inheritance and state-dependent behav-
ior) rather than blindly exploring all different feature combinations.

The proper blend of techniques depends on many factors: application under test,
development approach, team organization, application criticality, development envi-
ronment and the implementation languages, use of design and language features, and
project timing and resource constraints. Nonetheless, we can outline a general ap-
proach that works in stages, from single classes to class and system interactions. A
single “stage” is actually a set of interrelated test design and test execution activities.
The approach is summarized in the sidebar on page 281 and described in more detail
in this section in the order that tests related to a particular class would be executed,
although test design and execution activities are actually interleaved and distributed
through development.

The smallest coherent unit for unit testing of object-oriented testing is the class.
Test designers can address inheritance, state-dependent behavior and exceptions with
intraclass testing. For example, when testing class Model of Figure 15.3, test designers
may first use testing histories (see Section 15.10) to infer that method getExtendedPrice
need not be retested, since it has already been tested in class LineItem. On the other
hand, test designers must derive new test cases for the new methods and for those
affected by the modifications introduced in class Model.

After considering individual methods, test designers can proceed to design func-
tional test cases from the statechart specification of class Model (see Section 15.5)
and structural test cases from data flow information (see Section 15.7). To execute
test cases, test designers may decide to use equivalent scenarios as oracles (see Sec-
tion 15.8). Test designers will then create test cases for exceptions thrown or handled
by the class under test (see Section 15.12). Class Model does not make polymorphic
calls, so no additional test cases need be designed to check behavior with variable
bindings to different classes.

Integration (interclass) tests must be added to complete the testing for hierarchy,
polymorphism, and exception-related problems. For example, when testing integration
of class Model within the Chipmunk Web presence, test designers will identify class
Slot as a predecessor in the integration order and will test it first, before testing its
integration with class Model (see Sections 15.5 and 15.7). They will also derive test
cases for completing the test of exceptions (see Section 15.12) and polymorphism (see
Section 15.9).

System and acceptance testing check overall system behavior against user and sys-
tem requirements. Since these requirements are (at least in principle) independent of
the design approach, system and acceptance testing can be addressed with traditional
techniques. For example, to test the business logic subsystem of the Chipmunk Web
presence, test designers may decide to derive test cases from functional specifications
using category-partition and catalog based methods (see Chapter 11).

An Orthogonal Approach to Test 281

Steps in Object-Oriented Software Testing
Object-oriented testing can be broken into three phases, progressing from individual
classes toward consideration of integration and interactions.

Intraclass: Testing classes in isolation (unit testing)

1. If the class-under-test is abstract, derive a set of instantiations to cover sig-
nificant cases. Instantiations may be taken from the application (if avail-
able) and/or created just for the purpose of testing.

2. Design test cases to check correct invocation of inherited and overridden
methods, including constructors. If the class-under-test extends classes that
have previously been tested, determine which inherited methods need to be
retested and which test cases from ancestor classes can be reused.

3. Design a set of intraclass test cases based on a state machine model of
specified class behavior.

4. Augment the state machine model with structural relations derived from
class source code and generate additional test cases to cover structural fea-
tures.

5. Design an initial set of test cases for exception handling, systematically
exercising exceptions that should be thrown by methods in the class under
test and exceptions that should be caught and handled by them.

6. Design an initial set of test cases for polymorphic calls (calls to superclass
or interface methods that can be bound to different subclass methods de-
pending on instance values).

Interclass: Testing class integration (integration testing)

1. Identify a hierarchy of clusters of classes to be tested incrementally.

2. Design a set of functional interclass test cases for the cluster-under-test.

3. Add test cases to cover data flow between method calls.

4. Integrate the intraclass exception-handling test sets with interclass
exception-handling test cases for exceptions propagated across classes.

5. Integrate the polymorphism test sets with tests that check for interclass
interactions of polymorphic calls and dynamic bindings.

System and Acceptance: Apply standard functional and acceptance testing tech-
niques to larger components and the whole system.

282 Testing Object-Oriented Software

15.4 Intraclass Testing

Unit and integration testing aim to expose faults in individual program units and in
their interactions, respectively. The meaning of “unit” is the smallest development
work assignment for a single programmer that can reasonably be planned and tracked.
In procedural programs, individual program units might be single functions or small
sets of strongly related functions and procedures, often included in a single file of
source code. In object-oriented programs, small sets of strongly related functions or
procedures are naturally identified with classes, which are generally the smallest work
units that can be systematically tested.

Treating an individual method as a unit is usually not practical because methods in
a single class interact by modifying object state and because the effect of an individual
method is often visible only through its effect on other methods. For example, method
check configuration of class computer, shown in Figure 15.1, can be executed only if
the object is in a given state, and its result depends on the current configuration. The
method may execute correctly in a given state (i.e., for a given configuration), but
may not execute correctly in a different state (e.g., accepting malformed configurations
or rejecting acceptable configurations). Moreover, method check configuration might
produce an apparently correct output (return value) but leave the object in an incorrect
state.

15.5 Testing with State Machine Models

Since the state of an object is implicitly part of the input and output of methods, we
need a way to systematically explore object states and transitions. This can be guided
by a state machine model, which can be derived from module specifications.

A state machine model can be extracted from an informal, natural language speci-
fication of intended behavior, even when the specification does not explicitly describe
states and transitions. States can be inferred from descriptions of methods that act dif-
ferently or return different results, depending on the state of the object; this includes
any description of when it is allowable to call a method. Of course, one wants to derive
only a reasonable number of abstract states as representatives of a much larger number
of concrete states, and some judgment is required to choose the grouping. For example,
if an object kept an integer count, we might choose “zero” and “nonzero” as representa-
tive states, rather than creating a different state for every possible value. The principle
to observe is that we are producing a model of how one method affects another, so the
states should be refined just enough to capture interactions. Extracting a state machine
from an informal specification, and then creating test cases (sequences of method calls)
to cover transitions in that model, are illustrated in the sidebar on page 283.

Sometimes an explicit state machine model is already available as part of a specifi-
cation or design. If so, it is likely to be in the form of a statechart (also known as a statestatechart (state

diagram) diagram in the UML family of notations). Statecharts include standard state transition
diagrams, but also provide hierarchical structuring constructs. The structuring facilities
of statecharts can be used to organize and hide complexity, but this complexity must be
exposed to be tested.

Testing with State Machine Models 283

From Informal Specs to Transition Coverage
An Informal Specification of Class Slot

Slot represents a configuration choice in all instances of a particular model of computer.
It may or may not be implemented as a physical slot on a bus. A given model may have
zero or more slots, each of which is marked as required or optional. If a slot is marked as
“required,” it must be bound to a suitable component in all legal configurations.
Class Slot offers the following services:

Incorporate: Make a slot part of a model, and mark it as either required or optional. All
instances of a model incorporate the same slots.
Example: We can incorporate a required primary battery slot and an optional sec-
ondary battery slot on the Chipmunk C20 laptop that includes two battery slots. The
C20 laptop may then be sold with one battery or two batteries, but it is not sold
without at least the primary battery.

Bind: Associate a compatible component with a slot. Example: We can bind slot primary
battery to a Blt4, Blt6, or Blt8 lithium battery or to a Bcdm4 nickel cadmium battery.
We cannot bind a disk drive to the battery slot.

Unbind: The unbind operation breaks the binding of a component to a slot, reversing the
effect of a previous bind operation.

IsBound: Returns true if a component is currently bound to a slot, or false if the slot is
currently empty.

The Corresponding Finite State Machine

A simple analysis of the informal specification of class Slot allows one to identify states and
transitions. Often an analysis of natural language specifications will reveal ambiguities that must
be resolved one way or the other in the model; these may suggest additional test cases to check
the interpretation, or lead to refinement of the specification, or both. For class slot, we infer that
the bind operation makes sense only after the slot has been incorporated in a model, and that it is
initially empty.

Not present Unbound Bound
1 20

isBound

isBound

bind

unBind

unBind

incorporate

The Generated Test Case Specifications

A single test case will be given as a sequence of method calls. For class Slot, the following
test cases suffice to execute each transition in the state machine model:

TC-1 incorporate, isBound, bind, isBound
TC-2 incorporate, unBind, bind, unBind, isBound

284 Testing Object-Oriented Software

modelSelected

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

send modelDB: findComponent()
send slot:bind()

removeComponent(slot)

send slot:unbind()

addComponent(slot, component)

send modelDB: get_component()
send slot:bind

deselectModel()
selectModel(model)

send modelDB: getModel(modelID,this)

removeComponent(slot)

send slot:unbind()

CLASS: Model
CLASS: Model

isLegalConfiguration()
[legalConfig = true]

Figure 15.6: Statechart specification of class Model.

The most common structuring mechanism in statecharts is grouping of states in
superstates (also called OR-states). A transition from a superstate is equivalent to asuperstate

(OR-state) transition from every state contained within it. A transition to a superstate is equivalent
to a transition to the initial state within the superstate. We can obtain an ordinary
state machine by “flattening” the statechart hierarchy, replacing transitions to and from
superstates to transitions among elementary states.

Figure 15.6 shows a statechart specification for class Model of the business logic of
the Chipmunk Web presence. Class Model provides methods for selecting a computer
model and a set of components to fill logical and physical slots. The state model-
Selected is decomposed into its two component states, with entries to modelSelected
directed to the default initial state workingConfiguration.

Table 15.1 shows a set of test cases that cover all transitions of the finite state
machine of Figure 15.7, a flattened version of the statechart of Figure 15.6. Notice
that transition selectModel of the statechart corresponds to a single transition in the
FSM, since entry to the superstate is directed to the default initial state, while transition
deselectModel of the statechart corresponds to two transitions in the FSM, one for each
of the two children states, since the superstate can be exited while in either component
state.

In covering the state machine model, we have chosen sets of transition sequences
that together exercise each individual transition at least once. This is the transition
adequacy criterion introduced in Chapter 14. The stronger history-sensitive criteria
described in that chapter are also applicable in principle, but are seldom used because

Testing with State Machine Models 285

workingConfiguration

noModelSelected

validConfiguration

addComponent(slot, component)

removeComponent(slot)
addComponent(slot, component)

deselectModel()selectModel(model)

removeComponent(slot)

isLegalConfiguration()
[legalConfig=false]

deselectModel()

addComponent(slot, component)

addComponent(slot, component)

removeComponent(slot)

isLegalConfiguration()
[legalConfig=true]

Figure 15.7: Finite state machine corresponding to the statechart of Figure 15.6.

Test Case TCA
selectModel(M1)
addComponent(S1,C1)
addComponent(S2,C2)
isLegalConfiguration()

Test Case TCB
selectModel(M1)
deselectModel()
selectModel(M2)
addComponent(S1,C1)
addComponent(S2,C2)
removeComponent(S1)
isLegalConfiguration()

Test Case TCC
selectModel(M1)
addComponent(S1,C1)
removeComponent(S1)
addComponent(S1,C2)
isLegalConfiguration()

Test Case TCD
selectModel(M1)
addComponent(S1,C1)
addComponent(S2,C2)
addComponent(S3,C3)
deselectModel()
selectModel(M1)
addComponent(S1,C1)
isLegalConfiguration()

Test Case TCE
selectModel(M1)
addComponent(S1,C1)
addComponent(S2,C2)
addComponent(S3,C3)
removeComponent(S2)
addComponent(S2,C4)
isLegalConfiguration()

Table 15.1: A set of test cases that satisfies the transition coverage criterion for the
statechart of Figure 15.6.

286 Testing Object-Oriented Software

of their cost.
Even transition coverage may be impractical for complex statecharts. The number

of states and transitions can explode in “flattening” a statechart that represents multiple
threads of control. Unlike flattening of ordinary superstates, which leaves the number
of elementary states unchanged while replicating some transitions, flattening of concur-
rent state machines (so-called AND-states) produces new states that are combinations
of elementary states.

Figure 15.8 shows the statechart specification of class Order of the business logic
of the Chipmunk Web presence. Figure 15.9 shows the corresponding “flattened” state
machine. Flattening the AND-state results in a number of states equal to the Carte-
sian product of the elementary states (3⇥ 3 = 9 states) and a corresponding number
of transitions. For instance, transition add item that exits state not scheduled of the
statechart corresponds to three transitions exiting the states not schedXcanc no fee,
not schedXcanc fee, and not schedXnot canc, respectively. Covering all transitions at
least once may result in a number of test cases that exceeds the budget for testing the
class. In this case, we may forgo flattening and use simpler criteria that take advantage
of the hierarchical structure of the statechart.

Table 15.2 shows a test suite that satisfies the simple transition coverage adequacy
criterion, which requires the execution of all transitions that appear in the statechart.D simple transition

coverage The criterion requires that each statechart transition is exercised at least once, but does
not guarantee that transitions are exercised in all possible states. For example, transition
add item, which leaves the initial state, is exercised from at least one substate, but not
from all possible substates as required by the transition coverage adequacy criterion.

15.6 Interclass Testing

Interclass testing is the first level of integration testing for object-oriented software.
While intraclass testing focuses on single classes, interclass testing checks interactions
among objects of different classes. As in integration testing of imperative programs,
test designers proceed incrementally, starting from small clusters of classes.

Since the point of interclass testing is to verify interactions, it is useful to model
potential interactions through a use/include relation. Classes A and B are related by the
use/include relation if objects of class A make method calls on objects of class B, or if
objects of class A contain references to objects of class B. Inheritance is ignored (we
do not consider a subclass to use or include its ancestors), and abstract classes, which
cannot directly participate in interactions, are omitted. Derivation of the use/include
relation from a conventional UML class diagram is illustrated in Figures 15.10 and
15.11.

Interclass testing strategies usually proceed bottom-up, starting from classes that
depend on no others. The implementation-level use/include relation among classes typ-
ically parallels the more abstract, logical depends relation among modules (see sidebar
on page 292), so a bottom-up strategy works well with cluster-based testing. For ex-
ample, we can start integrating class SlotDB with class Slot, and class Component with
class ComponentDB, and then proceed incrementally integrating classes ModelDB and
Model, up to class Order.

Interclass Testing 287

orderInProgress

OrderPlaced

addItem(item, quantity)

 package()
send priceDB.getScheduledPrice()

cancellableNoFee

notCancellable

cancelled

5daysBeforeShipping()
[5daysBeforeshipping = true]

cancel(no_charge)

cancellableFee

24_hours_after_place()
[24_hours_after_place()=True]

notScheduled

scheduled

schedule()

shipping

delivered

ship()

__addressUnknown()__
 send customer.undelivered(),

send account.charge()

______deliver()______
send account.charge()

orderCompleted

readyForShipping

purchase()
[purchase = OK]

removeItem(item, quantity)

computeDiscount

send customer.getDiscount(scheduledPrice)

computeShippingCosts

send priceDB.getShippingCost(shipMeans)

placeOrder() [placeOrder=OK]
send order.startTimer()

cancel(shipRestockCharge)

suspend()

addItem(item, quantity)

removeItem(item, quantity)

5daysBeforeshipping()
[5daysBeforeShipping = true]

CLASS: Order
CLASS: Order

addressUnknown()

Figure 15.8: Statechart specification of class Order. This is a conceptual model in
which both methods of class Order and method calls by class Order are represented
as transitions with names that differ from method names in the implementation (e.g.,
5DaysBeforeShipping is not a legal method or field name).

288 Testing Object-Oriented Software

orderInProgress

add
item remove

item

package

cancel
(no_charge)

address
unknown

deliver

orderCompleted

readyForShipping

add
item

purchase

remove
item

get
discount

get
shipping
cost

place_order

cancel
(charge)

add
item

remove
item

add
item

remove
item

not_schedXcanc_no_fee

not_schedXcanc_fee

not_schedXnot_canc

schedXcanc_no_fee

schedXcanc_fee

schedXnot_canc

shipXcanc_no_fee

shipXcanc_fee

shipXnot_canc

add
item

remove
item

add
item

remove
item

schedule

schedule

schedule

suspend

suspend

suspend

ship

ship

ship

cancel
(no_charge)

cancel
(no_charge)

deliver

deliver

cancel
(charge)

cancel
(charge)

24_hours

24_hours

24_hours

5_days

5_days

5_days

5_days

5_days

5_days

cancelleddelivered

Figure 15.9: Finite state machine corresponding to the statechart of Figure 15.8.

Interclass Testing 289

Test Case TCA
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
24 hours()
5 days()
schedule()
ship()
deliver()

Test Case TCB
add item()
add item()
remove item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
24 hours()
5 days()
schedule()
ship()
deliver()

Test Case TCC
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()

24 hours()
5 days()
schedule()
ship()
deliver()

Test Case TCD
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
remove item()
add item()
package()
get shipping cost()
get discount()

purchase()
place order()
24 hours()
5 days()
schedule()
ship()
deliver()

Test Case TCE
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
schedule()
suspend()
5 days()
schedule()
ship()
deliver()

Test Case TCF
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
schedule()
cancel()

Test Case TCG
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
schedule()
ship()
address unknown()

Test Case TCH
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
schedule()
5 days()
address unknown()

Test Case TCI
add item()
add item()
package()
get shipping cost()
get discount()
purchase()
place order()
schedule()
24 hours()
cancel()

Table 15.2: A test suite that satisfies the simple transition coverage adequacy crite-
rion for the statechart of Figure 15.8. Transitions are indicated without parameters for
simplicity.

290 Testing Object-Oriented Software

OrderCustomer

1 *

LineItem

1

*

Account

1 0..*

Model Component

Slot

SimpleItem

1 * 1 0..1

USAccount

UKAccountJPAccount EUAccount

OtherAccount

Package

1 *

ModelDB

CompositeItem

PriceList

*
*

*
*

*

1

CustomerCare

*

*

CSVdb

ComponentDBSlotDB

*
1

*

1

Figure 15.10: Part of a class diagram of the Chipmunk Web presence. Classes Account,
LineItem, and CSVdb are abstract.

Interclass Testing 291

Order

Customer

Model Component

Slot

USAccount

UKAccountJPAccount EUAccount

OtherAccount

Package

ModelDB

PriceList

CustomerCare

ComponentDB

SlotDB

Figure 15.11: Use/include relation for the class diagram in Figure 15.10. Abstract
classes are not included. Two classes are related if one uses or includes the other.
Classes that are higher in the diagram include or use classes that are lower in the
diagram.

292 Testing Object-Oriented Software

Dependence
The hierarchy of clusters for interclass testing is based on a conceptual relation of

dependence, and not directly on concrete relations among implementation classes (or
implementation-level design documentation).

Module A depends on module B if the functionality of B must be present for the
functionality of A to be provided.

If A and B are implemented as classes or clusters of closely related classes, it is
likely that the logical depends relation will be reflected in concrete relations among
the classes. Typically, the class or classes in A will either call methods in the class or
classes in B, or classes in A will have references to classes in B forming a contains
relation among their respective objects.

Concrete relations among classes do not always indicate dependence. It is common
for contained objects to have part-of relations with their ancestors in the containment
hierarchy, but the dependence is normally from container to contained object and not
vice versa. It is also common to find calls from framework libraries to methods that
use those libraries. For example, the SAX API for parsing XML is an event-driven
parsing framework, which means the parsing library makes calls (through interfaces)
on methods provided by the application. This style of event handling is most familiar
to Java programmers through the standard Java graphical user interface libraries. It is
clear that the application depends on the library and not vice versa.

The depends relation is as crucial to other software development processes as it is
to testing. It is essential to building a system as a set of incremental releases, and to
scheduling and managing the construction of each release. The depends relation may
be documented in UML package diagrams, and even if not documented explicitly it
is surely manifest in the development build order. Test designers may (and probably
should) be involved in defining the build order, but should not find themselves in the
position of discovering or re-creating it after the fact.

Well-designed systems normally have nearly acyclic dependence relations, with
dependence loops limited to closely related clusters. When there are larger loops in
the relation, or when a use/include relation among classes runs contrary to the depends
relation (e.g., an “up-call” to an ancestor in the depends relation), the loop can be
broken by substituting a stub for the ancestor class. Thus, we always work with an
acyclic graph of clusters.

In principle, while climbing the dependence relation, a thorough interclass testing
should consider all combinations of possible interactions. If, for example, a test case
for class Order includes a call to a method of class Model, and the called method calls a
method of class Slot, each call should be exercised for all relevant states of the different
classes, as identified during intraclass testing. However, this suffers from the same kind
of combinatorial explosion that makes flattening concurrent state diagrams impractical.
We need to select a subset of interactions among the possible combinations of method
calls and class states. An arbitrary or random selection of interactions may be an ac-
ceptable solution, but in addition one should explicitly test any significant interaction
scenarios that have been previously identified in design and analysis.

Structural Testing of Classes 293

Interaction scenarios may have been recorded in the form of UML interaction di-
agrams, expressed as sequence or collaboration diagrams. These diagrams describe
interactions among objects and can be considered essentially as test scenarios created
during the course of design.

In addition to testing the scenarios spelled out in sequence or collaboration dia-
grams, the test designer can vary those scenarios to consider illegal or unexpected in-
teraction sequences. For example, replacing a single interaction in a sequence diagram
with another interaction that should not be permitted at that point yields a test case that
checks error handling.

Figure 15.12 shows a possible pattern of interactions among objects, when a cus-
tomer assembling an order O first selects the computer model C20, then adds a hard
disk HD60 that is not compatible with the slots of the selected model, and then adds
“legal” hard disk HD20. The sequence diagram indicates the sequence of interactions
among objects and suggests possible testing scenarios. For example, it suggests adding
a component after having selected a model. In other words, it indicates interesting
states of objects of type ModelDB and Slots when testing class Model.

Unlike statecharts, which should describe all possible sequences of transitions that
an object can undergo, interaction diagrams illustrate selected interactions that the de-
signers considered significant because they were typical, or perhaps because they were
difficult to understand. Deriving test cases from interaction diagrams is useful as a way
of choosing some significant cases among the enormous variety of possible interaction
sequences, but it is insufficient as a way of ensuring thorough testing. Integration tests
should at the very least repeat coverage of individual object states and transitions in the
context of other parts of the cluster under test.

15.7 Structural Testing of Classes

In testing procedural code, we take specifications as the primary source of information
for test design (functional testing), and then we analyze implementation structure and
add test cases as needed to cover additional variation (structural testing). The same
approach applies to object-oriented programs and for the same reasons. The techniques
described in previous sections are all based on specification of intended behavior. They
should be augmented (but never replaced) by structural techniques.

If we compare the implementation of class Model shown in Figures 15.1 and 15.2
with its specification in Figures 15.3 and 15.6, we notice that the code uses an instance
variable legalConfig and an internal (private) method checkConfiguration to optimize
the implementation of method isLegalConfiguration. The functional test cases shown
in Table 15.1 do not include method checkConfiguration, though some of them will call
it indirectly through isLegalConfiguration. An alert test designer will note that every
modification of the object state that could possibly invalidate a configuration should
reset the hidden legalConfig variable to False , and will derive structural test cases to
cover behaviors not sufficiently exercised by functional test cases.

The chief difference between functional testing techniques for object-oriented soft-
ware and their counterparts for procedural software (Chapters 10, 11, and 14) is the
central role of object state and of sequences of method invocations to modify and ob-

294 Testing Object-Oriented Software

O:Order C20:Model ChiMod:ModelDB C20Comp:Component ChiSlot:SlotDB ChiComp:ComponentDB

selectModel()

getModel(C20)

extract(C20)

select()

addComponent(HD60)

contains(HD60)

found

isCompatible(HD60)

C20slot:Slots

incompatible

fail

addComponent(HD20)

contains(HD20)

found

isCompatible(HD20)

compatible

success

bind

Figure 15.12: A (partial) sequence diagram that specifies the interactions among ob-
jects of type Order, Model, ModelDB, Component, ComponentDB, Slots, and SlotDB,
to select a computer, add an illegal component, and then add a legal one.

Structural Testing of Classes 295

serve object state. Similarly, structural test design must be extended beyond considera-
tion of control and data flow in a single method to take into account how sequences of
method invocations interact. For example, tests of isLegalConfiguration would not be
sufficient without considering the prior state of private variable legalConfig.

Since the state of an object is comprised of the values of its instance variables, intraclass
structural testingthe number of possible object states can be enormous. We might choose to consider

only the instance variables that do not appear in the specification, and add only those
to the state machine representation of the object state. In the class Model example, we
will have to add only the state of the Boolean variable legalConfig, which can at most
double the number of states (and at worst quadruple the number of transitions). While
we can model the concrete values of a single Boolean variable like legalConfig, this
approach would not work if we had a dozen such variables, or even a single integer
variable introduced in the implementation. To reduce the enormous number of states
obtained by considering the combinations of all values of the instance variables, we
could select a few representative values.

Another way to reduce the number of test cases based on interaction through in-
stance variable values while remaining sensitive enough to catch many common over-
sights is to model not the values of the variables, but the points at which the variables
receive those values. This is the same intuition behind data flow testing described
in Chapter 13, although it requires some extension to cover sequences in which one
method defines (sets) a variable and another uses that variable. Definition-use pairs for
the instance variables of an object are computed on an intraclass control flow graph
that joins all the methods of a single class, and thus allows pairing of definitions and
uses that occur in different methods.

Figure 15.13 shows a partial intraclass control flow graph of class Model. Each
method is modeled with a standard control flow graph (CFG), just as if it were an
independent procedure, except that these are joined to allow paths that invoke different
methods in sequence. To allow sequences of method calls, the class itself is modeled
with a node class Model connected to the CFG of each method. Method Model includes
two extra statements that correspond to the declarations of variables legalConfig and
modelDB that are initialized when the constructor is invoked.3

Sometimes definitions and uses are made through invocation of methods of other
classes. For example, method addComponent calls method contains of class compo-
nentDB. Moreover, some variables are structured; for example, the state variable slot is
a complex object. For the moment, we simply “unfold” the calls to external methods,
and we treat arrays and objects as if they were simple variables.

A test case to exercise a definition-use pair (henceforth DU pair) is a sequence of
method invocations that starts with a constructor, and includes the definition followed
by the use without any intervening definition (a definition-clear path). A suite of test
cases can be designed to satisfy a data flow coverage criterion by covering all such
pairs. In that case we say the test suite satisfies the all DU pairs adequacy criterion. D all DU pairs

adequacy
criterion

Consider again the private variable legalConfig in class Model, Figures 15.1 and
15.2. There are two uses of legalConfig, both in method isLegalConfiguration, one

3We have simplified Figure 15.13 by omitting methods getHeightCm, getWidthCm, getDepthCm, and
getWeightGm, since they depend only on the constructor and do not affect other methods. Exception handlers
are excluded since they will be treated separately, as described in Section 15.12.

296 Testing Object-Oriented Software

ModelDB modelDB = null

modelDB = NoModel

1.2

Model() 1.1

1.3

1.4

1.5exit Model

3.1

3.2modelID = NoModel

3.3longName = “No...selected”

3.4Slot = null

3.5exit deselectModel

2.1

openDB() 2.2

modelDB getModel(modelID,this) 2.3

exit selectModel 2.4

4.1

4.2

class
Model

4.3Component comp = new Component(order,sku)

True

4.4

4.5

False

4.7

True

4.6legalConfig=false

4.10

4.8

False

4.9legalConfig=false;

7.1

7.2

7.3checkConfiguration();

True

7.4return legalConfig

False

5.1void removeComponent (int slotIndex)

5.3slots[slotIndex].unbind

True

5.4legalConfig=false

False

5.2

5.5exit removeComponent

6.1void checkConfiguration()

6.5Slot slot=slots[i]6.9exit checkConfiguration

False

6.2legalConfig=true

6.3int i=0

6.4

6.6++i

6.7

True False

6.8legalConfig=false

True

if(slot.required && !slot.isBound()

if i<slot.length

void deselectModel(String modelID)

void selectModel(String modelID)

void addComponent(int slotIndex, String sku)
Slot slot[slotIndex]

if (componentDB contains (sku))

if (Comp.isCompatible(slot,slotID))

exit addComponent

boolean isLegalConfiguratuon()

boolean legalConfig = false

if (!legalConfig)

if (slots[slotIndex].isBound())

slot.unbind();

slot.unbind(); slot.bind(comp);

Figure 15.13: A partial intraclass control flow graph for the implementation of class
Model in Figures 15.1 and 15.2.

Structural Testing of Classes 297

in the if and one in the return statement; and there are several definitions in methods
addComponent, removeComponent, checkConfiguration and in the constructor, which
initializes legalConfig to False. The all DU pairs adequacy criterion requires a test case
to exercise each definition followed by each use of legalConfig with no intervening
definitions.

Specifications do not refer to the variable legalConfig and thus do not directly con-
sider method interactions through legalConfig or contribute to defining test cases to
exercise such interactions. This is the case, for example, in the invocation of method
checkConfiguration in isLegalConfiguration: The specification suggests that a single
invocation of method isLegalConfiguration can be sufficient to test the interactions in-
volving this method, while calls to method checkConfiguration in isLegalConfiguration
indicate possible failures that may be exposed only after two calls of method isLe-
galConfiguration. In fact, a first invocation of isLegalConfiguration with value True
for legalConfig implies a call to checkConfiguration and consequent new definitions of
legalConfig. Only a second call to isLegalConfiguration would exercise the use of the
new value in the if statement, thus revealing failures that may derive from bad updates
of legalConfig in checkConfiguration.

The all DU pairs adequacy criterion ensures that every assignment to a variable is
tested at each of the uses of that variable, but like other structural coverage criteria it
is not particularly good at detecting missing code. For example, if the programmer
omitted an assignment to legalConfig, there would be no DU pair connecting the miss-
ing assignment to the use. However, assignments to legalConfig are correlated with
updates to slots, and all DU pairs coverage with respect to slots is likely to reveal a
missing assignment to the Boolean variable. Correlation among assignments to related
fields is a common characteristic of the structure of object-oriented software.

Method calls and complex state variables complicate data flow analysis of object-
oriented software, as procedure calls and structured variables do in procedural code. interclass

structural testingAs discussed in Chapters 6 and 13, there is no universal recipe to deal with interclass
calls. Test designers must find a suitable balance between costs and benefits.

A possible approach to deal with interclass calls consists in proceeding incremen-
tally following the dependence relation, as we did for functional interclass testing.
The dependence relation that can be derived from code may differ from the depen-
dence relation derived from specifications. However, we can still safely assume that
well-designed systems present at most a small number of easily breakable cycles. The
dependencies of the implementation and specification of class Model are the same and
are shown in Figure 15.11.

Leaf classes of the dependence hierarchy can be analyzed in isolation by identify-
ing definitions and uses of instance variables, as just shown. The data flow information
collected on leaf classes can be summarized by marking methods that access but do
not modify the state as Inspectors; methods that modify, but do not otherwise access D inspector

the state, as Modifiers; and methods that both access and modify the state as Inspec- D modifier

tor/Modifiers. D inspector/
modifiersWhen identifying inspectors, modifiers and inspector/modifiers, we consider the

whole object state. Thus, we mark a method as inspector/modifier even if it uses just
one instance variable and modifies a different one. This simplification is crucial to

298 Testing Object-Oriented Software

scalability, since distinguishing uses and definitions of each individual variable would
quickly lead to an unmanageable amount of information while climbing the depen-
dence hierarchy.

If methods contain more than one execution path, we could summarize the whole
method as an inspector, modifier, or inspector/modifier, or we could select a subset
of paths to be considered independently. A single method might include Inspector,
Modifier, and Inspector/Modifier paths.

Once the data flow information of leaf classes has been summarized, we can pro-
ceed with classes that only use or contain leaf classes. Invocations of modifier methods
and inspector/modifiers of leaf classes are considered as definitions. Invocations of
inspectors and inspector/modifiers are treated as uses. When approximating inspec-
tor/modifiers as uses, we assume that the method uses the values of the instance vari-
ables for computing the new state. This is a common way of designing methods, but
some methods may fall outside this pattern. Again, we trade precision for scalability
and reduced cost.

We can then proceed incrementally analyzing classes that depend only on classes
already analyzed, until we reach the top of the hierarchy. In this way, each class is
always considered in isolation, and the summary of information at each step prevents
exponential growth of information, thus allowing large classes to be analyzed, albeit at
a cost in precision.

Figure 15.14 shows the summary information for classes Slot, ModelDB, and Model.
The summary information for classes Slot and ModelDB can be used for computing
structural coverage of class Model without unfolding the method calls. The summary
information for class Model can be used to compute structural coverage for class Order
without knowing the structure of the classes used by class Order. Method checkCon-
figuration is not included in the summary information because it is private. The three
paths in checkConfiguration are included in the summary information of the calling
method isLegalConfiguration.

While summary information is usually derived from child classes, sometimes it is
useful to provide the same information without actually performing the analysis, as
we have done when analyzing class Model. This is useful when we cannot perform
data flow analysis on the child classes, as when child classes are delivered as a closed
component without source code, or are not available yet because the development is
still in progress.

15.8 Oracles for Classes

Unit (intraclass) and integration (interclass) testing require suitable scaffolding to ex-
ercise the classes under test (drivers and stubs) and to inspect the test results (oracles).
Constructing stubs and drivers for object-oriented software is essentially similar to
the same task for procedural programs, and as in procedural programs, stubs can be
avoided to the extent that the order of test execution is aligned with the build order of
the software system. Oracles, however, can be more difficult to construct, owing to
encapsulation of object state.

The effect of executing a method or a whole sequence of methods in a test case

Oracles for Classes 299

Class Slot
Slot() modifier
bind() modifier
unbind() modifier
isBound() inspector

Class ModelDB
ModelDB() modifier
getModel() inspector
findModel() inspector

Class Model
Model() modifier
selectModel() modifier
deselectModel() modifier
addComponent() [1,2,8,9,10] inspector/modifier
addComponent() [1,2,3,4,5,6,10] inspector/modifier
addComponent() [1,2,3,4,7,10] inspector/modifier
removeComponent() [1,2,3,4,5] inspector/modifier
removeComponent() [1,2,4,5] inspector/modifier
isLegalConfiguration() [1,2,3,[1,2,3,4,9],4] inspector/modifier
isLegalConfiguration() [1,2,3,[1,2,3,4,5,6,7,4,9],4] inspector/modifier
isLegalConfiguration() [1,2,3,[1,2,3,4,5,6,7,8,4,9],4] inspector/modifier
isLegalConfiguration() [1,2,4] modifier

Figure 15.14: Summary information for structural interclass testing for classes Slot,
ModelDB, and Model. Lists of CFG nodes in square brackets indicate different paths,
when methods include more than one part.

300 Testing Object-Oriented Software

is not only the outputs produced, but also the state of the objects after execution. For
example, if method deselectModel of class Model does not clear the array slots, it is
erroneous, even if it produces the expected visible outputs. Thus, oracles need to check
the validity of both output and state. Unfortunately for the oracle builder, though, the
state of objects may not be directly accessible. For example, variable slots is private
and thus cannot be directly accessed by an oracle outside the class under test.

One approach to building oracles is to break the encapsulation, for example, by
modifying the source code to allow inspection of private variables. If we violate en-
capsulation by modifying code just for the purpose of testing, rather than leaving the
modifications in the actual delivered code, then we risk differences in behavior between
what is tested and what is used. We may mask faults, or we may inadvertently insert
faults not present in the original code, particularly if we make modifications by hand.
Even a small difference in performance can be important in a real-time system or in a
multi-threaded system sensitive to scheduler decisions.

Modifications that remain in the code, or (better) design rules that require program-
mers to provide observability interfaces, avoid discrepancies between the production
code and the tested code. This is a particularly attractive option if the interface for
observing object state can be separated from the main class, as one can for example
do with a C++ friend class.4 An observability interface can be a collection of observer
methods, or a single method to produce a representation of the full object state. Often
an interface that produces a readable, canonical representation of an object value will
be useful in debugging as well as in testing.

A second alternative is not to reveal the internal state of an object per se, but to
provide a way of determining whether two objects are equivalent. Here “equivalent”
does not mean that the internal states of two objects are identical, but that they represent
the same abstract value. For example, we might consider the Java Vector class as
representing a sequence. If so, then not only might two vectors with different capacities
be considered equivalent, but we might even consider a vector object and a linked list
object to be equivalent if they contain the same elements in the same order.

An (abstract) check for equivalence can be used in a test oracle if test cases ex-
ercise two sequences of method calls that should (or should not) produce the sameequivalent scenarios

object state. Comparing objects using this equivalent scenarios approach is particu-
larly suitable when the classes being tested are an instance of a fairly simple abstract
data type, such as a dictionary structure (which includes hash tables, search trees, etc.),
or a sequence or collection.

Table 15.3 shows two sequences of method invocations, one equivalent and one
non-equivalent to test case TCE for class Model. The equivalent sequence is obtained
by removing “redundant” method invocations — invocations that brings the system to
a previous state. In the example, method deselectModel cancels the effect of previous
invocations of method selectModel and addComponent. The nonequivalent sequence
is obtained by selecting a legal subset of method invocations that bring the object to a
different state.

4A “friend” class in C++ is permitted direct access to private variables in another class. There is no
direct equivalent in Java or SmallTalk, although in Java one could obtain a somewhat similar effect by using
package visibility for variables and placing oracles in the same package.

Polymorphism and Dynamic Binding 301

Test Case TCE
selectModel(M1)
addComponent(S1,C1)
addComponent(S2,C2)
isLegalConfiguration()
deselectModel()
selectModel(M2)
addComponent(S1,C1)
isLegalConfiguration()

Scenario TCE1
selectModel(M2)
addComponent(S1,C1)
isLegalConfiguration()

EQUIVALENT

Scenario TCE2
selectModel(M2)
addComponent(S1,C1)
addComponent(S2,C2)
isLegalConfiguration()

NON-EQUIVALENT

Table 15.3: Equivalent and nonequivalent scenarios (invocation sequences) for test case TCE from Table
15.1 for class Model.

Producing equivalent sequences is often quite simple. While finding nonequivalent
sequences is even easier, choosing a few good ones is difficult. One approach is to
hypothesize a fault in the method that “generated” the test case, and create a sequence
that could be equivalent if the method contained that fault. For example, test case TCE
was designed to test method deselectModel. The nonequivalent sequence of Table 15.3
leads to a state that could be produced if method deselectModel did not clear all slots,
leaving component C2 bound to slot S2 in the final configuration.

One sequence of method invocations is equivalent to another if the two sequences
lead to the same object state. This does not necessarily mean that their concrete repre-
sentation is bit-for-bit equal. For example, method addComponent binds a component
to a slot by creating a new Slot object (Figure 15.2). Starting from two identical Model
objects, and calling addComponent on both with exactly the same parameters, would
result in two objects that represent the same information but that nonetheless would
contain references to distinct Slot objects. The default equals method inherited from
class Object, which makes a bit-for-bit comparison, would not consider them equiva-
lent. A good practice is to add a suitable observer method to a class (e.g., by overriding
the default equals method in Java).

15.9 Polymorphism and Dynamic Binding

Limited use of polymorphism and dynamic binding is easily addressed by unfolding
polymorphic calls, considering each method that can be dynamically bound to each
polymorphic call. Complete unfolding is impractical when many references may each
be bound to instances of several subclasses.

Consider, for example, the code fragment in Figure 15.15. Object Account may by
an instance of any of the classes USAccount, UKAccount, EUAccount, JPAccount, or
OtherAccount. Method validateCredit can be dynamically bound to methods validate-
Credit of any of the classes EduCredit, BizCredit, or IndividualCredit, each implementing
different credit policies. Parameter creditCard may be dynamically bound to VISACard,

302 Testing Object-Oriented Software

1 abstract class Credit {
15 . . .
16 abstract boolean validateCredit(Account a, int amt, CreditCard c);
60 . . .
61 }

Figure 15.15: A method call in which the method itself and two of its parameters can
be dynamically bound to different classes.

AmExpCard, or ChipmunkCard, each with different characteristics. Even in this simple
example, replacing the calls with all possible instances results in 45 different cases (5
possible types of account ⇥ 3 possible types of credit ⇥ 3 possible credit cards).

The explosion in possible combinations is essentially the same combinatorial ex-
plosion encountered if we try to cover all combinations of attributes in functional test-
ing, and the same solutions are applicable. The combinatorial testing approach pre-
sented in Chapter 11 can be used to choose a set of combinations that covers each pair
of possible bindings (e.g., Business account in Japan, Education customer using Chip-
munk Card), rather than all possible combinations (Japanese business customer using
Chipmunk card). Table 15.4 shows 15 cases that cover all pairwise combinations of
calls for the example of Figure 15.15.

Account Credit creditCard
USAccount EduCredit VISACard
USAccount BizCredit AmExpCard
USAccount individualCredit ChipmunkCard
UKAccount EduCredit AmExpCard
UKAccount BizCredit VISACard
UKAccount individualCredit ChipmunkCard
EUAccount EduCredit ChipmunkCard
EUAccount BizCredit AmExpCard
EUAccount individualCredit VISACard
JPAccount EduCredit VISACard
JPAccount BizCredit ChipmunkCard
JPAccount individualCredit AmExpCard
OtherAccount EduCredit ChipmunkCard
OtherAccount BizCredit VISACard
OtherAccount individualCredit AmExpCard

Table 15.4: A set of test case specifications that cover all pairwise combinations of the
possible polymorphic bindings of Account, Credit, and creditCard.

The combinations in Table 15.4 were of dynamic bindings in a single call. Bind-
ings in a sequence of calls can also interact. Consider, for example, method getYTD-
Purchased of class Account shown in Figure 15.4 on page 278, which computes the

Inheritance 303

total yearly purchase associated with one account to determine the applicable discount.
Chipmunk offers tiered discounts to customers whose total yearly purchase reaches a
threshold, considering all subsidiary accounts.

The total yearly purchase for an account is computed by method getYTDPurchased,
which sums purchases by all customers using the account and all subsidiaries. Amounts
are always recorded in the local currency of the account, but getYTDPurchased sums
the purchases of subsidiaries even when they use different currencies (e.g., when some
are bound to subclass USAccount and others to EUAccount). The intra- and interclass
testing techniques presented in the previous section may fail to reveal this type of fault.
The problem can be addressed by selecting test cases that cover combinations of poly-
morphic calls and bindings. To identify sequential combinations of bindings, we must
first identify individual polymorphic calls and binding sets, and then select possible
sequences.

Let us consider for simplicity only the method getYTDPurchased. This method
is called once for each customer and once for each subsidiary of the account and in
both cases can be dynamically bound to methods belonging to any of the subclasses of
Account (UKAccount, EUAccount, and so on). At each of these calls, variable totalPur-
chased is used and changed, and at the end of the method it is used twice more (to set
an instance variable and to return a value from the method).

Data flow analysis may be used to identify potential interactions between possible
bindings at a point where a variable is modified and points where the same value is
used. Any of the standard data flow testing criteria could be extended to consider each
possible method binding at the point of definition and the point of use. For instance, a
single definition-use pair becomes n⇥m pairs if the point of definition can be bound
in n ways and the point of use can be bound in m ways. If this is impractical, a weaker
but still useful alternative is to vary both bindings independently, which results in m or
n pairs (whichever is greater) rather than their product. Note that this weaker criterion
would be very likely to reveal the fault in getYTDPurchased, provided the choices of
binding at each point are really independent rather than going through the same set of
choices in lockstep. In many cases, binding sets are not mutually independent, so the
selection of combinations is limited.

15.10 Inheritance

Inheritance does not introduce new classes of faults except insofar as it is associated
with polymorphism and dynamic binding, which we have already discussed, and ex-
ception handling, which is discussed in Section 15.12. It does provide an opportunity
for optimization by reusing test cases and even test executions. Subclasses share meth-
ods with ancestors. Identifying which methods do not need to be retested and which
test cases can be reused may significantly reduce testing effort.

Methods of a subclass can be categorized as

New: if they are newly defined in the subclass — that is, they do not occur in the an-
cestor. New methods include those with the same name but different parameters
than methods in ancestor classes.

304 Testing Object-Oriented Software

Method Intra funct Intra struct Inter funct Inter struct
LineItem hT SLI1,Y i hT SLI2,Y i hT SLI3,Y i hT SLI4,Y i
validItem hT SvI1,Ni h�,�i h�,�i h�,�i
getUnitPrice hT SgUP1,Ni h�,�i hT SgUP3,Ni h�,�i
getExtendedPrice hT SgXP1,Y i hT SgXP2,Y i hT SgXP3,Y i hT SgXP4,Y i
getWeightGm hT SgWG1,Ni h�,�i h�,�i h�,�i
getHeightCm hT SgHC1,Ni h�,�i h�,�i h�,�i
getWidthCm hT SgWC1,Ni h�,�i h�,�i h�,�i
getDepthCm hT SgDC1,Ni h�,�i h�,�i h�,�i
Legend: hT SI ,Bi refers to test set I, to be executed if B = Y .

h�,�i means no applicable tests.

Table 15.5: Testing history for class LineItem

Recursive: if they are inherited from the ancestor without change — that is, they occur
only in the ancestor.

Redefined: if they are overridden in the subclass, that is, both occur in the subclass.

Abstract new: if they are newly defined and abstract in the subclass.

Abstract recursive: if they are inherited from the ancestor, where they are abstract.

Abstract redefined: if they are redefined in the subclass, and they are abstract in the
ancestor.

When testing a base class, one that does not specialize a previously tested class,
we can summarize the testing information in a simple table that indicates the sets of
generated and executed test cases. Such a table is called a testing history.testing history

In general we will have four sets of test cases for a method: intraclass functional,
intraclass structural, interclass functional, and interclass structural. For methods that
do not call methods in other classes, we will have only intraclass test cases, since no
integration test focuses on such methods. For abstract methods, we will only have
functional test cases, since we do not have the code of the method. Each set of test
cases is marked with a flag that indicates whether the test set can be executed.

Table 15.5 shows a testing history for class LineItem, whose code is shown in
Figure 15.16. Methods validItem, getWeightGm, getHeightCm, getWidthCm, and get-
DepthCm are abstract and do not interact with external classes; thus we only have
intraclass functional test cases that cannot be directly executed. Method getUnitPrice
is abstract, but from the specifications (not shown here) we can infer that it interacts
with other classes; thus we have both intra- and interclass functional test cases. Both
the constructor and method getExtendedPrice are implemented and interact with other
classes (Order and AccountType, respectively), and thus we have all four sets of test
cases.

New and abstract new methods need to be tested from scratch, thus we need to
derive the needed test cases and execute them. We report the testing activity in the
testing history of the new class by adding a new row and new test cases. Recursive and

Inheritance 305

1 /** One line item of a customer order (abstract). */
2 public abstract class LineItem {
3

4 /** The order this LineItem belongs to. */
5 protected Order order;
6

7 /** Constructor links item to owning order. Must call in subclasses. */
8 public LineItem(Order order) { order = order; }
9

10 /** Stock-keeping unit (sku) is unique key to all product databases. */
11 public String sku;
12

13 /** Number of identical units to be purchased. */
14 public int units=1;
15

16 /** Has this line item passed all validation tests? */
17 public abstract boolean validItem();
18

19 /** Price of a single item. */
20 public abstract int getUnitPrice(AccountType accountType);
21

22 /** Extended price for number of units */
23 public int getExtendedPrice(AccountType accountType)
24 { return units * this.getUnitPrice(accountType); }
25

26 // Dimensions for packing and shipping (required of all top-level items)
27 /** Weight in grams */
28 public abstract int getWeightGm();
29 /** Height in centimeters */
30 public abstract int getHeightCm();
31 /** Width in Centimeters. */
32 public abstract int getWidthCm();
33 /** Depth in Centimeters */
34 public abstract int getDepthCm();
35 }

Figure 15.16: Part of a Java implementation of the abstract class LineItem.

306 Testing Object-Oriented Software

Method Intra funct Intra struct Inter funct Inter struct
LineItem hT SLI1,Ni hT SLI2,Ni hT SLI3,Ni hT SLI4,Ni
validItem hT SvI1,Ni h�,�i h�,�i h�,�i
getUnitPrice hT SgUP1,Y i hT S0gUP2,Y i hT SgUP3,Y i hT S0gUP4,Y i
getExtendedPrice hT SgXP1,Ni hT SgXP2,Ni hT SgXP3,Ni hT SgXP4,Ni
getWeightGm hT SgWG1,Ni h�,�i h�,�i h�,�i
getHeightCm hT SgHC1,Ni h�,�i h�,�i h�,�i
getWidthCm hT SgWC1,Ni h�,�i h�,�i h�,�i
getDepthCm hT SgDC1,Ni h�,�i h�,�i h�,�i
CompositeItem hT S0CM1,Y i hT S0CM2,Y i hT S0CM3,Y i hT S0CM4,Y i

Table 15.6: Testing history for class CompositeItem. New test sets are marked with a
prime.

abstract recursive methods do not need to be retested. Thus the old test sets are copied
into the new table and marked as not-to-be-executed. Redefined and abstract redefined
methods must be retested, so we add new test cases and mark them to be executed.

Table 15.6 shows the testing history for class CompositeItem that specializes class
LineItem. The code of class CompositeItem is shown in Figure 15.17. Class Compos-
iteItem adds a constructor, and thus we add a line to the testing history that indicates the
four sets of test cases to be added and executed. It redefines method getUnitPrice, which
was virtual in class LineItem: the functional test cases derived for class LineItem are
thus executed, and new structural test cases are added. All other classes are inherited,
and thus the testing history reports all test cases and marks them as not-to-be-executed.

The testing history approach reduces the number of tests to be executed, but re-
quires extra effort of keeping track of testing activities. Effort is repaid mainly when it
is possible to avoid designing new test cases, but when the cost of executing test cases
is high (e.g., because the test requires interaction with an external device or a human)
the savings in test execution cost can also be significant. If the cost of executing test
cases is negligible, it may be cheaper to simply retest all classes regardless of the tests
executed on the ancestors.

15.11 Genericity

Generics, also known as parameterized types or (in C++) as templates, are an im-
portant tool for building reusable components and libraries. A generic class (say,
linked lists) is designed to be instantiated with many different parameter types (e.g.,
LinkedList<String> and LinkedList<Integer>). We can test only instantiations, not the
generic class itself, and we may not know in advance all the different ways a generic
class might be instantiated.

A generic class is typically designed to behave consistently over some set of per-
mitted parameter types. Therefore the testing (and analysis) job can be broken into
two parts: showing that some instantiation is correct and showing that all permitted
instantiations behave identically.

Genericity 307

1 package Orders;
2 import Accounts.AccountType;
3 import Prices.Pricelist;
4 import java.util.*;
5

6 /**
7 * A composite line item includes a ”wrapper” item for the whole
8 * bundle and a set of zero or more component items.
9 */

10 public abstract class CompositeItem extends LineItem {
11

12 /**
13 * A composite item has some unifying name and base price
14 * (which might be zero) and has zero or more additional parts,
15 * which are themselves line items.
16 */
17 private Vector parts = new Vector();
18

19 /**
20 * Constructor from LineItem, links to an encompassing Order.
21 */
22 public CompositeItem(Order order) {
23 super(order);
24 }
25

26 public int getUnitPrice(AccountType accountType) {
27 Pricelist prices = new Pricelist();
28 int price = prices.getPrice(sku, accountType);
29 for (Enumeration e = parts.elements(); e.hasMoreElements();)
30 {
31 LineItem i = (LineItem) e.nextElement();
32 price += i.getUnitPrice(accountType);
33 }
34 return price;
35 }
36 }
37

Figure 15.17: Part of a Java implementation of class CompositeItem.

308 Testing Object-Oriented Software

Testing a single instantiation raises no particular problems, provided we have source
code for both the generic class and the parameter class. Roughly speaking, we can de-
sign test cases as if the parameter were copied textually into the body of the generic
class.

Consider first the case of a generic class that does not make method calls on, nor
access fields of, its parameters. Ascertaining this property is best done by inspecting
the source code, not by testing it. If we can nonetheless conjecture some ways in
which the generic and its parameter might interact (e.g., if the generic makes use of
some service that a parameter type might also make use of, directly or indirectly), then
we should design test cases aimed specifically at detecting such interaction.

Gaining confidence in an unknowable set of potential instantiations becomes more
difficult when the generic class does interact with the parameter class. For example,
Java (since version 1.5) has permitted a declaration like this:

class PriorityQueue<Elem implements Comparable> { . . .}

The generic PriorityQueue class will be able to make calls on the methods of in-
terface Comparable. Now the behavior of PriorityQueue<E> is not independent of E,
but it should be dependent only in certain very circumscribed ways, and in particular it
should behave correctly whenever E obeys the requirements of the contract implied by
Comparable.

The contract imposed on permitted parameters is a kind of specification, and spec-
ification-based (functional) test selection techniques are an appropriate way to select
representative instantiations of the generic class. For example, if we read the inter-
face specification for java.lang.Comparable, we learn that most but not all classes that
implement Comparable also satisfy the rule

(x.compareTo(y) == 0) == (x.equals(y))

Explicit mention of this condition strongly suggests that test cases should include in-
stantiations with classes that do obey this rule (class String, for example) and others
that do not (e.g., class BigDecimal with two BigDecimal values 4.0 and 4.00).

15.12 Exceptions

Programs in modern object-oriented languages use exceptions to separate handling
of error cases from the primary program logic, thereby simplifying normal control
flow. Exceptions also greatly reduce a common class of faults in languages without
exception-handling constructs. One of the most common faults in C programs, for ex-
ample, is neglecting to check for the error indications returned by a C function. In a
language like Java, an exception is certain to interrupt normal control flow.

The price of separating exception handling from the primary control flow logic is
introduction of implicit control flows. The point at which an exception is caught and
handled may be far from the point at which it is thrown. Moreover, the association of
exceptions with handlers is dynamic. In most object-oriented languages and procedural

Exceptions 309

languages that provide exception handling, an exception propagates up the stack of
calling methods until it reaches a matching handler.

Since exceptions introduce a kind of control flow, one might expect that it could be
treated like other control flow in constructing program models and deriving test cases.
However, treating every possible exception this way would create an unwieldy control
flow graph accounting for potential exceptions at every array subscript reference, every
memory allocation, every cast, and so on, and these would be multiplied by matching
them to every handler that could appear immediately above them on the call stack.
Worse, many of these potential exceptions are actually impossible, so the burden would
not be just in designing test cases for each of them but in deciding which can actually
occur. It is more practical to consider exceptions separately from normal control flow
in test design.

We can dismiss from consideration exceptions triggered by program errors signaled
by the underlying system (subscript errors, bad casts, etc.), since exercising these ex-
ceptions adds nothing to other efforts to prevent or find the errors themselves. If a
method A throws an exception that indicates a programming error, we can take almost
the same approach. However, if there are exception handlers for these program error
exceptions, such as we may find in fault-tolerant programs or in libraries that attempt
to maintain data consistency despite errors in client code, then it is necessary to test
the error recovery code (usually by executing it together with a stub class with the
programming error). This is different and much less involved than testing the error
recovery code coupled with every potential point at which the error might be present in
actual code.

Exceptions that indicate abnormal cases but not necessarily program errors (e.g.,
exhaustion of memory or premature end-of-file) require special treatment. If the han-
dler for these is local (e.g., a Java try block with an exception handler around a group
of file operations), then the exception handler itself requires testing. Whether to test
each individual point where exceptions bound to the same handler might be raised (e.g.,
each individual file operation within the same try block) is a matter of judgment.

The remaining exceptions are those that are allowed to propagate beyond the local
context in which they are thrown. For example, suppose method A makes a call to
method B, within a Java try block with an exception handler for exceptions of class E.
Suppose B has no exception handler for E and makes a call to method C, which throws
E. Now the exception will propagate up the chain of method calls until it reaches the
handler in A. There could be many such chains, which depend in part on overriding
inherited methods, and it is difficult (sometimes even impossible) to determine all and
only the possible pairings of points where an exception is thrown with handlers in other
methods.

Since testing all chains through which exceptions can propagate is impractical, it
is best to make it unnecessary. A reasonable design rule to enforce is that, if a method
propagates an exception without catching it, the method call should have no other ef-
fect. If it is not possible to ensure that method execution interrupted by an exception
has no effect, then an exception handler should be present (even if it propagates the
same exception by throwing it again). Then, it should suffice to design test cases to
exercise each point at which an exception is explicitly thrown by application code, and
each handler in application code, but not necessarily all their combinations.

310 Testing Object-Oriented Software

Open Research Issues

Many problems involved in test and analysis of object-oriented systems are still open.
Most results about functional testing refer to a subset of UML and to algebraic specifi-
cations. Additional work is needed to complete the available methods to cope with all
aspects of object-oriented systems and different specification approaches.

The few techniques for structural testing disclose a wide set of problems that need
additional investigation. We need additional experimental data about the effectiveness
of the available techniques and better ways to cope with interclass testing.

Test and analysis problems of many features that characterize object-oriented sys-
tems, such as exceptions, polymorphism, dynamic binding, and inheritance, have been
investigated only partially and need additional work. Despite a good deal of experience
with object-oriented design, we still have little information about common faults, and
we lack fault taxonomies.

Further Reading

Many recent books on software testing and software engineering address object-oriented
software to at least some degree. The most complete book-length account of current
methods is Binder’s Testing Object Oriented Systems [Bin00].

Structural state-based testing is discussed in detail by Buy, Orso, and Pezzè [BOP00].
The data flow approach to testing software with polymorphism and dynamic binding
was initially proposed by Orso [Ors98]. Harrold, McGregor, and Fitzpatrick [HMF92]
provide a detailed discussion of the use of testing histories for selecting test cases for
subclasses.

Thévenod-Fosse and Waeselynck describe statistical testing using statechart speci-
fications [TFW93]. An excellent paper by Doong and Frankl [DF94] introduces equiv-
alent scenarios. Although Doong and Frankl discuss their application with algebraic
specifications (which are not much used in practice), the value of the approach does
not hinge on that detail.

Related Topics

Basic functional and structural testing strategies are treated briefly here, and readers
who have not already read Chapters 10, 11, and 12 will find there a more thorough pre-
sentation of the rationale and basic techniques for those approaches. Chapters 13 and
14 likewise present the basic data flow and model-based testing approaches in more
detail. As integration testing progresses beyond small clusters of classes to major sub-
systems and components, the interclass testing techniques described in this chapter will
become less relevant, and component testing techniques presented in Chapter 21 more
important. The system and acceptance testing techniques described in Chapter 22 are
as appropriate to object-oriented software as they are to mixed and purely procedural
software systems.

Exceptions 311

Exercises

15.1. The set of test cases given in Table 15.1 is not the smallest test suite that satis-
fies the transition coverage criterion for the finite state machine (FSM) of Fig-
ure 15.7.

(a) Derive a smaller set of test cases that satisfy the transition coverage crite-
rion for the FSM.

(b) Compare the two sets of test cases. What are the advantages of each?

(c) Derive a suite of test cases that satisfies the simple transition coverage cri-
terion but does not satisfy the transition coverage criterion.

15.2. The test cases given in Table 15.1 assume that transitions not given explicitly
are “don’t care,” and thus we do not exercise them. Modify the test suite, first
assuming that omitted transitions are “error” transitions. Next, modify the same
test suite, but instead assuming that the omitted transitions are “self” transitions.
Are the two modified test suites different? Why or why not?

15.3. Generate at least one equivalent and one nonequivalent scenario for at least one
of the test cases TCA, . . . ,TCE of Table 15.1.

15.4. A canonical representation is a unique representation of a set of equivalent ob-
jects. For example, {a,a,c,b}, {c,b,a}, and {a,b,c} are all representations of
the same mathematical set object. If we choose a lexicographically sorted rep-
resentation without duplicates as a canonical representation, then we will use
{a,b,c} as the unique way of writing that set.

Imagine we are using the equivalent scenarios approach to test a hash table class.
Why might we want a toString method that returns a canonical representation of
the table? Give an example of a test case in which you might use it.

312 Testing Object-Oriented Software

Chapter 16

Fault-Based Testing

A model of potential program faults is a valuable source of information for evaluat-
ing and designing test suites. Some fault knowledge is commonly used in functional
and structural testing, for example when identifying singleton and error values for pa-
rameter characteristics in category-partition testing or when populating catalogs with
erroneous values, but a fault model can also be used more directly. Fault-based testing
uses a fault model directly to hypothesize potential faults in a program under test, as
well as to create or evaluate test suites based on its efficacy in detecting those hypo-
thetical faults.

Required Background

• Chapter 9
The introduction to test case selection and adequacy sets the context for this
chapter. Though not strictly required, it is helpful in understanding how the
techniques described in this chapter should be applied.

• Chapter 12
Some basic knowledge of structural testing criteria is required to understand the
comparison of fault-based with structural testing criteria.

16.1 Overview

Engineers study failures to understand how to prevent similar failures in the future.
For example, failure of the Tacoma Narrows Bridge in 1940 led to new understanding
of oscillation in high wind and to the introduction of analyses to predict and prevent
such destructive oscillation in subsequent bridge design. The causes of an airline crash
are likewise extensively studied, and when traced to a structural failure they frequently
result in a directive to apply diagnostic tests to all aircraft considered potentially vul-
nerable to similar failures.

313

314 Fault-Based Testing

Experience with common software faults sometimes leads to improvements in de-
sign methods and programming languages. For example, the main purpose of auto-
matic memory management in Java is not to spare the programmer the trouble of
releasing unused memory, but to prevent the programmer from making the kind of
memory management errors (dangling pointers, redundant deallocations, and memory
leaks) that frequently occur in C and C++ programs. Automatic array bounds checking
cannot prevent a programmer from using an index expression outside array bounds,
but can make it much less likely that the fault escapes detection in testing, as well as
limiting the damage incurred if it does lead to operational failure (eliminating, in par-
ticular, the buffer overflow attack as a means of subverting privileged programs). Type
checking reliably detects many other faults during program translation.

Of course, not all programmer errors fall into classes that can be prevented or stat-
ically detected using better programming languages. Some faults must be detected
through testing, and there too we can use knowledge about common faults to be more
effective.

The basic concept of fault-based testing is to select test cases that would distinguish
the program under test from alternative programs that contain hypothetical faults. This
is usually approached by modifying the program under test to actually produce the
hypothetical faulty programs. Fault seeding can be used to evaluate the thoroughness
of a test suite (that is, as an element of a test adequacy criterion), or for selecting test
cases to augment a test suite, or to estimate the number of faults in a program.

16.2 Assumptions in Fault-Based Testing

The effectiveness of fault-based testing depends on the quality of the fault model and
on some basic assumptions about the relation of the seeded faults to faults that might
actually be present. In practice, the seeded faults are small syntactic changes, like
replacing one variable reference by another in an expression, or changing a comparison
from < to <=. We may hypothesize that these are representative of faults actually
present in the program.

Put another way, if the program under test has an actual fault, we may hypothe-
size that it differs from another, corrected program by only a small textual change. If
so, then we need merely distinguish the program from all such small variants (by se-
lecting test cases for which either the original or the variant program fails) to ensureD competent

programmer
hypothesis

detection of all such faults. This is known as the competent programmer hypothesis, an
assumption that the program under test is “close to” (in the sense of textual difference)
a correct program.

Some program faults are indeed simple typographical errors, and others that in-
volve deeper errors of logic may nonetheless be manifest in simple textual differences.
Sometimes, though, an error of logic will result in much more complex differences in
program text. This may not invalidate fault-based testing with a simpler fault model,
provided test cases sufficient for detecting the simpler faults are sufficient also for de-
tecting the more complex fault. This is known as the coupling effect.D coupling effect

hypothesis The coupling effect hypothesis may seem odd, but can be justified by appeal to a
more plausible hypothesis about interaction of faults. A complex change is equivalent

Mutation Analysis 315

Fault-Based Testing: Terminology
Original program: The program unit (e.g., C function or Java class) to be tested.

Program location: A region in the source code. The precise definition is defined rel-
ative to the syntax of a particular programming language. Typical locations are
statements, arithmetic and Boolean expressions, and procedure calls.

Alternate expression: Source code text that can be legally substituted for the text at a
program location. A substitution is legal if the resulting program is syntactically
correct (i.e., it compiles without errors).

Alternate program: A program obtained from the original program by substituting
an alternate expression for the text at some program location.

Distinct behavior of an alternate program R for a test t: The behavior of an alter-
nate program R is distinct from the behavior of the original program P for a test
t, if R and P produce a different result for t, or if the output of R is not defined
for t.

Distinguished set of alternate programs for a test suite T : A set of alternate pro-
grams are distinct if each alternate program in the set can be distinguished from
the original program by at least one test in T .

to several smaller changes in program text. If the effect of one of these small changes
is not masked by the effect of others, then a test case that differentiates a variant based
on a single change may also serve to detect the more complex error.

Fault-based testing can guarantee fault detection only if the competent programmer
hypothesis and the coupling effect hypothesis hold. But guarantees are more than we
expect from other approaches to designing or evaluating test suites, including the struc-
tural and functional test adequacy criteria discussed in earlier chapters. Fault-based
testing techniques can be useful even if we decline to take the leap of faith required
to fully accept their underlying assumptions. What is essential is to recognize the
dependence of these techniques, and any inferences about software quality based on
fault-based testing, on the quality of the fault model. This also implies that developing
better fault models, based on hard data about real faults rather than guesses, is a good
investment of effort.

16.3 Mutation Analysis

Mutation analysis is the most common form of software fault-based testing. A fault
model is used to produce hypothetical faulty programs by creating variants of the pro-
gram under test. Variants are created by “seeding” faults, that is, by making a small
change to the program under test following a pattern in the fault model. The patterns D mutation

operatorfor changing program text are called mutation operators, and each variant program is
D mutantcalled a mutant.

316 Fault-Based Testing

Mutation Analysis: Terminology
Original program under test: The program or procedure (function) to be tested.

Mutant: A program that differs from the original program for one syntactic element
(e.g., a statement, a condition, a variable, a label).

Distinguished mutant: A mutant that can be distinguished for the original program
by executing at least one test case.

Equivalent mutant: A mutant that cannot be distinguished from the original program.

Mutation operator: A rule for producing a mutant program by syntactically modify-
ing the original program.

Mutants should be plausible as faulty programs. Mutant programs that are rejected
by a compiler, or that fail almost all tests, are not good models of the faults we seek to
uncover with systematic testing.

We say a mutant is valid if it is syntactically correct. A mutant obtained fromD valid mutant

the program of Figure 16.1 by substituting while for switch in the statement at line 13
would not be valid, since it would result in a compile-time error. We say a mutant is
useful if, in addition to being valid, its behavior differs from the behavior of the originalD useful mutant

program for no more than a small subset of program test cases. A mutant obtained by
substituting 0 for 1000 in the statement at line 4 would be valid, but not useful, since
the mutant would be distinguished from the program under test by all inputs and thus
would not give any useful information on the effectiveness of a test suite. Defining
mutation operators that produce valid and useful mutations is a nontrivial task.

Since mutants must be valid, mutation operators are syntactic patterns defined rela-
tive to particular programming languages. Figure 16.2 shows some mutation operators
for the C language. Constraints are associated with mutation operators to guide selec-
tion of test cases likely to distinguish mutants from the original program. For example,
the mutation operator svr (scalar variable replacement) can be applied only to variables
of compatible type (to be valid), and a test case that distinguishes the mutant from the
original program must execute the modified statement in a state in which the original
variable and its substitute have different values.

Many of the mutants of Figure 16.2 can be applied equally well to other procedural
languages, but in general a mutation operator that produces valid and useful mutants
for a given language may not apply to a different language or may produce invalid or
useless mutants for another language. For example, a mutation operator that removes
the “friend” keyword from the declaration of a C++ class would not be applicable to
Java, which does not include friend classes.

Mutation Analysis 317

1

2 /** Convert each line from standard input */
3 void transduce() {
4 #define BUFLEN 1000
5 char buf[BUFLEN]; /* Accumulate line into this buffer */
6 int pos = 0; /* Index for next character in buffer */
7

8 char inChar; /* Next character from input */
9

10 int atCR = 0; /* 0=”within line”, 1=”optional DOS LF” */
11

12 while ((inChar = getchar()) != EOF) {
13 switch (inChar) {
14 case LF:
15 if (atCR) { /* Optional DOS LF */
16 atCR = 0;
17 } else { /* Encountered CR within line */
18 emit(buf, pos);
19 pos = 0;
20 }
21 break;
22 case CR:
23 emit(buf, pos);
24 pos = 0;
25 atCR = 1;
26 break;
27 default:
28 if (pos >= BUFLEN-2) fail("Buffer overflow");
29 buf[pos++] = inChar;
30 } /* switch */
31 }
32 if (pos > 0) {
33 emit(buf, pos);
34 }
35 }

Figure 16.1: Program transduce converts line endings among Unix, DOS, and Mac-
intosh conventions. The main procedure, which selects the output line end convention,
and the output procedure emit are not shown.

318 Fault-Based Testing

ID Operator Description Constraint

Operand Modifications
crp constant for constant replacement replace constant C1 with constant C2 C1 6= C2
scr scalar for constant replacement replace constant C with scalar variable X C 6= X
acr array for constant replacement replace constant C with array reference

A[I]
C 6= A[I]

scr struct for constant replacement replace constant C with struct field S C 6= S
svr scalar variable replacement replace scalar variable X with a scalar

variable Y
X 6= Y

csr constant for scalar variable replacement replace scalar variable X with a constant
C

X 6= C

asr array for scalar variable replacement replace scalar variable X with an array
reference A[I]

X 6= A[I]

ssr struct for scalar replacement replace scalar variable X with struct field
S

X 6= S

vie scalar variable initialization elimination remove initialization of a scalar variable
car constant for array replacement replace array reference A[I] with constant

C
A[I] 6= C

sar scalar for array replacement replace array reference A[I] with scalar
variable X

A[I] 6= X

cnr comparable array replacement replace array reference with a compara-
ble array reference

sar struct for array reference replacement replace array reference A[I] with a struct
field S

A[I] 6= S

Expression Modifications
abs absolute value insertion replace e by abs(e) e < 0
aor arithmetic operator replacement replace arithmetic operator y with arith-

metic operator f
e1ye2 6= e1fe2

lcr logical connector replacement replace logical connector y with logical
connector f

e1ye2 6= e1fe2

ror relational operator replacement replace relational operator y with rela-
tional operator f

e1ye2 6= e1fe2

uoi unary operator insertion insert unary operator
cpr constant for predicate replacement replace predicate with a constant value

Statement Modifications
sdl statement deletion delete a statement
sca switch case replacement replace the label of one case with another
ses end block shift move } one statement earlier and later

Figure 16.2: A sample set of mutation operators for the C language, with associated constraints to select
test cases that distinguish generated mutants from the original program.

Fault-Based Adequacy Criteria 319

16.4 Fault-Based Adequacy Criteria

Given a program and a test suite T , mutation analysis consists of the following steps:

Select mutation operators: If we are interested in specific classes of faults, we may
select a set of mutation operators relevant to those faults.

Generate mutants: Mutants are generated mechanically by applying mutation opera-
tors to the original program.

Distinguish mutants: Execute the original program and each generated mutant with
the test cases in T . A mutant is killed when it can be distinguished from the
original program.

Figure 16.3 shows a sample of mutants for program Transduce, obtained by apply-
ing the mutant operators in Figure 16.2. Test suite T S

T S = {1U,1D,2U,2D,2M,End,Long}

kills Mj, which can be distinguished from the original program by test cases 1D, 2U ,
2D, and 2M. Mutants Mi, Mk, and Ml are not distinguished from the original program
by any test in T S. We say that mutants not killed by a test suite are live. live mutants

A mutant can remain live for two reasons:

• The mutant can be distinguished from the original program, but the test suite
T does not contain a test case that distinguishes them (i.e., the test suite is not
adequate with respect to the mutant).

• The mutant cannot be distinguished from the original program by any test case
(i.e., the mutant is equivalent to the original program).

Given a set of mutants SM and a test suite T , the fraction of nonequivalent mutants
killed by T measures the adequacy of T with respect to SM. Unfortunately, the problem
of identifying equivalent mutants is undecidable in general, and we could err either by
claiming that a mutant is equivalent to the program under test when it is not or by
counting some equivalent mutants among the remaining live mutants.

The adequacy of the test suite T S evaluated with respect to the four mutants of
Figure 16.3 is 25%. However, we can easily observe that mutant Mi is equivalent to
the original program (i.e., no input would distinguish it). Conversely, mutants Mk and
Ml seem to be nonequivalent to the original program: There should be at least one test
case that distinguishes each of them from the original program. Thus the adequacy of
T S, measured after eliminating the equivalent mutant Mi, is 33%.

Mutant Ml is killed by test case Mixed, which represents the unusual case of an
input file containing both DOS- and Unix-terminated lines. We would expect that
Mixed would also kill Mk, but this does not actually happen: Both Mk and the original
program produce the same result for Mixed. This happens because both the mutant and
the original program fail in the same way.1 The use of a simple oracle for checking

1The program was in regular use by one of the authors and was believed to be correct. Discovery of the
fault came as a surprise while using it as an example for this chapter.

320 Fault-Based Testing

Mutation Analysis vs. Structural Testing
For typical sets of syntactic mutants, a mutation-adequate test suite will also be

adequate with respect to simple structural criteria such as statement or branch coverage.
Mutation adequacy can simulate and subsume a structural coverage criterion if the set
of mutants can be killed only by satisfying the corresponding test coverage obligations.

Statement coverage can be simulated by applying the mutation operator sdl (state-
ment deletion) to each statement of a program. To kill a mutant whose only difference
from the program under test is the absence of statement S requires executing the mu-
tant and the program under test with a test case that executes S in the original program.
Thus to kill all mutants generated by applying the operator sdl to statements of the
program under test, we need a test suite that causes the execution of each statement in
the original program.

Branch coverage can be simulated by applying the operator cpr (constant for pred-
icate replacement) to all predicates of the program under test with constants True and
False . To kill a mutant that differs from the program under test for a predicate P set
to the constant value False , we need to execute the mutant and the program under test
with a test case that causes the execution of the True branch of P. To kill a mutant that
differs from the program under test for a predicate P set to the constant value True , we
need to execute the mutant and the program under test with a test case that causes the
execution of the False branch of P.

A test suite that satisfies a structural test adequacy criterion may or may not kill
all the corresponding mutants. For example, a test suite that satisfies the statement
coverage adequacy criterion might not kill an sdl mutant if the value computed at the
statement does not affect the behavior of the program on some possible executions.

Original/
ID Operator line Mutant 1U 1D 2U 2D 2M End Long Mixed
Mi ror 28 (pos >= BUFLEN�2)

(pos == BUFLEN�2)
- - - - - - - -

Mj ror 32 (pos > 0)
(pos >= 0)

- x x x x - - -

Mk sdl 16 atCR = 0
nothing

- - - - - - - -

Ml ssr 16 atCR = 0
pos = 0

- - - - - - - x

Test case Description
1U One line, Unix line-end
1D One line, DOS line-end
2U Two lines, Unix line-end
2D Two lines, DOS line-end

Test case Description
2M Two lines, Mac line-end
End Last line not terminated with line-end sequence
Long Very long line (greater than buffer length)
Mixed Mix of DOS and Unix line ends in the same file

Figure 16.3: A sample set of mutants for program Transduce generated with mutation operators from
Figure 16.2. x indicates the mutant is killed by the test case in the column head.

Variations on Mutation Analysis 321

the correctness of the outputs (e.g., checking each output against an expected output)
would reveal the fault. The test suite T S2 obtained by adding test case Mixed to T S
would be 100% adequate (relative to this set of mutants) after removing the fault.

16.5 Variations on Mutation Analysis

The mutation analysis process described in the preceding sections, which kills mutants
based on the outputs produced by execution of test cases, is known as strong mutation.
It can generate a number of mutants quadratic in the size of the program. Each mutant
must be compiled and executed with each test case until it is killed. The time and space
required for compiling all mutants and for executing all test cases for each mutant may
be impractical.

The computational effort required for mutation analysis can be reduced by decreas-
ing the number of mutants generated and the number of test cases to be executed. Weak
mutation analysis decreases the number of tests to be executed by killing mutants when
they produce a different intermediate state, rather than waiting for a difference in the
final result or observable program behavior. weak mutation

analysisWith weak mutation, a single program can be seeded with many faults. A “meta-
mutant” program is divided into segments containing original and mutated source code,
with a mechanism to select which segments to execute. Two copies of the meta-mutant
are executed in tandem, one with only original program code selected and the other
with a set of live mutants selected. Execution is paused after each segment to compare
the program state of the two versions. If the state is equivalent, execution resumes with
the next segment of original and mutated code. If the state differs, the mutant is marked
as dead, and execution of original and mutated code is restarted with a new selection
of live mutants.

Weak mutation testing does not decrease the number of program mutants that must
be considered, but it does decrease the number of test executions and compilations.
This performance benefit has a cost in accuracy: Weak mutation analysis may “kill”
a mutant even if the changed intermediate state would not have an effect on the final
output or observable behavior of the program.

Like structural test adequacy criteria, mutation analysis can be used either to judge
the thoroughness of a test suite or to guide selection of additional test cases. If one is
designing test cases to kill particular mutants, then it may be important to have a com-
plete set of mutants generated by a set of mutation operators. If, on the other hand, the
goal is a statistical estimate of the extent to which a test suite distinguishes programs
with seeded faults from the original program, then only a much smaller statistical sam-
ple of mutants is required. Aside from its limitation to assessment rather than creation statistical

mutation analysisof test suites, the main limitation of statistical mutation analysis is that partial coverage
is meaningful only to the extent that the generated mutants are a valid statistical model
of occurrence frequencies of actual faults. To avoid reliance on this implausible as-
sumption, the target coverage should be 100% of the sample; statistical sampling may
keep the sample small enough to permit careful examination of equivalent mutants.

322 Fault-Based Testing

Estimating Population Sizes

Counting fish Lake Winnemunchie is inhabited by two kinds of fish, a native trout
and an introduced species of chub. The Fish and Wildlife Service wishes to estimate
the populations to evaluate their efforts to eradicate the chub without harming the pop-
ulation of native trout.

The population of chub can be estimated statistically as follows. 1000 chub are
netted, their dorsal fins are marked by attaching a tag, then they are released back into
the lake. Over the next weeks, fishermen are asked to report the number of tagged and
untagged chub caught. If 50 tagged chub and 300 untagged chub are caught, we can
calculate

1000
untagged chub population

=
50
300

and thus there are about 6000 untagged chub remaining in the lake.
It may be tempting to also ask fishermen to report the number of trout caught and

to perform a similar calculation to estimate the ratio between chub and trout. However,
this is valid only if trout and chub are equally easy to catch, or if one can adjust the
ratio using a known model of trout and chub vulnerability to fishing.

Counting residual faults A similar procedure can be used to estimate the number of
faults in a program: Seed a given number S of faults in the program. Test the program
with some test suite and count the number of revealed faults. Measure the number of
seeded faults detected, DS, and also the number of natural faults DN detected. Esti-
mate the total number of faults remaining in the program, assuming the test suite is as
effective at finding natural faults as it is at finding seeded faults, using the formula

S
total natural faults

=
DS

DN

If we estimate the number of faults remaining in a program by determining the
proportion of seeded faults detected, we must be wary of the pitfall of estimating trout
population by counting chub. The seeded faults are chub, the real faults are trout,
and we must either have good reason for believing the seeded faults are no easier to
detect than real remaining faults, or else make adequate allowances for uncertainty.
The difference is that we cannot avoid the problem by repeating the process with trout
— once a fault has been detected, our knowledge of its presence cannot be erased. We
depend, therefore, on a very good fault model, so that the chub are as representative
as possible of trout. Of course, if we use special bait for chub, or design test cases to
detect particular seeded faults, then statistical estimation of the total population of fish
or errors cannot be justified.

Variations on Mutation Analysis 323

Hardware Fault-based Testing
Fault-based testing is widely used for semiconductor and hardware system valida-

tion and evaluation both for evaluating the quality of test suites and for evaluating fault
tolerance.

Semiconductor testing has conventionally been aimed at detecting random errors in
fabrication, rather than design faults. Relatively simple fault models have been devel-
oped for testing semiconductor memory devices, the prototypical faults being “stuck-
at-0” and “stuck-at-1” (a gate, cell, or pin that produces the same logical value re-
gardless of inputs). A number of more complex fault models have been developed for
particular kinds of semiconductor devices (e.g., failures of simultaneous access in dual-
port memories). A test vector (analogous to a test suite for software) can be judged by
the number of hypothetical faults it can detect, as a fraction of all possible faults under
the model.

Fabrication of a semiconductor device, or assembly of a hardware system, is more
analogous to copying disk images than to programming. The closest analog of soft-
ware is not the hardware device itself, but its design — in fact, a high-level design of
a semiconductor device is essentially a program in a language that is compiled into
silicon. Test and analysis of logic device designs faces the same problems as test and
analysis of software, including the challenge of devising fault models. Hardware de-
sign verification also faces the added problem that it is much more expensive to replace
faulty devices that have been delivered to customers than to deliver software patches.

In evaluation of fault tolerance in hardware, the usual approach is to modify the
state or behavior rather than the system under test. Due to a difference in terminol-
ogy between hardware and software testing, the corruption of state or modification
of behavior is called a “fault,” and artificially introducing it is called “fault injection.”
Pin-level fault injection consists of forcing a stuck-at-0, a stuck-at-1, or an intermediate
voltage level (a level that is neither a logical 0 nor a logical 1) on a pin of a semicon-
ductor device. Heavy ion radiation is also used to inject random faults in a running
system. A third approach, growing in importance as hardware complexity increases,
uses software to modify the state of a running system or to simulate faults in a running
simulation of hardware logic design.

Fault seeding can be used statistically in another way: To estimate the number of
faults remaining in a program. Usually we know only the number of faults that have
been detected, and not the number that remains. However, again to the extent that the
fault model is a valid statistical model of actual fault occurrence, we can estimate that
the ratio of actual faults found to those still remaining should be similar to the ratio of
seeded faults found to those still remaining.

Once again, the necessary assumptions are troubling, and one would be unwise to
place too much confidence in an estimate of remaining faults. Nonetheless, a prediction
with known weaknesses is better than a seat-of-the-pants guess, and a set of estimates
derived in different ways is probably the best one can hope for.

While the focus of this chapter is on fault-based testing of software, related tech-

324 Fault-Based Testing

niques can be applied to whole systems (hardware and software together) to evaluate
fault tolerance. Some aspects of fault-based testing of hardware are discussed in the
sidebar on page 323.

Open Research Issues

Fault-based testing has yet to be widely applied in software development, although it
is an important research tool for evaluating other test selection techniques. Its limited
impact on software practice so far can be blamed perhaps partly on computational
expense and partly on the lack of adequate support by industrial strength tools.

One promising direction in fault-based testing is development of fault models for
particular classes of faults. These could result in more sharply focused fault-based
techniques, and also partly address concerns about the extent to which the fault models
conventionally used in mutation testing are representative of real faults. Two areas
in which researchers have attempted to develop focused models, expressed as sets of
mutation operators, are component interfaces and concurrency constructs.

Particularly important is development of fault models based on actual, observed
faults in software. These are almost certainly dependent on application domain and
perhaps to some extent also vary across software development organizations, but too
little empirical evidence is available on the degree of variability.

Further Reading

Software testing using fault seeding was developed by Hamlet [Ham77] and indepen-
dently by DeMillo, Lipton, and Sayward [DLS78]. Underlying theories for fault-based
testing, and in particular on the conditions under which a test case can distinguish faulty
and correct versions of a program, were developed by Morell [Mor90] and extended
by Thompson, Richardson, and Clarke [TRC93]. Statistical mutation using a Bayesian
approach to grow the sample until sufficient evidence has been collected has been de-
scribed by Sahinoglu and Spafford [SS90]. Weak mutation was proposed by Howden
[How82]. The sample mutation operators used in this chapter are adapted from the
Mothra software testing environment [DGK+88].

Exercises

16.1. Consider the C function in Figure 16.4, used to determine whether a misspelled
word differs from a dictionary word by at most one character, which may be a
deletion, an insertion, or a substitution (e.g., “text” is edit distance 1 from “test”
by a substitution, and edit distance 1 from “tests” by deletion of “s”).

Suppose we seed a fault in line 27, replacing s1 +1 by s1 + 0. Is there a test case
that will kill this mutant using weak mutation, but not using strong mutation?
Display such a test case if there is one, or explain why there is none.

Variations on Mutation Analysis 325

1

2 /* edit1(s1, s2) returns TRUE iff s1 can be transformed to s2
3 * by inserting, deleting, or substituting a single character, or
4 * by a no-op (i.e., if they are already equal).
5 */
6 int edit1(char *s1, char *s2) {
7 if (*s1 == 0) {
8 if (*s2 == 0) return TRUE;
9 /* Try inserting a character in s1 or deleting in s2 */

10 if (*(s2 + 1) == 0) return TRUE;
11 return FALSE;
12 }
13 if (*s2 == 0) { /* Only match is by deleting last char from s1 */
14 if (*(s1 + 1) == 0) return TRUE;
15 return FALSE;
16 }
17 /* Now we know that neither string is empty */
18 if (*s1 == *s2) {
19 return edit1(s1 +1, s2 +1);
20 }
21

22 /* Mismatch; only dist 1 possibilities are identical strings after
23 * inserting, deleting, or substituting character
24 */
25

26 /* Substitution: We ”look past” the mismatched character */
27 if (strcmp(s1+1, s2+1) == 0) return TRUE;
28 /* Deletion: look past character in s1 */
29 if (strcmp(s1+1, s2) == 0) return TRUE;
30 /* Insertion: look past character in s2 */
31 if (strcmp(s1, s2+1) == 0) return TRUE;
32 return FALSE;
33 }

Figure 16.4: C function to determine whether one string is within edit distance 1 of
another.

326 Fault-Based Testing

16.2. We have described weak mutation as continuing execution up to the point that a
mutant is killed, then restarting execution of the original and mutated program
from the beginning. Why doesn’t execution just continue after killing a mutant?
What would be necessary to make continued execution possible?

16.3. Motivate the need for the competent programmer and the coupling effect hy-
potheses. Would mutation analysis still make sense if these hypotheses did not
hold? Why?

16.4. Generate some invalid, valid-but-not-useful, useful, equivalent and nonequiva-
lent mutants for the program in Figure 16.1 using mutant operators from Figure
16.2.

Chapter 17

Test Execution

Whereas test design, even when supported by tools, requires insight and ingenuity in
similar measure to other facets of software design, test execution must be sufficiently
automated for frequent reexecution without little human involvement. This chapter de-
scribes approaches for creating the run-time support for generating and managing test
data, creating scaffolding for test execution, and automatically distinguishing between
correct and incorrect test case executions.

Required Background

• Chapter 7
Reasoning about program correctness is closely related to test oracles that rec-
ognize incorrect behavior at run-time.

• Chapters 9 and 10
Basic concepts introduced in these chapters are essential background for under-
standing the distinction between designing a test case specification and executing
a test case.

• Chapters 11 through 16
These chapters provide more context and concrete examples for understanding
the material presented here.

17.1 Overview

Designing tests is creative; executing them should be as mechanical as compiling the
latest version of the product, and indeed a product build is not complete until it has
passed a suite of test cases. In many organizations, a complete build-and-test cycle
occurs nightly, with a report of success or problems ready each morning.

The purpose of run-time support for testing is to enable frequent hands-free reexe-
cution of a test suite. A large suite of test data may be generated automatically from a

327

328 Test Execution

more compact and abstract set of test case specifications. For unit and integration test-
ing, and sometimes for system testing as well, the software under test may be combined
with additional “scaffolding” code to provide a suitable test environment, which might,
for example, include simulations of other software and hardware resources. Executing
a large number of test cases is of little use unless the observed behaviors are classified
as passing or failing. The human eye is a slow, expensive, and unreliable instrument
for judging test outcomes, so test scaffolding typically includes automated test oracles.
The test environment often includes additional support for selecting test cases (e.g.,
rotating nightly through portions of a large test suite over the course of a week) and for
summarizing and reporting results.

17.2 From Test Case Specifications to Test Cases

If the test case specifications produced in test design already include concrete input
values and expected results, as for example in the category-partition method, then pro-
ducing a complete test case may be as simple as filling a template with those values. A
more general test case specification (e.g., one that calls for “a sorted sequence, length
greater than 2, with items in ascending order with no duplicates”) may designate many
possible concrete test cases, and it may be desirable to generate just one instance or
many. There is no clear, sharp line between test case design and test case generation. A
rule of thumb is that, while test case design involves judgment and creativity, test case
generation should be a mechanical step.

Automatic generation of concrete test cases from more abstract test case specifi-
cations reduces the impact of small interface changes in the course of development.
Corresponding changes to the test suite are still required with each program change,
but changes to test case specifications are likely to be smaller and more localized than
changes to the concrete test cases.

Instantiating test cases that satisfy several constraints may be simple if the con-
straints are independent (e.g., a constraint on each of several input parameter values),
but becomes more difficult to automate when multiple constraints apply to the same
item. Some well-formed sets of constraints have no solution at all (“an even, positive
integer that is not the sum of two primes”). Constraints that appear to be independent
may not be. For example, a test case specification that constrains both program input
and output imposes a conjunction of two constraints on output (it conforms to the given
output constraint and it is produced by the given input).

General test case specifications that may require considerable computation to pro-
duce test data often arise in model-based testing. For example, if a test case calls for
program execution corresponding to a certain traversal of transitions in a finite state
machine model, the test data must trigger that traversal, which may be quite complex
if the model includes computations and semantic constraints (e.g., a protocol model in
Promela; see Chapter 8). Fortunately, model-based testing is closely tied to model anal-
ysis techniques that can be adapted as test data generation methods. For example, finite
state verification techniques typically have facilities for generating counter-examples
to asserted properties. If one can express the negation of a test case specification, then
treating it as a property to be verified will result in a counter-example from which a

Scaffolding 329

concrete test case can be generated.

17.3 Scaffolding

During much of development, only a portion of the full system is available for test-
ing. In modern development methodologies, the partially developed system is likely
to consist of one or more runnable programs and may even be considered a version or
prototype of the final system from very early in construction, so it is possible at least
to execute each new portion of the software as it is constructed, but the external inter-
faces of the evolving system may not be ideal for testing; often additional code must be
added. For example, even if the actual subsystem for placing an order with a supplier is
available and fully operational, it is probably not desirable to place a thousand supply
orders each night as part of an automatic test run. More likely a portion of the order
placement software will be “stubbed out” for most test executions.

Code developed to facilitate testing is called scaffolding, by analogy to the tempo-
rary structures erected around a building during construction or maintenance. Scaffold-
ing may include test drivers (substituting for a main or calling program), test harnesses test driver

test harness(substituting for parts of the deployment environment), and stubs (substituting for func-
stubtionality called or used by the software under test), in addition to program instrumen-

tation and support for recording and managing test execution. A common estimate is
that half of the code developed in a software project is scaffolding of some kind, but
the amount of scaffolding that must be constructed with a software project can vary
widely, and depends both on the application domain and the architectural design and
build plan, which can reduce cost by exposing appropriate interfaces and providing
necessary functionality in a rational order.

The purposes of scaffolding are to provide controllability to execute test cases and
observability to judge the outcome of test execution. Sometimes scaffolding is required
to simply make a module executable, but even in incremental development with imme-
diate integration of each module, scaffolding for controllability and observability may
be required because the external interfaces of the system may not provide sufficient
control to drive the module under test through test cases, or sufficient observability of
the effect. It may be desirable to substitute a separate test “driver” program for the full
system, in order to provide more direct control of an interface or to remove dependence
on other subsystems.

Consider, for example, an interactive program that is normally driven through a
graphical user interface. Assume that each night the program goes through a fully
automated and unattended cycle of integration, compilation, and test execution. It is
necessary to perform some testing through the interactive interface, but it is neither
necessary nor efficient to execute all test cases that way. Small driver programs, inde-
pendent of the graphical user interface, can drive each module through large test suites
in a short time.

When testability is considered in software architectural design, it often happens that
interfaces exposed for use in scaffolding have other uses. For example, the interfaces
needed to drive an interactive program without its graphical user interface are likely to
serve also as the interface for a scripting facility. A similar phenomenon appears at a

330 Test Execution

finer grain. For example, introducing a Java interface to isolate the public functionality
of a class and hide methods introduced for testing the implementation has a cost, but
also potential side benefits such as making it easier to support multiple implementations
of the interface.

17.4 Generic versus Specific Scaffolding

The simplest form of scaffolding is a driver program that runs a single, specific test
case. If, for example, a test case specification calls for executing method calls in a
particular sequence, this is easy to accomplish by writing the code to make the method
calls in that sequence. Writing hundreds or thousands of such test-specific drivers, on
the other hand, may be cumbersome and a disincentive to thorough testing. At the
very least one will want to factor out some of the common driver code into reusable
modules. Sometimes it is worthwhile to write more generic test drivers that essentially
interpret test case specifications.

At least some level of generic scaffolding support can be used across a fairly wide
class of applications. Such support typically includes, in addition to a standard in-
terface for executing a set of test cases, basic support for logging test execution and
results. Figure 17.1 illustrates use of generic test scaffolding in the JFlex lexical ana-
lyzer generator.

Fully generic scaffolding may suffice for small numbers of hand-written test cases.
For larger test suites, and particularly for those that are generated systematically (e.g.,
using the combinatorial techniques described in Chapter 11 or deriving test case spec-
ifications from a model as described in Chapter 14), writing each test case by hand is
impractical. Note, however, that the Java code expressing each test case in Figure 17.1
follows a simple pattern, and it would not be difficult to write a small program to con-
vert a large collection of input, output pairs into procedures following the same pattern.
A large suite of automatically generated test cases and a smaller set of hand-written test
cases can share the same underlying generic test scaffolding.

Scaffolding to replace portions of the system is somewhat more demanding, and
again both generic and application-specific approaches are possible. The simplest kind
of stub, sometimes called a mock, can be generated automatically by analysis of themock

source code. A mock is limited to checking expected invocations and producing pre-
computed results that are part of the test case specification or were recorded in a prior
execution. Depending on system build order and the relation of unit testing to integra-
tion in a particular process, isolating the module under test is sometimes considered an
advantage of creating mocks, as compared to depending on other parts of the system
that have already been constructed.

The balance of quality, scope, and cost for a substantial piece of scaffolding soft-
ware — say, a network traffic generator for a distributed system or a test harness for a
compiler — is essentially similar to the development of any other substantial piece of
software, including similar considerations regarding specialization to a single project
or investing more effort to construct a component that can be used in several projects.

The balance is altered in favor of simplicity and quick construction for the many
small pieces of scaffolding that are typically produced during development to support

Generic versus Specific Scaffolding 331

1 public final class IntCharSet {
75 . . .
76 public void add(Interval intervall) {

186 . . .
187 }

1 package JFlex.tests;
2

3 import JFlex.IntCharSet;
4 import JFlex.Interval;
5 import junit.framework.TestCase;

11 . . .
12 public class CharClassesTest extends TestCase {
25 . . .
26 public void testAdd1() {
27 IntCharSet set = new IntCharSet(new Interval(’a’,’h’));
28 set.add(new Interval(’o’,’z’));
29 set.add(new Interval(’A’,’Z’));
30 set.add(new Interval(’h’,’o’));
31 assertEquals("{ [’A’-’Z’][’a’-’z’] }", set.toString());
32 }
33

34 public void testAdd2() {
35 IntCharSet set = new IntCharSet(new Interval(’a’,’h’));
36 set.add(new Interval(’o’,’z’));
37 set.add(new Interval(’A’,’Z’));
38 set.add(new Interval(’i’,’n’));
39 assertEquals("{ [’A’-’Z’][’a’-’z’] }", set.toString());
40 }
99 . . .

100 }

Figure 17.1: Excerpt of JFlex 1.4.1 source code (a widely used open-source scanner
generator) and accompanying JUnit test cases. JUnit is typical of basic test scaffolding
libraries, providing support for test execution, logging, and simple result checking (as-
sertEquals in the example). The illustrated version of JUnit uses Java reflection to find
and execute test case methods; later versions of JUnit use Java annotation (metadata)
facilities, and other tools use source code preprocessors or generators.

332 Test Execution

unit and small-scale integration testing. For example, a database query may be replaced
by a stub that provides only a fixed set of responses to particular query strings.

17.5 Test Oracles

It is little use to execute a test suite automatically if execution results must be manually
inspected to apply a pass/fail criterion. Relying on human intervention to judge test
outcomes is not merely expensive, but also unreliable. Even the most conscientious
and hard-working person cannot maintain the level of attention required to identify one
failure in a hundred program executions, little more one or ten thousand. That is a job
for a computer.

Software that applies a pass/fail criterion to a program execution is called a test
oracle, often shortened to oracle. In addition to rapidly classifying a large numberD test oracle

of test case executions, automated test oracles make it possible to classify behaviors
that exceed human capacity in other ways, such as checking real-time response against
latency requirements or dealing with voluminous output data in a machine-readable
rather than human-readable form.

Ideally, a test oracle would classify every execution of a correct program as passing
and would detect every program failure. In practice, the pass/fail criterion is usually
imperfect. A test oracle may apply a pass/fail criterion that reflects only part of the ac-
tual program specification, or is an approximation, and therefore passes some program
executions it ought to fail. Several partial test oracles (perhaps applied with different
parts of the test suite) may be more cost-effective than one that is more comprehensive.
A test oracle may also give false alarms, failing an execution that it ought to pass. False
alarms in test execution are highly undesirable, not only because of the direct expense
of manually checking them, but because they make it likely that real failures will be
overlooked. Nevertheless sometimes the best we can obtain is an oracle that detects
deviations from expectation that may or may not be actual failures.

One approach to judging correctness — but not the only one — compares the actual
output or behavior of a program with predicted output or behavior. A test case with a
comparison-based oracle relies on predicted output that is either precomputed as partcomparison-based

oracle of the test case specification or can be derived in some way independent of the program
under test. Precomputing expected test results is reasonable for a small number of
relatively simple test cases, and is still preferable to manual inspection of program
results because the expense of producing (and debugging) predicted results is incurred
once and amortized over many executions of the test case.

Support for comparison-based test oracles is often included in a test harness pro-
gram or testing framework. A harness typically takes two inputs: (1) the input to the
program under test (or can be mechanically transformed to a well-formed input), and
(2) the predicted output. Frameworks for writing test cases as program code likewise
provide support for comparison-based oracles. The assertEquals method of JUnit, il-
lustrated in Figure 17.1, is a simple example of comparison-based oracle support.

Comparison-based oracles are useful mainly for small, simple test cases, but some-
times expected outputs can also be produced for complex test cases and large test suites.
Capture-replay testing, a special case of this in which the predicted output or behavior

Test Oracles 333

Program

Under Test

Test Input

Expected Output Compare

Test Harness

with Comparison Based

Oracle

Pass/Fail

Test Case

Figure 17.2: A test harness with a comparison-based test oracle processes test cases
consisting of (program input, predicted output) pairs.

is preserved from an earlier execution, is discussed in this chapter. A related approach
is to capture the output of a trusted alternate version of the program under test. For
example, one may produce output from a trusted implementation that is for some rea-
son unsuited for production use; it may too slow or may depend on a component that is
not available in the production environment. It is not even necessary that the alternative
implementation be more reliable than the program under test, as long as it is sufficiently
different that the failures of the real and alternate version are likely to be independent,
and both are sufficiently reliable that not too much time is wasted determining which
one has failed a particular test case on which they disagree.

A third approach to producing complex (input, output) pairs is sometimes possible:
It may be easier to produce program input corresponding to a given output than vice
versa. For example, it is simpler to scramble a sorted array than to sort a scrambled
array.

A common misperception is that a test oracle always requires predicted program
output to compare to the output produced in a test execution. In fact, it is often possible
to judge output or behavior without predicting it. For example, if a program is required
to find a bus route from station A to station B, a test oracle need not independently
compute the route to ascertain that it is in fact a valid route that starts at A and ends at
B.

Oracles that check results without reference to a predicted output are often partial,
in the sense that they can detect some violations of the actual specification but not oth-
ers. They check necessary but not sufficient conditions for correctness. For example,
if the specification calls for finding the optimum bus route according to some metric, partial oracle

a validity check is only a partial oracle because it does not check optimality. Similarly,
checking that a sort routine produces sorted output is simple and cheap, but it is only
a partial oracle because the output is also required to be a permutation of the input. A
cheap partial oracle that can be used for a large number of test cases is often combined
with a more expensive comparison-based oracle that can be used with a smaller set of
test cases for which predicted output has been obtained.

Ideally, a single expression of a specification would serve both as a work assign-
ment and as a source from which useful test oracles were automatically derived. Spec-

334 Test Execution

Program

Under Test
Test Input

Self-checks

Test Harness

Failure

 Notification

Test Case

Figure 17.3: When self-checks are embedded in the program, test cases need not in-
clude predicted outputs.

ifications are often incomplete, and their informality typically makes automatic deriva-
tion of test oracles impossible. The idea is nonetheless a powerful one, and wherever
formal or semiformal specifications (including design models) are available, it is worth-
while to consider whether test oracles can be derived from them. Some of the effort
of formalization will be incurred either early, in writing specifications, or later when
oracles are derived from them, and earlier is usually preferable. Model-based testing,
in which test cases and test oracles are both derived from design models are discussed
in Chapter 14.

17.6 Self-Checks as Oracles

A program or module specification describes all correct program behaviors, so an ora-
cle based on a specification need not be paired with a particular test case. Instead, the
oracle can be incorporated into the program under test, so that it checks its own work
(see Figure 17.3). Typically these self-checks are in the form of assertions, similar to
assertions used in symbolic execution and program verification (see Chapter 7), but
designed to be checked during execution.

Self-check assertions may be left in the production version of a system, where they
provide much better diagnostic information than the uncontrolled application crash the
customer may otherwise report. If this is not acceptable — for instance, if the cost
of a runtime assertion check is too high — most tools for assertion processing also
provide controls for activating and deactivating assertions. It is generally considered
good design practice to make assertions and self-checks be free of side-effects on pro-
gram state. Side-effect free assertions are essential when assertions may be deactivated,
because otherwise suppressing assertion checking can introduce program failures that
appear only when one is not testing.

Self-checks in the form of assertions embedded in program code are useful pri-
marily for checking module and subsystem-level specifications, rather than overall
program behavior. Devising program assertions that correspond in a natural way to
specifications (formal or informal) poses two main challenges: bridging the gap be-
tween concrete execution values and abstractions used in specification, and dealing in
a reasonable way with quantification over collections of values.

Test execution necessarily deals with concrete values, while abstract models are

Self-Checks as Oracles 335

indispensable in both formal and informal specifications. Chapter 7 (page 110) de-
scribes the role of abstraction functions and structural invariants in specifying concrete
operational behavior based on an abstract model of the internal state of a module. The
intended effect of an operation is described in terms of a precondition (state before the
operation) and postcondition (state after the operation), relating the concrete state to
the abstract model. Consider again a specification of the get method of java.util.Map
from Chapter 7, with pre- and postconditions expressed as the Hoare triple

(|hk,vi 2 f(dict)|)
o = dict.get(k)
(|o = v|)

f is an abstraction function that constructs the abstract model type (sets of key, value
pairs) from the concrete data structure. f is a logical association that need not be
implemented when reasoning about program correctness. To create a test oracle, it is
useful to have an actual implementation of f . For this example, we might implement
a special observer method that creates a simple textual representation of the set of
(key, value) pairs. Assertions used as test oracles can then correspond directly to the
specification. Besides simplifying implementation of oracles by implementing this
mapping once and using it in several assertions, structuring test oracles to mirror a
correctness argument is rewarded when a later change to the program invalidates some
part of that argument (e.g., by changing the treatment of duplicates or using a different
data structure in the implementation).

In addition to an abstraction function, reasoning about the correctness of internal
structures usually involves structural invariants, that is, properties of the data structure
that are preserved by all operations. Structural invariants are good candidates for self
checks implemented as assertions. They pertain directly to the concrete data structure
implementation, and can be implemented within the module that encapsulates that data
structure. For example, if a dictionary structure is implemented as a red-black tree or
an AVL tree, the balance property is an invariant of the structure that can be checked
by an assertion within the module. Figure 17.4 illustrates an invariant check found in
the source code of the Eclipse programming invariant.

There is a natural tension between expressiveness that makes it easier to write and
understand specifications, and limits on expressiveness to obtain efficient implemen-
tations. It is not much of a stretch to say that programming languages are just formal
specification languages in which expressiveness has been purposely limited to ensure
that specifications can be executed with predictable and satisfactory performance. An
important way in which specifications used for human communication and reasoning
about programs are more expressive and less constrained than programming languages
is that they freely quantify over collections of values. For example, a specification of
database consistency might state that account identifiers are unique; that is, for all ac-
count records in the database, there does not exist another account record with the same
identifier.

It is sometimes straightforward to translate quantification in a specification state-
ment into iteration in a program assertion. In fact, some run-time assertion checking

336 Test Execution

1 package org.eclipse.jdt.internal.ui.text;
2 import java.text.CharacterIterator;
3 import org.eclipse.jface.text.Assert;
4 /**
5 * A <code>CharSequence</code> based implementation of
6 * <code>CharacterIterator</code>.
7 * @since 3.0
8 */
9 public class SequenceCharacterIterator implements CharacterIterator {

13 . . .
14 private void invariant() {
15 Assert.isTrue(fIndex >= fFirst);
16 Assert.isTrue(fIndex <= fLast);
17 }
49 . . .
50 public SequenceCharacterIterator(CharSequence sequence, int first, int last)
51 throws IllegalArgumentException {
52 if (sequence == null)
53 throw new NullPointerException();
54 if (first < 0 || first > last)
55 throw new IllegalArgumentException();
56 if (last > sequence.length())
57 throw new IllegalArgumentException();
58 fSequence= sequence;
59 fFirst= first;
60 fLast= last;
61 fIndex= first;
62 invariant();
63 }

143 . . .
144 public char setIndex(int position) {
145 if (position >= getBeginIndex() && position <= getEndIndex())
146 fIndex= position;
147 else
148 throw new IllegalArgumentException();
149

150 invariant();
151 return current();
152 }
263 . . .
264 }

Figure 17.4: A structural invariant checked by run-time assertions. Excerpted from the
Eclipse programming environment, version 3. c� 2000, 2005 IBM Corporation; used
under terms of the Eclipse Public License v1.0.

Capture and Replay 337

systems provide quantifiers that are simply interpreted as loops. This approach can
work when collections are small and quantifiers are not too deeply nested, particu-
larly in combination with facilities for selectively disabling assertion checking so that
the performance cost is incurred only when testing. Treating quantifiers as loops does
not scale well to large collections and cannot be applied at all when a specification
quantifies over an infinite collection.1 For example, it is perfectly reasonable for a
specification to state that the route found by a trip-planning application is the shortest
among all possible routes between two points, but it is not reasonable for the route
planning program to check its work by iterating through all possible routes.

The problem of quantification over large sets of values is a variation on the basic
problem of program testing, which is that we cannot exhaustively check all program
behaviors. Instead, we select a tiny fraction of possible program behaviors or inputs
as representatives. The same tactic is applicable to quantification in specifications. If
we cannot fully evaluate the specified property, we can at least select some elements
to check (though at present we know of no program assertion packages that support
sampling of quantifiers). For example, although we cannot afford to enumerate all
possible paths between two points in a large map, we may be able to compare to a
sample of other paths found by the same procedure. As with test design, good samples
require some insight into the problem, such as recognizing that if the shortest path from
A to C passes through B, it should be the concatenation of the shortest path from A to
B and the shortest path from B to C.

A final implementation problem for self-checks is that asserted properties some-
times involve values that are either not kept in the program at all (so-called ghost vari-
ables) or values that have been replaced (“before” values). A specification of noninter-
ference between threads in a concurrent program may use ghost variables to track entry
and exit of threads from a critical section. The postcondition of an in-place sort oper-
ation will state that the new value is sorted and a permutation of the input value. This
permutation relation refers to both the “before” and “after” values of the object to be
sorted. A run-time assertion system must manage ghost variables and retained “before”
values and must ensure that they have no side-effects outside assertion checking.

17.7 Capture and Replay

Sometimes it is difficult to either devise a precise description of expected behavior
or adequately characterize correct behavior for effective self-checks. For example,
while many properties of a program with a graphical interface may be specified in a
manner suitable for comparison-based or self-check oracles, some properties are likely
to require a person to interact with the program and judge its behavior. If one cannot
completely avoid human involvement in test case execution, one can at least avoid

1It may seem unreasonable for a program specification to quantify over an infinite collection, but in fact it
can arise quite naturally when quantifiers are combined with negation. If we say “there is no integer greater
than 1 that divides k evenly,” we have combined negation with “there exists” to form a statement logically
equivalent to universal (“for all”) quantification over the integers. We may be clever enough to realize that
it suffices to check integers between 2 and

p
k, but that is no longer a direct translation of the specification

statement.

338 Test Execution

unnecessary repetition of this cost and opportunity for error. The principle is simple.
The first time such a test case is executed, the oracle function is carried out by a human,
and the interaction sequence is captured. Provided the execution was judged (by the
human tester) to be correct, the captured log now forms an (input, predicted output)
pair for subsequent automated retesting.

The savings from automated retesting with a captured log depends on how many
build-and-test cycles we can continue to use it in, before it is invalidated by some
change to the program. Distinguishing between significant and insignificant variations
from predicted behavior, in order to prolong the effective lifetime of a captured log,
is a major challenge for capture/replay testing. Capturing events at a more abstract
level suppresses insignificant changes. For example, if we log only the actual pixels of
windows and menus, then changing even a typeface or background color can invalidate
an entire suite of execution logs.

Mapping from concrete state to an abstract model of interaction sequences is some-
times possible but is generally quite limited. A more fruitful approach is capturing
input and output behavior at multiple levels of abstraction within the implementation.
We have noted the usefulness of a layer in which abstract input events (e.g., selection
of an object) are captured in place of concrete events (left mouse button depressed with
mouse positioned at 235, 718). Typically, there is a similar abstract layer in graphical
output, and much of the capture/replay testing can work at this level. Small changes
to a program can still invalidate a large number of execution logs, but it is much more
likely that an insignificant detail can either be ignored in comparisons or, even better,
the abstract input and output can be systematically transformed to reflect the intended
change.

Further amplification of the value of a captured log can be obtained by varying the
logged events to obtain additional test cases. Creating meaningful and well-formed
variations also depends on the abstraction level of the log. For example, it is simpler to
vary textual content recorded in a log than to make an equivalent change to a recorded
bitmap representation of that text.

Open Research Issues

Tools to generate some kinds of scaffolding from program code have been constructed,
as have tools to generate some kinds of test oracles from design and specification docu-
ments. Fuller support for creating test scaffolding might bring these together, combin-
ing information derivable from program code itself with information from design and
specification to create at least test harnesses and oracles. Program transformation and
program analysis techniques have advanced quickly in the last decade, suggesting that
a higher level of automation than in the past should now be attainable.

Further Reading

Techniques for automatically deriving test oracles from formal specifications have been
described for a wide variety of specification notations. Good starting points in this lit-

Capture and Replay 339

erature include Peters and Parnas [PP98] on automatic extraction of test oracles from a
specification structured as tables; Gannon et al. [GMH81] and Bernot et al. [BGM91]
on derivation of test oracles from algebraic specifications; Doong and Frankl [DF94]
on an approach related to algebraic specifications but adapted to object-oriented pro-
grams; Bochmann and Petrenko [vBP94] on derivation of test oracles from finite state
models, particularly (but not only) for communication protocols; and Richardson et
al. [RAO92] on a general approach to deriving test oracles from multiple specification
languages, including a form of temporal logic and the Z modeling language.

Rosenblum [Ros95] describes a system for writing test oracles in the form of pro-
gram assertions and assesses their value. Memon and Soffa [MS03] assesses the impact
of test oracles and automation for interactive graphical user interface (GUI) programs.
Ostrand et al. [OAFG98] describe capture/replay testing for GUI programs.

Mocks for simulating the environment of a module are described by Saff and Ernst
[SE04]. Husted and Massol [HM03] is a guide to the popular JUnit testing framework.
Documentation for JUnit and several similar frameworks for various languages and
systems are also widely available on the Web.

Related Topics

Readers interested primarily in test automation or in automation of other aspects of
analysis and test may wish to continue reading with Chapter 23.

Exercises

17.1. Voluminous output can be a barrier to naive implementations of comparison-
based oracles. For example, sometimes we wish to show that some abstraction
of program behavior is preserved by a software change. The naive approach is
to store a detailed execution log of the original version as predicted output, and
compare that to a detailed execution log of the modified version. Unfortunately,
a detailed log of a single execution is quite lengthy, and maintaining detailed
logs of many test case executions may be impractical. Suggest more efficient ap-
proaches to implementing comparison-based test oracles when it is not possible
to store the whole output.

17.2. We have described as an ideal but usually unachievable goal that test oracles
could be derived automatically from the same specification statement used to
record and communicate the intended behavior of a program or module. To what
extent does the “test first” approach of extreme programming (XP) achieve this
goal? Discuss advantages and limitations of using test cases as a specification
statement.

17.3. Often we can choose between on-line self-checks (recognizing failures as they
occur) and producing a log of events or states for off-line checking. What con-
siderations might motivate one choice or the other?

340 Test Execution

Chapter 18

Inspection

Software inspections are manual, collaborative reviews that can be applied to any soft-
ware artifact from requirements documents to source code to test plans. Inspection
complements testing by helping check many properties that are hard or impossible to
verify dynamically. Their flexibility makes inspection particularly valuable when other,
more automated analyses are not applicable.

Required Background

• Chapter 2
This chapter discusses complementarities and trade-offs between test and analy-
sis, and motivates the need for alternatives to testing.

18.1 Overview

Inspection is a low-tech but effective analysis technique that has been extensively used
in industry since the early 1970s. It is incorporated in many standards, including the
Capability Maturity Model (CMM and CMMI) and the ISO 9000 standards, and is a
key element of verification- and test-oriented processes such as the Cleanroom, SRET
and XP processes.1

Inspection is a systematic, detailed review of artifacts to find defects and assess
quality. It can benefit from tool support, but it can also be executed manually. In-
spection is most commonly applied to source code, but can be applied to all kinds of
artifacts during the whole development cycle. It is effective in revealing many defects
that testing cannot reveal or can reveal only later and at higher cost.

Inspection also brings important education and social benefits. Junior developers
quickly learn standards for specification and code while working as inspectors, and
expert developers under pressure are less tempted to ignore standards. The sidebar on
page 342 summarizes the chief social and educational benefits of inspection.

1See the sidebars in Chapter 20 for additional information on Cleanroom, SRET, and XP.

341

342 Inspection

Social and Educational Benefits of Inspection
While the direct goal of inspection is to find and remove defects, social and educa-

tional effects may be equally important.
Inspection creates a powerful social incentive to present acceptable work products,

even when there is no direct tie to compensation or performance evaluation. The classic
group inspection process, in which the author of the work under review is required
to be a passive participant, answering questions but not volunteering explanation or
justification for the work until asked, especially magnifies the effect; it is not easy to
listen quietly while one’s work is publicly picked apart by peers.

Inspection is also an effective way to form and communicate shared norms in an
organization, not limited to rules that are explicit in checklists. The classic inspection
process prohibits problem solving in the inspection meeting itself, but the necessity
of such a rule to maintain momentum in the inspection meeting is evidence for the
general rule that, given opportunity, developers and other technical professionals are
quick to share experience and knowledge relevant to problems found in a colleague’s
work. When a new practice or standard is introduced in an organization, inspection
propagates awareness and shared understanding.

New staff can be almost immediately productive, individually reviewing work prod-
ucts against checklists, accelerating their familiarization with organization standards
and practices. Group inspection roles require some experience, but can likewise be
more effective than traditional training in integrating new staff.

The social and educational facets of inspection processes should be taken into ac-
count when designing an inspection process or weighing alternatives or variations to
an existing process. If the alternatives are weighed by fault-finding effectiveness alone,
the organization could make choices that appear to be an improvement on that dimen-
sion, but are worse overall.

The Inspection Team 343

18.2 The Inspection Team

Inspections are characterized by roles, process, and reading techniques, i.e., who the
inspectors are, how they organize their work and synchronize their activities, and how
they examine the inspected artifacts.

Inspection is not a full-time job: Many studies indicate that inspectors’ productivity
drops dramatically after two hours of work, and suggests no more than two inspection
sessions per day. Thus, inspectors are usually borrowed from other roles: junior and
senior software and test engineers, project and quality managers, software analysts,
software architects, and technical writers. The same studies highlight the delicate rela-
tion between inspectors and developers: The efficacy of inspection can vanish if devel-
opers feel they are being evaluated. In classic approaches to inspection, managers and
senior engineers who participate in inspection sessions are often borrowed from other
projects to avoid misinterpreting the goals of inspection.

Inspectors must be selected in a way that balances perspectives, background knowl-
edge, and cost. A developer is most knowledgeable about his own work, and is an
invaluable resource in inspection, but he cannot forget days or weeks of hard develop-
ment work to see clearly all the details that are apparent to someone reading an artifact
for the first time. Inspection can benefit from discussion among many inspectors with
differing perspectives and expertise, but the cost of inspection grows with the size of
the inspection team.

Classic inspection postulates groups from four to six inspectors, but recent stud-
ies question the efficacy advantages of large groups of inspectors over groups of two.
Modern approaches prescribe different levels of inspection: simple checks performed
by single inspectors and complex check performed by groups of two inspectors, reserv-
ing larger groups for inspections requiring special combinations of expertise.

Single inspectors are usually junior engineers not involved in development of the
artifact under inspection. They combine inspection with training, learning basic stan-
dards for specification and programming by checking compliance of artifacts with
those standards. Junior engineers are usually paired with senior engineers for checking
complex properties. The senior engineer acts as moderator; he or she is in charge of
organizing the inspection process and is responsible for the inspection results, while
the junior engineer participates in the inspection and the discussion.

Large groups of inspectors (from four to six) balance junior and senior engineers,
and may include the developer of the artifact under inspection. A senior engineer,
usually a manager borrowed from a different project, plays the role of the moderator,
organizing the process and being responsible for the results. Other software and test
engineers, both senior and junior, are in charge of reading the inspected artifact, and of
discussing the possible problems connected to the relevant elements. The developer is
present when the inspection requires detailed knowledge that cannot be easily acquired
without being involved in the development. This happens for example, when inspecting
complex modules looking for semantics or integration problems.

Developers must be motivated to collaborate constructively in inspection, rather
than hiding problems and sabotaging the process. Reward mechanisms can influence
the developers’ attitude and must be carefully designed to avoid perverse effects. For
example, fault density is sometimes used as a metric of developer performance. An

344 Inspection

assessment of fault density that includes faults revealed by inspection may discourage
developers from constructive engagement in the inspection process and encourage them
to hide faults during inspection instead of highlighting them. At the very least, faults
that escape inspection must carry a higher weight than those found during inspection.
Naive incentives that reward developers for finding faults during inspection are apt to
be counterproductive because they punish the careful developer for bringing a high-
quality code to the inspection.

18.3 The Inspection Process

Inspection is not merely reading, but a systematic process that promotes efficiency and
repeatability. Because inspection is expensive and not incremental (that is, reinspec-
tion after a change can be nearly as expensive as inspection of the original artifact), it
must be placed to reveal faults as early as possible, but late enough to avoid excessive
repetition. Consider, for example, source code inspection. Inspecting software still un-
der construction may waste inspection effort on elements that are likely to change, but
waiting until after integration and system test wastes testing effort on faults that could
have been more cost-effectively removed by inspection.

Different inspection activities may be scheduled at distinct development phases.
We can for example check for consistency and completeness of comments and coding
standards before testing, and we can check for semantic consistency of the software
after testing, to focus on key semantic aspects without being distracted by faults that
can be easily identified by simple test cases.

The inspection process is usually composed of three main phases: preparatory,
review, and follow-up. In the preparatory phase, inspectors check that the artifacts
to be inspected are ready, assign inspection roles, acquire the information needed for
inspections, plan individual inspection activities, and schedule inspection meetings.

In the review phase, inspectors review the artifact individually and in teams. Re-
views follow a systematic and consistent process. The classic and most widely used
inspection technique is based on following a checklist while reading the artifact, as
described in Section 18.4. Other approaches include use-case and abstraction-driven
reading techniques, designed to overcome delocalization in object-oriented programs,
the many external references that make it difficult to inspect an individual class in an
object-oriented program without global knowledge of the program structure.

In the follow-up phase, inspectors notify developers of inspection results and sched-
ule additional inspection activities if needed. The results of the review phase are sum-
marized in reports that indicate possible problems. Developers and test designers ex-
amine the reports to identify actual defects and schedule their removal. The team may
schedule follow-up checks that could be as simple as ascertaining that a correction
has been made or as complex as a full re-inspection. Simple checks may use the re-
ports themselves as checklists. If, for example, a previous inspection reported missing
elements in the code, they may simply check that the elements have been added. If
the previous inspection reported logical problems, on the other hand, the team might
schedule a new review after the corrective actions to ensure the quality of the new
version.

Checklists 345

18.4 Checklists

Checklists are a core element of classic inspection. They summarize the experience
accumulated in previous projects, and drive the review sessions. A checklist contains
a set of questions that help identify defects in the inspected artifact, and verify that the
artifact complies with company standards. A good checklist should be updated regu-
larly to remove obsolete elements and to add new checks suggested by the experience
accumulated in new projects. We can, for example, remove some simple checks about
coding standards after introducing automatic analyzers that enforce the standards, or
we can add specific semantic checks to avoid faults that caused problems in recent
projects.

Checklists may be used to inspect a large variety of artifacts, including require-
ments and design specifications, source code, test suites, reports, and manuals. The
contents of checklists may vary greatly to reflect the different properties of the various
artifacts, but all checklists share a common structure that facilitates their use in review
sessions. Review sessions must be completed within a relatively short time (no longer
than two hours) and may require teams of different size and expertise (from a single
junior programmer to teams of senior analysts). Length and complexity of checklists
must reflect their expected use. We may have fairly long checklists with simple ques-
tions for simple syntactic reviews, and short checklists with complex questions for
semantic reviews.

Modern checklists are structured hierarchically and are used incrementally. Check-
lists with simple checks are used by individual inspectors in the early stages of inspec-
tion, while checklists with complex checks are used in group reviews in later inspection
phases. The preface of a checklist should indicate the type of artifact and inspection
that can be done with that checklist and the level of expertise required for the inspec-
tion.

The sidebar on page 346 shows an excerpt of a checklist for a simple Java code
inspection and the sidebar on page 347 shows an excerpt of a checklist for a more
complex review of Java programs.

A common checklist organization, used in the examples in this chapter, consists
of a set of features to be inspected and a set of items to be checked for each feature.
Organizing the list by features helps direct the reviewers’ attention to the appropriate
set of checks during review. For example, the simple checklist on page 346 contains
checks for file headers, file footers, import sections, class declarations, classes, and
idiomatic methods. Inspectors will scan the Java file and select the appropriate checks
for each feature.

The items to be checked ask whether certain properties hold. For example, the file
header should indicate the identity of the author and the current maintainer, a cross
reference to the design entity corresponding to the code in the file, and an overview
of the structure of the package. All checks are expressed so that a positive answer
indicates compliance. This helps the quality manager spot possible problems, which
will correspond to “no” answers in the inspection reports.

Inspectors check the items, answer “yes” or “no” depending on the status of the
inspected feature, and add comments with detailed information. Comments are com-
mon when the inspectors identify violations, and they help identify and localize the

346 Inspection

Java Checklist: Level 1 inspection (single-pass read-through, context independent)
FEATURES (where to look and how to check):

Item (what to check)
FILE HEADER: Are the following items included and consistent? yes no comments

Author and current maintainer identity
Cross-reference to design entity
Overview of package structure, if the class is the
principal entry point of a package

FILE FOOTER: Does it include the following items? yes no comments
Revision log to minimum of 1 year or at least to
most recent point release, whichever is longer

IMPORT SECTION: Are the following requirements satisfied? yes no comments
Brief comment on each import with the exception
of standard set: java.io.*, java.util.*
Each imported package corresponds to a depen-
dence in the design documentation

CLASS DECLARATION: Are the following requirements satisfied? yes no comments
The visibility marker matches the design document
The constructor is explicit (if the class is not static)
The visibility of the class is consistent with the de-
sign document

CLASS DECLARATION JAVADOC: Does the Javadoc header include: yes no comments
One sentence summary of class functionality
Guaranteed invariants (for data structure classes)
Usage instructions

CLASS: Are names compliant with the following rules? yes no comments
Class or interface: CapitalizedWithEachInternal-
WordCapitalized
Special case: If class and interface have same base
name, distinguish as ClassNameIfc and Class-
NameImpl
Exception: ClassNameEndsWithException
Constants (final):
ALL CAPS WITH UNDERSCORES
Field name: capsAfterFirstWord.
name must be meaningful outside of context

IDIOMATIC METHODS: Are names compliant with the following rules? yes no comments
Method name: capsAfterFirstWord
Local variables: capsAfterFirstWord.
Name may be short (e.g., i for an integer) if scope
of declaration and use is less than 30 lines.
Factory method for X: newX
Converter to X: toX
Getter for attribute x: getX();
Setter for attribute x: void setX

Checklists 347

Java Checklist: Level 2 inspection (comprehensive review in context)
FEATURES (where to look and how to check):

Item (what to check)
DATA STRUCTURE CLASSES: Are the following require-
ments satisfied?

yes no comments

The class keeps a design secret
The substitution principle is respected: Instance of class can be used
in any context allowing instance of superclass or interface
Methods are correctly classified as constructors, modifiers, and ob-
servers
There is an abstract model for understanding behavior
The structural invariants are documented

FUNCTIONAL (STATELESS) CLASSES: Are the following
requirements satisfied?

yes no comments

The substitution principle is respected: Instance of class can be used
in any context allowing instance of superclass or interface

METHODS: Are the following requirements satisfied? yes no comments
The method semantics are consistent with similarly named meth-
ods. For example, a “put” method should be semantically consistent
with “put” methods in standard data structure libraries
Usage examples are provided for nontrivial methods

FIELDS: Are the following requirements satisfied? yes no comments
The field is necessary (cannot be a method-local variable)
Visibility is protected or private, or there is an adequate and docu-
mented rationale for public access
Comment describes the purpose and interpretation of the field
Any constraints or invariants are documented in either field or class
comment header

DESIGN DECISIONS: Are the following requirements satis-
fied?

yes no comments

Each design decision is hidden in one class or a minimum number
of closely related and co-located classes
Classes encapsulating a design decision do not unnecessarily de-
pend on other design decisions
Adequate usage examples are provided, particularly of idiomatic
sequences of method calls
Design patterns are used and referenced where appropriate
If a pattern is referenced: The code corresponds to the documented
pattern

348 Inspection

violations. For example, the inspectors may indicate which file headers do not contain
all the required information and which information is missing. Comments can also be
added when the inspectors do not identify violations, to clarify the performed checks.
For example, the inspectors may indicate that they have not been able to check if the
maintainer indicated in the header is still a member of the staff of that project.

Checklists should not include items that can be more cost-effectively checked with
automated test or analysis techniques. For example, the checklist at page 346 does
not include checks for presence in the file header of file title, control identifier, copy-
right statement and list of classes, since such information is added automatically and
thus does not require manual checks. On the other hand, it asks the inspector to verify
the presence of references to the author and maintainer and of cross reference to the
corresponding design entities, since this checklist is used in a context where such infor-
mation is not inserted automatically. When adopting an environment that automatically
updates author and maintainer information and checks cross references to design en-
tities, we may remove the corresponding checks from the checklist, and increase the
amount of code that can be inspected in a session, or add new checks for reducing
different problems experienced in new projects.

Properties should be as objective and unambiguous as possible. Complete indepen-
dence from subjective judgment may not be possible, but must be pursued. For example
broad properties like “Comments are complete?” or “Comments are well written?” ask
for a subjective judgment, and raise useless and contentious discussions among inspec-
tors and the authors of an artifact undergoing inspection. Checklist items like “Brief
comment on each import with the exception of standard set: java.io.*, java.util.*” or
“One sentence summary of class functionality” address the same purpose more effec-
tively.

Items should also be easy to understand. The excerpts in the sidebars on pages
346 and 347 list items to be checked, but for each item, the checklist should provide a
description, motivations, and examples. Figure 18.1 shows a complete description of
one of the items of the sidebars.

Checking for presence of comments is easy to automate, but checking contents for
meaning and usefulness is apt to require human judgment. For example, we can easily
automate a check that there is a comment for each import section or class, but we
cannot automatically check that the comment is meaningful and properly summarizes
the need for the import section or the functionality of the class.

Descriptions, motivations and examples may be lengthy, and displaying them di-
rectly in the checklist reduces an inspector’s ability to quickly scan through the check-
list to identify items relevant to each feature under review. Therefore, explanatory ma-
terial is typically provided separately, linked to the inspection checklist by reference
(e.g., a page number for printed documentation or a hyperlink in a Web-based display).
Inexperienced inspectors and teams reviewing complex items may access the details
to resolve questions and controversies that arise during inspection, but frequency of
reference declines with experience.

Checklists can be used in many different contexts. The sidebar on page 350 shows
an excerpt of a checklist for comprehensive review of test plans. That checklist assumes
that the document includes a standard set of sections, whose presence can be easily
checked automatically, and is suited for experienced testers.

Checklists 349

Ref. Checklist D1A, page 1/1.

FEATURE: CLASS DECLARATION: Are the following requirements satisfied?

ITEM: The visibility of the Class is consistent with the design document

Detailed checklist item reference:

Description: The fields and methods exported by a class must correspond to those in the spec-
ification, which may be in the form of a UML diagram. If the class specializes another
class, method header comments must specify where superclass methods are overridden
or overloaded. Overloading or overriding methods must be semantically consistent with
ancestor methods. Additional public utility or convenience methods may be provided if
well documented in the implementation.
The class name should be identical to the name of the class in the specifying document,
for ease of reference. Names of methods and fields may differ from those in the specifying
document, provided header comments (class header comments for public fields, method
header comments for public methods) provide an explicit mapping of implementation
names to specification names. Order and grouping of fields and methods need not follow
the order and grouping in the specifying document.

Motivations: Clear correspondence of elements of the implementation to elements of the speci-
fication facilitates maintenance and reduces integration faults. If significant deviations are
needed (e.g., renaming a class or omitting or changing a public method signature), these
are design revisions that should be discussed and reflected in the specifying document.

Examples: The code implementing the following UML specification of class CompositeItem
should export fields and methods corresponding to the fields of the specification of class
CompositeItem and its ancestor class LineItem. Implementations that use different names
for some fields or methods or that do not redefine method getUnitPrice in class Compos-
iteItem are acceptable if properly documented. Similarly, implementations that export an
additional method compare that specializes the default method equal to aid test oracle
generation is acceptable.

+validItem() : boolean
+getUnitPrice() : integer
+getExtendedPrice() : integer
+getHeightCm() : integer
+getWidthCm() : integer
+getDepthCm() : integer
+getWeightGm() : integer

+sku : string
+units : integer

LineItem

+getUnitPrice() : integer
+parts : Vector

CompositeItem

Figure 18.1: Detailed description referenced by a checklist item.

350 Inspection

TEST PLAN CHECKLIST: Comprehensive review in context
FEATURES (where to look and how to check):

Item (what to check)
ITEMS TO BE TESTED OR ANALYZED: For each item, does the
plan include:

yes no comments

A reference to the specification for the item
A reference to installation procedures for the item, if any

TEST AND ANALYSIS APPROACH: Are the following requirements
satisfied?

yes no comments

The test and analysis techniques to be applied are cost-effective for
items of this type
The test and analysis techniques to be applied cover the relevant
properties cost-effectively
The description is sufficiently detailed to identify major tasks and
estimate time and resources.

PASS/FAIL CRITERIA: Are the following requirements satisfied? yes no comments
The criteria clearly indicate the pass/fail conditions
The criteria are consistent with quality standards specified in the
test and analysis strategy

SUSPEND/RESUME CRITERIA: Are the following requirements
satisfied?

yes no comments

The criteria clearly indicate threshold conditions for suspending test
and analysis due to excessive defects
The criteria clearly indicate conditions for resuming test and analy-
sis after suspension and rework

RISKS AND CONTINGENCIES: Are the following risks addressed? yes no comments
Personnel risks (loss or unavailability of qualified staff)
Technology risks
Schedule risks
Development risks
Execution risks
Risks from critical requirements

CONTINGENCY PLAN: Are the following requirements satisfied? yes no comments
Each identified risk is adequately considered in the contingency
plan

TASK AND SCHEDULE: Are the following requirements satisfied? yes no comments
The tasks cover all aspects that ought to be tested
The description of the tasks is complete
The relations among tasks are complete and consistent
Resource allocation and constraints are adequate
The schedule satisfies all milestones
Critical paths are minimized

Pair Programming 351

18.5 Pair Programming

Pair programming is a practice associated with agile processes, particularly Extreme
Programming (XP).2 It can be viewed as a variation on program inspection. Two pro-
grammers work side-by-side at a computer, continuously collaborating on the same
code. The two programmers alternate at the keyboard: While one programmer types
new code, the other reviews and inspects the newly typed code. The programmer who
is free from typing duties has more time for thinking about design and coding alterna-
tives, evaluating the impact of design decisions, and checking for discrepancies with
coding rules. In short, while the code is being written, the programmer who is not
typing inspects the work of the other programmer, highlights possible problems and
discusses alternative solutions. Thus, pair programming merges coding and inspection
activities, eliminating the gap between classic coding and inspection phases.

In pair programming, the inspection activities are not driven by checklists, but are
based on shared programming practice and style. Programmers frequently alternate
roles, both at a fine grain (inspector and coder) and more generally in working on
different parts of the code. Software components are not “owned” by individual pro-
grammers, but are the collective responsibility of the team.

The practice of inspection requires an attitude toward the inspected artifacts as
public documents that must conform to group standards and norms. Pair programming
makes a shared style and norms a collective asset of the development team. Ideally,
this should result in an attitude known as egoless programming, in which criticism of
artifacts is not regarded as criticism of the authors of those artifacts.

Pair programming is tied to a number of other practices that facilitate teamwork
and concentration. As in conventional inspection, fatigue limits the amount of time
that a pair can work together effectively, so joint activities are interleaved with pauses
and individual activities that may occupy up to half the total programming time. In
addition, in the XP approach, pair programming is to be carried out in normal (8-
hour) work days, without excessive overtime and without severe or unrealistic schedule
pressure. It has been observed that longer work days and working weekends do not
improve productivity when extended beyond an occasional, brief “crunch” period, as
concentration waivers and developers spend more time on unproductive activities.

Also as in conventional inspection, a constructive attitude must be nurtured for ef-
fective pair programming. In the classical group inspection process, the meeting con-
vener acts as a mediator to keep comments constructive and avoid debates in which an
author defends decisions that have been called into question. Since there is no mediator
in pair programming, responsibility for an open, nonpersonal and nondefensive discus-
sion of decisions and alternatives falls to the programmers themselves. Alternation of
roles in pair programming emphasizes shared ownership of the artifact and discussion
on the merits rather than on the basis of authority.

A superficial analysis of pair programming would suggest that using two program-
mers instead of one should halve productivity. The empirical evidence available so far
suggests compensating effects of better use of time, better design choices and earlier
detection of defects leading to less time lost to rework and overall better quality.

2For additional details on XP see the sidebar on page 381 in Chapter 20.

352 Inspection

Open Research Issues

Active research topics in software inspection include adapting and extending inspection
techniques for particular artifacts (e.g., object-oriented program code, specifications of
real-time systems), automation to support inspection (e.g., remote and asynchronous
inspections), and variations on process and procedures. Software inspection research
is characterized by an emphasis on empirical research methods, including classic con-
trolled experiments.

The most valuable empirical studies do not merely report on whether practice A
is more or less effective than practice B, but rather help build up a more fundamental
model of how each practice works. In other words, the empirical research that will
matter in the long term is theory-based. Empirical research that addresses smaller
questions (e.g., the effect of varying some small part of practice A) is likely to have
more lasting value, as it reveals something about a principle that can be applied not
only to A and to B but, at some future time, to a new practice C, and over the long term
contributes to a coherent theory.

We have tried to indicate where some characteristics of effective inspection seem to
cut across the particular inspection and review practices in use today, suggesting prin-
ciples that will be equally important in variations on these approaches and on future
approaches to inspection and review. To the extent that a body of general principles for
designing inspection processes does develop, it will almost certainly draw from cogni-
tive and social psychology and from management as well as from software engineering
research.

Inspection techniques have an irreducible core of manual effort (otherwise they are
reclassified as program analysis), but that does not mean that automated tools are ir-
relevant. Previous research on automated support for inspection has included tools to
bring appropriate information quickly to hand (e.g., displaying the portions of an in-
spection checklist relevant to each portion of a program code as it is being inspected),
supporting same-time and asynchronous meetings at a distance, and providing richer
information about the artifact being inspected through static analyses. We expect re-
search on tool support for inspection and review to continue alongside development of
approaches to inspection and better understanding of the basic principles of inspection
processes.

Further Reading

The classic group inspection process is known as Fagan inspections and is described by
Fagan [Fag86]. Industrial experience with software inspections in a large software de-
velopment project is described by Russell [Rus91] and by Grady and van Slack [GS94].
Gilb and Graham [GG93] is a widely used guidebook for applying software inspection.

Parnas and Weiss [PW85, HW01] describe a variant process designed to ensure
that every participant in the review process is actively engaged; it is a good example
of interplay between the technical and social aspects of a process. Knight and Myers’
phased inspections [KM93] are an attempt to make a more cost-effective deployment
of personnel in inspections, and they also suggest ways in which automation can be

Pair Programming 353

harnessed to improve efficiency. Perpich et al. [PPP+97] describe automation to facil-
itate asynchronous inspection, as an approach to reducing the impact of inspection on
time-to-market.

There is a large research literature on empirical evaluation of the classic group in-
spection and variations; Dunsmore, Roper, and Wood [DRW03] and Porter and John-
son [PJ97] are notable examples. While there is a rapidly growing literature on em-
pirical evaluation of pair programming as a pedagogical method, empirical evaluations
of pair programming in industry are (so far) fewer and decidedly mixed. Hulkko and
Abrahamsson [HA05] found no empirical support for common claims of effectiveness
and efficiency. Sauer et al. [SJLY00] lay out a behavioral science research program
for determining what makes inspection more or less effective and provide an excellent
survey of relevant research results up to 2000, with suggestions for practical improve-
ments based on those results.

Related Topics

Simple and repetitive checks can sometimes be replaced by automated analyses. Chap-
ter 19 presents automated analysis techniques, while Chapter 23 discusses automatiza-
tion problems.

Exercises

18.1. Your organization, which develops personal training monitors for runners and
cyclists, has a software development team split between offices in Milan, Italy,
and Eugene, Oregon. Team member roles (developers, test designers, technical
writers, etc.) are fairly evenly distributed between locations, but some technical
expertise is concentrated in one location or another. Expertise in mapping and
geographic information systems, for example, is concentrated mainly in Eugene,
and expertise in device communication and GPS hardware mainly in Milan. You
are considering whether to organize inspection of requirements specifications,
design documents, and program code primarily on a local, face-to-face basis, or
distributed with teleconference and asynchronous communication support be-
tween sites. What are some of the potential advantages and pitfalls of each
choice?

18.2. You have been asked to prepare a pilot study to measure the potential costs and
benefits of inspection in your organization. You are faced with several questions
in the design of this pilot study. Discuss these two:

(a) What specific costs-and-benefits will you try to measure? How might you
measure and compare them?

(b) You could make cost-and-benefit comparisons within a single project (e.g.,
inspecting some documents and artifacts but not others), or you could com-
pare two fairly similar ongoing projects, using inspection in one but not the
other. What are the advantages and disadvantages of each approach?

354 Inspection

18.3. Automated analysis should substitute for inspection where it is more cost-effective.
How would you evaluate the cost of inspection and analysis to decide whether to
substitute an analysis tool for a particular set of checklist items?

18.4. Inspection does not require tools but may benefit from tool support. Indicate
three tools that you think can reduce human effort and increase inspectors’ pro-
ductivity. List tools in order of importance with respect to effort saving, explain
why you ranked those tools highest, and indicate the conditions under which
each tool may be particularly effective.

18.5. In classic inspection, some inspectors may remain silent and may not actively
participate in the inspection meeting. How would you modify inspection meet-
ings to foster active participation of all inspectors?

Chapter 19

Program Analysis

A number of automated analyses can be applied to software specifications and program
source code. None of them are capable of showing that the specifications and the code
are functionally correct, but they can cost-effectively reveal some common defects, as
well as produce auxiliary information useful in inspections and testing.

Required Background

• Chapter 6
This chapter describes data flow analysis, a basic technique used in many static
program analyses.

• Chapter 7
This chapter introduces symbolic execution and describes how it is used for
checking program properties.

• Chapter 8
This chapter discusses finite state verification techniques applicable to models of
programs. Static analysis of programs is often concerned with extracting models
to which these techniques can be applied.

19.1 Overview

Automated program analysis techniques complement test and inspection in two ways.
First, automated program analyses can exhaustively check some important properties
of programs, including those for which conventional testing is particularly ill-suited.
Second, program analysis can extract and summarize information for inspection and
test design, replacing or augmenting human effort.

Conventional program testing is weak at detecting program faults that cause fail-
ures only rarely or only under conditions that are difficult to control. For example,
conventional program testing is not an effective way to find race conditions between
concurrent threads that interfere only in small critical sections, or to detect memory

355

356 Program Analysis

Concurrency Faults
Concurrent threads are vulnerable to subtle faults, including potential deadlocks

and data races. Deadlocks occur when each of a set of threads is blocked, waiting for
another thread in the set to release a lock. Data races occur when threads concurrently
access shared resources while at least one is modifying that resource.

Concurrency faults are difficult to reveal and reproduce. The nondeterministic na-
ture of concurrent programs does not guarantee the same execution sequence between
different program runs. Thus programs that fail during one execution may not fail
during other executions with the same input data, due to the different execution orders.

Concurrency faults may be prevented in several ways. Some programming styles
eliminate concurrency faults by restricting program constructs. For example, some
safety critical applications do not allow more than one thread to write to any particu-
lar shared memory item, eliminating the possibility of concurrent writes (write-write
races). Other languages provide concurrent programming constructs that enable simple
static checks. For example, protection of a shared variable in Java synchronized blocks
is easy to check statically. Other constructs are more difficult to check statically. For
example, C and C++ libraries that require individual calls to obtain and release a lock
can be used in ways that resist static verification.

access faults that only occasionally corrupt critical structures.1 These faults lead to
failures that are sparsely scattered in a large space of possible program behaviors, and
are difficult to detect by sampling, but can be detected by program analyses that fold
the enormous program state space down to a more manageable representation.

Manual program inspection is also effective in finding some classes of faults that
are difficult to detect with testing. However, humans are not good at repetitive and
tedious tasks, or at maintaining large amounts of detail. If program analysis is not ca-
pable of completely replacing human inspection for some class of faults, it can at least
support inspection by automating extraction, summarization, and navigation through
relevant information.

Analysis techniques examine either the program source code or program execution
traces. Techniques that work statically on the source code can exhaustively examine
the whole program source code and verify properties of all possible executions, but are
prone to false alarms that result from summarizing all possible and some impossible
behaviors together. Techniques that work dynamically on actual execution states and
traces do not suffer from the infeasible path problem, but cannot examine the execution
space exhaustively.

19.2 Symbolic Execution in Program Analysis

Chapter 7 describes how symbolic execution can prove that a program satisfies spec-
ifications expressed in terms of invariants and pre and postconditions. Unfortunately,
producing complete formal specifications with all the required pre and postconditions

1Concurrency and memory faults are further discussed in the sidebars on pages 356 and 357.

Symbolic Execution in Program Analysis 357

Memory Faults
Dynamic memory access and allocation are vulnerable to program faults, including

null pointer dereference, illegal access, and memory leaks. These faults can lead to
memory corruption, misinterpretation or illegal access to memory structures, or mem-
ory exhaustion. Common forms of these faults include the notorious buffer overflow
problem in C programs (whether the dynamic access is through a pointer or an out-
of-bounds array index), access through a “dangling” pointer to either dynamically al-
located memory or the local memory of a procedure (C function), and slow leakage
of memory in shared dynamic data structures where it is difficult to determine which
portions of the structure are still accessible. These faults are difficult to reveal through
testing because, in many cases, they do not cause immediate or certain failure. Pro-
grams may fail only in unusual circumstances (which may be exploited to subvert
security), and typically execute without overt problems for some time before failing
while executing code far from the original fault.

For example, program cgi decode presented in Figure 12.1, page 213 increments
the pointer eptr twice consecutively without checking for buffer termination:

1 } else if (c == ’%’) {
2 /* Case 2: ’%xx’ is hex for character xx */
3 int digit high = Hex Values[*(++eptr)];
4 int digit low = Hex Values[*(++eptr)];

If executed with an input string terminated by %x, where x is an hexadecimal digit,
the program incorrectly scans beyond the end of the input string and can corrupt mem-
ory. However, the failure may occur much after the execution of the faulty statement,
when the corrupted memory is used. Because memory corruption may occur rarely
and lead to failure more rarely still, the fault is hard to detect with traditional testing
techniques.

In languages that require (or allow) a programmer to explicitly control deallocation
of memory, potential faults include deallocating memory that is still accessible through
pointers (making them dangerous dangling pointers to memory that may be recycled
for other uses, with different data types) or failing to deallocate memory that has be-
come inaccessible. The latter problem is known as a memory leak. Memory leaks are
pernicious because they do not cause immediate failure and may in fact lead to memory
exhaustion only after long periods of execution; for this reason they often escape unit
testing and show up only in integration or system test, or in actual use, as discussed in
the sidebar on page 409. Even when failure is observed, it can be difficult to trace the
failure back to the fault.

Memory access failures can often be prevented by using appropriate program con-
structs and analysis tools. The saferC dialect of the C language, used in avionics ap-
plications, limits use of dynamic memory allocation (an application of the restriction
principle of Chapter 3), eliminating the possibility of dangling pointers and memory
leaks. Java dynamically checks for out-of-bounds array indexing and null pointer deref-
erences, throwing an exception immediately if access rules are violated (an application
of the sensitivity principle). Many modern programming languages employ automatic
storage deallocation (garbage collection), likewise preventing dangling pointers.

358 Program Analysis

is rarely cost-effective. Moreover, even when provided with a complete formal spec-
ification, verification through symbolic execution may require solving predicates that
exceed the capacity of modern constraint solvers.

Symbolic execution techniques find wider application in program analysis tools
that aim at finding particular, limited classes of program faults rather than proving
program correctness. Typical applications include checking for use of uninitialized
memory, memory leaks, null pointer dereference, and vulnerability to certain classes
of attack such as SQL injection or buffer overflow. Tools for statically detecting these
faults make few demands on programmers. In particular, they do not require com-
plete program specifications or pre- and postcondition assertions, and they range from
moderately expensive (suitable for daily or occasional use) to quite cheap (suitable for
instant feedback in a program editor).

In addition to focusing on particular classes of faults, making a static program anal-
ysis efficient has a cost in accuracy. As discussed in Chapter 2, the two basic ways in
which we can trade efficiency for accuracy are abstracting details of execution to fold
the state space or exploring only a sample of the potential program state space. All
symbolic execution techniques fold the program state space to some extent. Some fold
it far enough that it can be exhaustively explored, incurring some pessimistic inaccu-
racy but no optimistic inaccuracy. Others maintain a more detailed representation of
program states, but explore only a portion of the state space. In that way, they resemble
conventional testing.

19.3 Symbolic Testing

The basic technique of executing a program with symbolic values can be applied much
like program testing. The values of some variables are summarized to elements of a
small set of symbolic values. For example, if analysis is concerned with misuse of
pointers, values for a pointer variable might be taken from the set

{null,notnull, invalid,unknown}

Values of other variables might be represented by a constraint or elided entirely. Since
the representation of program state may not include enough information to determine
the outcome of a conditional statement, symbolic execution can continue down either or
both branches, possibly accumulating constraints in the program state. Unlike formal
program verification using symbolic execution, symbolic testing does not follow every
possible program execution path until all representations of all possible program states
have been visited. It may explore paths to a limited depth or prune exploration by
some other criterion, such as a heuristic regarding the likelihood that a particular path
is really executable and leads to a potential failure.

Symbolic testing is a path-sensitive analysis: We may obtain different symbolic
states by exploring program paths to the same program location. Usually it is also at
least partly context sensitive, exploring execution through different procedure call and
return sequences. The combination of path and context sensitivity is a key strength
of symbolic testing, which can produce a warning with a detailed description of how a
particular execution sequence leads to a potential failure, but it is also very costly. Often

Summarizing Execution Paths 359

the ways in which the values passed to a procedure can affect execution are limited, and
it is possible to build up a model of a procedure’s effects by memoizing entry and exit
conditions. A new path need be explored only when symbolic execution encounters
an entry condition that differs from previously encountered conditions. Models of
unchanged portions of a system, including external libraries, can be retained for future
analysis.

Specializing the analysis to detect only a few classes of faults, and exploring a sam-
ple of program execution paths rather than attempting to summarize all possible behav-
iors, produce error reports that are more precise and focused than those that could be
obtained from an attempt to verify program correctness. Nonetheless, abstraction in the
symbolic representation of program state can lead to situations in which an apparent
program fault is not actually possible. For example, a failure that appears to be possi-
ble when a loop body is executed zero times may actually be impossible because the
loop always executes at least once. False alarms degrade the value of analysis, and a
developer or tester who must wade through many false alarms (expending considerable
effort on manually checking each one) will soon abandon the static checking tool. It is
particularly frustrating to users if the same false alarm appears each time a program is
re-analyzed; an essential facility of any static checking tool is suppression of warnings
that have previously been marked as false or uninteresting.

A symbolic testing tool can simply prune execution paths whose execution condi-
tions involve many constraints, suggesting a high likelihood of infeasibility, or it may
suppress reports depending on a combination of likelihood and severity. A particularly
useful technique is to order warnings, with those that are almost certainly real program
faults given first. It is then up to the user to decide how far to dig into the warning list.

19.4 Summarizing Execution Paths

If our aim is to find all program faults of a certain kind (again focusing on a limited
class of faults, such as pointer misuse or race conditions), then we cannot simply prune
exploration of certain program paths as in symbolic testing. We must instead abstract
far enough to fold the state space down to a size that can be exhaustively explored. This
is essentially the approach taken in flow analysis (Chapter 6) and finite state verification
(Chapter 8). A variety of useful and efficient program analyses can be constructed from
those basic techniques.

A useful class of analyses are those in which all the represented data values can
be modeled by states in a finite state machine (FSM), and operations in the program
text trigger state transitions. For example, a pointer variable can be represented by a
machine with three states representing an invalid value, a possibly null value, and a
value that is definitely not null. Deallocation triggers a transition from the non-null
state to the invalid state. Deallocation in the possibly null state is noted as a potential
misuse, as is a dereference in the possibly null or invalid states. A conditional branch
may also trigger a state transition. For example, testing a pointer for non-null triggers
a transition from the possibly null state to the definitely non-null state.

An important design choice is whether and how to merge states obtained along
different execution paths. Conventional data flow analysis techniques merge all the

360 Program Analysis

states encountered at a particular program location. Where the state obtained along
one execution path is a state of an FSM, a summary of states reachable along all paths
can be represented by a set of FSM states (the powerset lattice construct described
in Chapter 6). Most finite state verification techniques, on the other hand, are path
sensitive and never merge states. In fact, this is the primary difference between finite
state verification and flow analysis.

Once again, modeling procedure call and return is particularly delicate. A complete
path- and context-sensitive analysis is likely to be much too expensive, but throwing
away all context information may cause too many false alarms. The compromise ap-
proach described here for symbolic testing, in which (entry, exit) state pairs are cached
and reused, is again applicable.

19.5 Memory Analysis

The analyses described in the preceding sections are called static because they do not
involve conventional program execution (although the line between symbolic testing
and conventional testing is fuzzy). While only static analyses can fold the program
state space in a way that makes exhaustive analysis possible, dynamic analyses based
on actual program execution can amplify the usefulness of test execution. An example
of this is dynamic memory analysis, which amplifies the sensitivity of test execution
for detecting misuse of dynamically allocated or referenced memory structures.

As discussed in the sidebar on page 357, language support and disciplined program-
ming can reduce the incidence of memory faults and leaks. Some programming lan-
guages, such as C, do not provide run-time protection against prevent memory faults. In
these languages, faults in management of allocated memory can lead to unpredictable
failures. Failure can occur when corrupted memory or references are used, far from
the fault, making it difficult to diagnose the failure. Moreover, since observable failure
may or may not occur, memory faults can be difficult to eliminate with testing.

Consider for example the C program in Figure 19.1 that invokes function cgi decode
presented in Figure 12.1 of Chapter 12 (page 213). The program translates cgi-encoded
strings to ASCII strings. It invokes function cgi decode with an output parameter out-
buf of fixed length, and can overrun the output buffer if executed with an input pa-
rameter that yields an ASCII string longer than outbuf. The corrupted memory does
not cause immediate or certain failure, and thus the fault can remain uncaught during
testing.

Memory analysis dynamically traces memory accesses to detect misuse as soon as
it occurs, thus making potentially hidden failures visible and facilitating diagnosis. For
example, Figure 19.2 shows an excerpt of the results of dynamic analysis of program
cgi decode with the Purify dynamic memory analysis tool. The result is obtained by
executing the program with a test case that produces an output longer than 10 ASCII
characters. Even if the test case execution would not otherwise cause a visible failure,
the dynamic analysis detects an array bounds violation and indicates program locations
related to the fault.

Figure 19.3 shows states of a memory location relevant for detecting misuse. A
dynamic memory analysis tool modifies the program (usually by instrumenting object

Memory Analysis 361

1 int cgi decode(char *encoded, char *decoded);
2 /* Requirement: The caller must allocated adequate space for the output
3 * string ”decoded”. Due to the nature of the CGI escaping, it is enough
4 * for decoded to have the same size as encoded. Encoded is assumed
5 * to be a null-terminated C string.
6 */
7

8 int main (int argc, char *argv[]) {
9 char sentinel pre[] = "2B2B2B2B2B";

10 char subject[] = "AndPlus+%26%2B+%0D%";
11 char sentinel post[] = "26262626";
12 char *outbuf = (char *) malloc(10); /* And just hope it’s enough ... */
13 int return code;
14

15 /* stub init table(); */
16 printf("First test, subject into outbuf\n");
17 return code = cgi decode(subject, outbuf);
18 printf("Original: %s\n", subject);
19 printf("Decoded: %s\n", outbuf);
20 printf("Return code: %d\n", return code);
21

22 printf("Second test, argv[1] into outbuf\n");
23 printf("Argc is %d\n", argc);
24 assert(argc == 2);
25 return code = cgi decode(argv[1], outbuf);
26 printf("Original: %s\n", argv[1]);
27 printf("Decoded: %s\n", outbuf);
28 printf("Return code: %d\n", return code);
29

30 }

Figure 19.1: A C program that invokes the C function cgi decode of Figure 12.1 with
memory for outbuf allocated from the heap.

362 Program Analysis

[I] Starting main
[E] ABR: Array bounds read in printf {1 occurrence}

Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 is at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc’d block in heap 0x00e70000
Thread ID: 0xd64

...
[E] ABR: Array bounds read in printf {1 occurrence}

Reading 11 bytes from 0x00e74af8 (1 byte at 0x00e74b02 illegal)
Address 0x00e74af8 is at the beginning of a 10 byte block
Address 0x00e74af8 points to a malloc’d block in heap 0x00e70000
Thread ID: 0xd64

...
[E] ABWL: Late detect array bounds write {1 occurrence}

Memory corruption detected, 14 bytes at 0x00e74b02
Address 0x00e74b02 is 1 byte past the end of a 10 byte block at 0x00e74af8
Address 0x00e74b02 points to a malloc’d block in heap 0x00e70000
63 memory operations and 3 seconds since last-known good heap state
Detection location - error occurred before the following function call

printf [MSVCRT.dll]
...

Allocation location
malloc [MSVCRT.dll]

...
[I] Summary of all memory leaks... {482 bytes, 5 blocks}
...
[I] Exiting with code 0 (0x00000000)

Process time: 50 milliseconds
[I] Program terminated ...

Figure 19.2: Excerpts of Purify verification tool transcript. Purify has monitored mem-
ory allocation during execution and has detected buffer array out of bounds errors.

Lockset Analysis 363

Unallocated
(unwritable and unreadable)allocate

Allocated and uninitialized
(writable, but unreadable)

Allocated and initialized
(readable and writable)deallocate

deallocate

initialize

Figure 19.3: States of a memory location for dynamic memory analysis (adapted from
Hastings and Joyce [HJ92]).

code) to trace memory access. The instrumented program records the state of each
memory location and detects accesses incompatible with the current state. It detects
attempts to access unallocated memory or read from uninitialized memory locations.
For example, array bounds violations can be detected by adding a small set of memory
locations with state unallocated before and after each array. Attempts to access these
locations are detected immediately.

Memory leaks can be detected by running a garbage detector, which is the analysis
portion of a garbage collector. Garbage collectors automatically identify unused mem-
ory locations and free them. Garbage detection algorithms implement the identification
step by recursively following potential pointers from the data and stack segments into
the heap, marking all referenced blocks, and thereby identifying allocated blocks that
are no longer referenced by the program. Blocks allocated but no longer directly or
transitively referenced are reported as possible memory leaks.

19.6 Lockset Analysis

Data races are hard to reveal with testing, due to nondeterministic interleaving of
threads in a concurrent program. Statically exploring the execution space is compu-
tationally expensive, and suffers from the approximated model of computation, as dis-
cussed in Chapter 8. Dynamic analysis can greatly amplify the sensitivity of testing to
detect potential data races, avoiding the pessimistic inaccuracy of finite state verifica-
tion while reducing the optimistic inaccuracy of testing.

Data races are commonly prevented by imposing a locking discipline, such as the
rule every variable shared between threads must be protected by a mutual exclusion
lock. Dynamic lockset analysis reveals potential data races by detecting violation of
the locking discipline.

Lockset analysis identifies the set of mutual exclusion locks held by threads when
accessing each shared variable. Initially, each shared variable is associated with all
available locks. When a thread accesses a shared variable v, lockset analysis intersects
the current set of candidate locks for v with the locks held by that thread. The set of
candidate locks that remains after executing a set of test cases is the set of locks that
were always held by threads accessing that variable. An empty set of locks for a shared
variable v indicates that no lock consistently protects v.

364 Program Analysis

Thread Program trace locks held lockset (x)

{ } {lck1, lck2}
thread A lock(lck1)

{lck1}
x=x+1;

{lck1}
unlock(lck1)

{ }
thread B lock(lck2)

{lck2}
x=x+1;

{ }
unlock(lck2)

{ }

Figure 19.4: Threads accessing the same shared variable with different locks. (Adapted
from Savage et al. [SBN+97])

The analysis of the two threads in Figure 19.4 starts with two locks associated with
variable x. When thread A locks lck1 to access x, the lockset of x is intersected with the
locks hold by A. When thread B locks lck2 to access x, the intersection of the lockset
of x with the current set of locks becomes empty, indicating that no locks consistently
protect x.

This simple locking discipline is violated by some common programming prac-
tices: Shared variables are frequently initialized without holding a lock; shared vari-
ables written only during initialization can be safely accessed without locks; and mul-
tiple readers can be allowed in mutual exclusion with single writers. Lockset analysis
can be extended to accommodate these idioms.

Initialization can be handled by delaying analysis till after initialization. There
is no easy way of knowing when initialization is complete, but we can consider the
initialization completed when the variable is accessed by a second thread.

Safe simultaneous reads of unprotected shared variables can also be handled very
simply by enabling lockset violations only when the variable is written by more than
one thread. Figure 19.5 shows the state transition diagram that enables lockset analysis
and determines race reports. The initial virgin state indicates that the variable has
not been referenced yet. The first access moves the variable to the exclusive state.
Additional accesses by the same thread do not modify the variable state, since they
are considered part of the initialization procedure. Accesses by other threads move to
states shared and shared-modified that record the type of access. The variable lockset
is updated in both shared and shared-modified states, but violations of the policy are
reported only if they occur in state shared-modified. In this way, read-only concurrent
accesses do not produce warnings.

To allow multiple readers to access a shared variable and still report writers’ data
races, we can simply distinguish between the set of locks held in all accesses from the

Extracting Behavior Models from Execution 365

read/write/first thread

Virgin

write

Shared

Shared-Modified
read/new thread

write/new thread

write

Exclusive

read

Figure 19.5: The state transition diagram for lockset analysis with multiple read ac-
cesses.

set of locks held in write accesses.

19.7 Extracting Behavior Models from Execution

Executing a test case reveals information about a program. Behavior analysis can
gather information from executing several test cases and synthesize a model that char-
acterizes those executions and, to the extent that they are representative, other execu-
tions as well.

Program executions produce information about the behavior of programs. Test
case execution samples the program behavior but does not produce general models.
Behavior analysis generalizes single executions and produces models of the behavior
of the programs. Behavior models summarize the results of the analyzed executions,
and approximate the overall behavior of the programs to the extent that the analyzed
executions sample the execution spaces.

One kind of behavior model can be expressed as predicates on the values of pro-
gram variables at selected execution points. For example, a behavior model computed
at the exit point of AVL tree method insert, shown in Figure 19.6, could describe the
behavior of the method with the following predicates:

father > left
father < right
diffHeight one of {�1,0,1}

These predicates indicate that, in all observed executions of the insert method, the
AVL tree properties of node ordering and tree balance were maintained.

A model like this helps test designers understand the behavior of the program and
the completeness of the test suite. We can easily see that the test suite produces AVL
trees unbalanced both to the right and to the left, albeit within the AVL allowance. A
predicate like

diffHeight == 0

366 Program Analysis

would indicate the absence of test cases producing unbalanced trees, and thus possibly
incomplete test suites.

Behavior analysis produces a model by refining an initial set of predicates generated
from templates. Figure 19.7 illustrates a sample set of predicate templates. Instanti-
ating all templates for all variables at all program points would generate an enormous
number of initial predicates, many of which are useless. Behavior analysis can be opti-
mized by indicating the points in the program at which we would like to extract behav-
ior models and the variables of interest at those points. The instruction recordData(t,
t.left, t.right) in Figure 19.6 indicates both the point at which variables are monitored
(immediately before returning from the method) and the monitored variables (the fields
of the current node and of its left and right children).

The initial set of predicates is refined by eliminating those violated during exe-
cution. Figure 19.9 shows two behavior models for the method insert shown in Fig-
ure 19.6. The models were derived by executing the two test cases shown in Figure
19.8. The model for test testCaseSingleValues shows the limitations of a test case that
assigns only three values, producing a perfectly balanced tree. The predicates correctly
characterize that execution, but represent properties of a small subset of AVL trees.
The behavioral model obtained with test testCaseRandom provides more information
about the method. This test case results in 300 invocations of the method with ran-
domly generated numbers. The model indicates that the elements are inserted correctly
in the AVL tree (for each node father, left < father < right) and the tree is balanced
as expected (diffHeight one of {�1,0,1}). The models provide additional information
about the test cases. All inserted elements are nonnegative (left >= 0). The model also
includes predicates that are not important or can be deduced from others. For exam-
ple, fatherHeight >= 0 can easily be deduced from the code, while father >= 0 is a
consequence of left >= 0 and left < father.

As illustrated in the example, the behavior model is neither a specification of the
program nor a complete description of the program behavior, but rather a representa-
tion of the behavior experienced so far. Additional executions can further refine the
behavior model by refining or eliminating predicates.

Some conditions may be coincidental; that is they may happen to be true only of the
small portion of the program state space that has been explored by particular set of test
cases. We can reduce the effect of coincidental conditions by computing a probability
of coincidence, which can be estimated by counting the number of times the predicate
is tested. Conditions are considered valid if their coincidental probability falls below
a threshold. For example, father >= 0 may occur coincidentally with a probability of
0.5, if it is verified by a single execution, but the probability decreases to 0.5n, if it is
verified by n executions. With a threshold of 0.05%, after two executions with father =
7, the analysis will consider valid the predicate father = 7, but not father >= 0 yet, since
the latter still has a high probability of being coincidental. Two additional executions
with different positive outcomes will invalidate predicate father = 7 and will propose
father >= 0, since its probability will be below the current threshold. The predicate
father >= 0 appears in the model obtained from testCaseRandom, but not in the model
obtained from testCaseSingleValues because it occurred 300 times in the execution of
testCaseRandom but only 3 times in the execution of testCaseSingleValues.

Behavior models may help in many ways: during testing to help validate the thor-

Extracting Behavior Models from Execution 367

1 /**
2 * Internal method to insert into a subtree.
3 *
4 * @param x
5 * the item to insert.
6 * @param t
7 * the node that roots the tree.
8 * @return the new root.
9 */

10 private AvlNode insert(Comparable x, AvlNode t) {
11 if (t == null)
12 t = new AvlNode(x, null, null);
13 else if (x.compareTo(t.element) < 0) {
14 t.left = insert(x, t.left);
15 if (height(t.left) - height(t.right) == 2)
16 if (x.compareTo(t.left.element) < 0)
17 t = rotateWithLeftChild(t);
18 else
19 t = doubleWithLeftChild(t);
20 } else if (x.compareTo(t.element) > 0) {
21 t.right = insert(x, t.right);
22 if (height(t.right) - height(t.left) == 2)
23 if (x.compareTo(t.right.element) > 0)
24 t = rotateWithRightChild(t);
25 else
26 t = doubleWithRightChild(t);
27 } else
28 ; // Duplicate; do nothing
29

30 t.height = max(height(t.left), height(t.right)) + 1;
31

32 recordData(t, t.left, t.right);
33

34 return t;
35 }

Figure 19.6: A Java method for inserting a node into an AVL tree [Wei07].⇤

⇤Adapted from source code from the text DATA STRUCTURES & ALGORITHM ANALYSIS IN JAVA by
Weiss, c� 2007, 1999 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc. All
rights reserved.

368 Program Analysis

Over any variable x:
constant x = a
uninitialized x = uninit
small value set x = {a,b,c} for a small set of values
Over a single numeric variable x:
in a range x� a, x b, a x b
nonzero x 6= 0
modulus x⌘ a (mod b)
nonmodulus x¬⌘ a (mod b)
Over two numeric variables x and y:
linear relationship y = ax+b
ordering relationship x y, x < y, x = y, x 6= y
functions x = f n(y)
Over the sum of two numeric variables x+ y:
in a range x+ y� a, x+ y b, a x+ y b
nonzero x+ y 6= 0
modulus x+ y⌘ a (mod b)
nonmodulus x+ y¬⌘ a (mod b)
Over three numeric variables x, y and z:
linear relationship z = ax+by+ c
functions z = f n(x,y)
Over a single sequence variable:
range minimum and maximum sequence values, ordered lexicographically
element ordering non-decreasing, non-increasing, equal
Over two sequence variables x and y:
linear relationship y = ax+b elementwise
comparison x y, x < y, x = y, x 6= y performed lexicographically
subsequence relationship x is a subsequence of y
reversal x is the reverse of y
Over a sequence of a numeric variable s:
membership x 2 s

where a, b, and c denote constants, f n denotes a built-in function, and uninit denotes an uninitialized value.
The name of the variable denotes its value at the considered point of execution; origx indicates the original
value of variable x, that is, the value at the beginning of the considered execution.

Figure 19.7: A sample set of predicate patterns implemented by the Daikon behavior analysis tool.

Extracting Behavior Models from Execution 369

1 private static void testCaseSingleValues() {
2 AvlTree t = new AvlTree();
3 t.insert(new Integer(5));
4 t.insert(new Integer(2));
5 t.insert(new Integer(7));
6 }
7

25 . . .
26 private static void testCaseRandom(int nTestCase) {
27 AvlTree t = new AvlTree();
28

29 for (int i = 1; i < nTestCase; i++) {
30 int value = (int) Math.round(Math.random() * 100);
31 t.insert(new Integer(value));
32 }
33 }

Figure 19.8: Two test cases for method insert of Figure 19.6. testCaseSingleValues
inserts 5, 2, and 7 in this order; testCaseRandom inserts 300 randomly generated
integer values.

oughness of tests, during program analysis to help understand program behavior, during
regression test to compare the behavior of different versions or configurations, during
test of component-based software systems to compare the behavior of components in
different contexts, and during debugging to identify anomalous behavior and under-
stand its causes.

Open Research Issues

Program analysis research for fault detection and assurance is in a period of productive
ferment, with every prospect of rapid advance for at least another decade. Some tech-
niques initially introduced decades ago, now revisited or rediscovered, have become
practical at last due to vastly increased computing resources and improvements in fun-
damental underlying algorithms, such as alias analysis and interprocedural data flow
analysis.

One important thread of foundational research involves clarifying the relations
among finite state verification techniques, techniques based on flow analysis, and type
(or type and effect) systems. These once distinct approaches to verifying program
properties now blur at the edges, and each is enriching the others. At the same time,
research in the programming languages community and that in the software engineer-
ing research community are intertwining as much as at any time since they were one in
the late 1970s.

Dynamic analysis (aside from conventional testing) was once relegated to debug-
ging and performance analysis, but has recently become an important approach for

370 Program Analysis

Behavior model for testCaseSingleValues
father one of {2, 5, 7}
left == 2
right == 7
leftHeight == rightHeight
rightHeight == diffHeight
leftHeight == 0
rightHeight == 0
fatherHeight one of {0, 1}

Behavior model for testCaseRandom
father >= 0
left >= 0
father > left
father < right
left < right
fatherHeight >= 0
leftHeight >= 0
rightHeight >= 0
fatherHeight > leftHeight
fatherHeight > rightHeight
fatherHeight > diffHeight
rightHeight >= diffHeight
diffHeight one of {�1,0,1}
leftHeight - rightHeight + diffHeight == 0

Figure 19.9: The behavioral models for method insert of Figure 19.6. The model
was obtained using Daikon with test cases testCaseSingleValues and testCaseRan-
dom shown in Figure 19.8.

Extracting Behavior Models from Execution 371

constructing and refining models of program behavior. Synergistic combinations of
static program analysis, dynamic analysis, and testing are a promising avenue of fur-
ther research.

Further Reading

Readings on some of the underlying techniques in program analysis are suggested in
Chapters 5, 6, 7, and 8. In addition, any good textbook on compiler construction will
provide useful basic background on extracting models from program source code.

A recent application of symbolic testing described by Bush, Pincus, and Sielaff
[BPS00] is a good example of the revival of an approach that found little practical
application when first introduced in the 1970s. Aside from exploiting vastly greater
computing capacity, the modern version of the technique improves on the original in
several ways, most notably better managing communication of analysis results to the
user. Coen-Porisini et al. [CPDGP01] describe a modern application of symbolic
execution in constructing a rigorous demonstration of program properties by exploiting
limitations of an application domain.

Savage et al. [SBN+97] introduced the lockset analysis technique, which has in-
fluenced a great deal of subsequent research in both static and dynamic analyses of
multi-threaded software. The Daikon tool and its approach to behavioral model extrac-
tion were introduced by Ernst et al. [ECGN01].

Exercises

19.1. We claimed that Java synchronized(l) { block } is easier to check statically than
separate lock(l) and unlock(l) operations.
Give an example of how it could be harder to verify that lock(l) and unlock(l)
operations protect a particular variable access than to verify that the access is
protected by a synchronized(l) { . . . }.

19.2. Although Java synchronized blocks make analysis of locking easy relative to in-
dividual lock(l) and unlock(l) operations, it is still possible to construct Java pro-
grams for which a static program analysis will not be able to determine whether
access at a particular program location is always protected by the same lock.
Give an example of this, with an explanation. (Hint: Each lock in Java is identi-
fied by a corresponding object.)

19.3. A fundamental facility for symbolic testing and many other static analysis tech-
niques is to allow the user to note that a particular warning or error report is
a false alarm, and to suppress it in future runs of the analysis tool. However,
it is possible that a report that is a false alarm today might describe a real fault
sometime later, due to program changes. How might you support the “revival” of
suppressed error reports at appropriate times and points? Discuss the advantages
and disadvantages of your approach.

372 Program Analysis

19.4. Suppose we choose to model a program execution state with four pieces of in-
formation — the program location (control point) and the states of four Boolean
variables w,x,y,and z — and suppose each of those variables is modeled by a
finite state machine (FSM) with three states representing possible values (unini-
tialized, true, and false).

If we were modeling just the possible values of w, a natural choice would be to la-
bel each program location with an element from a powerset lattice in which each
lattice element represents a subset of automaton states. If we model w,x,y,and z,
there are at least two different ways we could represent values at each program
location: As a set of tuples of FSM states or as a tuple of sets of FSM states. What
are the advantages and disadvantages of each of these representation choices?
How might your choice depend on the property you were attempting to verify?

Part IV

Process

373

Chapter 20

Planning and Monitoring the

Process

Any complex process requires planning and monitoring. The quality process requires
coordination of many different activities over a period that spans a full development
cycle and beyond. Planning is necessary to order, provision, and coordinate all the
activities that support a quality goal, and monitoring of actual status against a plan is
required to steer and adjust the process.

Required Background

• Chapter 4
Introduction of basic concepts of quality process, goals, and activities provides
useful background for understanding this chapter.

20.1 Overview

Planning involves scheduling activities, allocating resources, and devising observable,
unambiguous milestones against which progress and performance can be monitored.
Monitoring means answering the question, “How are we doing?”

Quality planning is one aspect of project planning, and quality processes must be
closely coordinated with other development processes. Coordination among quality
and development tasks may constrain ordering (e.g., unit tests are executed after cre-
ation of program units). It may shape tasks to facilitate coordination; for example,
delivery may be broken into smaller increments to allow early testing. Some aspects of
the project plan, such as feedback and design for testability, may belong equally to the
quality plan and other aspects of the project plan.

Quality planning begins at the inception of a project and is developed with the
overall project plan, instantiating and building on a quality strategy that spans several
projects. Like the overall project plan, the quality plan is developed incrementally,
beginning with the feasibility study and continuing through development and delivery.

375

376 Planning and Monitoring the Process

Formulation of the plan involves risk analysis and contingency planning. Execution of
the plan involves monitoring, corrective action, and planning for subsequent releases
and projects.

Allocating responsibility among team members is a crucial and difficult part of
planning. When one person plays multiple roles, explicitly identifying each responsi-
bility is still essential for ensuring that none are neglected.

20.2 Quality and Process

A software plan involves many intertwined concerns, from schedule to cost to usabil-
ity and dependability. Despite the intertwining, it is useful to distinguish individual
concerns and objectives to lessen the likelihood that they will be neglected, to allocate
responsibilities, and to make the overall planning process more manageable.

For example, a mature software project plan will include architectural design re-
views, and the quality plan will allocate effort for reviewing testability aspects of the
structure and build order. Clearly, design for testability is an aspect of software design
and cannot be carried out by a separate testing team in isolation. It involves both test
designers and other software designers in explicitly evaluating testability as one consid-
eration in selecting among design alternatives. The objective of incorporating design
for testability in the quality process is primarily to ensure that it is not overlooked and
secondarily to plan activities that address it as effectively as possible.

An appropriate quality process follows a form similar to the overall software pro-
cess in which it is embedded. In a strict (and unrealistic) waterfall software process,
one would follow the “V model” (Figure 2.1 on page 16) in a sequential manner, be-
ginning unit testing only as implementation commenced following completion of the
detailed design phase, and finishing unit testing before integration testing commenced.
In the XP “test first” method, unit testing is conflated with subsystem and system test-
ing. A cycle of test design and test execution is wrapped around each small-grain
incremental development step. The role that inspection and peer reviews would play in
other processes is filled in XP largely by pair programming. A typical spiral process
model lies somewhere between, with distinct planning, design, and implementation
steps in several increments coupled with a similar unfolding of analysis and test activi-
ties. Some processes specifically designed around quality activities are briefly outlined
in the sidebars on pages 378, 380, and 381.

A general principle, across all software processes, is that the cost of detecting and
repairing a fault increases as a function of time between committing an error and detect-
ing the resultant faults. Thus, whatever the intermediate work products in a software
plan, an efficient quality plan will include a matched set of intermediate validation and
verification activities that detect most faults within a short period of their introduction.
Any step in a software process that is not paired with a validation or verification step
is an opportunity for defects to fester, and any milestone in a project plan that does not
include a quality check is an opportunity for a misleading assessment of progress.

The particular verification or validation step at each stage depends on the nature
of the intermediate work product and on the anticipated defects. For example, antic-
ipated defects in a requirements statement might include incompleteness, ambiguity,

Test and Analysis Strategies 377

inconsistency, and overambition relative to project goals and resources. A review step
might address some of these, and automated analyses might help with completeness
and consistency checking.

The evolving collection of work products can be viewed as a set of descriptions of
different parts and aspects of the software system, at different levels of detail. Portions
of the implementation have the useful property of being executable in a conventional
sense, and are the traditional subject of testing, but every level of specification and
design can be both the subject of verification activities and a source of information for
verifying other artifacts. A typical intermediate artifact — say, a subsystem interface
definition or a database schema — will be subject to the following steps:

Internal consistency check: Check the artifact for compliance with structuring rules
that define “well-formed” artifacts of that type. An important point of leverage
is defining the syntactic and semantic rules thoroughly and precisely enough that
many common errors result in detectable violations. This is analogous to syn-
tax and strong-typing rules in programming languages, which are not enough to
guarantee program correctness but effectively guard against many simple errors.

External consistency check: Check the artifact for consistency with related artifacts.
Often this means checking for conformance to a “prior” or “higher-level” speci-
fication, but consistency checking does not depend on sequential, top-down de-
velopment — all that is required is that the related information from two or
more artifacts be defined precisely enough to support detection of discrepancies.
Consistency usually proceeds from broad, syntactic checks to more detailed and
expensive semantic checks, and a variety of automated and manual verification
techniques may be applied.

Generation of correctness conjectures: Correctness conjectures, which can be test
outcomes or other objective criteria, lay the groundwork for external consistency
checks of other work products, particularly those that are yet to be developed
or revised. Generating correctness conjectures for other work products will fre-
quently motivate refinement of the current product. For example, an interface
definition may be elaborated and made more precise so that implementations
can be effectively tested.

20.3 Test and Analysis Strategies

Lessons of past experience are an important asset of organizations that rely heavily
on technical skills. A body of explicit knowledge, shared and refined by the group, is
more valuable than islands of individual competence. Organizational knowledge in a
shared and systematic form is more amenable to improvement and less vulnerable to
organizational change, including the loss of key individuals. Capturing the lessons of
experience in a consistent and repeatable form is essential for avoiding errors, main-
taining consistency of the process, and increasing development efficiency.

378 Planning and Monitoring the Process

Cleanroom
The Cleanroom process model, introduced by IBM in the late 1980s, pairs develop-

ment with V&V activities and stresses analysis over testing in the early phases. Testing
is left for system certification. The Cleanroom process involves two cooperating teams,
the development and the quality teams, and five major activities: specification, plan-
ning, design and verification, quality certification, and feedback.

UsageFunction

Specification

Customer Requirements

Incremental
Development

Planning

Formal Design
Correctness Verification

Functional Specifications

Statistical Test-Case
Generation

Usage Specifications

Statistical Testing

Source Code Test Cases

Quality Certification
Model

Interfail Times

Improvement
Feedback

MTTF statistics

In the specification activity, the development team defines the required behavior
of the system, while the quality team defines usage scenarios that are later used for
deriving system test suites. The planning activity identifies incremental development
and certification phases.

After planning, all activities are iterated to produce incremental releases of the sys-
tem. Each system increment is fully deployed and certified before the following step.
Design and code undergo formal inspection (“Correctness verification”) before release.
One of the key premises underpinning the Cleanroom process model is that rigorous
design and formal inspection produce “nearly fault-free software.”

Usage profiles generated during specification are applied in the statistical testing
activity to gauge quality of each release. Another key assumption of the Cleanroom
process model is that usage profiles are sufficiently accurate that statistical testing will
provide an accurate measure of quality as perceived by users.a Reliability is measured
in terms of mean time between failures (MTBF) and is constantly controlled after each
release. Failures are reported to the development team for correction, and if reliability
falls below an acceptable range, failure data is used for process improvement before
the next incremental release.

aSee Chapter 22 for more detail on statistical testing and usage profiling.

Test and Analysis Strategies 379

Software organizations can develop useful, organization-specific strategies because
of similarities among projects carried out by a particular organization in a set of related
application domains. Test and analysis strategies capture commonalities across projects
and provide guidelines for maintaining consistency among quality plans.

A strategy is distinguished from a plan in that it is not specific to a single project.
Rather, it provides guidance and a general framework for developing quality plans for
several projects, satisfying organizational quality standards, promoting homogeneity
across projects, and making both the creation and execution of individual project qual-
ity plans more efficient.

The quality strategy is an intellectual asset of an individual organization prescribing
a set of solutions to problems specific to that organization. Among the factors that
particularize the strategy are:

Structure and size: Large organizations typically have sharper distinctions between
development and quality groups, even if testing personnel are assigned to devel-
opment teams. In smaller organizations, it is more common for a single person to
serve multiple roles. Where responsibility is distributed among more individu-
als, the quality strategy will require more elaborate attention to coordination and
communication, and in general there will be much greater reliance on documents
to carry the collective memory.
In a smaller organization, or an organization that has devolved responsibility to
small, semi-autonomous teams, there is typically less emphasis on formal com-
munication and documents but a greater emphasis on managing and balancing
the multiple roles played by each team member.

Overall process: We have already noted the intertwining of quality process with other
aspects of an overall software process, and this is of course reflected in the quality
strategy. For example, if an organization follows the Cleanroom methodology,
then inspections will be required but unit testing forbidden. An organization that
adopts the XP methodology is likely to follow the “test first” and pair program-
ming elements of that approach, and in fact would find a more document-heavy
approach a difficult fit.
Notations, standard process steps, and even tools can be reflected in the quality
strategy to the extent they are consistent from project to project. For example,
if an organization consistently uses a particular combination of UML diagram
notations to document subsystem interfaces, then the quality strategy might in-
clude derivation of test designs from those notations, as well as review and anal-
ysis steps tailored to detect the most common and important design flaws at that
point. If a particular version and configuration control system is woven into
process management, the quality strategy will likewise exploit it to support and
enforce quality process steps.

Application domain: The domain may impose both particular quality objectives (e.g.,
privacy and security in medical records processing), and in some cases particular
steps and documentation required to obtain certification from an external author-
ity. For example, the RTCA/DO-178B standard for avionics software requires
testing to the modified condition/decision coverage (MC/DC) criterion.

380 Planning and Monitoring the Process

SRET
The software reliability engineered testing (SRET) approach, developed at AT&T

in the early 1990s, assumes a spiral development process and augments each coil of the
spiral with rigorous testing activities. SRET identifies two main types of testing: devel-
opment testing, used to find and remove faults in software at least partially developed
in-house, and certification testing, used to either accept or reject outsourced software.

The SRET approach includes seven main steps. Two initial, quick decision-making
steps determine which systems require separate testing and which type of testing is
needed for each system to be tested. The five core steps are executed in parallel with
each coil of a spiral development process.

Define “Necessary”
Reliability

Develop
Operational Profiles

Requirements
and

Architecture

Design
and

Implementation

System Test
and

Acceptance Test

Prepare
for Testing

Interpret
Failure dataExecute

Tests

The five core steps of SRET are:

Define “Necessary” Reliability: Determine operational models, that is, distinct pat-
terns of system usage that require separate testing, classify failures according
to their severity, and engineer the reliability strategy with fault prevention, fault
removal, and fault tolerance activities.

Develop Operational Profiles: Develop both overall profiles that span operational
models and operational profiles within single operational models.

Prepare for Testing: Specify test cases and procedures.

Execute Tests

Interpret Failure Data: Interpretation of failure data depends on the type of testing.
In development testing, the goal is to track progress and compare present failure
intensities with objectives. In certification testing, the goal is to determine if a
software component or system should be accepted or rejected.

Test and Analysis Strategies 381

Extreme Programming (XP)
The extreme programming methodology (XP) emphasizes simplicity over general-

ity, global vision and communication over structured organization, frequent changes
over big releases, continuous testing and analysis over separation of roles and respon-
sibilities, and continuous feedback over traditional planning.

Customer involvement in an XP project includes requirements analysis (develop-
ment, refinement, and prioritization of user stories) and acceptance testing of very
frequent iterative releases. Planning is based on prioritization of user stories, which are
implemented in short iterations. Test cases corresponding to scenarios in user stories
serve as partial specifications.

Generate User

Stories

Create Unit

Tests

Review, refine,

prioritize

Pair

Programming

+ Unit testing

Passed all unit tests

Acceptance

Testing

Passed all

unit tests

Failed

acceptance

 test

Incremental

Release

Pass

Next version

Create

Acceptance

Tests

Test cases suitable for batch execution are part of the system code base and are im-
plemented prior to the implementation of features they check (“test-first”). Developers
work in pairs, incrementally developing and testing a module. Pair programming effec-
tively conflates a review activity with coding. Each release is checked by running all
the tests devised up to that point of development, thus essentially merging unit testing
with integration and system testing. A failed acceptance test is viewed as an indication
that additional unit tests are needed.

Although there are no standard templates for analysis and test strategies, we can
identify a few elements that should be part of almost any good strategy. A strategy
should specify common quality requirements that apply to all or most products, pro-
moting conventions for unambiguously stating and measuring them, and reducing the
likelihood that they will be overlooked in the quality plan for a particular project. A
strategy should indicate a set of documents that is normally produced during the quality
process, and their contents and relationships. It should indicate the activities that are
prescribed by the overall process organization. Often a set of standard tools and prac-
tices will be prescribed, such as the interplay of a version and configuration control
tool with review and testing procedures. In addition, a strategy includes guidelines for
project staffing and assignment of roles and responsibilities. An excerpt of a sample
strategy document is presented in Chapter 24.

382 Planning and Monitoring the Process

20.4 Test and Analysis Plans

An analysis and test plan details the steps to be taken in a particular project. A plan
should answer the following questions:

• What quality activities will be carried out?

• What are the dependencies among the quality activities and between quality and
development activities?

• What resources are needed and how will they be allocated?

• How will both the process and the evolving product be monitored to maintain
an adequate assessment of quality and early warning of quality and schedule
problems?

Each of these issues is addressed to some extent in the quality strategy, but must
be elaborated and particularized. This is typically the responsibility of a quality man-
ager, who should participate in the initial feasibility study to identify quality goals and
estimate the contribution of test and analysis tasks on project cost and schedule.

To produce a quality plan that adequately addresses the questions above, the quality
manager must identify the items and features to be verified, the resources and activities
that are required, the approaches that should be followed, and criteria for evaluating
the results.

Items and features to be verified circumscribe the target of the quality plan. While
there is an obvious correspondence between items to be developed or modified and
those to undergo testing, they may differ somewhat in detail. For example, overall
evaluation of the user interface may be the purview of a separate human factors group.
The items to be verified, moreover, include many intermediate artifacts such as require-
ments specifications and design documents, in addition to portions of the delivered
system. Approaches to be taken in verification and validation may vary among items.
For example, the plan may prescribe inspection and testing for all items and additional
static analyses for multi-threaded subsystems.

Quality goals must be expressed in terms of properties satisfied by the product and
must be further elaborated with metrics that can be monitored during the course of
the project. For example, if known failure scenarios are classified as critical, severe,
moderate, and minor, then we might decide in advance that a product version may
enter end-user acceptance testing only when it has undergone system testing with no
outstanding critical or severe failures.

Defining quality objectives and process organization in detail requires information
that is not all available in the early stages of development. Test items depend on de-
sign decisions; detailed approaches to evaluation can be defined only after examining
requirements and design specifications; tasks and schedule can be completed only after
the design; new risks and contingencies may be introduced by decisions taken during
development. On the other hand, an early plan is necessary for estimating and control-
ling cost and schedule. The quality manager must start with an initial plan based on
incomplete and tentative information, and incrementally refine the plan as more and
better information becomes available during the project.

Test and Analysis Plans 383

After capturing goals as well as possible, the next step in construction of a quality
plan is to produce an overall rough list of tasks. The quality strategy and past expe-
rience provide a basis for customizing the list to the current project and for scaling
tasks appropriately. For example, experience (preferably in the form of collected and
analyzed data from past projects, rather than personal memory) might suggest a ratio
of 3:5 for person-months of effort devoted to integration test relative to coding effort.
Historical data may also provide scaling factors for the application domain, interfaces
with externally developed software, and experience of the quality staff. To the extent
possible, the quality manager must break large tasks into component subtasks to ob-
tain better estimates, but it is inevitable that some task breakdown must await further
elaboration of the overall project design and schedule.

The manager can start noting dependencies among the quality activities and be-
tween them and other activities in the overall project, and exploring arrangements of
tasks over time. The main objective at this point is to schedule quality activities so that
assessment data are provided continuously throughout the project, without unneces-
sary delay of other development activities. For example, the quality manager may note
that the design and implementation of different subsystems are scheduled in different
phases, and may plan subsystem testing accordingly.

Where there is a choice between scheduling a quality activity earlier or later, the
earliest point possible is always preferable. However, the demand on resources (staff
time, primarily) must be leveled over time, and often one must carefully schedule the
availability of particular critical resources, such as an individual test designer with ex-
pertise in a particular technology. Maintaining a consistent level of effort limits the
number of activities that can be carried on concurrently, and resource constraints to-
gether with the objective of minimizing project delays tends to force particular order-
ings on tasks.

If one has a choice between completing two tasks in four months, or completing
the first task in two months and then the second in another two months, the schedule
that brings one task to completion earlier is generally advantageous from the perspec-
tive of process visibility, as well as reduced coordination overhead. However, many
activities demand a fraction of a person’s attention over a longer period and cannot be
compressed. For example, participation in design and code inspection requires a sub-
stantial investment of effort, but typically falls short of a full-time assignment. Since
delayed inspections can be a bottleneck in progress of a project, they should have a
high priority when they can be carried out, and are best interleaved with tasks that can
be more flexibly scheduled.

While the project plan shows the expected schedule of tasks, the arrangement and
ordering of tasks are also driven by risk. The quality plan, like the overall project
plan, should include an explicit risk plan that lists major risks and contingencies, as
discussed in the next section.

A key tactic for controlling the impact of risk in the project schedule is to minimize
the likelihood that unexpected delay in one task propagates through the whole schedule
and delays project completion. One first identifies the critical paths through the project
schedule. Critical paths are chains of activities that must be completed in sequence and
that have maximum overall duration. Tasks on the critical path have a high priority critical paths

for early scheduling, and likewise the tasks on which they depend (which may not

384 Planning and Monitoring the Process

themselves be on the critical path) should be scheduled early enough to provide some
schedule slack and prevent delay in the inception of the critical tasks.

A critical dependence occurs when a task on a critical path is scheduled immedi-
ately after some other task on the critical path, particularly if the length of the critical
path is close to the length of the project. Critical dependence may occur with taskscritical dependence

outside the quality plan part of the overall project plan.
The primary tactic available for reducing the schedule risk of a critical dependence

is to decompose a task on the critical path, factoring out subtasks that can be performed
earlier. For example, an acceptance test phase late in a project is likely to have a critical
dependence on development and system integration. One cannot entirely remove this
dependence, but its potential to delay project completion is reduced by factoring test
design from test execution.

Figure 20.1 shows alternative schedules for a simple project that starts at the be-
ginning of January and must be completed by the end of May. In the top schedule,
indicated as CRITICAL SCHEDULE, the tasks Analysis and design, Code and Integra-
tion, Design and execute subsystem tests, and Design and execute system tests form a
critical path that spans the duration of the entire project. A delay in any of the activities
will result in late delivery. In this schedule, only the Produce user documentation task
does not belong to the critical path, and thus only delays of this task can be tolerated.

In the middle schedule, marked as UNLIMITED RESOURCES, the test design and
execution activities are separated into distinct tasks. Test design tasks are scheduled
early, right after analysis and design, and only test execution is scheduled after Code
and integration. In this way the tasks Design subsystem tests and Design system tests
are removed from the critical path, which now spans 16 weeks with a tolerance of 5
weeks with respect to the expected termination of the project. This schedule assumes
enough resources for running Code and integration, Production of user documentation,
Design of subsystem tests, and Design of system tests.

The LIMITED RESOURCES schedule at the bottom of Figure 20.1 rearranges tasks
to meet resource constraints. In this case we assume that test design and execution, and
production of user documentation share the same resources and thus cannot be exe-
cuted in parallel. We can see that, despite the limited parallelism, decomposing testing
activities and scheduling test design earlier results in a critical path of 17 weeks, 4
weeks earlier than the expected termination of the project. Notice that in the example,
the critical path is formed by the tasks Analysis and design, Design subsystem tests,
Design system tests, Produce user documentation, Execute subsystem tests, and Exe-
cute system tests. In fact, the limited availability of resources results in dependencies
among Design subsystem tests, Design system tests and Produce user documentation
that last longer than the parallel task Code and integration.

The completed plan must include frequent milestones for assessing progress. A
rule of thumb is that, for projects of a year or more, milestones for assessing progress
should occur at least every three months. For shorter projects, a reasonable maximum
interval for assessment is one quarter of project duration.

Figure 20.2 shows a possible schedule for the initial analysis and test plan for the
business logic of the Chipmunk Web presence in the form of a GANTT diagram. In
the initial plan, the manager has allocated time and effort to inspections of all major
artifacts, as well as test design as early as practical and ongoing test execution dur-

Test and Analysis Plans 385

ID Task Name
Dec 2006 Jan 2007 Feb 2007 Mar 2007 Apr 2007

3 Analysis and design

4 Code and integration

5 Design and execute
subsystem tests

6 Design and execute
system tests

7 Produce user
documentation

9 UNLIMITED RESOURCES

11 Analysis and design

12 Code and integration

13 Design subsystem tests

14 Design system tests

15 Produce user
documentation

16 Execute subsystem tests

17 Execute system tests

19 LIMITED RESOURCES

21 Analysis and design

22 Code and integration

23 Design subsystem tests

24 Design system tests

25 Produce user
documentation

26 Execute subystem tests

27 Execute system tests

2 Project start

8 Product delivery

Project start10

18 Product delivery

20 Project start

1 CRITICAL SCHEDULE

28 Product delivery

Figure 20.1: Three possible simple schedules with different risks and resource alloca-
tion. The bars indicate the duration of the tasks. Diamonds indicate milestones, and
arrows between bars indicate precedence between tasks.

386 Planning and Monitoring the Process

ing development. Division of the project into major parts is reflected in the plan, but
further elaboration of tasks associated with units and smaller subsystems must await
corresponding elaboration of the architectural design. Thus, for example, inspection
of the shopping facilities code and the unit test suites is shown as a single aggregate
task. Even this initial plan does reflect the usual Chipmunk development strategy of
regular “synch and stabilize” periods punctuating development, and the initial quality
plan reflects the Chipmunk strategy of assigning responsibility for producing unit test
suites to developers, with review by a member of the quality team.

The GANTT diagram shows four main groups of analysis and test activities: de-
sign inspection, code inspection, test design, and test execution. The distribution of
activities over time is constrained by resources and dependence among activities. For
example, system test execution starts after completion of system test design and cannot
finish before system integration (the sync and stablize elements of development frame-
work) is complete. Inspection activities are constrained by specification and design
activities. Test design activities are constrained by limited resources. Late scheduling
of the design of integration tests for the administrative business logic subsystem is nec-
essary to avoid overlap with design of tests for the shopping functionality subsystem.

The GANTT diagram does not highlight intermediate milestones, but we can easily
identify two in April and July, thus dividing the development into three main phases.
The first phase (January to April) corresponds to requirements analysis and architec-
tural design activities and terminates with the architectural design baseline. In this
phase, the quality team focuses on design inspection and on the design of acceptance
and system tests. The second phase (May to July) corresponds to subsystem design and
to the implementation of the first complete version of the system. It terminates with
the first stabilization of the administrative business logic subsystem. In this phase, the
quality team completes the design inspection and the design of test cases. In the final
stage, the development team produces the final version, while the quality team focuses
on code inspection and test execution.

Absence of test design activities in the last phase results from careful identification
of activities that allowed early planning of critical tasks.

20.5 Risk Planning

Risk is an inevitable part of every project, and so risk planning must be a part of every
plan. Risks cannot be eliminated, but they can be assessed, controlled, and monitored.

The risk plan component of the quality plan is concerned primarily with personnel
risks, technology risks, and schedule risk. Personnel risk is any contingency that may
make a qualified staff member unavailable when needed. For example, the reassign-
ment of a key test designer cannot always be avoided, but the possible consequences
can be analyzed in advance and minimized by careful organization of the work. Tech-
nology risks in the quality plan include risks of technology used specifically by the
quality team and risks of quality problems involving other technology used in the prod-
uct or project. For example, changes in the target platform or in the testing environ-
ment, due to new releases of the operating system or to the adoption of a new testing
tool suite, may not be schedulable in advance, but may be taken into account in the

Risk Planning 387

ID
Ta

sk
 N

am
e

1s
t q

ua
rte

r
2n

d
qu

ar
te

r
3r

d
qu

ar
te

r

1/
7

2/
4

1
D

ev
el

op
m

en
t f

ra
m

ew
or

k

2
R

eq
ui

re
m

en
ts

 s
pe

ci
fic

at
io

ns

3
A

rc
hi

te
ct

ur
al

 d
es

ig
n

4
D

et
ai

le
d

de
si

gn
 o

f s
ho

pp
in

g
fa

ci
lit

y
su

bs
ys

.

5
D

et
ai

le
d

de
si

gn
 o

f
ad

m
in

is
tra

tiv
e

bi
z

lo
gi

c

7
S

yn
c

an
d

st
ab

ili
ze

 s
ho

pp
in

g
fa

c.

8
A

dm
in

 b
iz

 lo
gi

c
co

de
 a

nd

in
te

gr
at

io
n

(in
cl

ud
in

g
un

it
te

st
)

9
S

yn
c

an
d

st
ab

ili
ze

ad

m
in

is
tra

tiv
e

bi
z

lo
gi

c
10

D
es

ig
n

in
sp

ec
tio

n

11
In

sp
ec

tio
n

of
 re

qu
ire

m
en

ts

sp
ec

s.

12
In

sp
ec

tio
n

of
 a

rc
hi

te
ct

ur
al

de

si
gn

13
In

sp
ec

tio
n

of
 d

et
. D

es
ig

n
of

sh

op
. f

ac
ili

tie
s

14
In

sp
ec

tio
n

of
 d

et
ai

le
d

de
si

gn

of
 a

dm
in

 lo
gi

c

15
C

od
e

in
sp

ec
tio

n

16
In

sp
ec

tio
n

of
 s

ho
p.

 F
un

. C
or

e
co

de
 a

nd
 u

ni
t t

es
ts

17
In

sp
ec

tio
n

of
 a

dm
in

. B
iz

. L
og

.
C

od
e

co
de

 a
nd

 u
ni

t t
es

ts

18
D

es
ig

n
te

st
s

19
D

es
ig

n
ac

ce
pt

an
ce

 te
st

s

20
D

es
ig

n
sy

st
em

 te
st

s

21
D

es
ig

n
sh

op
 fu

n
su

bs
ys

te
m

in

te
gr

at
io

n
te

st

22
D

es
ig

n
ad

m
in

 b
ix

 lo
g

su
bs

ys
te

m
 in

te
gr

at
io

n
te

st
s

23
Te

st
 e

xe
cu

tio
n

24
E

xe
c

in
te

gr
at

io
n

te
st

s

25
E

xe
c

sy
st

em
 te

st
s

26
E

xe
c

ac
ce

pt
an

ce
 te

st
s

6
S

ho
pp

in
g

fa
c

co
de

 a
nd

in

te
gr

at
io

n
(in

cl
 u

ni
t t

es
t)

Fi
gu

re
20

.2
:I

ni
tia

ls
ch

ed
ul

e
fo

rq
ua

lit
y

ac
tiv

iti
es

in
de

ve
lo

pm
en

to
ft

he
bu

si
ne

ss
lo

gi
c

su
bs

ys
te

m
of

th
e

C
hi

pm
un

k
W

eb
pr

es
en

ce
,p

re
se

nt
ed

as
a

G
AN

TT
di

ag
ra

m
.

388 Planning and Monitoring the Process

organization of the testing environment. Schedule risk arises primarily from optimistic
assumptions in the quality plan. For example, underestimating scaffolding design and
maintenance is a common mistake that cannot always be avoided, but consequences
can be mitigated (e.g., by allowing for a reasonable slack time that can absorb possible
delays). Many risks and the tactics for controlling them are generic to project manage-
ment (e.g., cross-training to reduce the impact of losing a key staff member). Here we
focus on risks that are specific to quality planning or for which risk control measures
play a special role in the quality plan.

The duration of integration, system, and acceptance test execution depends to a
large extent on the quality of software under test. Software that is sloppily constructed
or that undergoes inadequate analysis and test before commitment to the code base
will slow testing progress. Even if responsibility for diagnosing test failures lies with
developers and not with the testing group, a test execution session that results in many
failures and generates many failure reports is inherently more time consuming than exe-
cuting a suite of tests with few or no failures. This schedule vulnerability is yet another
reason to emphasize earlier activities, in particular those that provide early indications
of quality problems. Inspection of design and code (with quality team participation)
can help control this risk, and also serves to communicate quality standards and best
practices among the team.

If unit testing is the responsibility of developers, test suites are part of the unit deliv-
erable and should undergo inspection for correctness, thoroughness, and automation.
While functional and structural coverage criteria are no panacea for measuring test
thoroughness, it is reasonable to require that deviations from basic coverage criteria be
justified on a case-by-case basis. A substantial deviation from the structural coverage
observed in similar products may be due to many causes, including inadequate testing,
incomplete specifications, unusual design, or implementation decisions. The modules
that present unusually low structural coverage should be inspected to identify the cause.

The cost of analysis and test is multiplied when some requirements demand a very
high level of assurance. For example, if a system that has previously been used in
biological research is modified or redeveloped for clinical use, one should anticipate
that all development costs, and particularly costs of analysis and test, will be an order
of magnitude higher. In addition to the risk of underestimating the cost and sched-
ule impact of stringent quality requirements, the risk of failing to achieve the required
dependability increases. One important tactic for controlling this risk is isolating crit-
ical properties as far as possible in small, simple components. Of course these aspects
of system specification and architectural design are not entirely within control of the
quality team; it is crucial that at least the quality manager, and possibly other mem-
bers of the quality team, participate in specification and design activities to assess and
communicate the impact of design alternatives on cost and schedule.

Architectural design is also the primary point of leverage to control cost and risks of
testing systems with complex external interfaces. For example, the hardware platform
on which an embedded system must be tested may be a scarce resource, in demand for
debugging as well as testing. Preparing and executing a test case on that platform may
be time-consuming, magnifying the risk that system and operational testing may go
over schedule and delay software delivery. This risk may be reduced by careful consid-
eration of design-for-testability in architectural design. A testable design isolates and

Monitoring the Process 389

minimizes platform dependencies, reducing the portion of testing that requires access
to the platform. It will typically provide additional interfaces to enhance controllabil-
ity and observability in testing. A considerable investment in test scaffolding, from
self-diagnosis to platform simulators, may also be warranted.

Risks related both to critical requirements and limitations on testability can be par-
tially addressed in system specifications and programming standards. For example,
it is notoriously difficult to detect race conditions by testing multi-threaded software.
However, one may impose a design and programming discipline that prevents race
conditions, such as a simple monitor discipline with resource ordering. Detecting vi-
olations of that discipline, statically and dynamically, is much simpler than detecting
actual data races. This tactic may be reflected in several places in the project plan, from
settling on the programming discipline in architectural design to checking for proper
use of the discipline in code and design inspections, to implementation or purchase of
tools to automate compliance checking.

The sidebars on page 390 and 391 summarize a set of risks both generic to process
management and specific to quality control that a quality manager must consider when
defining a quality plan.

20.6 Monitoring the Process

The quality manager monitors progress of quality activities, including results as well as
schedule, to identify deviations from the quality plan as early as possible and take cor-
rective action. Effective monitoring, naturally, depends on a plan that is realistic, well
organized, and sufficiently detailed with clear, unambiguous milestones and criteria.
We say a process is visible to the extent that it can be effectively monitored.

Successful completion of a planned activity must be distinguished from mere ter-
mination, as otherwise it is too tempting to meet an impending deadline by omitting
some planned work. Skipping planned verification activities or addressing them su-
perficially can seem to accelerate a late project, but the boost is only apparent; the real
effect is to postpone detection of more faults to later stages in development, where their
detection and removal will be far more threatening to project success.

For example, suppose a developer is expected to deliver unit test cases as part of a
work unit. If project deadlines are slipping, the developer is tempted to scrimp on de-
signing unit tests and writing supporting code, perhaps dashing off a few superficial test
cases so that the unit can be committed to the code base. The rushed development and
inadequate unit testing are nearly guaranteed to leave bugs that surface later, perhaps
in integration or system testing, where they will have a far greater impact on project
schedule. Worst of all, they might be first detected in operational use, reducing the real
and perceived quality of the delivered product. In monitoring progress, therefore, it
is essential to include appropriate metrics of the thoroughness or completeness of the
activity.

Monitoring produces a surfeit of detail about individual activities. Managers need
to make decisions based on an overall understanding of project status, so raw monitor-
ing information must be aggregated in ways that provide an overall picture.

390 Planning and Monitoring the Process

Risk Management in the Quality Plan: Risks Generic to Process Management
The quality plan must identify potential risks and define appropriate control tactics. Some risks

and control tactics are generic to process management, while others are specific to the quality process.
Here we provide a brief overview of some risks generic to process management. Risks specific to the
quality process are summarized in the sidebar on page 391.

Personnel Risks Example Control Tactics
A staff member is lost (becomes ill, changes em-
ployer, etc.) or is underqualified for task (the
project plan assumed a level of skill or familiar-
ity that the assigned member did not have).

Cross train to avoid overdependence on individ-
uals; encourage and schedule continuous educa-
tion; provide open communication with oppor-
tunities for staff self-assessment and identifica-
tion of skills gaps early in the project; provide
competitive compensation and promotion poli-
cies and a rewarding work environment to re-
tain staff; include training time in the project
schedule.

Technology Risks Example Control Tactics
Many faults are introduced interfacing to an un-
familiar commercial off-the-shelf (COTS) com-
ponent.

Anticipate and schedule extra time for testing
unfamiliar interfaces; invest training time for
COTS components and for training with new
tools; monitor, document, and publicize com-
mon errors and correct idioms; introduce new
tools in lower-risk pilot projects or prototyping
exercises.

Test and analysis automation tools do not meet
expectations.

Introduce new tools in lower-risk pilot projects
or prototyping exercises; anticipate and schedule
time for training with new tools.

COTS components do not meet quality expecta-
tions.

Include COTS component qualification testing
early in project plan; introduce new COTS com-
ponents in lower-risk pilot projects or prototyp-
ing exercises.

Schedule Risks Example Control Tactics
Inadequate unit testing leads to unanticipated ex-
pense and delays in integration testing.

Track and reward quality unit testing as evi-
denced by low-fault densities in integration.

Difficulty of scheduling meetings makes inspec-
tion a bottleneck in development.

Set aside times in a weekly schedule in which
inspections take precedence over other meetings
and other work; try distributed and asynchronous
inspection techniques, with a lower frequency of
face-to-face inspection meetings.

Monitoring the Process 391

Risk Management in the Quality Plan: Risks Specific to Quality Management
Here we provide a brief overview of some risks specific to the quality process. Risks generic to

process management are summarized in the sidebar at page 390.

Development Risks Example Control Tactics
Poor quality software delivered to testing group
or inadequate unit test and analysis before com-
mitting to the code base.

Provide early warning and feedback; schedule
inspection of design, code and test suites; con-
nect development and inspection to the reward
system; increase training through inspection; re-
quire coverage or other criteria at unit test level.

Executions Risks Example Control Tactics
Execution costs higher than planned; scarce re-
sources available for testing (testing requires ex-
pensive or complex machines or systems not eas-
ily available.)

Minimize parts that require full system to be exe-
cuted; inspect architecture to assess and improve
testability; increase intermediate feedback; in-
vest in scaffolding.

Requirements Risks Example Control Tactics
High assurance critical requirements. Compare planned testing effort with former

projects with similar criticality level to avoid
underestimating testing effort; balance test and
analysis; isolate critical parts, concerns and
properties.

One key aggregate measure is the number of faults that have been revealed and
removed, which can be compared to data obtained from similar past projects. Fault
detection and removal can be tracked against time and will typically follow a charac-
teristic distribution similar to that shown in Figure 20.3. The number of faults detected
per time unit tends to grow across several system builds, then to decrease at a much
lower rate (usually half the growth rate) until it stabilizes.

An unexpected pattern in fault detection may be a symptom of problems. If de-
tected faults stop growing earlier than expected, one might hope it indicates exception-
ally high quality, but it would be wise to consider the alternative hypothesis that fault
detection efforts are ineffective. A growth rate that remains high through more than
half the planned system builds is a warning that quality goals may be met late or not at
all, and may indicate weaknesses in fault removal or lack of discipline in development
(e.g., a rush to add features before delivery, with a consequent deemphasis on quality
control).

A second indicator of problems in the quality process is faults that remain open
longer than expected. Quality problems are confirmed when the number of open faults
does not stabilize at a level acceptable to stakeholders.

The accuracy with which we can predict fault data and diagnose deviations from
expectation depends on the stability of the software development and quality processes,
and on availability of data from similar projects. Differences between organizations
and across application domains are wide, so by far the most valuable data is from

392 Planning and Monitoring the Process

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Builds

Fa
ul
ts

Total
Critical
Severe
Moderate

Figure 20.3: A typical distribution of faults for system builds through time.

similar projects in one’s own organization.
The faultiness data in Figure 20.3 are aggregated by severity levels. This helps in

better understanding the process. Growth in the number of moderate faults late in the
development process may be a symptom of good use of limited resources concentrated
in removing critical and severe faults, not spent solving moderate problems.

Accurate classification schemata can improve monitoring and may be used in very
large projects, where the amount of detailed information cannot be summarized in
overall data. The orthogonal defect classification (ODC) approach has two main steps:
(1) fault classification and (2) fault analysis.orthogonal defect

classification (ODC) ODC fault classification is done in two phases: when faults are detected and when
they are fixed. At detection time, we record the activity executed when the fault is
revealed, the trigger that exposed the fault, and the perceived or actual impact of the
fault on the customer. A possible taxonomy for activities and triggers is illustrated in
the sidebar at page 395. Notice that triggers depend on the activity. The sidebar at
page 396 illustrates a possible taxonomy of customer impacts.

At fix time, we record target, type, source, and age of the software. The target
indicates the entity that has been fixed to remove the fault, and can be requirements,
design, code, build/package, or documentation/development. The type indicates the
type of the fault. Taxonomies depend on the target. The sidebar at page 396 illustrates
a taxonomy of types of faults removed from design or code. Fault types may be aug-
mented with an indication of the nature of the fault, which can be: missing, that is, the
fault is to due to an omission, as in a missing statement; incorrect, as in the use of a
wrong parameter; or extraneous, that is, due to something not relevant or pertinent to
the document or code, as in a section of the design document that is not pertinent to the
current product and should be removed. The source of the fault indicates the origin of
the faulty modules: in-house, library, ported from other platforms, or outsourced code.

Monitoring the Process 393

The age indicates the age of the faulty element — whether the fault was found in new,
old (base), rewritten, or re-fixed code.

The detailed information on faults allows for many analyses that can provide in-
formation on the development and the quality process. As in the case of analysis of
simple faultiness data, the interpretation depends on the process and the product, and
should be based on past experience. The taxonomy of faults, as well as the analysis of
faultiness data, should be refined while applying the method.

When we first apply the ODC method, we can perform some preliminary analysis
using only part of the collected information:

Distribution of fault types versus activities: Different quality activities target differ-
ent classes of faults. For example, algorithmic (that is, local) faults are targeted
primarily by unit testing, and we expect a high proportion of faults detected by
unit testing to be in this class. If the proportion of algorithmic faults found during
unit testing is unusually small, or a larger than normal proportion of algorithmic
faults are found during integration testing, then one may reasonably suspect that
unit tests have not been well designed. If the mix of faults found during inte-
gration testing contains an unusually high proportion of algorithmic faults, it is
also possible that integration testing has not focused strongly enough on interface
faults.

Distribution of triggers over time during field test: Faults corresponding to simple
usage should arise early during field test, while faults corresponding to complex
usage should arise late. In both cases, the rate of disclosure of new faults should
asymptotically decrease. Unexpected distributions of triggers over time may
indicate poor system or acceptance test. If triggers that correspond to simple
usage reveal many faults late in acceptance testing, we may have chosen a sample
that is not representative of the user population. If faults continue growing during
acceptance test, system testing may have failed, and we may decide to resume it
before continuing with acceptance testing.

Age distribution over target code: Most faults should be located in new and rewrit-
ten code, while few faults should be found in base or re-fixed code, since base and
re-fixed code has already been tested and corrected. Moreover, the proportion of
faults in new and rewritten code with respect to base and re-fixed code should
gradually increase. Different patterns may indicate holes in the fault tracking and
removal process or may be a symptom of inadequate test and analysis that failed
in revealing faults early (in previous tests of base or re-fixed code). For example,
an increase of faults located in base code after porting to a new platform may
indicate inadequate tests for portability.

Distribution of fault classes over time: The proportion of missing code faults should
gradually decrease, while the percentage of extraneous faults may slowly in-
crease, because missing functionality should be revealed with use and repaired,
while extraneous code or documentation may be produced by updates. An in-
creasing number of missing faults may be a symptom of instability of the prod-
uct, while a sudden sharp increase in extraneous faults may indicate maintenance
problems.

394 Planning and Monitoring the Process

20.7 Improving the Process

Many classes of faults that occur frequently are rooted in process and development
flaws. For example, a shallow architectural design that does not take into account
resource allocation can lead to resource allocation faults. Lack of experience with
the development environment, which leads to misunderstandings between analysts and
programmers on rare and exceptional cases, can result in faults in exception handling.
A performance assessment system that rewards faster coding without regard to quality
is likely to promote low quality code.

The occurrence of many such faults can be reduced by modifying the process and
environment. For example, resource allocation faults resulting from shallow architec-
tural design can be reduced by introducing specific inspection tasks. Faults attributable
to inexperience with the development environment can be reduced with focused train-
ing sessions. Persistently poor programming practices may require modification of the
reward system.

Often, focused changes in the process can lead to product improvement and signif-
icant cost reduction. Unfortunately, identifying the weak aspects of a process can be
extremely difficult, and often the results of process analysis surprise even expert man-
agers. The analysis of the fault history can help software engineers build a feedback
mechanism to track relevant faults to their root causes, thus providing vital informa-
tion for improving the process. In some cases, information can be fed back directly
into the current product development, but more often it helps software engineers im-
prove the development of future products. For example, if analysis of faults reveals
frequent occurrence of severe memory management faults in C programs, we might
revise inspection checklists and introduce dynamic analysis tools, but it may be too
late to change early design decisions or select a different programming language in the
project underway. More fundamental changes may be made in future projects.

Root cause analysis (RCA) is a technique for identifying and eliminating process
faults. RCA was first developed in the nuclear power industry and later extended to
software analysis. It consists of four main steps to select significant classes of faultsD root cause

analysis and track them back to their original causes: What, When, Why, and How.

What are the faults? The goal of this first step is to identify a class of important
faults. Faults are categorized by severity and kind. The severity of faults characterizes
the impact of the fault on the product. Although different methodologies use slightly
different scales and terms, all of them identify a few standard levels, described in Ta-
ble 20.1.

The RCA approach to categorizing faults, in contrast to ODC, does not use a pre-
defined set of categories. The objective of RCA is not to compare different classes of
faults over time, or to analyze and eliminate all possible faults, but rather to identify the
few most important classes of faults and remove their causes. Successful application of
RCA progressively eliminates the causes of the currently most important faults, which
lose importance over time, so applying a static predefined classification would be use-
less. Moreover, the precision with which we identify faults depends on the specific
project and process and varies over time.

Improving the Process 395

ODC Classification of Triggers Listed by Activity

Design Review and Code Inspection

Design Conformance A discrepancy between the reviewed artifact and a prior-stage artifact
that serves as its specification.

Logic/Flow An algorithmic or logic flaw.

Backward Compatibility A difference between the current and earlier versions of an artifact
that could be perceived by the customer as a failure.

Internal Document An internal inconsistency in the artifact (e.g., inconsistency between code
and comments).

Lateral Compatibility An incompatibility between the artifact and some other system or mod-
ule with which it should interoperate.

Concurrency A fault in interaction of concurrent processes or threads.

Language Dependency A violation of language-specific rules, standards, or best practices.

Side Effects A potential undesired interaction between the reviewed artifact and some other part
of the system.

Rare Situation An inappropriate response to a situation that is not anticipated in the artifact.
(Error handling as specified in a prior artifact design conformance, not rare situation.)

Structural (White-Box) Test

Simple Path The fault is detected by a test case derived to cover a single program element.

Complex Path The fault is detected by a test case derived to cover a combination of program
elements.

Functional (Black-Box) Test

Coverage The fault is detected by a test case derived for testing a single procedure (e.g., C func-
tion or Java method), without considering combination of values for possible parameters.

Variation The fault is detected by a test case derived to exercise a particular combination of
parameters for a single procedure.

Sequencing The fault is detected by a test case derived for testing a sequence of procedure calls.

Interaction The fault is detected by a test case derived for testing procedure interactions.

System Test

Workload/Stress The fault is detected during workload or stress testing.

Recovery/Exception The fault is detected while testing exceptions and recovery procedures.

Startup/Restart The fault is detected while testing initialization conditions during start up or
after possibly faulty shutdowns.

Hardware Configuration The fault is detected while testing specific hardware configurations.

Software Configuration The fault is detected while testing specific software configurations.

Blocked Test Failure occurred in setting up the test scenario.

396 Planning and Monitoring the Process

ODC Classification of Customer Impact
Installability Ability of the customer to place the software into actual use. (Usability of the

installed software is not included.)

Integrity/Security Protection of programs and data from either accidental or malicious destruc-
tion or alteration, and from unauthorized disclosure.

Performance The perceived and actual impact of the software on the time required for the
customer and customer end users to complete their tasks.

Maintenance The ability to correct, adapt, or enhance the software system quickly and at min-
imal cost.

Serviceability Timely detection and diagnosis of failures, with minimal customer impact.

Migration Ease of upgrading to a new system release with minimal disruption to existing cus-
tomer data and operations.

Documentation Degree to which provided documents (in all forms, including electronic) com-
pletely and correctly describe the structure and intended uses of the software.

Usability The degree to which the software and accompanying documents can be understood
and effectively employed by the end user.

Standards The degree to which the software complies with applicable standards.

Reliability The ability of the software to perform its intended function without unplanned in-
terruption or failure.

Accessibility The degree to which persons with disabilities can obtain the full benefit of the
software system.

Capability The degree to which the software performs its intended functions consistently with
documented system requirements.

Requirements The degree to which the system, in complying with document requirements,
actually meets customer expectations

ODC Classification of Defect Types for Targets Design and Code
Assignment/Initialization A variable was not assigned the correct initial value or was not as-

signed any initial value.

Checking Procedure parameters or variables were not properly validated before use.

Algorithm/Method A correctness or efficiency problem that can be fixed by reimplementing a
single procedure or local data structure, without a design change.

Function/Class/Object A change to the documented design is required to conform to product
requirements or interface specifications.

Timing/Synchronization The implementation omits necessary synchronization of shared re-
sources, or violates the prescribed synchronization protocol.

Interface/Object-Oriented Messages Module interfaces are incompatible; this can include
syntactically compatible interfaces that differ in semantic interpretation of communicated
data.

Relationship Potentially problematic interactions among procedures, possibly involving differ-
ent assumptions but not involving interface incompatibility.

Improving the Process 397

Level Description Example
Critical The product is unusable. The fault causes the program to crash.
Severe Some product features

cannot be used, and there
is no workaround.

The fault inhibits importing files saved
with a previous version of the program,
and there is no way to convert files
saved in the old format to the new one.

Moderate Some product features re-
quire workarounds to use,
and reduce efficiency, re-
liability, or convenience
and usability.

The fault inhibits exporting in
Postscript format. Postscript can be
produced using the printing facility,
but the process is not obvious or
documented (loss of usability) and
requires extra steps (loss of efficiency).

Cosmetic Minor inconvenience. The fault limits the choice of colors
for customizing the graphical interface,
violating the specification but causing
only minor inconvenience.

Table 20.1: Standard severity levels for root cause analysis (RCA).

A good RCA classification should follow the uneven distribution of faults across
categories. If, for example, the current process and the programming style and environ-
ment result in many interface faults, we may adopt a finer classification for interface
faults and a coarse-grain classification of other kinds of faults. We may alter the clas-
sification scheme in future projects as a result of having identified and removed the
causes of many interface faults.

Classification of faults should be sufficiently precise to allow identifying one or two
most significant classes of faults considering severity, frequency, and cost of repair. It
is important to keep in mind that severity and repair cost are not directly related. We
may have cosmetic faults that are very expensive to repair, and critical faults that can
be easily repaired. When selecting the target class of faults, we need to consider all the
factors. We might, for example, decide to focus on a class of moderately severe faults
that occur very frequently and are very expensive to remove, investing fewer resources
in preventing a more severe class of faults that occur rarely and are easily repaired.

When did faults occur, and when were they found? It is typical of mature software
processes to collect fault data sufficient to determine when each fault was detected (e.g.,
in integration test or in a design inspection). In addition, for the class of faults identified
in the first step, we attempt to determine when those faults were introduced (e.g., was
a particular fault introduced in coding, or did it result from an error in architectural
design?).

Why did faults occur? In this core RCA step, we attempt to trace representative
faults back to causes, with the objective of identifying a “root” cause associated with
many faults in the class. Analysis proceeds iteratively by attempting to explain the

398 Planning and Monitoring the Process

The 80/20 or Pareto Rule
Fault classification in root cause analysis is justified by the so-called 80/20 or Pareto

rule. The Pareto rule is named for the Italian economist Vilfredo Pareto, who in the
early nineteenth century proposed a mathematical power law formula to describe the
unequal distribution of wealth in his country, observing that 20% of the people owned
80% of the wealth.

Pareto observed that in many populations, a few (20%) are vital and many (80%) are
trivial. In fault analysis, the Pareto rule postulates that 20% of the code is responsible
for 80% of the faults. Although proportions may vary, the rule captures two important
facts:

1. Faults tend to accumulate in a few modules, so identifying potentially faulty
modules can improve the cost effectiveness of fault detection.

2. Some classes of faults predominate, so removing the causes of a predominant
class of faults can have a major impact on the quality of the process and of the
resulting product.

The predominance of a few classes of faults justifies focusing on one class at a time.

error that led to the fault, then the cause of that error, the cause of that cause, and so
on. The rule of thumb “ask why six times” does not provide a precise stopping rule for
the analysis, but suggests that several steps may be needed to find a cause in common
among a large fraction of the fault class under consideration.

Tracing the causes of faults requires experience, judgment, and knowledge of the
development process. We illustrate with a simple example. Imagine that the first RCA
step identified memory leaks as the most significant class of faults, combining a mod-
erate frequency of occurrence with severe impact and high cost to diagnose and repair.
The group carrying out RCA will try to identify the cause of memory leaks and may
conclude that many of them result from forgetting to release memory in exception han-
dlers. The RCA group may trace this problem in exception handling to lack of infor-
mation: Programmers can’t easily determine what needs to be cleaned up in exception
handlers. The RCA group will ask why once more and may go back to a design error:
The resource management scheme assumes normal flow of control and thus does not
provide enough information to guide implementation of exception handlers. Finally,
the RCA group may identify the root problem in an early design problem: Exceptional
conditions were an afterthought dealt with late in design.

Each step requires information about the class of faults and about the development
process that can be acquired through inspection of the documentation and interviews
with developers and testers, but the key to success is curious probing through several
levels of cause and effect.

How could faults be prevented? The final step of RCA is improving the process by
removing root causes or making early detection likely. The measures taken may have

The Quality Team 399

a minor impact on the development process (e.g., adding consideration of exceptional
conditions to a design inspection checklist), or may involve a substantial modification
of the process (e.g., making explicit consideration of exceptional conditions a part of all
requirements analysis and design steps). As in tracing causes, prescribing preventative
or detection measures requires judgment, keeping in mind that the goal is not perfection
but cost-effective improvement.

ODC and RCA are two examples of feedback and improvement, which are an im-
portant dimension of most good software processes. Explicit process improvement
steps are, for example, featured in both SRET (sidebar on page 380) and Cleanroom
(sidebar on page 378).

20.8 The Quality Team

The quality plan must assign roles and responsibilities to people. As with other aspects
of planning, assignment of responsibility occurs at a strategic level and a tactical level.
The tactical level, represented directly in the project plan, assigns responsibility to in-
dividuals in accordance with the general strategy. It involves balancing level of effort
across time and carefully managing personal interactions. The strategic level of orga-
nization is represented not only in the quality strategy document, but in the structure of
the organization itself.

The strategy for assigning responsibility may be partly driven by external require-
ments. For example, independent quality teams may be required by certification agen-
cies or by a client organization. Additional objectives include ensuring sufficient ac-
countability that quality tasks are not easily overlooked; encouraging objective judg-
ment of quality and preventing it from being subverted by schedule pressure; fostering
shared commitment to quality among all team members; and developing and commu-
nicating shared knowledge and values regarding quality.

Measures taken to attain some objectives (e.g., autonomy to ensure objective as-
sessment) are in tension with others (e.g., cooperation to meet overall project objec-
tives). It is therefore not surprising to find that different organizations structure roles
and responsibilities in a wide variety of different ways. The same individuals can play
the roles of developer and tester, or most testing responsibility can be assigned to mem-
bers of a distinct group, and some may even be assigned to a distinct organization on
a contractual basis. Oversight and accountability for approving the work product of a
task are sometimes distinguished from responsibility for actually performing a task, so
the team organization is somewhat intertwined with the task breakdown.

Each of the possible organizations of quality roles makes some objectives easier
to achieve and some more challenging. Conflict of one kind or another is inevitable,
and therefore in organizing the team it is important to recognize the conflicts and take
measures to control adverse consequences. If an individual plays two roles in potential
conflict (e.g., a developer responsible for delivering a unit on schedule is also respon-
sible for integration testing that could reveal faults that delay delivery), there must be
countermeasures to control the risks inherent in that conflict. If roles are assigned to
different individuals, then the corresponding risk is conflict between the individuals

400 Planning and Monitoring the Process

(e.g., if a developer and a tester do not adequately share motivation to deliver a quality
product on schedule).

An independent and autonomous testing team lies at one end of the spectrum of
possible team organizations. One can make that team organizationally independent
so that, for example, a project manager with schedule pressures can neither bypass
quality activities or standards, nor reallocate people from testing to development, nor
postpone quality activities until too late in the project. Separating quality roles from
development roles minimizes the risk of conflict between roles played by an individual,
and thus makes most sense for roles in which independence is paramount, such as final
system and acceptance testing. An independent team devoted to quality activities also
has an advantage in building specific expertise, such as test design. The primary risk
arising from separation is in conflict between goals of the independent quality team
and the developers.

When quality tasks are distributed among groups or organizations, the plan should
include specific checks to ensure successful completion of quality activities. For ex-
ample, when module testing is performed by developers and integration and system
testing is performed by an independent quality team, the quality team should check the
completeness of module tests performed by developers, for example, by requiring sat-
isfaction of coverage criteria or inspecting module test suites. If testing is performed by
an independent organization under contract, the contract should carefully describe the
testing process and its results and documentation, and the client organization should
verify satisfactory completion of the contracted tasks.

Existence of a testing team must not be perceived as relieving developers from re-
sponsibility for quality, nor is it healthy for the testing team to be completely oblivious
to other pressures, including schedule pressure. The testing team and development
team, if separate, must at least share the goal of shipping a high-quality product on
schedule.

Independent quality teams require a mature development process to minimize com-
munication and coordination overhead. Test designers must be able to work on suffi-
ciently precise specifications and must be able to execute tests in a controllable test
environment. Versions and configurations must be well defined, and failures and faults
must be suitably tracked and monitored across versions.

It may be logistically impossible to maintain an independent quality group, espe-
cially in small projects and organizations, where flexibility in assignments is essential
for resource management. Aside from the logistical issues, division of responsibility
creates additional work in communication and coordination. Finally, quality activities
often demand deep knowledge of the project, particularly at detailed levels (e.g., unit
and early integration test). An outsider will have less insight into how and what to
test, and may be unable to effectively carry out the crucial earlier activities, such as
establishing acceptance criteria and reviewing architectural design for testability. For
all these reasons, even organizations that rely on an independent verification and val-
idation (IV&V) group for final product qualification allocate other responsibilities to
developers and to quality professionals working more closely with the development
team.

At the polar opposite from a completely independent quality team is full integra-
tion of quality activities with development, as in some “agile” processes including XP.

The Quality Team 401

Communication and coordination overhead is minimized this way, and developers take
full responsibility for the quality of their work product. Moreover, technology and ap-
plication expertise for quality tasks will match the expertise available for development
tasks, although the developer may have less specific expertise in skills such as test
design.

The more development and quality roles are combined and intermixed, the more
important it is to build into the plan checks and balances to be certain that quality
activities and objective assessment are not easily tossed aside as deadlines loom. For
example, XP practices like “test first” together with pair programming (sidebar on page
381) guard against some of the inherent risks of mixing roles.

Separate roles do not necessarily imply segregation of quality activities to distinct
individuals. It is possible to assign both development and quality responsibility to de-
velopers, but assign two individuals distinct responsibilities for each development work
product. Peer review is an example of mixing roles while maintaining independence
on an item-by-item basis. It is also possible for developers and testers to participate
together in some activities.

Many variations and hybrid models of organization can be designed. Some orga-
nizations have obtained a good balance of benefits by rotating responsibilities. For
example, a developer may move into a role primarily responsible for quality in one
project and move back into a regular development role in the next. In organizations
large enough to have a distinct quality or testing group, an appropriate balance between
independence and integration typically varies across levels of project organization. At
some levels, an appropriate balance can be struck by giving responsibility for an ac-
tivity (e.g., unit testing) to developers who know the code best, but with a separate
oversight responsibility shared by members of the quality team. For example, unit tests
may be designed and implemented by developers, but reviewed by a member of the
quality team for effective automation (particularly, suitability for automated regression
test execution as the product evolves) as well as thoroughness. The balance tips further
toward independence at higher levels of granularity, such as in system and acceptance
testing, where at least some tests should be designed independently by members of the
quality team.

Outsourcing test and analysis activities is sometimes motivated by the perception
that testing is less technically demanding than development and can be carried out by
lower-paid and lower-skilled individuals. This confuses test execution, which should in
fact be straightforward, with analysis and test design, which are as demanding as design
and programming tasks in development. Of course, less skilled individuals can design
and carry out tests, just as less skilled individuals can design and write programs, but
in both cases the results are unlikely to be satisfactory.

Outsourcing can be a reasonable approach when its objectives are not merely min-
imizing cost, but maximizing independence. For example, an independent judgment
of quality may be particularly valuable for final system and acceptance testing, and
may be essential for measuring a product against an independent quality standard (e.g.,
qualifying a product for medical or avionic use). Just as an organization with mixed
roles requires special attention to avoid the conflicts between roles played by an indi-
vidual, radical separation of responsibility requires special attention to control conflicts

402 Planning and Monitoring the Process

between the quality assessment team and the development team.
The plan must clearly define milestones and delivery for outsourced activities, as

well as checks on the quality of delivery in both directions: Test organizations usually
perform quick checks to verify the consistency of the software to be tested with respect
to some minimal “testability” requirements; clients usually check the completeness and
consistency of test results. For example, test organizations may ask for the results of
inspections on the delivered artifact before they start testing, and may include some
quick tests to verify the installability and testability of the artifact. Clients may check
that tests satisfy specified functional and structural coverage criteria, and may inspect
the test documentation to check its quality. Although the contract should detail the
relation between the development and the testing groups, ultimately, outsourcing relies
on mutual trust between organizations.

Open Research Issues

Orthogonal defect classification (introduced in the 1990s) and root cause analysis (in-
troduced in the 1980s) remain key techniques for deriving useful guidance from expe-
rience. Considering widespread agreement on the importance of continuous process
improvement, we should expect innovation and adaptation of these key techniques for
current conditions. An example is the renewed interest in fault-proneness models, ex-
ploiting the rich historical data available in version control systems and bug tracking
databases.

Globally distributed software teams and teams that span multiple companies and
organizations pose many interesting challenges for software development in general
and test and analysis in particular. We expect that both technical and management
innovations will adapt to these important trends, with increasing interplay between
research in software test and analysis and research in computer-supported collaborative
work (CSCW).

Further Reading

IEEE publishes a standard for software quality assurance plans [Ins02], which serves
as a good starting point. The plan outline in this chapter is based loosely on the IEEE
standard. Jaaksi [Jaa03] provides a useful discussion of decision making based on dis-
tribution of fault discovery and resolution over the course of a project, drawn from
experience at Nokia. Chaar et al. [CHBC93] describe the orthogonal defect clas-
sification technique, and Bhandari et al. [BHC+94] provide practical details useful in
implementing it. Leszak et al. [LPS02] describe a retrospective process with root cause
analysis, process compliance analysis, and software complexity analysis. Denaro and
Pezzè [DP02] describe fault-proneness models for allocating effort in a test plan. De-
Marco and Lister [DL99] is a popular guide to the human dimensions of managing
software teams.

The Quality Team 403

Exercises

20.1. Testing compatibility with a variety of device drivers is a significant cost and
schedule factor in some projects. For example, a well-known developer of desk-
top publishing software maintains a test laboratory containing dozens of current
and outdated models of Macintosh computer, running several operating system
versions.

Put yourself in the place of the quality manager for a new version of this desktop
publishing software, and consider in particular the printing subsystem of the
software package. Your goal is to minimize the schedule impact of testing the
software against a large number of printers, and in particular to reduce the risk
that serious problems in the printing subsystem surface late in the project, or that
testing on the actual hardware delays product release.

How can the software architectural design be organized to serve your goals of
reducing cost and risk? Do you expect your needs in this regard will be aligned
with those of the development manager, or in conflict? What other measures
might you take in project planning, and in particular in the project schedule, to
minimize risks of problems arising when the software is tested in an operational
environment? Be as specific as possible, and avoid simply restating the general
strategies presented in this chapter.

20.2. Chipmunk Computers has signed an agreement with a software house for soft-
ware development under contract. Project leaders are encouraged to take advan-
tage of this agreement to outsource development of some modules and thereby
reduce project cost. Your project manager asks you to analyze the risks that
may result from this choice and propose approaches to reduce the impact of the
identified risks. What would you suggest?

20.3. Suppose a project applied orthogonal defect classification and analyzed corre-
lation between fault types and fault triggers, as well as between fault types and
impact. What useful information could be derived from cross-correlating those
classifications, beyond the information available from each classification alone?

20.4. ODC attributes have been adapted and extended in several ways, one of which is
including fault qualifier, which distinguishes whether the fault is due to missing,
incorrect, or extraneous code. What attributes might fault qualifier be correlated
with, and what useful information might thereby be obtained?

404 Planning and Monitoring the Process

Chapter 21

Integration and

Component-based

Software Testing

Problems arise in integration even of well-designed modules and components. Integra-
tion testing aims to uncover interaction and compatibility problems as early as possible.
This chapter presents integration testing strategies, including the increasingly impor-
tant problem of testing integration with commercial off-the-shelf (COTS) components,
libraries, and frameworks.

Required Background

• Chapter 4
Basic concepts of quality process, goals, and activities are important for under-
standing this chapter.

• Chapter 17
Scaffolding is a key cost element of integration testing. Some knowledge about
scaffolding design and implementation is important to fully understand an essen-
tial dimension of integration testing.

21.1 Overview

The traditional V model introduced in Chapter 2 divides testing into four main levels
of granularity: module, integration, system, and acceptance test. Module or unit test
checks module behavior against specifications or expectations; integration test checks
module compatibility; system and acceptance tests check behavior of the whole system
with respect to specifications and user needs, respectively.

An effective integration test is built on a foundation of thorough module testing and
inspection. Module test maximizes controllability and observability of an individual

405

406 Integration and Component-based Software Testing

unit, and is more effective in exercising the full range of module behaviors, rather than
just those that are easy to trigger and observe in a particular context of other modules.
While integration testing may to some extent act as a process check on module testing
(i.e., faults revealed during integration test can be taken as a signal of unsatisfactory
unit testing), thorough integration testing cannot fully compensate for sloppiness at the
module level. In fact, the quality of a system is limited by the quality of the modules
and components from which it is built, and even apparently noncritical modules can
have widespread effects. For example, in 2004 a buffer overflow vulnerability in a
single, widely used library for reading Portable Network Graphics (PNG) files caused
security vulnerabilities in Windows, Linux, and Mac OS X Web browsers and email
clients.

On the other hand, some unintended side-effects of module faults may become
apparent only in integration test (see sidebar on page 409), and even a module that
satisfies its interface specification may be incompatible because of errors introduced
in design decomposition. Integration tests therefore focus on checking compatibility
between module interfaces.

Integration faults are ultimately caused by incomplete specifications or faulty im-
plementations of interfaces, resource usage, or required properties. Unfortunately, it
may be difficult or not cost-effective to anticipate and completely specify all module
interactions. For example, it may be very difficult to anticipate interactions between
remote and apparently unrelated modules through sharing a temporary hidden file that
just happens to be given the same name by two modules, particularly if the name clash
appears rarely and only in some installation configurations. Some of the possible man-
ifestations of incomplete specifications and faulty implementations are summarized in
Table 21.1.

The official investigation of the Ariane 5 accident that led to the loss of the rocket
on July 4, 1996 concluded that the accident was caused by incompatibility of a soft-
ware module with the Ariane 5 requirements. The software module was in charge of
computing the horizontal bias, a value related to the horizontal velocity sensed by the
platform that is calculated as an indicator of alignment precision. The module had func-
tioned correctly for Ariane 4 rockets, which were smaller than the Ariane 5, and thus
had a substantially lower horizontal velocity. It produced an overflow when integrated
into the Ariane 5 software. The overflow started a series of events that terminated with
self-destruction of the launcher. The problem was not revealed during testing because
of incomplete specifications:

The specification of the inertial reference system and the tests performed
at equipment level did not specifically include the Ariane 5 trajectory data.
Consequently the realignment function was not tested under simulated Ar-
iane 5 flight conditions, and the design error was not discovered. [From
the official investigation report]

As with most software problems, integration problems may be attacked at many
levels. Good design and programming practice and suitable choice of design and
programming environment can reduce or even eliminate some classes of integration
problems. For example, in applications demanding management of complex, shared

Overview 407

Integration fault Example
Inconsistent interpretation of
parameters or values
Each module’s interpretation may
be reasonable, but they are
incompatible.

Unit mismatch: A mix of metric and British measures (meters and
yards) is believed to have led to loss of the Mars Climate Orbiter
in September 1999.

Violations of value domains or
of capacity or size limits
Implicit assumptions on ranges of
values or sizes.

Buffer overflow, in which an implicit (unchecked) capacity bound
imposed by one module is violated by another, has become notori-
ous as a security vulnerability. For example, some versions of the
Apache 2 Web server between 2.0.35 and 2.0.50 could overflow
a buffer while expanding environment variables during configura-
tion file parsing.

Side-effects on parameters or
resources

A module often uses resources that are not explicitly mentioned in
its interface. Integration problems arise when these implicit effects
of one module interfere with those of another. For example, using
a temporary file “tmp” may be invisible until integration with an-
other module that also attempts to use a temporary file “tmp” in
the same directory of scratch files.

Missing or misunderstood
functionality
Underspecification of
functionality may lead to
incorrect assumptions about
expected results.

Counting hits on Web sites may be done in many different ways:
per unique IP address, per hit, including or excluding spiders, and
so on. Problems arise if the interpretation assumed in the counting
module differs from that of its clients.

Nonfunctional problems Nonfunctional properties like performance are typically specified
explicitly only when they are expected to be an issue. Even when
performance is not explicitly specified, we expect that software
provides results in a reasonable time. Interference between mod-
ules may reduce performance below an acceptable threshold.

Dynamic mismatches
Many languages and frameworks
allow for dynamic binding.
Problems may be caused by
failures in matchings when
modules are integrated.

Polymorphic calls may be dynamically bound to incompatible
methods, as discussed in Chapter 15.

This core taxonomy can be extended to effectively classify important or frequently occurring integration
faults in particular domains.

Table 21.1: Integration faults.

408 Integration and Component-based Software Testing

structures, choosing a language with automatic storage management and garbage col-
lection greatly reduces memory disposal errors such as dangling pointers and redundant
deallocations (“double frees”).

Even if the programming language choice is determined by other factors, many
errors can be avoided by choosing patterns and enforcing coding standards across the
entire code base; the standards can be designed in such a way that violations are easy
to detect manually or with tools. For example, many projects using C or C++ require
use of “safe” alternatives to unchecked procedures, such as requiring strncpy or strlcpy
(string copy procedures less vulnerable to buffer overflow) in place of strcpy. Check-
ing for the mere presence of strcpy is much easier (and more easily automated) than
checking for its safe use. These measures do not eliminate the possibility of error, but
integration testing is more effective when focused on finding faults that slip through
these design measures.

21.2 Integration Testing Strategies

Integration testing proceeds incrementally with assembly of modules into successively
larger subsystems. Incremental testing is preferred, first, to provide the earliest possible
feedback on integration problems. In addition, controlling and observing the behavior
of an integrated collection of modules grows in complexity with the number of mod-
ules and the complexity of their interactions. Complex interactions may hide faults,
and failures that are manifested may propagate across many modules, making fault lo-
calization difficult. Therefore it is worthwhile to thoroughly test a small collection of
modules before adding more.

A strategy for integration testing of successive partial subsystems is driven by the
order in which modules are constructed (the build plan), which is an aspect of the
system architecture. The build plan, in turn, is driven partly by the needs of test. Design
and integration testing are so tightly coupled that in many companies the integration
and the testing groups are merged in a single group in charge of both design and test
integration.

Since incremental assemblies of modules are incomplete, one must often construct
scaffolding — drivers, stubs, and various kinds of instrumentation — to effectively test
them. This can be a major cost of integration testing, and it depends to a large extent
on the order in which modules are assembled and tested.

One extreme approach is to avoid the cost of scaffolding by waiting until all mod-
ules are integrated, and testing them together — essentially merging integration test-
ing into system testing. In this big bang approach, neither stubs nor drivers need bebig bang testing

constructed, nor must the development be carefully planned to expose well-specified
interfaces to each subsystem. These savings are more than offset by losses in observ-
ability, diagnosability, and feedback. Delaying integration testing hides faults whose
effects do not always propagate outward to visible failures (violating the principle that
failing always is better than failing sometimes) and impedes fault localization and di-
agnosis because the failures that are visible may be far removed from their causes.
Requiring the whole system to be available before integration does not allow early test
and feedback, and so faults that are detected are much more costly to repair. Big bang

Integration Testing Strategies 409

Memory Leaks

Memory leaks are typical of program faults that often escape module testing. They
may be detected in integration testing, but often escape further and are discovered only
in actual system operation.

The Apache Web server, version 2.0.48, contained the following code for reacting
to normal Web page requests that arrived on the secure (https) server port:

1 static void ssl io filter disable(ap filter t *f)
2 {
3 bio filter in ctx t *inctx = f->ctx;
4 inctx->ssl = NULL;
5 inctx->filter ctx->pssl = NULL;
6 }

This code fails to reclaim some dynamically allocated memory, causing the Web
server to “leak” memory at run-time. Over a long period of use, or over a shorter
period if the fault is exploited in a denial-of-service attack, this version of the Apache
Web server will allocate and fail to reclaim more and more memory, eventually slowing
to the point of unusability or simply crashing.

The fault is nearly impossible to see in this code. The memory that should be
deallocated here is part of a structure defined and created elsewhere, in the SSL (secure
sockets layer) subsystem, written and maintained by a different set of developers. Even
reading the definition of the ap filter t structure, which occurs in a different part of the
Apache Web server source code, doesn’t help, since the ctx field is an opaque pointer
(type void * in C) . The repair, applied in version 2.0.49 of the server, is:

1 static void ssl io filter disable(SSLConnRec *sslconn, ap filter t *f)
2 {
3 bio filter in ctx t *inctx = f->ctx;
4 SSL free(inctx->ssl);
5 sslconn->ssl = NULL;
6 inctx->ssl = NULL;
7 inctx->filter ctx->pssl = NULL;
8 }

This memory leak illustrates several properties typical of integration faults. In prin-
ciple, it stems from incomplete knowledge of the protocol required to interact with
some other portion of the code, either because the specification is (inevitably) incom-
plete or because it is not humanly possible to remember everything. The problem is
due at least in part to a weakness of the programming language — it would not have oc-
curred in a language with automatic garbage collection, such as Java. Finally, although
the fault would be very difficult to detect with conventional unit testing techniques,
there do exist both static and dynamic analysis techniques that could have made early
detection much more likely, as discussed in Chapter 18.

410 Integration and Component-based Software Testing

integration testing is less a rational strategy than an attempt to recover from a lack of
planning; it is therefore also known as the desperate tester strategy.

Among strategies for incrementally testing partially assembled systems, we can dis-
tinguish two main classes: structural and feature oriented. In a structural approach,structural integration

test strategy modules are constructed, assembled, and tested together in an order based on hierarchi-
cal structure in the design. Structural approaches include bottom-up, top-down, and a
combination sometimes referred to as sandwich or backbone strategy. Feature-oriented
strategies derive the order of integration from characteristics of the application, and
include threads and critical modules strategies.

Top-down and bottom-up strategies are classic alternatives in system construction
and incremental integration testing as modules accumulate. They consist in sortingtop-down and

bottom-up testing modules according to the use/include relation (see Chapter 15, page 286), and in start-
ing testing from the top or from the bottom of the hierarchy, respectively.

A top-down integration strategy begins at the top of the uses hierarchy, including
the interfaces exposed through a user interface or top-level application program inter-
face (API). The need for drivers is reduced or eliminated while descending the hierar-
chy, since at each stage the already tested modules can be used as drivers while testing
the next layer. For example, referring to the excerpt of the Chipmunk Web presence
shown in Figure 21.1, we can start by integrating CustomerCare with Customer, while
stubbing Account and Order. We could then add either Account or Order and Package,
stubbing Model and Component in the last case. We would finally add Model, Slot, and
Component in this order, without needing any driver.

Bottom-up integration similarly reduces the need to develop stubs, except for break-
ing circular relations. Referring again to the example in Figure 21.1, we can start
bottom-up by integrating Slot with Component, using drivers for Model and Order. We
can then incrementally add Model and Order. We can finally add either Package or
Account and Customer, before integrating CustomerCare, without constructing stubs.

Top-down and bottom-up approaches to integration testing can be applied early
in the development if paired with similar design strategies: If modules are delivered
following the hierarchy, either top-down or bottom-up, they can be integrated and tested
as soon as they are delivered, thus providing early feedback to the developers. Both
approaches increase controllability and diagnosability, since failures are likely caused
by interactions with the newly integrated modules.

In practice, software systems are rarely developed strictly top-down or bottom-up.
Design and integration strategies are driven by other factors, like reuse of existing mod-
ules or commercial off-the-shelf (COTS) components, or the need to develop early pro-
totypes for user feedback. Integration may combine elements of the two approaches,
starting from both ends of the hierarchy and proceeding toward the middle. An early
top-down approach may result from developing prototypes for early user feedback,
while existing modules may be integrated bottom-up. This is known as the sandwich
or backbone strategy. For example, referring once more to the small system of Fig-sandwich or

backbone ure 21.1, let us imagine reusing existing modules for Model, Slot, and Component, and
developing CustomerCare and Customer as part of an early prototype. We can start in-
tegrating CustomerCare and Customer top down, while stubbing Account and Order.
Meanwhile, we can integrate bottom-up Model, Slot, and Component with Order, us-
ing drivers for Customer and Package. We can then integrate Account with Customer,

Integration Testing Strategies 411

Order

Customer

Model

Component

Slot

Account

Package

CustomerCare

1*

1*
1

*

1

Figure 21.1: An excerpt of the class diagram of the Chipmunk Web presence. Modules
are sorted from the top to the bottom according to the use/include relation. The topmost
modules are not used or included in any other module, while the bottom-most modules
do not include or use other modules.

412 Integration and Component-based Software Testing

and Package with Order, before finally integrating the whole prototype system.

The price of flexibility and adaptability in the sandwich strategy is complex plan-
ning and monitoring. While top-down and bottom-up are straightforward to plan and
monitor, a sandwich approach requires extra coordination between development and
test.

In contrast to structural integration testing strategies, feature-driven strategies se-
lect an order of integration that depends on the dynamic collaboration patterns among
modules regardless of the static structure of the system. The thread integration test-
ing strategy integrates modules according to system features. Test designers identifythread testing

threads of execution that correspond to system features, and they incrementally test
each thread. The thread integration strategy emphasizes module interplay for specific
functionality.

Referring to the Chipmunk Web presence, we can identify feature threads for as-
sembling models, finalizing orders, completing payments, packaging and shipping, and
so on. Feature thread integration fits well with software processes that emphasize in-
cremental delivery of user-visible functionality. Even when threads do not correspond
to usable end-user features, ordering integration by functional threads is a useful tactic
to make flaws in integration externally visible.

Incremental delivery of usable features is not the only possible consideration in
choosing the order in which functional threads are integrated and tested. Risk reduction
is also a driving force in many software processes. Critical module integration testing
focuses on modules that pose the greatest risk to the project. Modules are sorted andcritical module

incrementally integrated according to the associated risk factor that characterizes the
criticality of each module. Both external risks (such as safety) and project risks (such
as schedule) can be considered.

A risk-based approach is particularly appropriate when the development team does
not have extensive experience with some aspect of the system under development. Con-
sider once more the Chipmunk Web presence. If Chipmunk has not previously con-
structed software that interacts directly with shipping services, those interface modules
will be critical because of the inherent risks of interacting with externally provided
subsystems, which may be inadequately documented or misunderstood and which may
also change.

Feature-driven test strategies usually require more complex planning and manage-
ment than structural strategies. Thus, we adopt them only when their advantages ex-
ceed the extra management costs. For small systems a structural strategy is usually
sufficient, but for large systems feature-driven strategies are usually preferred. Often
large projects require combinations of development strategies that do not fit any single
test integration strategies. In these cases, quality managers would combine different
strategies: top-down, bottom-up, and sandwich strategies for small subsystems, and a
blend of threads and critical module strategies at a higher level.

Testing Components and Assemblies 413

21.3 Testing Components and Assemblies

Many software products are constructed, partly or wholly, from assemblies of prebuilt
software components.1 A key characteristic of software components is that the orga-
nization that develops a component is distinct from the (several) groups of developers
who use it to construct systems. The component developers cannot completely antici-
pate the uses to which a component will be put, and the system developers have limited
knowledge of the component. Testing components (by the component developers) and
assemblies (by system developers) therefore brings some challenges and constraints
that differ from testing other kinds of module.

Reusable components are often more dependable than software developed for a sin-
gle application. More effort can be invested in improving the quality of a component
when the cost is amortized across many applications. Moreover, when reusing a com-
ponent that has been in use in other applications for some time, one obtains the benefit
not only of test and analysis by component developers, but also of actual operational
use.

The advantages of component reuse for quality are not automatic. They do not ap-
ply to code that was developed for a single application and then scavenged for use in
another. The benefit of operational experience as a kind of in vivo testing, moreover, is
obtained only to the extent that previous uses of the component are quite similar to the
new use. These advantages are balanced against two considerable disadvantages. First,
a component designed for wide reuse will usually be much more complex than a mod-
ule designed for a single use; a rule of thumb is that the development effort (including
analysis and test) for a widely usable component is at least twice that for a module
that provides equivalent functionality for a single application. In addition, a reusable
component is by definition developed without full knowledge of the environment in
which it will be used, and it is exceptionally difficult to fully and clearly describe all
the assumptions, dependencies, and limitations that might impinge upon its use in a
particular application.

In general, a software component is characterized by a contract or application pro-
gram interface (API) distinct from its implementation. Where a mature market has
developed for components addressing a particular need, a single interface specification
(e.g., SQL for database access or document object model (DOM) for access and traver-
sal of XML data) can have several distinct implementations. The contract describes the
component by specifying access points of the component, such as procedures (meth-
ods) and their parameters, possible exceptions, global variables, and input and output
network connections. Even when the interface specification is bound to a single im-
plementation, the logical distinction between interface and implementation is crucial
to effective use and testing.

The interface specification of a component should provide all the information re-
quired for reusing the component, including so-called nonfunctional properties such as
performance or capacity limits, in addition to functional behavior. All dependence of
the component on the environment in which it executes should also be specified. In

1The term component is used loosely and often inconsistently in different contexts. Our working defini-
tion and related terms are explained in the sidebar on page 414.

414 Integration and Component-based Software Testing

Terminology for Components and Frameworks
Component A software component is a reusable unit of deployment and composition

that is deployed and integrated multiple times and usually by different teams.
Components are characterized by a contract or interface and may or may not
have state.

Components are often confused with objects, and a component can be encapsu-
lated by an object or a set of objects, but they typically differ in many respects:

• Components typically use persistent storage, while objects usually have
only local state.

• Components may be accessed by an extensive set of communication mech-
anisms, while objects are activated through method calls.

• Components are usually larger grain subsystems than objects.

Component contract or interface The component contract describes the access
points and parameters of the component, and specifies functional and nonfunc-
tional behavior and any conditions required for using the component.

Framework A framework is a micro-architecture or a skeleton of an application, with
hooks for attaching application-specific functionality or configuration-specific
components. A framework can be seen as a circuit board with empty slots for
components.

Frameworks and design patterns Patterns are logical design fragments, while
frameworks are concrete elements of the application. Frameworks often imple-
ment patterns.

Component-based system A component-based system is a system built primarily by
assembling software components (and perhaps a small amount of application-
specific code) connected through a framework or ad hoc “glue code.”

COTS The term commercial off-the-shelf, or COTS, indicates components developed
for the sale to other organizations.

Testing Components and Assemblies 415

practice, few component specifications are complete in every detail, and even details
that are specified precisely can easily be overlooked or misunderstood when embedded
in a complex specification document.

The main problem facing test designers in the organization that produces a com-
ponent is lack of information about the ways in which the component will be used. A
component may be reused in many different contexts, including applications for which
its functionality is an imperfect fit. A general component will typically provide many
more features and options than are used by any particular application.

A good deal of functional and structural testing of a component, focused on finding
and removing as many program faults as possible, can be oblivious to the context of
actual use. As with system and acceptance testing of complete applications, it is then
necessary to move to test suites that are more reflective of actual use. Testing with
usage scenarios places a higher priority on finding faults most likely to be encountered
in use and is needed to gain confidence that the component will be perceived by its
users (that is, by developers who employ it as part of larger systems) as sufficiently
dependable.

Test designers cannot anticipate all possible uses of a component under test, but
they can design test suites for classes of use in the form of scenarios. Test scenarios are
closely related to scenarios or use cases in requirements analysis and design.

Sometimes different classes of use are clearly evident in the component specifica-
tion. For example, the W3 Document Object Model (DOM) specification has parts that
deal exclusively with HTML markup and parts that deal with XML; these correspond
to different uses to which a component implementing the DOM may be put. The DOM
specification further provides two “views” of the component interface. In the flat view,
all traversal and inspection operations are provided on node objects, without regard to
subclass. In the structured view, each subclass of node offers traversal and inspection
operations specific to that variety of node. For example, an Element node has methods
to get and set attributes, but a Text node (which represents simple textual data within
XML or HTML) does not.

Open Research Issues

Ensuring quality of components and of component-based systems remains a challeng-
ing problem and a topic of current research. One research thread considers how dy-
namic analysis of components and component-based systems in one environment can
produce useful information for assessing likely suitability for using some of the same
components in another environment (by characterizing the contexts in which a com-
ponent has been used successfully). A related approach of characterizing a set of
behaviors and recognizing changes or differences (whether or not those differences
are failures) may be applicable in the increasingly important context of dynamically
configurable and field-upgradable systems, which pose all the problems of component-
based systems with the additional complication of performing integration in deployed
systems rather than in the development environment. For these and other systems, self-
monitoring and postdeployment testing in the field are likely to play an increasingly

416 Integration and Component-based Software Testing

important role in the future.
Software design for testability is an important factor in the cost and effectiveness

of test and analysis, particularly for module and component integration. To some ex-
tent model-based testing (Chapter 14) is progress toward producing modules and com-
ponents with well-specified and testable interfaces, but much remains to be done in
characterizing and supporting testability. Design for testability should be an impor-
tant factor in the evolution of architectural design approaches and notations, including
architecture design languages.

Further Reading

The buffer overflow problem in libpng, which caused security vulnerabilities in major
Windows, Linux, and Mac OS X Web browsers and e-mail clients, was discovered
in 2004 and documented by the United States Computer Emergency Readiness Team
(CERT) in Vulnerability Note VU#388984 [Uni04]. The full report on the famous
Ariane 5 failure [Lio96] is available from several sources on the Web. The NASA
report on loss of the Mars Climate Orbiter [Ste99] is also available on the Web. Leveson
[Lev04] describes the role of software in the Ariane failure, loss of the Mars Climate
Orbiter, and other spacecraft losses. Weyuker [Wey98] describes challenges of testing
component-based systems.

Exercises

21.1. When developing a graphical editor, we used a COTS component for saving and
reading files in XML format. During integration testing, the program failed when
reading an empty file and when reading a file containing a syntax error.

Try to classify the corresponding faults according to the taxonomy described in
Table 21.1.

21.2. The Chipmunk quality team decided to use both thread and critical module in-
tegration testing strategies for the Chipmunk Web presence. Envisage at least
one situation in which thread integration should be preferred over critical mod-
ule and one in which critical module testing should be preferred over thread, and
motivate the choice.

21.3. Can a backbone testing strategy yield savings in the cost of producing test scaf-
folding, relative to other structural integration testing strategies? If so, how and
under what conditions? If not, why not?

Chapter 22

System, Acceptance, and

Regression Testing

System testing can be considered a final step in integration testing, but encompassing
systemwide properties against a system specification. Acceptance testing abandons
specifications in favor of users, and measures how the final system meets users’ expec-
tations. Regression testing checks for faults introduced during evolution.

Required Background

• Chapter 4

The concepts of dependability, reliability, availability and mean time to failure
are important for understanding the difference between system and acceptance
testing.

• Chapter 17

Generating reusable scaffolding and test cases is a foundation for regression test-
ing. Some knowledge about the scaffolding and test case generation problem,
though not strictly required, may be useful for understanding regression testing
problems.

22.1 Overview

System, acceptance, and regression testing are all concerned with the behavior of a
software system as a whole, but they differ in purpose.

System testing is a check of consistency between the software system and its spec-
ification (it is a verification activity). Like unit and integration testing, system testing
is primarily aimed at uncovering faults, but unlike testing activities at finer granularity
levels, system testing focuses on system-level properties. System testing together with
acceptance testing also serves an important role in assessing whether a product can be

417

418 System, Acceptance, and Regression Testing

System, Acceptance, and Regression Testing
System test Acceptance test Regression test
Checks against requirements
specifications

Checks suitability for user
needs

Rechecks test cases passed by
previous production versions

Performed by development
test group

Performed by test group with
user involvement

Performed by development
test group

Verifies correctness and com-
pletion of the product

Validates usefulness and satis-
faction with the product

Guards against unintended
changes

released to customers, which is distinct from its role in exposing faults to be removed
to improve the product.

Flaws in specifications and in development, as well as changes in users’ expecta-
tions, may result in products that do not fully meet users’ needs despite passing system
tests. Acceptance testing, as its name implies, is a validation activity aimed primarily
at the acceptability of the product, and it includes judgments of actual usefulness and
usability rather than conformance to a requirements specification.

Regression testing is specialized to the problem of efficiently checking for unin-
tended effects of software changes. New functionality and modification of existing
code may introduce unexpected interactions and lead latent faults to produce failures
not experienced in previous releases.

22.2 System Testing

The essential characteristics of system testing are that it is comprehensive, based on
a specification of observable behavior, and independent of design and implementation
decisions. System testing can be considered the culmination of integration testing, and
passing all system tests is tantamount to being complete and free of known bugs. The
system test suite may share some test cases with test suites used in integration and even
unit testing, particularly when a thread-based or spiral model of development has been
taken and subsystem correctness has been tested primarily through externally visible
features and behavior. However, the essential characteristic of independence implies
that test cases developed in close coordination with design and implementation may be
unsuitable. The overlap, if any, should result from using system test cases early, rather
than reusing unit and integration test cases in the system test suite.

Independence in system testing avoids repeating software design errors in test de-
sign. This danger exists to some extent at all stages of development, but always in trade
for some advantage in designing effective test cases based on familiarity with the soft-
ware design and its potential pitfalls. The balance between these considerations shifts
at different levels of granularity, and it is essential that independence take priority at
some level to obtain a credible assessment of quality.

In some organizations, responsibility for test design and execution shifts at a dis-
crete point from the development team to an independent verification and validation
team that is organizationally isolated from developers. More often the shift in empha-

System Testing 419

sis is gradual, without a corresponding shift in responsible personnel.
Particularly when system test designers are developers or attached to the develop-

ment team, the most effective way to ensure that the system test suite is not unduly
influenced by design decisions is to design most system test cases as early as possible.
Even in agile development processes, in which requirements engineering is tightly in-
terwoven with development, it is considered good practice to design test cases for a new
feature before implementing the feature. When the time between specifying a feature
and implementing it is longer, early design of system tests facilitates risk-driven strate-
gies that expose critical behaviors to system test cases as early as possible, avoiding
unpleasant surprises as deployment nears.

For example, in the (imaginary) Chipmunk development of Web-based purchas-
ing, some questions were raised during requirements specification regarding the point
at which a price change becomes effective. For example, if an item’s catalog price is
raised or lowered between the time it is added to the shopping cart and the time of
actual purchase, which price is the customer charged? The requirement was clarified
and documented with a set of use cases in which outcomes of various interleavings of
customer actions and price changes were specified, and each of these scenarios became
a system test case specification. Moreover, since this was recognized as a critical prop-
erty with many opportunities for failure, the system architecture and build-plan for the
Chipmunk Web presence was structured with interfaces that could be artificially driven
through various scenarios early in development, and with several of the system test
scenarios simulated in earlier integration tests.

The appropriate notions of thoroughness in system testing are with respect to the
system specification and potential usage scenarios, rather than code or design. Each
feature or specified behavior of the system should be accounted for in one or several
test cases. In addition to facilitating design for test, designing system test cases to-
gether with the system requirements specification document helps expose ambiguity
and refine specifications.

The set of feature tests passed by the current partial implementation is often used
as a gauge of progress. Interpreting a count of failing feature-based system tests is
discussed in Chapter 20, Section 20.6.

Additional test cases can be devised during development to check for observable
symptoms of failures that were not anticipated in the initial system specification. They
may also be based on failures observed and reported by actual users, either in accep-
tance testing or from previous versions of a system. These are in addition to a thorough
specification-based test suite, so they do not compromise independence of the quality
assessment.

Some system properties, including performance properties like latency between an
event and system response and reliability properties like mean time between failures,
are inherently global. While one certainly should aim to provide estimates of these
properties as early as practical, they are vulnerable to unplanned interactions among
parts of a complex system and its environment. The importance of such global proper-
ties is therefore magnified in system testing.

420 System, Acceptance, and Regression Testing

Global properties like performance, security, and safety are difficult to specify pre-
cisely and operationally, and they depend not only on many parts of the system under
test, but also on its environment and use. For example, U.S. HIPAA regulations gov-
erning privacy of medical records require appropriate administrative, technical, and
physical safeguards to protect the privacy of health information, further specified as
follows:

Implementation specification: safeguards. A covered entity must reason-
ably safeguard protected health information from any intentional or unin-
tentional use or disclosure that is in violation of the standards, implemen-
tation specifications or other requirements of this subpart. [Uni00, sec.
164.530(c)(2)]

It is unlikely that any precise operational specification can fully capture the HIPAA
requirement as it applies to an automated medical records system. One must consider
the whole context of use, including, for example, which personnel have access to the
system and how unauthorized personnel are prevented from gaining access.

Some global properties may be defined operationally, but parameterized by use.
For example, a hard-real-time system must meet deadlines, but cannot do so in a com-
pletely arbitrary environment; its performance specification is parameterized by event
frequency and minimum inter-arrival times. An e-commerce system may be expected
to provide a certain level of responsiveness up to a certain number of transactions per
second and to degrade gracefully up to a second rate. A key step is identifying the
“operational envelope” of the system, and testing both near the edges of that envelope
(to assess compliance with specified goals) and well beyond it (to ensure the system
degrades or fails gracefully). Defining borderline and extreme cases is logically part
of requirements engineering, but as with precise specification of features, test design
often reveals gaps and ambiguities.

Not all global properties will be amenable to dynamic testing at all, at least in the
conventional sense. One may specify a number of properties that a secure computer
system should have, and some of these may be amenable to testing. Others can be
addressed only through inspection and analysis techniques, and ultimately one does
not trust the security of a system at least until an adversarial team has tried and failed
to subvert it. Similarly, there is no set of test cases that can establish software safety,
in part because safety is a property of a larger system and environment of which the
software is only part. Rather, one must consider the safety of the overall system, and
assess aspects of the software that are critical to that overall assessment. Some but not
all of those claims may be amenable to testing.

Testing global system properties may require extensive simulation of the execution
environment. Creating accurate models of the operational environment requires sub-
stantial human resources, and executing them can require substantial time and machine
resources. Usually this implies that “stress” testing is a separate activity from frequent
repetition of feature tests. For example, a large suite of system test cases might well
run each night or several times a week, but a substantial stress test to measure robust
performance under heavy load might take hours to set up and days or weeks to run.

A test case that can be run automatically with few human or machine resources
should generally focus on one purpose: to make diagnosis of failed test executions as

Acceptance Testing 421

Unit, Integration, and System Testing
Unit Test Integration Test System Test

Test cases
derived from

module specifications architecture and design
specifications

requirements specifica-
tion

Visibility
required

all the details of the code some details of the code,
mainly interfaces

no details of the code

Scaffolding
required

Potentially complex, to
simulate the activation
environment (drivers),
the modules called by
the module under test
(stubs) and test oracles

Depends on architecture
and integration order.
Modules and subsystems
can be incrementally
integrated to reduce need
for drivers and stubs.

Mostly limited to test
oracles, since the whole
system should not re-
quire additional drivers
or stubs to be executed.
Sometimes includes
a simulated execution
environment (e.g., for
embedded systems).

Focus on behavior of individual
modules

module integration and
interaction

system functionality

clear and simple as possible. Stress testing alters this: If a test case takes an hour to set
up and a day to run, then one had best glean as much information as possible from its
results. This includes monitoring for faults that should, in principle, have been found
and eliminated in unit and integration testing, but which become easier to recognize
in a stress test (and which, for the same reason, are likely to become visible to users).
For example, several embedded system products ranging from laser printers to tablet
computers have been shipped with slow memory leaks that became noticeable only
after hours or days of continuous use. In the case of the tablet PC whose character
recognition module gradually consumed all system memory, one must wonder about
the extent of stress testing the software was subjected to.

22.3 Acceptance Testing

The purpose of acceptance testing is to guide a decision as to whether the product in its
current state should be released. The decision can be based on measures of the product
or process. Measures of the product are typically some inference of dependability
based on statistical testing. Measures of the process are ultimately based on comparison
to experience with previous products.

Although system and acceptance testing are closely tied in many organizations,
fundamental differences exist between searching for faults and measuring quality. Even
when the two activities overlap to some extent, it is essential to be clear about the

422 System, Acceptance, and Regression Testing

distinction, in order to avoid drawing unjustified conclusions.
Quantitative goals for dependability, including reliability, availability, and mean

time between failures, were introduced in Chapter 4. These are essentially statisti-
cal measures and depend on a statistically valid approach to drawing a representative
sample of test executions from a population of program behaviors. Systematic testing,
which includes all of the testing techniques presented heretofore in this book, does
not draw statistically representative samples. Their purpose is not to fail at a “typical”
rate, but to exhibit as many failures as possible. They are thus unsuitable for statistical
testing.

The first requirement for valid statistical testing is a precise definition of what is be-
ing measured and for what population. If system operation involves transactions, each
of which consists of several operations, a failure rate of one operation in a thousand is
quite different from a failure rate of one transaction in a thousand. In addition, the fail-
ure rate may vary depending on the mix of transaction types, or the failure rate may be
higher when one million transactions occur in an hour than when the same transactions
are spread across a day. Statistical modeling therefore necessarily involves construction
of a model of usage, and the results are relative to that model.

Suppose, for example, that a typical session using the Chipmunk Web sales facility
consists of 50 interactions, the last of which is a single operation in which the credit
card is charged and the order recorded. Suppose the Chipmunk software always op-
erates flawlessly up to the point that a credit card is to be charged, but on half the
attempts it charges the wrong amount. What is the reliability of the system? If we
count the fraction of individual interactions that are correctly carried out, we conclude
that only one operation in 100 fails, so the system is 99% reliable. If we instead count
entire sessions, then it is only 50% reliable, since half the sessions result in an improper
credit card charge.

Statistical models of usage, or operational profiles, may be available from measure-operational profile

ment of actual use of prior, similar systems. For example, use of a current telephone
handset may be a reasonably good model of how a new handset will be used. Good
models may also be obtained in embedded systems whose environment is primarily
made up of predictable devices rather than unpredictable humans. In other cases one
cannot justify high confidence in a model, but one can limit the uncertainty to a small
number of parameters. One can perform sensitivity testing to determine which pa-sensitivity testing

rameters are critical. Sensitivity testing consists of repeating statistical tests while sys-
tematically varying parameters to note the effect of each parameter on the output. A
particular parameter may have little effect on outcomes over the entire range of plausi-
ble values, or there may be an effect that varies smoothly over the range. If the effect
of a given parameter is either large or varies discontinuously (e.g., performance falls
precipitously when system load crosses some threshold), then one may need to make
distinct predictions for different value ranges.

A second problem faced by statistical testing, particularly for reliability, is that it
may take a very great deal of testing to obtain evidence of a sufficient level of relia-
bility. Consider that a system that executes once per second, with a failure rate of one
execution in a million, or 99.9999% reliability, fails about 31 times each year; this may
require a great testing effort and still not be adequate if each failure could result in
death or a lawsuit. For critical systems, one may insist on software failure rates that are

Usability 423

an insignificant fraction of total failures. For many other systems, statistical measures
of reliability may simply not be worth the trouble.

A less formal, but frequently used approach to acceptance testing is testing with
users. An early version of the product is delivered to a sample of users who provide
feedback on failures and usability. Such tests are often called alpha and beta tests. alpha and beta

testThe two terms distinguish between testing phases. Often the early or alpha phases
are performed within the developing organization, while the later or beta phases are
performed at users’ sites.

In alpha and beta testing, the user sample determines the operational profile. A
good sample of users should include representatives of each distinct category of users,
grouped by operational profile and significance. Suppose, for example, Chipmunk
plans to provide Web-based sales facilities to dealers, industrial customers, and indi-
viduals. A good sample should include both users from each of those three categories
and a range of usage in each category. In the industrial user category, large customers
who frequently issue complex orders as well as small companies who typically order a
small number of units should be represented, as the difference in their usage may lead
to different failure rates. We may weigh differently the frequency of failure reports
from dealers and from direct customers, to reflect either the expected mix of usage in
the full population or the difference in consequence of failure.

22.4 Usability

A usable product is quickly learned, allows users to work efficiently, and is pleasant
to use. Usability involves objective criteria such as the time and number of operations
required to perform tasks and the frequency of user error, in addition to the overall,
subjective satisfaction of users.

For test and analysis, it is useful to distinguish attributes that are uniquely associ-
ated with usability from other aspects of software quality (dependability, performance,
security, etc.). Other software qualities may be necessary for usability; for example, a
program that often fails to satisfy its functional requirements or that presents security
holes is likely to suffer poor usability as a consequence. Distinguishing primary us-
ability properties from other software qualities allows responsibility for each class of
properties to be allocated to the most appropriate personnel, at the most cost-effective
points in the project schedule.

Even if usability is largely based on user perception and thus is validated based on
user feedback, it can be verified early in the design and through the whole software life
cycle. The process of verifying and validating usability includes the following main
steps:

Inspecting specifications with usability checklists. Inspection provides early feed-
back on usability.

Testing early prototypes with end users to explore their mental model (exploratory
test), evaluate alternatives (comparison test), and validate software usability. A
prototype for early assessment of usability may not include any functioning soft-

424 System, Acceptance, and Regression Testing

ware; a cardboard prototype may be as simple as a sequence of static images
presented to users by the usability tester.

Testing incremental releases with both usability experts and end users to monitor
progress and anticipate usability problems.

System and acceptance testing that includes expert-based inspection and testing, user-
based testing, comparison testing against competitors, and analysis and checks
often done automatically, such as a check of link connectivity and verification of
browser compatibility.

User-based testing (i.e., testing with representatives of the actual end-user popula-
tion) is particularly important for validating software usability. It can be applied at dif-
ferent stages, from early prototyping through incremental releases of the final system,
and can be used with different goals: exploring the mental model of the user, evalu-
ating design alternatives, and validating against established usability requirements and
standards.

The purpose of exploratory testing is to investigate the mental model of end users.
It consists of asking users about their approach to interactions with the system. Forexploratory testing

example, during an exploratory test for the Chipmunk Web presence, we may provide
users with a generic interface for choosing the model they would like to buy, in or-
der to understand how users will interact with the system. A generic interface could
present information about all laptop computer characteristics uniformly to see which
are examined first by the sample users, and thereby to determine the set of characteris-
tics that should belong to the summary in the menu list of laptops. Exploratory test is
usually performed early in design, especially when designing a system for a new target
population.

The purpose of comparison testing is evaluating options. It consists of observ-
ing user reactions to alternative interaction patterns. During comparison test we can,
for example, provide users with different facilities to assemble the desired Chipmunk
laptop configuration, and to identify patterns that facilitate users’ interactions. Com-
parison test is usually applied when the general interaction patterns are clear and need
to be refined. It can substitute for exploratory testing if initial knowledge about target
users is sufficient to construct a range of alternatives, or otherwise follows exploratory
testing.

The purpose of validation testing is assessing overall usability. It includes identi-
fying difficulties and obstacles that users encounter while interacting with the system,
as well as measuring characteristics such as error rate and time to perform a task.

A well-executed design and organization of usability testing can produce results
that are objective and accurately predict usability in the target user population. The us-
ability test design includes selecting suitable representatives of the target users and or-
ganizing sessions that guide the test toward interpretable results. A common approach
is divided into preparation, execution, and analysis phases. During the preparation
phase, test designers define the objectives of the session, identify the items to be tested,
select a representative population of end users, and plan the required actions. During
execution, users are monitored as they execute the planned actions in a controlled envi-

Usability 425

ronment. During analysis, results are evaluated, and changes to the software interfaces
or new testing sessions are planned, if required.

Each phase must be carefully executed to ensure success of the testing session.
User time is a valuable and limited resource. Well-focused test objectives should not
be too narrow, to avoid useless waste of resources, nor too wide, to avoid scattering
resources without obtaining useful data. Focusing on specific interactions is usually
more effective than attempting to assess the usability of a whole program at once.
For example, the Chipmunk usability test team independently assesses interactions for
catalog browsing, order definition and purchase, and repair service.

The larger the population sample, the more precise the results, but the cost of very
large samples is prohibitive; selecting a small but representative sample is therefore
critical. A good practice is to identify homogeneous classes of users and select a set
of representatives from each class. Classes of users depend on the kind of application
to be tested and may be categorized by role, social characteristics, age, and so on. A
typical compromise between cost and accuracy for a well-designed test session is five
users from a unique class of homogeneous users, four users from each of two classes, or
three users for each of three or more classes. Questionnaires should be prepared for the
selected users to verify their membership in their respective classes. Some approaches
also assign a weight to each class, according to their importance to the business. For
example, Chipmunk can identify three main classes of users: individual, business, and
education customers. Each of the main classes is further divided. Individual customers
are distinguished by education level; business customers by role; and academic cus-
tomers by size of the institution. Altogether, six putatively homogeneous classes are
obtained: Individual customers with and without at least a bachelor degree, managers
and staff of commercial customers, and customers at small and large education institu-
tions.

Users are asked to execute a planned set of actions that are identified as typical
uses of the tested feature. For example, the Chipmunk usability assessment team may
ask users to configure a product, modify the configuration to take advantage of some
special offers, and place an order with overnight delivery.

Users should perform tasks independently, without help or influence from the test-
ing staff. User actions are recorded, and comments and impressions are collected with
a post-activity questionnaire. Activity monitoring can be very simple, such as record-
ing sequences of mouse clicks to perform each action. More sophisticated monitoring
can include recording mouse or eye movements. Timing should also be recorded and
may sometimes be used for driving the sessions (e.g., fixing a maximum time for the
session or for each set of actions).

An important aspect of usability is accessibility to all users, including those with
disabilities. Accessibility testing is legally required in some application domains. For
example, some governments impose specific accessibility rules for Web applications of
public institutions. The set of Web Content Accessibility Guidelines (WCAG) defined
by the World Wide Web Consortium are becoming an important standard reference.
The WCAG guidelines are summarized in the sidebar on page 426.

426 System, Acceptance, and Regression Testing

Web Content Accessibility Guidelines (WCAG)a

1. Provide equivalent alternatives to auditory and visual content that convey essen-
tially the same function or purpose.

2. Ensure that text and graphics are understandable when viewed without color.

3. Mark up documents with the proper structural elements, controlling presentation
with style sheets rather than presentation elements and attributes.

4. Use markup that facilitates pronunciation or interpretation of abbreviated or for-
eign text.

5. Ensure that tables have necessary markup to be transformed by accessible
browsers and other user agents.

6. Ensure that pages are accessible even when newer technologies are not supported
or are turned off.

7. Ensure that moving, blinking, scrolling, or auto-updating objects or pages may
be paused or stopped.

8. Ensure that the user interface, including embedded user interface elements, fol-
lows principles of accessible design: device-independent access to functionality,
keyboard operability, self-voicing, and so on.

9. Use features that enable activation of page elements via a variety of input de-
vices.

10. Use interim accessibility so that assisting technologies and older browsers will
operate correctly.

11. Where technologies outside of W3C specifications is used (e.g, Flash), provide
alternative versions to ensure accessibility to standard user agents and assistive
technologies (e.g., screen readers).

12. Provide context and orientation information to help users understand complex
pages or elements.

13. Provide clear and consistent navigation mechanisms to increase the likelihood
that a person will find what they are looking for at a site.

14. Ensure that documents are clear and simple, so they may be more easily under-
stood.

aExcerpted and adapted from Web Content Accessibility Guidelines 1.0, W3C Recommendation 5-May
1999; used by permission. The current version is distributed by W3C at http://www.w3.org/TR/
WAI-WEBCONTENT.

Regression Testing 427

22.5 Regression Testing

When building a new version of a system (e.g., by removing faults, changing or adding
functionality, porting the system to a new platform, or extending interoperability), we
may also change existing functionality in unintended ways. Sometimes even small
changes can produce unforeseen effects that lead to new failures. For example, a guard
added to an array to fix an overflow problem may cause a failure when the array is used
in other contexts, or porting the software to a new platform may expose a latent fault
in creating and modifying temporary files.

When a new version of software no longer correctly provides functionality that
should be preserved, we say that the new version regresses with respect to former
versions. The nonregression of new versions (i.e., preservation of functionality), is a
basic quality requirement. Disciplined design and development techniques, including
precise specification and modularity that encapsulates independent design decisions,
improves the likelihood of achieving nonregression. Testing activities that focus on
regression problems are called (non) regression testing. Usually “non” is omitted and
we commonly say regression testing.

A simple approach to regression testing consists of reexecuting all test cases de-
signed for previous versions. Even this simple retest all approach may present nontriv- retest all

ial problems and costs. Former test cases may not be reexecutable on the new version
without modification, and rerunning all test cases may be too expensive and unneces-
sary. A good quality test suite must be maintained across system versions.

Changes in the new software version may impact the format of inputs and outputs,
and test cases may not be executable without corresponding changes. Even simple test case

maintenancemodifications of the data structures, such as the addition of a field or small change of
data types, may invalidate former test cases, or outputs comparable with the new ones.
Moreover, some test cases may be obsolete, since they test features of the software that
have been modified, substituted, or removed from the new version.

Scaffolding that interprets test case specifications, rather than fully concrete test
data, can reduce the impact of input and output format changes on regression testing,
as discussed in Chapter 17. Test case specifications and oracles that capture essential
correctness properties, abstracting from arbitrary details of behavior, likewise reduce
the likelihood that a large portion of a regression test suite will be invalidated by a
minor change.

High-quality test suites can be maintained across versions by identifying and re-
moving obsolete test cases, and by revealing and suitably marking redundant test cases.
Redundant cases differ from obsolete, being executable but not important with respect
to the considered testing criteria. For example, test cases that cover the same path are
mutually redundant with respect to structural criteria, while test cases that match the
same partition are mutually redundant with respect to functional criteria. Redundant
test cases may be introduced in the test suites due to concurrent work of different test
designers or to changes in the code. Redundant test cases do not reduce the overall
effectiveness of tests, but impact on the cost-benefits trade-off: They are unlikely to
reveal faults, but they augment the costs of test execution and maintenance. Obsolete
test cases are removed because they are no longer useful, while redundant test cases
are kept because they may become helpful in successive versions of the software.

428 System, Acceptance, and Regression Testing

Good test documentation is particularly important. As we will see in Chapter 24,
test specifications define the features to be tested, the corresponding test cases, the
inputs and expected outputs, as well as the execution conditions for all cases, while
reporting documents indicate the results of the test executions, the open faults, and
their relation to the test cases. This information is essential for tracking faults and for
identifying test cases to be reexecuted after fault removal.

22.6 Regression Test Selection Techniques

Even when we can identify and eliminate obsolete test cases, the number of tests to
be reexecuted may be large, especially for legacy software. Executing all test cases
for large software products may require many hours or days of execution and may
depend on scarce resources such as an expensive hardware test harness. For example,
some mass market software systems must be tested for compatibility with hundreds
of different hardware configurations and thousands of drivers. Many test cases may
have been designed to exercise parts of the software that cannot be affected by the
changes in the version under test. Test cases designed to check the behavior of the file
management system of an operating system is unlikely to provide useful information
when reexecuted after changes of the window manager. The cost of reexecuting a
test suite can be reduced by selecting a subset of test cases to be reexecuted, omitting
irrelevant test cases or prioritizing execution of subsets of the test suite by their relation
to changes.

Test case prioritization orders frequency of test case execution, executing all of
them eventually but reducing the frequency of those deemed least likely to reveal faults
by some criterion. Alternate execution is a variant on prioritization for environments
with frequent releases and small incremental changes; it selects a subset of regression
test cases for each software version. Prioritization can be based on the specification
and code-based regression test selection techniques described later in this chapter. In
addition, test histories and fault-proneness models can be incorporated in prioritization
schemes. For example, a test case that has previously revealed a fault in a module that
has recently undergone change would receive a very high priority, while a test case
that has never failed (yet) would receive a lower priority, particularly if it primarily
concerns a feature that was not the focus of recent changes.

Regression test selection techniques are based on either code or specifications.
Code-based selection techniques select a test case for execution if it exercises a portion
of the code that has been modified. Specification-based criteria select a test case for
execution if it is relevant to a portion of the specification that has been changed. Code-
based regression test techniques can be supported by relatively simple tools. They
work even when specifications are not properly maintained. However, like code-based
test techniques in general, they do not scale well from unit testing to integration and
system testing. In contrast, specification-based criteria scale well and are easier to ap-
ply to changes that cut across several modules. However, they are more challenging to
automate and require carefully structured and well-maintained specifications.

Among code-based test selection techniques, control-based techniques rely on a
record of program elements executed by each test case, which may be gathered from

Regression Test Selection Techniques 429

an instrumented version of the program. The structure of the new and old versions
of the program are compared, and test cases that exercise added, modified, or deleted
elements are selected for reexecution. Different criteria are obtained depending on the
program model on which the version comparison is based (e.g., control flow or data
flow graph models).

Control flow graph (CFG) regression techniques are based on the differences be-
tween the CFGs of the new and old versions of the software. Let us consider, for control flow

graph (CFG)
regression test

example, the C function cgi decode from Chapter 12. Figure 22.1 shows the original
function as presented in Chapter 12, while Figure 22.2 shows a revison of the program.
We refer to these two versions as 1.0 and 2.0, respectively. Version 2.0 adds code to
fix a fault in interpreting hexadecimal sequences ’%xy’. The fault was revealed by
testing version 1.0 with input terminated by an erroneous subsequence ’%x’, causing
version 1.0 to read past the end of the input buffer and possibly overflow the output
buffer. Version 2.0 contains a new branch to map the unterminated sequence to a ques-
tion mark.

Let us consider all structural test cases derived for cgi decode in Chapter 12, and
assume we have recorded the paths exercised by the different test cases as shown in
Figure 22.3. Recording paths executed by test cases can be done automatically with
modest space and time overhead, since what must be captured is only the set of program
elements exercised rather than the full history.

CFG regression testing techniques compare the annotated control flow graphs of the
two program versions to identify a subset of test cases that traverse modified parts of
the graphs. The graph nodes are annotated with corresponding program statements, so
that comparison of the annotated CFGs detects not only new or missing nodes and arcs,
but also nodes whose changed annotations correspond to small, but possibly relevant,
changes in statements.

The CFG for version 2.0 of cgi decode is given in Figure 22.4. Differences between
version 2.0 and 1.0 are indicated in gray. In the example, we have new nodes, arcs and
paths. In general, some nodes or arcs may be missing (e.g., when part of the program is
removed in the new version), and some other nodes may differ only in the annotations
(e.g., when we modify a condition in the new version).

CFG criteria select all test cases that exercise paths through changed portions of
the CFG, including CFG structure changes and node annotations. In the example, we
would select all test cases that pass through node D and proceed toward node G and
all test cases that reach node L, that is, all test cases except TC1. In this example, the
criterion is not very effective in reducing the size of the test suite because modified
statements affect almost all paths.

If we consider only the corrective modification (nodes X and Y), the criterion is
more effective. The modification affects only the paths that traverse the edge between
D and G, so the CFG regression testing criterion would select only test cases traversing
those nodes (i.e., TC2, TC3, TC4, TC5, TC8 and TC9). In this case the size of the test
suite to be reexecuted includes two-thirds of the test cases of the original test suite.

In general, the CFG regression testing criterion is effective only when the changes
affect a relatively small subset of the paths of the original program, as in the latter case.
It becomes almost useless when the changes affect most paths, as in version 2.0.

Data flow (DF) regression testing techniques select test cases for new and modi-

430 System, Acceptance, and Regression Testing

1 #include "hex values.h"
2 /** Translate a string from the CGI encoding to plain ascii text.
3 * ’+’ becomes space, %xx becomes byte with hex value xx,
4 * other alphanumeric characters map to themselves.
5 * Returns 0 for success, positive for erroneous input
6 * 1 = bad hexadecimal digit
7 */
8 int cgi decode(char *encoded, char *decoded) {
9 char *eptr = encoded;

10 char *dptr = decoded;
11 int ok=0;
12 while (*eptr) {
13 char c;
14 c = *eptr;
15 if (c == ’+’) { /* Case 1: ’+’ maps to blank */
16 *dptr = ’ ’;
17 } else if (c == ’%’) { /* Case 2: ’%xx’ is hex for character xx */
18 int digit high = Hex Values[*(++eptr)]; /* note illegal => -1 */
19 int digit low = Hex Values[*(++eptr)];
20 if (digit high == -1 || digit low == -1) {
21 /* *dptr=’?’; */
22 ok=1; /* Bad return code */
23 } else {
24 *dptr = 16* digit high + digit low;
25 }
26 } else { /* Case 3: Other characters map to themselves */
27 *dptr = *eptr;
28 }
29 ++dptr;
30 ++eptr;
31 }
32 *dptr = ’\0’; /* Null terminator for string */
33 return ok;
34 }

Figure 22.1: C function cgi decode version 1.0. The C function cgi decode translates a
cgi-encoded string to a plain ASCII string, reversing the encoding applied by the com-
mon gateway interface of most Web servers. Repeated from Figure 12.1 in Chapter 12.

Regression Test Selection Techniques 431

1 #include "hex values.h"
2 /** Translate a string from the CGI encoding to plain ascii text.
3 * ’+’ becomes space, %xx becomes byte with hex value xx,
4 * other alphanumeric characters map to themselves, illegal to ’?’.
5 * Returns 0 for success, positive for erroneous input
6 * 1 = bad hex digit, non-ascii char, or premature end.
7 */
8 int cgi decode(char *encoded, char *decoded) {
9 char *eptr = encoded;

10 char *dptr = decoded;
11 int ok=0;
12 while (*eptr) {
13 char c;
14 c = *eptr;
15 if (c == ’+’) { /* Case 1: ’+’ maps to blank */
16 *dptr = ’ ’;
17 } else if (c == ’%’) { /* Case 2: ’%xx’ is hex for character xx */
18 if (! (*(eptr + 1) && *(eptr + 2))) { /* \%xx must precede EOL */
19 ok = 1; return;
20 }
21 /* OK, we know the xx are there, now decode them */
22 int digit high = Hex Values[*(++eptr)]; /* note illegal => -1 */
23 int digit low = Hex Values[*(++eptr)];
24 if (digit high == -1 || digit low == -1) {
25 /* *dptr=’?’; */
26 ok=1; /* Bad return code */
27 } else {
28 *dptr = 16* digit high + digit low;
29 }
30 } else { /* Case 3: Other characters map to themselves */
31 *dptr = *eptr;
32 }
33 if (! isascii(*dptr)) { /* Produce only legal ascii */
34 *dptr = ’?’;
35 ok = 1;
36 }
37 ++dptr;
38 ++eptr;
39 }
40 *dptr = ’\0’; /* Null terminator for string */
41 return ok;
42 }

Figure 22.2: Version 2.0 of the C function cgi decode adds a control on hexadecimal
escape sequences to reveal incorrect escape sequences at the end of the input string
and a new branch to deal with non-ASCII characters.

432 System, Acceptance, and Regression Testing

Id Test case Path
TC1 “ ” A B M
TC2 “test+case%1Dadequacy” A B C D F L ... B M
TC3 “adequate+test%0Dexecution%7U” A B C D F L ... B M
TC4 “%3D” A B C D G H L B M
TC5 “%A” A B C D G I L B M
TC6 “a+b” A B C D F L B C E L B C D F L B M
TC7 “test” A B C D F L B C D F L B C D F L B C D F L B M
TC8 “+%0D+%4J” A B C E L B C D G I L ... B M
TC9 “first+test%9Ktest%K9” A B C D F L ... B M

Figure 22.3: Paths covered by the structural test cases derived for version 1.0 of func-
tion cgi decode. Paths are given referring to the nodes of the control flow graph of
Figure 22.4.

fied pairs of definitions with uses (DU pairs, cf. Sections 6.1, page 77 and 13.2, page
236). DF regression selection techniques reexecute test cases that, when executed ondata flow (DF)

regression test the original program, exercise DU pairs that were deleted or modified in the revised
program. Test cases that executed a conditional statement whose predicate was altered
are also selected, since the changed predicate could alter some old definition-use asso-
ciations. Figure 22.5 shows the new definitions and uses introduced by modifications
to cgi decode.1 These new definitions and uses introduce new DU pairs and remove
others.

In contrast to code-based techniques, specification-based test selection techniques
do not require recording the control flow paths executed by tests. Regression test cases
can be identified from correspondence between test cases and specification items. For
example, when using category partition, test cases correspond to sets of choices, while
in finite state machine model-based approaches, test cases cover states and transitions.
Where test case specifications and test data are generated automatically from a spec-
ification or model, generation can simply be repeated each time the specification or
model changes.

Code-based regression test selection criteria can be adapted for model-based re-
gression test selection. Consider, for example, the control flow graph derived from the
process shipping order specification in Chapter 14. We add the following item to that
specification:

Restricted countries: A set of restricted destination countries is maintained, based on
current trade restrictions. If the shipping address contains a restricted destina-
tion country, only credit card payments are accepted for that order, and shipping

1When dealing with arrays, we follow the criteria discussed in Chapter 13: A change of an array value
is a definition of the array and a use of the index. A use of an array value is a use of both the array and the
index.

Regression Test Selection Techniques 433

True

*dptr = '\0';
return ok;
}

False

True

int digit_high = Hex_Values[*(++eptr)];
int digit_low = Hex_Values[*(++eptr)];
if (digit_high == -1 || digit_low == -1) {

True

ok = 1;
}

True
else {
*dptr = 16 * digit_high +
digit_low;
}

False

False

False

else
*dptr = *eptr;
}

int cgi_decode(char *encoded, char *decoded)

F G

H I

M

 { char *eptr = encoded;
char *dptr = decoded;
int ok = 0;

A

while (*eptr) { B

char c;
c = *eptr;
if (c == '+') {

C

*dptr = ' ';
}

E elseif (c == '%') {
D

ok = 1; return;
}

 if (! (*(eptr + 1) && *(eptr + 2))) { X

Y
True False

 if (! isascii(*dptr)) { W

 *dptr = '?';
 ok = 1;
 }

Z

++dptr;
++eptr;
}

L

True

False

Figure 22.4: The control flow graph of function cgi decode version 2.0. Gray back-
ground indicates the changes from the former version.

434 System, Acceptance, and Regression Testing

Variable Definitions Uses
*eptr X
eptr X
dptr Z W
dptr Z W
ok Y Z

Figure 22.5: Definitions and uses introduced by changes in cgi decode. Labels refer to
the nodes in the control flow graph of Figure 22.4.

proceeds only after approval by a designated company officer responsible for
checking that the goods ordered may be legally exported to that country.

The new requirement can be added to the flow graph model of the specification as
illustrated in Figure 22.6.

We can identify regression test cases with the CFG criterion that selects all cases
that correspond to international shipping addresses (i.e., test cases TC-1 and TC-5 from
the following table). The table corresponds to the functional test cases derived using to
the method described in Chapter 14 on page 259.

Case Too Ship Ship Cust Pay Same CC
small where method type method addr valid

TC-1 No Int Air Bus CC No Yes
TC-2 No Dom Land – – – –
TC-3 Yes – – – – – –
TC-4 No Dom Air – – – –
TC-5 No Int Land – – – –
TC-6 No – – Edu Inv – –
TC-7 No – – – CC Yes –
TC-8 No – – – CC – No (abort)
TC-9 No – – – CC – No (no abort)

Models derived for testing can be used not only for selecting regression test cases,
but also for generating test cases for the new code. In the preceding example, we can
use the model not only to identify the test cases that should be reused, but also to gen-
erate new test cases for the new functionality, following the combinatorial approaches
described in Chapter 11.

22.7 Test Case Prioritization and Selective Execution

Regression testing criteria may select a large portion of a test suite. When a regression
test suite is too large, we must further reduce the set of test cases to be executed.

Random sampling is a simple way to reduce the size of the regression test suite.
Better approaches prioritize test cases to reflect their predicted usefulness. In a con-

Test Case Prioritization and Selective Execution 435

preferred shipping method = land freight, OR
expedited land freight OR overnight air

Process shipping order

CostOfGoods < MinOrder

shipping address
no

yes

domestic

preferred shipping method = air
freight OR expedited air freight

international

calculate domestic
shipping charge

calculate international shipping charge

total charge = goods + shipping

individual customer no

yes

obtain credit card data: number,
name on card, expiration date

method of payement
credit card

invoice

billing address = shipping address

obtain billing address

no
yes

valid credit card
information

no

yes

payement status = valid
enter order

prepare receipt

invalid order

no

no

abort order?

no

yes

Shipping address in {restricted countries}

order in {allowed goods}
noyes

no
yes

Figure 22.6: A flow graph model of the specification of the shipping order functionality
presented in Chapter 14, augmented with the “restricted country” requirement. The
changes in the flow graph are indicated in black.

436 System, Acceptance, and Regression Testing

tinuous cycle of retesting as the product evolves, high-priority test cases are selected
more often than low-priority test cases. With a good selection strategy, all test cases are
executed sooner or later, but the varying periods result in an efficient rotation in which
the cases most likely to reveal faults are executed most frequently.

Priorities can be assigned in many ways. A simple priority scheme assigns priority
according to the execution history: Recently executed test cases are given low priority,
while test cases that have not been recently executed are given high priority. In theexecution history

priority schema extreme, heavily weighting execution history approximates round robin selection.
Other history-based priority schemes predict fault detection effectiveness. Test

cases that have revealed faults in recent versions are given high priority. Faults arefault revealing
priority schema not evenly distributed, but tend to accumulate in particular parts of the code or around

particular functionality. Test cases that exercised faulty parts of the program in the past
often exercise faulty portions of subsequent revisions.

Structural coverage leads to a set of priority schemes based on the elements covered
by a test case. We can give high priority to test cases that exercise elements that havestructural priority

schema not recently been exercised. Both the number of elements covered and the “age” of
each element (time since that element was covered by a test case) can contribute to the
prioritization.

Structural priority schemes produce several criteria depending on which elements
we consider: statements, conditions, decisions, functions, files, and so on. The choice
of the element of interest is usually driven by the testing level. Fine-grain elements
such as statements and conditions are typically used in unit testing, while in integration
or system testing one can consider coarser grain elements such as methods, features,
and files.

Open Research Issues

System requirements include many nonfunctional behavioral properties. While there is
an active research community in reliability testing, in general, assessment of nonfunc-
tional properties is not as well-studied as testing for correctness. Moreover, as trends
in software develop, new problems for test and analysis are following the emphasis on
particular nonfunctional properties. A prominent example of this over the last several
years, and with much left to do, is test and analysis to assess and improve security.

Selective regression test selection based on analysis of source code is now well-
studied. There remains need and opportunity for improvement in techniques that give
up the safety guarantee (selecting all test cases that might be affected by a software
change) to obtain more significant test suite reductions. Specification-based regression
test selection is a promising avenue of research, particularly as more systems incorpo-
rate components without full source code.

Increasingly ubiquitous network access is blurring the once-clear lines between
alpha and beta testing and opening possibilities for gathering much more information
from execution of deployed software. We expect to see advances in approaches to gath-
ering information (both from failures and from normal execution) as well as exploiting
potentially large amounts of gathered information. Privacy and confidentiality are an
important research challenge in postdeployment monitoring.

Test Case Prioritization and Selective Execution 437

Further Reading

Musa [Mus04] is a guide to reliability engineering from a pioneer in the field; ongoing
research appears in the International Symposium on Software Reliability Engineer-
ing (ISSRE) conference series. Graves et al. [GHK+98] and Rothermel and Har-
rold [RH97] provide useful overviews of selective regression testing. Kim and Porter
[KP02] describe history-based test prioritization. Barnum [Bar01] is a well-regarded
text on usability testing; Nielsen [Nie00] is a broader popular introduction to usability
engineering, with a chapter on usability testing.

Exercises

22.1. Consider the Chipmunk Computer Web presence. Define at least one test case
that may serve both during final integration and early system testing, at least one
that serves only as an integration test case, and at least one that is more suitable
as a system test case than as a final integration test case. Explain your choices.

22.2. When and why should testing responsibilities shift from the development team to
an independent quality team? In what circumstances might using an independent
quality team be impractical?

22.3. Identify some kinds of properties that cannot be efficiently verified with system
testing, and indicate how you would verify them.

22.4. Provide two or more examples of resource limitations that may impact system
test more than module and integration test. Explain the difference in impact.

22.5. Consider the following required property of the Chipmunk Computer Web pres-
ence:

Customers should perceive that purchasing a computer using the Chip-
munk Web presence is at least as convenient, fast, and intuitive as
purchasing a computer in an off-line retail store.

Would you check it as part of system or acceptance testing? Reformulate the
property to allow test designers to check it in a different testing phase (system
testing, if you consider the property checkable as part of acceptance testing, or
vice versa).

438 System, Acceptance, and Regression Testing

Chapter 23

Automating Analysis and

Test

Automation can improve the efficiency of some quality activities and is a necessity for
implementing others. While a greater degree of automation can never substitute for
a rational, well-organized quality process, considerations of what can and should be
automated play an important part in devising and incrementally improving a process
that makes the best use of human resources. This chapter discusses some of the ways
that automation can be employed, as well as its costs and limitations, and the maturity
of the required technology. The focus is not on choosing one particular set of “best”
tools for all times and situations, but on a continuing rational process of identifying
and deploying automation to best effect as the organization, process, and available
technology evolve.

Required Background

• Chapter 20
Some knowledge about planning and monitoring, though not strictly required,
can be useful to understand the need for automated management support.

• Chapter 17
Some knowledge about execution and scaffolding is useful to appreciate the im-
pact of tools for scaffolding generation and test execution.

• Chapter 19
Some knowledge about program analysis is useful to understand the need to
automate analysis techniques.

23.1 Overview

A rational approach to automating test and analysis proceeds incrementally, prioritiz-
ing the next steps based on variations in potential impact, variations in the maturity,

439

440 Automating Analysis and Test

cost, and scope of the applicable technology, and fit and impact on the organization
and process. The potential role of automation in test and analysis activities can be con-
sidered along three nonorthogonal dimensions: the value of the activity and its current
cost, the extent to which the activity requires or is made less expensive by automation,
and the cost of obtaining or constructing tool support.

Some test and analysis tasks depend so heavily on automation that a decision to
employ a technique is tantamount to a decision to use tools. For example, employing
structural coverage criteria in program testing necessarily means using coverage mea-
surement tools. In other cases, an activity may be carried out manually, but automation
reduces cost or improves effectiveness. For example, tools for capturing and replaying
executions reduce the costs of reexecuting test suites and enable testing strategies that
would be otherwise impractical. Even tasks that appear to be inherently manual may
be enhanced with automation. For example, although software inspection is a manual
activity at its core, a variety of tools have been developed to organize and present infor-
mation and manage communication for software inspection, improving the efficiency
of inspectors.

The difficulty and cost of automating test and analysis vary enormously, ranging
from tools that are so simple to develop that they are justifiable even if their benefits
are modest to tools that would be enormously valuable but are simply impossible. For
example, if we have specification models structured as finite state machines, automatic
generation of test case specifications from the finite state model is a sufficiently simple
and well-understood technique that obtaining or building suitable tools should not be an
obstacle. At the other extreme, as we have seen in Chapter 2, many important problems
regarding programs are undecidable. For example, no matter how much value we might
derive from a tool that infallibly distinguishes executable from nonexecutable program
paths, no such tool can exist. We must therefore weigh the difficulty or expense of
automation together with potential benefits, including costs of training and integration.

Difficulty and cost are typically entangled with scope and accuracy. Sometimes
a general-purpose tool (e.g., capture and replay for Windows applications) is only
marginally more difficult to produce than a tool specialized for one project (e.g., cap-
ture and replay for a specific Windows application). Investment in the general-purpose
tool, whether to build it or to buy it, can be amortized across projects. In other cases, it
may be much more cost-effective to create simple, project-specific tools that sidestep
the complexity of more generic tools.

However industrious and well-intentioned, humans are slow and error-prone when
dealing with repetitive tasks. Conversely, simple repetitive tasks are often straightfor-
ward to automate, while judgment and creative problem solving remain outside the
domain of automation. Human beings are very good at identifying the relevant exe-
cution scenarios that correspond to test case specifications (for example, by specifying
the execution space of the program under test with a finite state machine), but are very
inefficient in generating large volumes of test cases (for example, by clicking combi-
nations of menus in graphic interfaces), or identifying erroneous results within a large
set of outputs produced when executing regression tests. Automating the repetitive
portions of the task not only reduces costs, but improves accuracy as well.

Automation and Planning 441

23.2 Automation and Planning

One important role of a test strategy is to prescribe tools for key elements of the quality
process used in the organization. Analysis and test strategies can include very detailed
process and tool prescriptions, particularly in critical application domains where qual-
ity assurance procedures are imposed by certification agencies, as in avionics software.
In general, however, a single detailed process and its supporting tools will not be a
uniformly good fit for a diverse set of software projects. Rather, an analysis and testing
strategy can recommend different tools contingent on aspects of a project including
application domain, development languages, and size. Overall quality strategies often
indicate tools for organizing test design and execution and for generating quality doc-
uments, for collecting metrics, and for managing regression test suites. They less often
indicate tools for generating test cases from requirement and design specifications, or
for dynamic analysis.

The quality plan for a particular project indicates tools inherited from the strategy
as well as additional tools selected for that project. The quality manager should also
evaluate needs and opportunities for acquiring or customizing existing tools or develop-
ing ad hoc solutions. For both organization-standard and project-specific tool choices,
the plan must include related costs such as training, implied activities, and potential
risks.

The quality strategy and plan must position tools within a development process and
an analysis and test methodology. Tools are worthless and even harmful if not properly
contextualized. For example, while tools for measuring code coverage are simple and
inexpensive, if not preceded by careful consideration of the role of coverage metrics
in the test process, they are at best an annoyance, producing data that are not put to
productive use, and at worst a distorting influence that steers the process in unplanned
ways.

23.3 Process Management

Managing a quality process involves planning a set of activities with appropriate cost
and quality trade-offs, monitoring progress to identify risks as early as possible and to
avoid delays, and adjusting the plan as needed. These tasks require human creativity
and insight for which no tool can substitute. Nonetheless, tools can support process
management, improving decision making by organizing and monitoring activities and
results, facilitating group interaction, managing quality documents, and tracking costs.

Classic planning tools facilitate task scheduling, resource allocation, and cost es-
timation by arranging tasks according to resource and time constraints. They can be
specialized to analysis and test management with features for automatically deriving
relations among tasks, launching tasks, and monitoring completion of activities. For
example, quality planning tools can schedule test generation and execution activities
consistent with dependence among quality activities and between quality and develop-
ment activities. They can recognize delivery of a given artifact, automatically schedule
execution of a corresponding test suite, notify the test designer of test results, record
the actual execution time of the activity, and signal schedule deviations to the qual-

442 Automating Analysis and Test

ity manager. Quality planning tools are most useful when integrated in the analysis
and test environment to react automatically to events with activation of other tools and
procedures.

Analysis and testing involve complex relations among a large number of artifacts.
A failure of a particular test case may be specific to a particular version of a module
in some configurations of a system and to portions of a design specification that is
in turn tied back to product requirements. An inspection may detect a fault indicated
by a particular checklist item, which is applied by inspectors when they recognize
a particular software design pattern, and that fault is also related to elements of the
program, design, and version and configuration information. In most development
projects, managing those relations, deriving useful information from them, and taking
appropriate action are major tasks themselves.

Fortunately, managing the Web of relations among artifacts can be automated and
managed by version control tools. Version and configuration control tools relate ver-
sions of software artifacts and are often used to trigger consistency checks and other
activities. They can support analysis and testing activities in much the same manner as
they control assembly and compilation of related modules, for example, triggering exe-
cution of the appropriate test suites for each software modification, associating version
status with test reports, and tracking completion of follow-up activities for detected
failures. In other words, artifacts and tasks related to quality are simply part of the
product and development process, with the same requirements and opportunities for
automated support. Also like other aspects of a development environment, integrated
quality tracking improves efficiency in a well-structured process, but does not by itself
bring order out of chaos.

Process management includes monitoring progress in terms of both schedule (com-
paring actual effort and completion times to a plan) and level of quality. Quality of the
final product cannot be directly measured before its completion, but useful indications
can be derived, for example, using the orthogonal defect classification discussed in
Chapter 20. For both schedule and quality, the essential function of tracking is to rec-
ognize deviations from expectation, so that an alert manager can direct attention to
understanding and dealing with problems before they are insurmountable.

Essential tasks that require human ingenuity include selecting or designing proxy
measures that can be computed early, and interpreting those measures in a way that
avoids misleading conclusions or distorted incentives. For example, counting lines of
code is sometimes useful as a simple proxy for productivity, but must be carefully inter-
preted to avoid creating an incentive for verbosity or a disincentive for effective reuse
of components. Similarly, the number of faults detected is a useful proxy measure if the
goal is simply to detect deviations from the norm, but one should be as concerned about
the causes of abnormally low numbers as high. Collection, summary, and presentation
of data can be automated; design and interpretation cannot.

Effective management also involves coordinating people, who may work in dif-
ferent groups or even different companies, possibly distributed across time zones and
continents. Several studies have indicated that a large proportion of a software engi-
neer’s time is devoted to communication. It is therefore important both to facilitate
effective communication and to limit disruptions and distractions of unmanaged com-
munication.

Static Metrics 443

Where simple general-purpose tools like e-mail, chats, and forums are employed,
a key factor in their efficiency is appropriately matching synchronous communication
or asynchronous communication to tasks. When excessive interruptions slow progress,
replacing synchronous communication by asynchronous or scheduled communication
may be indicated. Conversely, asynchronous communication may be replaced or aug-
mented with synchronous communication (e.g., messaging or chat) to improve the effi-
ciency of discussions that have been splintered into many small exchanges punctuated
by waits for reply.

Communication is most effective when all parties have immediate access to rele-
vant information. In this regard, task-specific tools can improve on general-purpose
communication support. For example, tools for distributed software inspections extend
the familiar interfaces for chat (for synchronous inspection) or forum (for asynchronous
inspection), adding managed presentation of the artifact to be inspected and appropriate
portions of checklists and automated analysis results.

23.4 Static Metrics

Static metrics measure software properties, often to estimate other properties. Among
the most basic properties of software is size, which is strongly correlated to schedule
and cost, including the cost of testing. Even something as straightforward as counting
lines of code turns out to have several possible variations, depending on whether and
how one filters out variations in white space, comments, and programming style. Com-
mon metrics of code size include:

Size Size of the source file, measured in bytes
Lines All-inclusive count of lines in source code file
LOC Lines of code, excluding comment and blank lines
eLOC Effective lines of code, excluding comments, blank lines, and stand-alone

braces or parenthesis
lLOC Logical lines of code, that is, statements as identified by logical separa-

tors such as semicolons

Every programmer knows that there are variations in complexity between different
pieces of code and that this complexity may be as important as sheer size. A number
of attempts have been made to quantify aspects of complexity and readability:

CDENS Comment density (i.e., comment lines/eLOC)
Blocks Number of basic blocks (i.e., sequences of statements with one entry

point, one exit point, and no internal branches)
AveBlockL Average number of lines per basic block
NEST Control structure nesting level (minimum, maximum, and average)
Loops Number of loops
LCSAJ Number of linear code sequences; see Chapter 5
BRANCH Number of branches in the control flow graph

Size and complexity may also be estimated on a coarser scale, considering only inter-
faces between units:

444 Automating Analysis and Test

Cyclomatic Complexity
Cyclomatic complexity is measured as e�n+2, where e is the number of edges of

the control flow graph and n is the number of nodes in the graph.
Cyclomatic complexity does not depend on the size of the code but on branching

in the control structure. For example, graphs CFG1 and CFG2, as follow, have the
same cyclomatic complexity, despite their different sizes, while the cyclomatic com-
plexity of CFG3 is higher than that of CFG2 despite having the same number of nodes.

V(g) = 1 - 2 + 2 = 1

V(g) = 5 - 6 + 2 = 1

CFG1 CFG2 CFG3

V(g) = 8 - 6 + 2 = 4

Low to moderate cyclomatic complexity (below 20) is interpreted as indicating a
simple program; high cyclomatic complexity (above 20) indicates complex programs;
very high cyclomatic complexity (above 50) characterizes programs that may be very
difficult or impossible to thoroughly test.

Cyclomatic complexity is certainly a sign of complex control flow structure, but
it does not capture other aspects of logical complexity that can lead to difficulty in
testing. There is little evidence that cyclomatic complexity is a more reliable predictor
of testing effort or quality than lines of code.

Functions Number of defined functions (or methods, procedures, etc.)
FPar Number of formal parameters of functions
FRet Number of return points of functions
IComplex Interface complexity (i.e., FPar +FRet)

All these metrics are proxies for size and complexity. Despite several attempts begin-
ning in the 1970s, no proposed metric has succeeded in capturing intrinsic complexity
in a manner that robustly correlates with effort or quality. Lines of code, despite its ob-
vious shortcomings, is not much worse than other measures of size. Among attempts
to measure complexity, only cyclomatic complexity (V (g)) is still commonly collected
by many tools (see sidebar). Cyclomatic complexity is defined as the number of inde-
pendent paths through the control flow graph.

Additional metrics have been introduced to capture complexity in structures unique
to object-oriented programming:

Test Case Generation and Execution 445

WMC Weighted methods per class, the sum of the complexities of methods in
all classes, divided by the number of classes. This metric is parametric
with respect to a measure of complexity in methods

DIT Depth of the inheritance tree of a class
NOC Number of children (subclasses) of a class
RFC Response for a class, the number of methods that may be executed in re-

sponse to a method call to an object of the class. The size of the transitive
closure of the calling relation rooted at a class

CBO Coupling between object classes, the number of classes with which the
class is coupled through any relation (e.g., containment, method calls,
subclassing)

LCOM Lack of cohesion in methods, the number of methods with pairwise dis-
joint sets of instance variables referenced within their respective method
bodies

All metrics discussed so far focus on code structure and can be measured only
when the code is available, often late in the development process. A subset of the
object-oriented metrics can be derived from detailed design, which still may be too late
for many purposes.

Many standards define metrics. The well-known ISO/IEC 9126 standard (sidebar
on page 446) suggests a hierarchy of properties to measure the quality of software.
The six main high-level quality dimensions identified by the ISO/IEC 9126 standard
describe quality properties as perceived by users.

23.5 Test Case Generation and Execution

Test case generation and execution can be a large fraction of overall cost for test and
analysis, and if done poorly can become a scheduling bottleneck near product delivery
deadlines. Although designing a test suite involves human creativity in the same degree
as other kinds of design, instantiating and executing test cases is a repetitive and tedious
task that can be largely automated, reducing overall cost and accelerating the test cycle.

Technical aspects of test case generation and execution are discussed in Chapter 17
and are not repeated here. Strategic aspects of automating test case generation and
execution are much as for other quality activities: Essentially mechanical tasks should
be factored out and automated, and essentially intellectual and creative tasks should be
supported through cognitive aids, bookkeeping support, and communication support.

23.6 Static Analysis and Proof

Analysis of specifications and proof of properties span activities from simple checks
to full proof of program correctness. Although analysis and proof are often related
to formal methods, we can also analyze several aspects of semiformal and informal
specifications, if they are precisely defined. For example, we can automatically check
important syntactic properties of informal textual and diagrammatic notations.

446 Automating Analysis and Test

ISO/IEC 9126 Properties
The ISO/IEC 9126 standard requires estimation of user-perceived quality on several

dimensions. The standard defines only qualitative and subjective measures, but an
organization can obtain more useful values by mapping them to objectively measurable
criteria.

Functionality Ability to meet explicit and implicit functional require-
ments

Suitability Ability to provide functionality required to satisfy user
goals

Accuracy Ability to provide correct results
Interoperability Ability to interact with other products
Security Ability to protect access to private data and guarantee a

level of service, preventing denial of service
Reliability Ability to provide the required level of service when the

software is used under appropriate conditions
Maturity Ability to avoid failures that result from software faults
Fault Tolerance Ability to maintain a suitable level of functionality even in

the presence of external failures
Recoverability Ability to recover data and resume function after a failure

Usability Ease of understanding, teaching and using the software
Understandability Ease of understanding the product
Learnability Ease of training users
Operability Ease of working with the product
Attractiveness Degree of appreciation by users

Efficiency Ability to guarantee required performance under given con-
ditions

Time Behavior Ability to satisfy average and maximum response time re-
quirements

Resource
Utilization

Amount of resources needed for executing the software

Maintainability Ability to be updated, corrected, and modified
Analyzability Ease of analyzing the software to reveal faults
Changeability Ease of changing the software to remove faults and change

existing and add new functionality
Stability Ability to minimize the effects of changes on normal be-

havior
Testability Ease of testing the software

Portability Ability to be executed in different environments and inter-
operate with other software

Adaptability Ability to be adapted to new operating environments
Installability Ease of installing the software in different environments
Co-existence Ability to share resources with other products
Replaceability Ability to be replaced by other products

Static Analysis and Proof 447

Automated analysis is effective both for quickly and cheaply checking simple prop-
erties, and for more expensive checks that are necessary for critical properties that resist
cheaper forms of verification. For example, simple data flow analyses can almost in-
stantaneously identify anomalous patterns (e.g., computing a value that is never used)
that are often symptoms of other problems (perhaps using the wrong value at a dif-
ferent point in a program). At the other extreme, using a finite state verification tool
to find subtle synchronization faults in interface protocols requires a considerable in-
vestment in constructing a model and formalizing the properties to be verified, but this
effort is justified by the cost of failure and the inadequacy of conventional testing to
find timing-dependent faults.

It may be practical to verify some critical properties only if the program to be
checked conforms to certain design rules. The problem of verifying critical properties
is then decomposed into a design step and a proof step. In the design step, software en-
gineers select and enforce design rules to accommodate analysis, encapsulating critical
parts of the code and selecting a well-understood design idiom for which suitable anal-
ysis techniques are known. Test designers can then focus on the encapsulated or sim-
plified property. For example, it is common practice to encapsulate safety-critical prop-
erties into a safety kernel. In this way, the hard problem of proving the safety-critical
properties of a complex system is decomposed into two simpler problems: Prove safety
properties of the (small) kernel, and check that all safety-related actions are mediated
by the kernel.

Tools for verifying a wide class of properties, like program verifiers based on the-
orem proving, require extensive human interaction and guidance. Other tools with a
more restricted focus, including finite state verification tools, typically execute com-
pletely automatically but almost always require several rounds of revision to properly
formalize a model and property to be checked. The least burdensome of tools are re-
stricted to checking a fixed set of simple properties, which (being fixed) do not require
any additional effort for specification. These featherweight analysis tools include type
checkers, data flow analyzers, and checkers of domain specific properties, such as Web
site link checkers.

Type-checking techniques are typically applied to properties that are syntactic in
the sense that they enforce a simple well-formedness rule. Violations are easy to diag-
nose and repair even if the rules are stricter than one would like. Data flow analyzers,
which are more sensitive to program control and data flow, are often used to identify
anomalies rather than simple, unambiguous faults. For example, assigning a value to a
variable that is not subsequently used suggests that either the wrong variable was set or
an intended subsequent use is missing, but the program must be inspected to determine
whether the anomaly corresponds to a real fault. Approximation in data flow analysis,
resulting from summarization of execution on different control flow paths, can also
necessitate interpretation of results.

Tools for more sophisticated analysis of programs are, like data flow analyses, ul-
timately limited by the undecidability of program properties. Some report false alarms
in addition to real violations of the properties they check; others avoid false alarms
but may also fail to detect all violations. Such “bug finders,” though imperfect, may
nonetheless be very cost-effective compared to alternatives that require more interac-
tion.

448 Automating Analysis and Test

Tools that provide strong assurance of important general properties, including model
checkers and theorem provers, are much more “heavyweight” with respect to require-
ment for skilled human interaction and guidance. Finite state verification systems (of-
ten called model checkers) can verify conformance between a model of a system and
a specified property, but require construction of the model and careful statement of the
property. Although the verification tool may execute completely automatically, in prac-
tice it is run over and over again between manual revisions of the model and property
specification or, in the case of model checkers for programs, revision of the property
specification and guidance on program abstraction. Direct verification of software has
proved effective, despite this cost, for some critical properties of relatively small pro-
grams such as device drivers. Otherwise, finite state verification technology is best
applied to specification and design models.

The most general (but also the most expensive) static analysis tools execute with
interactive guidance. The symbolic execution techniques described in Chapter 7, to-
gether with sophisticated constraint solvers, can be used to construct formal proofs that
a program satisfies a wide class of formally specified properties. Interactive theorem
proving requires specialists with a strong mathematical background to formulate the
problem and the property and interactively select proof strategies. The cost of semi-
automated formal verification can be justified for a high level algorithm that will be
used in many applications, or at a more detailed level to prove a few crucial properties
of safety-critical applications.

23.7 Cognitive Aids

Quality activities often require examining and understanding complex artifacts, from
requirements statements to program code to test execution logs. Information clutter
and nonlocality increase the cognitive burden of these tasks, decreasing effectiveness
and efficiency. Even inherently manual tasks that depend on human judgment and
creativity can be made more effective by cognitive aids that reduce cognitive burden
by gathering and presenting relevant information in a task-appropriate manner, with a
minimum of irrelevant and distracting details.

Information that requires a shift of attention (e.g., following a reference in one file
or page to a definition on another) is said to be nonlocal. Nonlocality creates opportu-
nities for human error, which lead to software faults, such as inconsistent uses of data
values in a program, or inconsistent use of technical terms in a specification document.
Not surprisingly, then, quality tasks often involve gathering and analyzing nonlocal
information. Human analysis capability is amplified by bringing relevant information
together. For example, where a human may be required to make a judgment about
consistent use of technical terms, tools can support that judgment by gathering uses of
terms together. Often tools synthesize a global view from scattered local information,
as, for example, displaying a call graph extracted from many source code files.

Information required for a quality task is often obscured by a mass of distract-
ing irrelevant detail. Tool support for focus and abstraction, delivering and drawing
attention to relevant information while suppressing irrelevant detail, improve human
effectiveness by reducing clutter and distraction. For example, an inspection tool that

Version Control 449

displays just the checklist items relevant to a particular inspection task and location in
the artifact under inspection increases the efficiency and thoroughness of the human
inspector. Similarly, an effective summary report of automated test executions quickly
focuses attention on deviations from expected test behavior.

Cognitive aids for browsing and visualization are sometimes available as separate
tools, but more often their features are embedded in other tools and customized to
support particular tasks. Pretty-printing and program slicing,1 for example, improve
code readability and make it easier to identify elements of interest. Diagrammatic
representations condense presentation of code properties, providing a summary view
of nonlocal information.

Diagrammatic and graphical representations are often used to present the results
of program analysis, such as data and control flow relations, structural test coverage,
distribution of faults and corrections in a program, and source code metrics. Figure 23.1
shows a sample screen shot that visualizes some characteristics of a program. Nodes
represent classes and edges inheritance between classes. Node size and background
summarize various metrics of the corresponding class. In the diagram of Figure 23.1,
width indicates the number of attributes of the class, height indicates the number of
methods, and color indicates lines of code, where white represents the smallest classes,
black represents the largest, and intermediate sizes are represented by shades of gray.
The graphic provides no more information than a table of values, but it facilitates a
quicker and fuller grasp of how those values are distributed.

23.8 Version Control

The quality process can exploit many general development tools not specifically de-
signed for quality activities. Most fundamental among these are version control sys-
tems, which record versions and releases of each part of an evolving software system.
In addition to maintaining test artifacts (plans, test cases, logs, etc.), the historical in-
formation kept in version control systems is useful for tracing faults across versions
and collecting data for improving the process.

Test cases, scaffolding, and oracles are bound to the code: Changes in the code
may result in incompatibilities with scaffolding and oracles, and test cases may not
exercise new relevant behaviors. Thus, test suites must evolve with code. Test designers
use version control systems to coordinate evolution of test artifacts with associated
program artifacts. In addition to test and program artifacts, the status and history of
faults is essential to project management, and many version control systems include
functionality for supporting fault tracking.

23.9 Debugging

Detecting the presence of software faults is logically distinct from the subsequent tasks
of locating, diagnosing, and repairing faults. Testing is concerned with fault detection,

1Program slicing is an application of static or dynamic dependence analysis (see Chapter 6) to identify
portions of a program relevant to the current focus.

450 Automating Analysis and Test

Figure 23.1: Visualization tools can summarize non-local information to facilitate un-
derstanding and navigation. The CodeCrawler tool, shown here, uses color, width,
and height to represent three static measures of size (number of attributes, number of
methods, and lines of code) with connections representing inheritance relations.

while locating and diagnosing faults fall under the rubric of debugging. Responsibility
for testing and debugging typically fall to different individuals. Nonetheless, since the
beginning point for debugging is often a set of test cases, their relation is important,
and good test automation derives as much value as possible for debugging.

A small, simple test case that invariably fails is far more valuable in debugging than
a complex scenario, particularly one that may fail or succeed depending on unspecified
conditions. This is one reason test case generators usually produce larger suites of
single-purpose test cases rather than a smaller number of more comprehensive test
cases.

Typical run-time debugging tools allow inspection of program state and controls
to pause execution at selected points (breakpoints), or when certain conditions occur
(watchpoints), or after a fixed number of execution steps. Modern debugging tools al-
most always provide display and control at the level of program source code, although
compiler transformations of object code cannot always be hidden (e.g., order of exe-
cution may differ from the order of source code). Specialized debugging support may
include visualization (e.g., of thread and process interactions) and animation of data
structures; some environments permit a running program to be paused, modified, and
continued.

When failures are encountered in stress testing or operational use, the “test case”
is likely to be an unwieldy scenario with many irrelevant details, and possibly without
enough information to reliably trigger failure. Sometimes the scenario can be automat-
ically reduced to a smaller test case. A test data reduction tool executes many variations

Choosing and Integrating Tools 451

on a test case, omitting portions of the input for each trial, in order to discover which
parts contain the core information that triggers failure. The technique is not universally
applicable, and meaningful subdivisions of input data may be application-specific, but
it is an invaluable aid to dealing with large data sets. While the purpose of test data
reduction is to aid debugging, it may also produce a useful regression test case to guard
against reintroduction of the same program fault.

Not only the test case or cases that trigger failure but also those that execute cor-
rectly are valuable. Differential debugging compares a set of failing executions to other
executions that do not fail, focusing attention on parts of the program that are always
or often executed on failures and less often executed when the program completes
successfully. Variations on this approach include varying portions of a program (to de-
termine which of several recent changes is at fault), varying thread schedules (to isolate
which context switch triggers a fatal race condition), and even modifying program data
state during execution.

23.10 Choosing and Integrating Tools

Automation is a key lever for reducing cost and improving the effectiveness of test
and analysis, but only if tools and approaches are a good fit with the development
organization, process, application domain, and suitable test and analysis techniques.

A large software development organization in which a single software project is
spread across several teams and functional areas has foremost a requirement for coor-
dination and communication. We would typically expect to see process management
and version and configuration control in a central role, with automation of other activ-
ities from programming to inspection to system testing arranged to fit smoothly into
it. A large organization can typically afford to establish and maintain such a system,
as well as to orient new employees to it. A smaller organization, or one divided into
autonomous groups along project rather than functional lines, still benefits from inte-
gration of test and analysis tools with process management, but can afford to place a
higher priority on other aspects of test and analysis automation.

A simple and obvious rule for automating test and analysis activities is to select
tools that improve the efficiency of tasks that are significant costs (in money or sched-
ule) for the organization and projects in question. For example, automated module
testing is of little use for an organization using the Cleanroom process, but is likely to
be important to an organization using XP. An organization building safety-critical soft-
ware can justify investment (including training) in sophisticated tools for verifying the
properties of specifications and design, but an organization that builds rapidly evolving
mass market applications is more likely to benefit from good support for automated
regression testing.

While automating what one is already doing manually is easiest to justify, one
should not fail to consider activities that are simply impossible without automation.
For example, if static source code analysis can efficiently detect a class of software
faults that requires considerable testing effort, then acquiring or constructing tools to
perform that analysis may be more cost-effective than automation to make the testing
effort more efficient.

452 Automating Analysis and Test

Investments in automation must be evaluated in a scope that extends beyond a sin-
gle project and beyond the quality team. The advantage of reusing common tools
across projects is savings not only in the cost of acquiring and installing tools, but also
in the cost of learning to use them effectively and the consequent impact on project
schedule. A continuing benefit for a one-time or declining investment becomes more
attractive when tool use is considered over the longer term. Often a quality tool will
have costs and benefits for other parts of the software organization (e.g., in the quality
of diagnostic information produced), and the most successful tool adoptions are those
that produce visible benefits for all parties.

Consider, for example, adoption of tools for recording and tracking faults. Track-
ing reported failures from the field and from system testing is easy to justify in most
organizations, as it has immediate visible benefits for everyone who must deal with
failure reports. Collecting additional information to enable fault classification and pro-
cess improvement has at least equal benefits in the long term, but is more challenging
because the payoff is not immediate.

Open Research Issues

Tools and automation are likely to remain an important part of research in all subareas
of software analysis and test, particularly but not only for techniques that are essentially
impossible to carry out manually. Where manual effort is central, as, for example, in
software inspection or project planning, automation is equally important but depends
more critically on fitting into the overall process and project context and human factors.
For example, with version and configuration control systems playing a central role in
team coordination and communication, we can expect to see innovations in the way
test and analysis tasks exploit and are integrated with versioning repositories.

Nearly universal network connectivity has enabled a related trend, expanding the
iterative cycle of software development and evolution beyond deployment. Regularly
scheduled software field updates and automated transmission of crash logs and bug
reports to developers is already commonplace for so-called desktop computers and
seems inevitable for the growing tide of embedded systems. Research in software test
and analysis is just beginning to address the kinds of automation this expansion en-
ables and, in some cases, necessitates, such as rapid classification of error and crash
logs. A natural extension into more sophisticated self-monitoring, diagnosis, and au-
tomatic adaptation in deployed software is sometimes included under the rubric of
self-managed computing.

The current generation of integrated development environments is an architectural
improvement of over its predecessors, particularly in provision of plug-in frameworks
for tools. Nevertheless the distance from devising a useful technique to fielding a useful
and well-integrated tool, particularly one with rich visualization capabilities, remains
large. There is still a good deal of room for progress in approaches and techniques for
quickly generating and integrating tools.

Choosing and Integrating Tools 453

Further Reading

Surveys of currently available tools are available commercially, and reviews of many
tools can be found in trade magazines and books. Since tools are constantly evolving,
the research literature and other archival publications are less useful for determining
what is immediately available. The research literature is more useful for understand-
ing basic problems and approaches in automation to guide the development and use
of tools. Zeller [Zel05] is a good modern reference on program debugging, with an
emphasis on recent advances in automated debugging. A series of books by Tufte
[Tuf01, Tuf97, Tuf90, Tuf06] are useful reading for anyone designing information-
dense displays, and Nielsen [Nie00] is an introduction to usability that, though special-
ized to Web applications, describes more generally useful principles. Norman [Nor90]
is an excellent and entertaining introduction to fundamental principles of usability that
apply to software tools as well as many other designed artifacts. The example in Fig-
ure 23.1 is taken from Lanza and Ducasse [LD03], who describe a simple and adaptable
approach to depicting program attributes using multiple graphical dimensions.

Related Topics

Chapter 19 describes program analysis tools in more detail.

Exercises

23.1. Appropriate choice of tools may vary between projects depending, among other
factors, on application domain, development language(s), and project size. De-
scribe possible differences in A&T tool choices for the following:

• Program analysis tools for a project with Java as the only development
language, and for another project with major components in Java, SQL,
and Python, and a variety of other scripting and special-purpose languages
in other roles.

• Planning and monitoring tools for a three-month, three-person project in
which all but acceptance testing is designed and carried out by developers,
and for a two-year project carried out by a seven-person team including two
full-time testers.

• A testing framework for an information system that archives international
weather data, and for a weather forecasting system based on computer sim-
ulation.

23.2. Consider the following design rule: All user text (prompts, error messages, et
al.) are made indirectly through tables, so that a table of messages in another
language can be substituted at run-time. How would you go about partly or
wholly automating a check of this property?

454 Automating Analysis and Test

23.3. Suppose two kinds of fault are equally common and equally costly, but one is
local (entirely within a module) and the other is inherently nonlocal (e.g., it could
involve incompatibility between modules). If your project budget is enough to
automate detection of either the local or the nonlocal property, but not both,
which will you automate? Why?

Chapter 24

Documenting Analysis and

Test

Mature software processes include documentation standards for all the activities of
the software process, including test and analysis activities. Documentation can be in-
spected to verify progress against schedule and quality goals and to identify problems,
supporting process visibility, monitoring, and replicability.

Required Background

• Chapter 20
This chapter describes test and analysis strategy and plans, which are intertwined
with documentation. Plans and strategy documents are part of quality documen-
tation, and quality documents are used in process monitoring.

24.1 Overview

Documentation is an important element of the software development process, including
the quality process. Complete and well-structured documents increase the reusability
of test suites within and across projects. Documents are essential for maintaining a
body of knowledge that can be reused across projects. Consistent documents provide a
basis for monitoring and assessing the process, both internally and for external author-
ities where certification is desired. Finally, documentation includes summarizing and
presenting data that forms the basis for process improvement. Test and analysis docu-
mentation includes summary documents designed primarily for human comprehension
and details accessible to the human reviewer but designed primarily for automated
analysis.

Documents are divided into three main categories: planning, specification, and
reporting. Planning documents describe the organization of the quality process and
include strategies and plans for the division or the company, and plans for individual
projects. Specification documents describe test suites and test cases. A complete set of

455

456 Documenting Analysis and Test

W B XX - YY ZZ

“W” for Web Presence

“B” for Business Logic

item type

alphanumeric identifier within a type

version number (if applicable)

analysis and test documentation
WB05-YYZZ analysis and test strategy
WB06-YYZZ analysis and test plan
WB07-YYZZ test design specifications
WB08-YYZZ test case specification
WB09-YYZZ checklists
WB10-YYZZ analysis and test logs
WB11-YYZZ analysis and test summary reports
WB12-YYZZ other analysis and test documents

Figure 24.1: Sample document naming conventions, compliant with IEEE standards.

analysis and test specification documents include test design specifications, test case
specification, checklists, and analysis procedure specifications. Reporting documents
include details and summary of analysis and test results.

24.2 Organizing Documents

In a small project with a sufficiently small set of documents, the arrangement of other
project artifacts (e.g., requirements and design documents) together with standard con-
tent (e.g., mapping of subsystem test suites to the build schedule) provides sufficient
organization to navigate through the collection of test and analysis documentation. In
larger projects, it is common practice to produce and regularly update a global guide
for navigating among individual documents.

Mature processes require all documents to contain metadata that facilitate their
management. Documents must include some basic information about its context in
order to make the document self-contained, approval indicating the persons responsible
for the document and document history, as illustrated in the template on page 457.

Naming conventions help in quickly identifying documents. A typical standard for
document names would include keywords indicating the general scope of the docu-
ment, its nature, the specific document, and its version, as in Figure 24.1.

Organizing Documents 457

Chipmunk Document Template

Document Title
Approvals

issued by name signature date
approved by name signature date
distribution status (internal use only, restricted, ...)
distribution list (people to whom the document must be sent)

History
version description

Table of Contents
List of sections.

Summary
Summarize the contents of the document. The summary should clearly explain the

relevance of the document to its possible uses.

Goals of the document
Describe the purpose of this document: Who should read it, and why?

Required documents and references
Provide a reference to other documents and artifacts needed for understanding and

exploiting this document. Provide a rationale for the provided references.

Glossary
Provide a glossary of terms required to understand this document.

Section 1
. . .

Section N
. . .

458 Documenting Analysis and Test

24.3 Test Strategy Document

Analysis and test strategies (Chapter 20) describe quality guidelines for sets of projects,
usually for an entire company or organization. Strategies, and therefore strategy docu-
ments, vary widely among organizations, but we can identify a few key elements that
should be included in almost any well-designed strategy document. These are illus-
trated in the document excerpt on page 459.

Strategy documents indicate common quality requirements across products. Re-overall quality

quirements may depend on business conditions. For example, a company that produces
safety-critical software may need to satisfy minimum dependability requirements de-
fined by a certification authority, while a department that designs software embedded
in hardware products may need to ensure portability across product lines. Some re-
quirements on dependability and usability may be necessary to maintain brand image
and market position. For example, a company might decide to require conformance to
W3C-WAI accessibility standards (see Chapter 22) uniformly across the product line.

The strategy document sets out requirements on other quality documents, typically
including an analysis and test plan, test design specifications, test case specifications,
test logs, and test summary reports. Basic document requirements, such as naming anddocumentation

quality versioning, follow standards for other project documentation, but quality documents
may have additional, specialized requirements. For example, testing logs for avionics
software may be required to contain references to the version of the simulator used for
executing the test before installing the software on board the aircraft.

24.4 Analysis and Test Plan

While the format of an analysis and test strategy vary from company to company, the
structure of an analysis and test plan is more standardized. A typical structure of a test
and analysis plan includes information about items to be verified, features to be tested,
the testing approach, pass and fail criteria, test deliverables, tasks, responsibilities and
resources, and environment constraints. Basic elements are described in the sidebar on
page 461.

The overall quality plan usually comprises several individual plans of limited scope.
Each test and analysis plan should indicate the items to be verified through analysis or
testing. They may include specifications or documents to be inspected, code to beitems to be verified

analyzed or tested, and interface specifications to undergo consistency analysis. They
may refer to the whole system or part of it — like a subsystem or a set of units. Where
the project plan includes planned development increments, the analysis and test plan
indicates the applicable versions of items to be verified.

For each item, the plan should indicate any special hardware or external software
required for testing. For example, the plan might indicate that one suite of subsystem
tests for a security package can be executed with a software simulation of a smart
card reader, while another suite requires access to the physical device. Finally, for each
item, the plan should reference related documentation, such as requirements and design
specifications, and user, installation, and operations guides.

A test and analysis plan may not address all aspects of software quality and testing

Analysis and Test Plan 459

An Excerpt of the Chipmunk Analysis and Test Strategy
Document CP05-14.03: Analysis and Test Strategy
. . .

Applicable Standards and Procedures
Artifact Applicable Standards and Guidelines
Web application Accessibility: W3C-WAI . . .
Reusable component
(internally developed)

Inspection procedure: [WB12-03.12]

External component Qualification procedure: [WB12-22.04]. . .

Documentation Standards
Project documents must be archived according to the standard Chipmunk archive procedure
[WB02-01.02]. Standard required documents include

Document Content & Organization Standard
Quality plan [WB06-01.03]
Test design specifications [WB07-01.01] (per test suite)
Test case specifications [WB08-01.07] (per test suite)
Test logs [WB10-02.13]
Test summary reports [WB11-01.11]
Inspection reports [WB12-09.01]. . .

Analysis and Test Activities
. . .

Tools
The following tools are approved and should be used in all development projects. Exceptions
require configuration committee approval and must be documented in the project plan.

Fault logging Chipmunk BgT [WB10-23.01]
. . .

. . .

Staff and Roles
A development work unit consists of unit source code, including unit test cases, stubs, and har-
nesses, and unit test documentation. A unit may be committed to the project baseline when the
source code, test cases, and test results have passed peer review.
. . .

References
[WB02-01.02] Archive Procedure [WB06-01.03] Quality Plan Guidelines
[WB07-01.01] Test Design Specifications
Guidelines

[WB08-01.07] Test Case Specifications
Guidelines

[WB11-01.11] Summary Reports Template [WB10-02.13] Test Log Template
[WB11-09.01] Inspection Report Template [WB12-03.12] Standard Inspection Proce-

dures
[WB12-22.04] Quality Procedures for Soft-
ware Developed by Third Parties

[WB12-23.01] BgT Installation Manual and
User Guide. . .

460 Documenting Analysis and Test

activities. It should indicate the features to be verified and those that are excluded
from consideration (usually because responsibility for them is placed elsewhere). Forfeatures to be

analyzed or tested example, if the item to be verified includes a graphical user interface, the test and
analysis plan might state that it deals only with functional properties and not with
usability, which is to be verified separately by a usability and human interface design
team.

Explicit indication of features not to be tested, as well as those included in an
analysis and test plan, is important for assessing completeness of the overall set of
analysis and test activities. Assumption that a feature not considered in the current plan
is covered at another point is a major cause of missing verification in large projects.

The quality plan must clearly indicate criteria for deciding the success or failure of
each planned activity, as well as the conditions for suspending and resuming analysis
and test.suspend and

resume criteria Plans define items and documents that must be produced during verification. Test
test deliverables deliverables are particularly important for regression testing, certification, and process

improvement. We will see the details of analysis and test documentation in the next
section.

The core of an analysis and test plan is a detailed schedule of tasks. The scheduletasks and schedule

is usually illustrated with GANTT and PERT diagrams showing the relation among
tasks as well as their relation to other project milestones.1 The schedule includes the
allocation of limited resources (particularly staff) and indicates responsibility for re-resources and

responsibilities sults.
A quality plan document should also include an explicit risk plan with contingen-

cies. As far as possible, contingencies should include unambiguous triggers (e.g., a
date on which a contingency is activated if a particular task has not be completed) as
well as recovery procedures.

Finally, the test and analysis plan should indicate scaffolding, oracles, and anyenvironmental
needs other software or hardware support required for test and analysis activities.

24.5 Test Design Specification Documents

Design documentation for test suites and test cases serve essentially the same purpose
as other software design documentation, guiding further development and preparing for
maintenance. Test suite design must include all the information needed for initial se-
lection of test cases and maintenance of the test suite over time, including rationale and
anticipated evolution. Specification of individual test cases includes purpose, usage,
and anticipated changes.

Test design specification documents describe complete test suites (i.e., sets of test
cases that focus on particular aspects, elements, or phases of a software project). They
may be divided into unit, integration, system, and acceptance test suites, if we orga-
nize them by the granularity of the tests, or functional, structural, and performance test
suites, if the primary organization is based on test objectives. A large project may in-
clude many test design specifications for test suites of different kinds and granularity,

1Project scheduling is discussed in more detail in Chapter 20.

Test Design Specification Documents 461

A Standard Organization of an Analysis and Test Plan
Analysis and test items:

The items to be tested or analyzed. The description of each item indicates version and instal-
lation procedures that may be required.

Features to be tested:
The features considered in the plan.

Features not to be tested:
Features not considered in the current plan.

Approach:
The overall analysis and test approach, sufficiently detailed to permit identification of the major

test and analysis tasks and estimation of time and resources.

Pass/Fail criteria:
Rules that determine the status of an artifact subjected to analysis and test.

Suspension and resumption criteria:
Conditions to trigger suspension of test and analysis activities (e.g., an excessive failure rate)

and conditions for restarting or resuming an activity.

Risks and contingencies:
Risks foreseen when designing the plan and a contingency plan for each of the identified

risks.

Deliverables:
A list all A&T artifacts and documents that must be produced.

Task and schedule:
A complete description of analysis and test tasks, relations among them, and relations be-

tween A&T and development tasks, with resource allocation and constraints. A task schedule
usually includes GANTT and PERT diagrams.

Staff and responsibilities:
Staff required for performing analysis and test activities, the required skills, and the allocation

of responsibilities among groups and individuals. Allocation of resources to tasks is described in
the schedule.

Environmental needs:
Hardware and software required to perform analysis or testing activities.

462 Documenting Analysis and Test

and for different versions or configurations of the system and its components. Each
specification should be uniquely identified and related to corresponding project docu-
ments, as illustrated in the sidebar on page 463.

Test design specifications identify the features they are intended to verify and the
approach used to select test cases. Features to be tested should be cross-referenced to
relevant parts of a software specification or design document. The test case selection
approach will typically be one of the test selection techniques described in Chapters 10
through 16 with documentation on how the technique has been applied.

A test design specification also includes description of the testing procedure and
pass/fail criteria. The procedure indicates steps required to set up the testing environ-
ment and perform the tests, and includes references to scaffolding and oracles. Pass/fail
criteria distinguish success from failure of a test suite as a whole. In the simplest case
a test suite execution may be determined to have failed if any individual test case exe-
cution fails, but in system and acceptance testing it is common to set a tolerance level
that may depend on the number and severity of failures.

A test design specification logically includes a list of test cases. Test case speci-
fications may be physically included in the test design specification document, or the
logical inclusion may be implemented by some form of automated navigation. For
example, a navigational index can be constructed from references in test case specifi-
cations.

Individual test case specifications elaborate the test design for each individual test
case, defining test inputs, required environmental conditions and procedures for test
execution, as well as expected outputs or behavior. The environmental conditions may
include hardware and software as well as any other requirements. For example, while
most tests should be executed automatically without human interaction, intervention of
personnel with certain special skills (e.g., a device operator) may be an environmental
requirement for some.

A test case specification indicates the item to be tested, such as a particular module
or product feature. It includes a reference to the corresponding test design document
and describes any dependence on execution of other test cases. Like any standard
document, a test case specification is labeled with a unique identifier. A sample test
case specification is provided on page 464.

24.6 Test and Analysis Reports

Reports of test and analysis results serve both developers and test designers. They
identify open faults for developers and aid in scheduling fixes and revisions. They help
test designers assess and refine their approach, for example, noting when some class of
faults is escaping early test and analysis and showing up only in subsystem and system
testing (see Section 20.6, page 389).

A prioritized list of open faults is the core of an effective fault handling and repair
procedure. Failure reports must be consolidated and categorized so that repair effort
can be managed systematically, rather than jumping erratically from problem to prob-
lem and wasting time on duplicate reports. They must be prioritized so that effort is not

Test and Analysis Reports 463

Functional Test Design Specification of check configuration

Test Suite Identifier
WB07-15.01

Features to Be Tested
Functional test for check configuration, module specification WB02-15.32.a

Approach
Combinatorial functional test of feature parameters, enumerated by category-

partition method over parameter table on page 3 of this document.b

Procedure
Designed for conditional inclusion in nightly test run. Build target T02 15 32 11 includes
JUnit harness and oracles, with test reports directed to standard test log. Test environ-
ment includes table MDB 15 32 03 for loading initial test database state.

Test casesc

WB07-15.01.C01 malformed model number
WB07-15.01.C02 model number not in DB
... ...
WB07-15.01.C09d valid model number with all legal required slots

and some legal optional slots
... ...
WB07-15.01.C19 empty model DB
WB07-15.01.C23 model DB with a single element
WB07-15.01.C24 empty component DB
WB07-15.01.C29 component DB with a single element

Pass/Fail Criterion
Successful completion requires correct execution of all test cases with no violations in
test log.

aAn excerpt of specification WB02-15.32 is presented in Figure 11.1, page 182.
bReproduced in Table 11.1, page 187.
cThe detailed list of test cases is produced automatically from the test case file, which in turn is generated

from the specification of categories and partitions. The test suite is implicitly referenced by individual test
case numbers (e.g., WB07-15.01.C09 is a test case in test suite WB07-15.01).

dSee sample test case specification, page 464.

464 Documenting Analysis and Test

Test Case Specification for check configuration
Test Case Identifier
WB07-15.01.C09a

Test items
Module check configuration of the Chipmunk Web presence system, business logic subsystem.

Input specification
Test Case Specification:

Model No. valid
No. of required slots for selected model (#SMRS) many
No. of optional slots for selected model (#SMOS) many
Correspondence of selection with model slots complete
No. of required components with selection 6= empty = No. of required slots
No. of optional components with select 6= empty < No. of optional slots
Required component selection all valid
Optional component selection all valid
No. of models in DB many
No. of components in DB many

Test case:
Model number Chipmunk C20
#SMRS 5
Screen 13”
Processor Chipmunk II plus
Hard disk 30 GB
RAM 512 MB
OS RodentOS 3.2 Personal Edition
#SMOS 4
External storage device DVD player

Output Specification
return value valid

Environment Needs
Execute with ChipmunkDBM v3.4 database initialized from table MDB 15 32 03.

Special Procedural Requirements
none

Intercase Dependencies
none

aThe prefix WB07-15.01 implicitly references a test suite to which this test case directly belongs. That
test suite may itself be a component of higher level test suites, so logically the test case also belongs to any
of those test suites. Furthermore, some additional test suites may be composed of selections from other test
suites.

Test and Analysis Reports 465

squandered on faults of relatively minor importance while critical faults are neglected
or even forgotten.

Other reports should be crafted to suit the particular needs of an organization and
project, including process improvement as described in Chapter 23. Summary reports
serve primarily to track progress and status. They may be as simple as confirmation
that the nightly build-and-test cycle ran successfully with no new failures, or they may
provide somewhat more information to guide attention to potential trouble spots. De-
tailed test logs are designed for selective reading, and include summary tables that
typically include the test suites executed, the number of failures, and a breakdown of
failures into those repeated from prior test execution, new failures, and test cases that
previously failed but now execute correctly.

In some domains, such as medicine or avionics, the content and form of test logs
may be prescribed by a certifying authority. For example, some certifications require
test execution logs signed by both the person who performed the test and a quality
inspector, who ascertains conformance of the test execution with test specifications.

Open Research Issues

Many available tools generate documentation from test execution records and the tables
used to generate test specifications, minimizing the extra effort of producing documents
in a useful form. Test design derived automatically or semiautomatically from design
models is growing in importance, as is close linking of program documentation with
source code, ranging from simple comment extraction and indexing like Javadoc to
sophisticated hypermedia systems. In the future we should see these trends converge,
and expect to see test documentation fit in an overall framework for managing and
navigating information on a software product and project.

Further Reading

The guidelines in this chapter are based partly on IEEE Standard 829-1998 [Ins98].
Summary reports must convey information efficiently, managing both overview and
access to details. Tufte’s books on information design are useful sources of principles
and examples. The second [Tuf90] and fourth [Tuf06] volumes in the series are partic-
ularly relevant. Experimental hypermedia software documentation systems [ATWJ00]
hint at possible future systems that incorporate test documentation with other views of
an evolving software product.

Exercises

24.1. Agile software development methods (XP, Scrum, etc.) typically minimize doc-
umentation written during software development. Referring to the sidebar on
page 381, identify standard analysis and test documents that could be generated
automatically or semiautomatically or replaced with functionally equivalent, au-
tomatically generated documentation during an XP project.

466 Documenting Analysis and Test

24.2. Test documents may become very large and unwieldy. Sometimes a more com-
pact specification of several test cases together is more useful than individual
specifications of each test case. Referring to the test case specification on page
464, design a tabular form to compactly document a suite of similar test case
specifications.

24.3. Design a checklist for inspecting test design specification documents.

24.4. The Chipmunk Web presence project is starting up, and it has been decided that
all project artifacts, including requirements documents, documentation in En-
glish, Italian, French, and German, source code, test plans, and test suites, will
be managed in one or more CVS repositories.2 The project team is divided
between Milan, Italy, and Eugene, Oregon. What are the main design choices
and issues you will consider in designing the organization of the version control
repositories?

2If you are more familiar with another version control system, such as Subversion or Perforce, you may
substitute it for CVS.

Bibliography

[ABC82] Richards W. Adrion, Martha A. Branstad, and John C. Cherniavsky. Val-
idation, verification, and testing of computer software. ACM Computing
Surveys, 14(2):159–192, June 1982.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman, Boston, 1986.

[ATWJ00] Kenneth M. Anderson, Richard N. Taylor, and E. James Whitehead Jr.
Chimera: Hypermedia for heterogeneous software development environ-
ments. ACM Transactions on Information Systems, 18(3):211–245, July
2000.

[Bar01] Carol M. Barnum. Usability Testing and Research. Allyn & Bacon,
Needham Heights, MA, 2001.

[Bei95] Boris Beizer. Black-Box Testing: Techniques for Functional Testing of
Software and Systems. John Wiley and Sons, New York, 1995.

[BGM91] Gilles Bernot, Marie Claude Gaudel, and Bruno Marre. Software testing
based on formal specifications: A theory and a tool. Software Engineer-
ing Journal, 6(6):387–405, November 1991.

[BHC+94] Inderpal Bhandari, Michael J. Halliday, Jarir Chaar, Kevin Jones,
Janette S. Atkinson, Clotilde Lepori-Costello, Pamela Y. Jasper, Eric D.
Tarver, Cecilia Carranza Lewis, and Masato Yonezawa. In-process im-
provement through defect data interpretation. IBM Systems Journal,
33(1):182–214, 1994.

[BHG87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
Boston, 1987.

[Bin00] Robert V. Binder. Testing Object-Oriented Systems, Models, Patterns,
and Tools. Addison-Wesley, Boston, 2000.

[Bis02] Matt Bishop. Computer Security: Art and Science. Addison-Wesley
Professional, Boston, 2002.

467

468 BIBLIOGRAPHY

[Boe81] Barry W. Boehm. Software Engineering Economics. Prentice Hall, En-
glewood Cliffs, NJ, 1981.

[BOP00] Ugo Buy, Alessandro Orso, and Mauro Pezzé. Automated testing of
classes. In Proceedings of the International Symposium on Software Test-
ing and Analysis (ISSTA), pages 39–48, Portland, OR, 2000.

[BPS00] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static an-
alyzer for finding dynamic programming errors. Software: Practice &
Experience, 30:775–802, 2000.

[BR01a] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal
safety properties of interfaces. In SPIN ’01: Proceedings of the 8th Inter-
national SPIN Workshop on Model Checking of Software, pages 103–122,
Toronto, Ontario, Canada, 2001. Springer-Verlag.

[BR01b] Thomas Ball and Sriram K. Rajamani. Bebop: a path-sensitive interpro-
cedural dataflow engine. In PASTE ’01: Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 97–103, Snowbird, UT, 2001.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Transactions on Computers, 35(8):677–691, 1986.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex lines. Communications of the
ACM, 12(5):260–261, May 1969.

[CBC+92] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar, Michael J. Halli-
day, Diane S. Moebus, Bonnie K. Ray, and Man-Yuen Wong. Orthogo-
nal defect classification—A concept for in-process measurements. IEEE
Transactions on Software Engineering, 18(11):943–956, 1992.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction of approxi-
mation of fixpoints. In ACM Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, CA, January 1977.

[CCD+80] Augusto Celentano, Stefano Crespi Reghizzi, Pier Luigi Della Vigna,
Carlo Ghezzi, G. Granata, and F. Savoretti. Compiler testing using a sen-
tence generator. Software — Practice & Experience, 10:897–918, 1980.

[CDFP97] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gard-
ner C. Patton. The AETG system: An approach to testing based on
combinatiorial design. IEEE Transactions on Software Engineering,
23(7):437–444, July 1997.

BIBLIOGRAPHY 469

[CHBC93] Jarir Chaar, Michael J. Halliday, Inderpal S. Bhandari, and Ram
Chillarege. In-process evaluation for software inspection and test. IEEE
Transactions on Software Engineering, 19(11):1055–1070, November
1993.

[Cla76] Lori A. Clarke. A system to generate test data and symbolically execute
programs. IEEE Transactions on Software Engineering, SE-2(3):215–
222, September 1976.

[CPDGP01] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro
Pezzè. Using symbolic execution for verifying safety-critical systems. In
Proceedings of the 8th European Software Engineering Conference held
jointly with the 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (ESEC/FSE-9), pages 142–151, Vienna,
Austria, 2001.

[CPRZ89] Lori Clarke, Andy Podgurski, Debra Richardson, and Steven J. Zeil. A
formal evaluation of data flow path selection criteria. IEEE Transactions
on Software Engineering, 15(11):1318–1332, 1989.

[DCCN04] Matthew B. Dwyer, Lori A. Clarke, Jamieson M. Cobleigh, and Gleb
Naumovich. Flow analysis for verifying properties of concurrent soft-
ware systems. ACM Transactions on Software Engineering and Method-
ologies, 13(4):359–430, 2004.

[DF94] Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT approach to test-
ing object-oriented programs. ACM Transactions on Software Engineer-
ing and Methodology, 3(2):101–130, April 1994.

[DGK+88] Richard A. DeMillo, D.S. Guindi, Kim King, Mike M. McCracken, and
A. Jefferson Offut. An extended overview of the Mothra software testing
environment. In Proceedings of the 2nd Workshop on Software Testing,
Verification, and Analysis (TAV), Banff, Alberta, 1988.

[Dij72] Edsgar W. Dijkstra. Notes on structured programming. In O. J. Dahl,
E. W. Dijkstra, and C. A. R. Hoare, editors, Structured Programming.
Academic Press, London, 1972.

[DL99] Tom DeMarco and Timothy Lister. Peopleware (2nd ed.): Productive
Projects and Teams. Dorset House, New York, 1999.

[DLS78] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints
on test data selection: Help for the practicing programmer. IEEE Com-
puter, 11(4):34–41, 1978.

[DN81] Joe W. Duran and Simeon Ntafos. A report on random testing. In ICSE
’81: Proceedings of the 5th International Conference on Software Engi-
neering, pages 179–183, San Diego, CA, 1981.

470 BIBLIOGRAPHY

[DP02] Giovanni Denaro and Mauro Pezzè;. An empirical evaluation of fault-
proneness models. In Proceedings of the 24th International Conference
on Software Engineering (ICSE), pages 241–251, Orlando, Florida, 2002.

[DRW03] Alastair Dunsmore, Marc Roper, and Murray Wood. The development
and evaluation of three diverse techniques for object-oriented code in-
spection. IEEE Transactions on Software Engineering, 29(8):677–686,
2003.

[ECGN01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program
evolution. IEEE Transactions on Software Engineering, 27(2):99–123,
February 2001.

[Fag86] Michal E. Fagan. Advances in software inspections. IEEE Transactions
on Software Engineering, 12(7):744–751, 1986.

[FHLS98] Phyllis Frankl, Richard Hamlet, Bev Littlewood, and Lorenzo Strigini.
Evaluating Testing methods by Delivered Reliability. IEEE Transactions
on Software Engineering, 24(8):586–601, 1998.

[FI98] Phyllis G. Frankl and Oleg Iakounenko. Further empirical studies of test
effectiveness. In Proceedings of the ACM SIGSOFT 6th International
Symposium on the Foundations of Software Engineering (FSE), volume
23, 6 of Software Engineering Notes, pages 153–162, New York, Novem-
ber 3–5 1998. ACM Press.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In Proceedings of
the Symposium on Applied Mathematics, volume 19, pages 19–32, Prov-
idence, RI, 1967. American Mathematical Society.

[FO76] Lloyd D. Fosdick and Leon J. Osterweil. Data flow analysis in software
reliability. ACM Computing Surveys, 8(3):305–330, 1976.

[FvBK+91] Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar
Amalou, and Abderrazak Ghedamsi. Test selection based on finite state
models. IEEE Transactions on Software Engineering, 17(6):591–603,
June 1991.

[FW93] Phyllis. G. Frankl and Elaine G. Weyuker. Provable improvements on
branch testing. IEEE Transactions on Software Engineering, 19(10):962–
975, October 1993.

[GG75] John B. Goodenough and Susan L. Gerhart. Toward a theory of test data
selection. IEEE Transactions on Software Engineering, 1(2):156–173,
1975.

[GG93] Tom Gilb and Dorothy Graham. Software Inspection. Addison-Wesley
Longman, Boston, 1993.

BIBLIOGRAPHY 471

[GH99] Angelo Gargantini and Connie Heitmeyer. Using model checking to
generate tests from requirements specifications. In Proceedings of the
7th European Software Engineering Conference held jointly with the
7th ACM SIGSOFT Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 146–162, Toulouse, France, September 6–10 1999.

[GHK+98] Todd Graves, Mary Jean Harrold, Jung-Min Kim, Adam Porter, and
Gregg Rothermel. An empirical study of regression test selection tech-
niques. In Proceedings of the 20th International Conference on Soft-
ware Engineering (ICSE), pages 188–197. IEEE Computer Society Press,
April 1998.

[GJM02] Carlo Gezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Soft-
ware Engineering. Prentice Hall PTR, Upper Saddle River, NJ, 2nd edi-
tion, 2002.

[GMH81] John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction,
implementation, specification, and testing. ACM Transactions on Pro-
gramming Languages and Systems, 3(3):211–223, 1981.

[Gou83] John S. Gourlay. A mathematical framework for the investigation of
testing. IEEE Transactions on Software Engineering, 6(11):086–709,
November 1983.

[GS94] Robert B. Grady and Tom Van Slack. Key lessons in achieving
widespread inspection use. IEEE Software, 11(4):46–57, 1994.

[Gut77] John Guttag. Abstract data types and the development of data structures.
Communications of the ACM, 20(6):396–404, 1977.

[HA05] Hanna Hulkko and Pekka Abrahamsson. A multiple case study on the
impact of pair programming on product quality. In Proceedings of the
27th International Conference on Software Engineering (ICSE), pages
495–504, St. Louis, MO, 2005.

[Ham77] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE
Transactions on Software Engineering, 3(4):279–290, July 1977.

[Han70] Kenneth V. Hanford. Automatic generation of test cases. IBM Systems
Journal, 4:242–257, 1970.

[HDW04] Mats P.E. Heimdahl, George Devaraj, and Robert J. Weber. Specification
test coverage adequacy criteria = specification test generation inadequacy
criteria? In Proceedings of the Eighth IEEE International Symposium on
High Assurance Systems Engineering (HASE), pages 178–186, Tampa,
Florida, March 2004.

[Her76] P. Herman. A data flow analysis approach to program testing. The Aus-
tralian Computer Journal, November 1976.

472 BIBLIOGRAPHY

[Hin01] Michael Hind. Pointer analysis: haven’t we solved this problem yet?
In Proceedings of the ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 54–61, Snowbird, UT,
2001.

[HJ92] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter USENIX Conference,
pages 125–136. USENIX Association, January 1992.

[HJMS03] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Software verification with blast. In Proceedings of the Tenth Inter-
national Workshop on Model Checking of Software (SPIN), volume 2648
of Lecture Notes in Computer Science, pages 235–239. Springer-Verlag,
2003.

[HK76] Sidney L. Hantler and James C. King. An introduction to proving the
correctness of programs. ACM Computing Surveys, 8(3):331–353, 1976.

[HM03] Ted Husted and Vincent Massol. JUnit in Action. Manning Publications,
Greenwich, CT, 2003.

[HMF92] Mary Jean Harrold, John D. McGregor, and Kevin J. Fitzpatrick. Incre-
mental Testing of Object-Oriented Class Structures. In Proceedings of
the 14th International Conference on Software Engineering, pages 68–
80, Melbourne, Australia, May 1992.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, Boston, 2003.

[How75] William E. Howden. Methodology for the generation of program test
data. IEEE Transactions on Computers, 24(5):554–560, May 1975.

[How76] William E. Howden. Reliability of the path analysis testing strategy. IEEE
Transactions on Software Engineering, 2(3):208–215, 1976.

[How77] William E. Howden. Symbolic testing and the DISSECT symbolic evalu-
ation system. IEEE Transactions on Software Engineering, SE–3(4):266–
278, July 1977.

[How78] William E. Howden. An evaluation of the effectiveness of symbolic test-
ing. Software: Practice & Experience, 8:381–397, 1978.

[How82] William E. Howden. Weak mutation testing and completeness of test sets.
IEEE Transactions on Software Engineering, 8(4):371–379, July 1982.

BIBLIOGRAPHY 473

[HR00] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Science:
Modelling and Reasoning about Systems. Cambridge University Press,
2000.

[HT90] Richard Hamlet and Ross Taylor. Partition testing does not inspire con-
fidence. IEEE Transactions on Software Engineering, 16(12):206–215,
December 1990.

[HW01] Daniel M. Hoffman and David M. Weiss, editors. Software Fundamen-
tals: Collected Papers by David L. Parnas. Addison-Wesley Longman,
Boston, 2001.

[Ins98] Institute of Electrical and Electronics Engineers. Software test documen-
tation — IEEE Std 829-1998. Technical report, IEEE, New York, 1998.

[Ins02] Institute of Electrical and Electronics Engineers. IEEE standard for soft-
ware quality assurance plans — IEEE Std 730-2002. Technical report,
IEEE, New York, 2002.

[Jaa03] Ari Jaaksi. Assessing software projects: Tools for business owners. In
Proceedings of the 9th European Software Engineering Conference held
jointly with 10th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 15–18, Helsinki, Fin-
land, September 2003.

[Jac02] Daniel Jackson. Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology, 11(2):256–290,
2002.

[JN95] Neil D. Jones and Flemming Nielson. Abstract interpretation: A
semantics-based tool for program analysis. In S. Abramsky, Dov M. Gab-
bay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Sci-
ence, volume 4, Semantic Modelling, pages 527–636. Clarendon Press,
Oxford, UK, 1995.

[KE85] Richard A. Kemmerer and Steven T. Eckman. UNISEX: A UNIX-
based symbolic EXecutor for Pascal. Software: Practice & Experience,
15(5):439–458, 1985.

[KM93] John C. Knight and E. Ann Myers. An improved inspection technique.
Commununications of the ACM, 36(11):51–61, 1993.

[KP02] Jung-Min Kim and Adam Porter. A history-based test prioritization tech-
nique for regression testing in resource constrained environments. In Pro-
ceedings of the 24th International Conference on Software Engineering,
pages 119–129, Orlando, FL, 2002.

[Lam89] Leslie Lamport. A simple approach to specifying concurrent systems.
Commununications of the ACM, 32(1):32–45, 1989.

474 BIBLIOGRAPHY

[LD03] Michele Lanza and Stephane Ducasse. Polymetric views - a lightweight
visual approach to reverse engineering. IEEE Transactions on Software
Engineering, 29(9):782–795, September 2003.

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley, Boston, 1995.

[Lev04] Nancy G. Leveson. Role of software in spacecraft accidents. Journal of
Spacecraft and Rockets, 41(4), July-August 2004.

[Lio96] Jacques-Louis Lions. ARIANE 5 flight 501 failure: Report of the
inquiry board. European Space Agency press release. Originally ap-
peared at http://www.esrin.esa.it/htdocs/tidc/Press/
Press96/ariane5rep.html. Reproduced at http://www.cs.
berkeley.edu/⇠demmel/ma221/ariane5rep.html, July
1996.

[LK83] Janusz Laski and Bogdan Korel. A data flow oriented program testing
strategy. IEEE Transactions on Software Engineering, 9(5):33–43, 1983.

[LPS02] Marek Leszak, Dewayne E. Perry, and Dieter Stoll. Classification and
evaluation of defects in a project retrospective. The Journal of Systems
and Software, 61(3):173–187, April 2002.

[Mar97] Brian Marick. The Craft of Software Testing: Subsystems Testing In-
cluding Object-Based and Object-Oriented Testing. Prentice-Hall, En-
glewood Cliffs, NJ, 1997.

[McC83] Thomas McCabe. Structured Testing. IEEE Computer Society Press,
1983.

[Mea55] George H. Mealy. A method for synthesizing sequential circuits. Bell
System Technical Journal, 34:1045–1079, 1955.

[MF96] Delia I. S. Marx and Phyllis G. Frankl. The path-wise approach to data
flow testing with pointer variables. In Proceedings of the 1996 Interna-
tional Symposium on Software Testing and analysis, pages 135–146, New
York, January 8–10 1996. ACM Press.

[Moo56] Edward F. Moore. Gedanken experiments on sequential machines. In
Automata Studies, pages 129–153. Princeton University Press, Princeton,
NJ, 1956.

[Mor90] Larry J. Morell. A theory of fault-based testing. IEEE Transactions on
Software Engineering, 16(8):844–857, August 1990.

[MP43] Warren Sturgis McCulloch and Walter Harry Pitts. A logical calculus of
the ideas immanent in nervous activity. Bulletin of Mathematical Bio-
physics, 5(115), 1943. Reprinted in Neurocomputing: Foundations of
Research, 1988, MIT Press, Cambridge MA.

BIBLIOGRAPHY 475

[MS03] Atif M. Memon and Mary Lou Soffa. Regression testing of GUIs. In
Proceedings of the 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/FSE), pages 118–127, Helsinki,
Finland, 2003.

[Mus04] John D. Musa. Software Reliability Engineering: More Reliable Software
Faster And Cheaper. Authorhouse, second edition, 2004.

[Mye79] Glenford Myers. The Art of Software Testing. John Wiley and Sons, New
York, 1979.

[Nie00] Jakob Nielsen. Designing Web Usability: The Practice of Simplicity. New
Riders Publishing, Indianapolis, IN, 2000.

[Nor90] Donald A. Norman. The Design of Everyday Things. Double-
day/Currency ed., 1990.

[OAFG98] Thomas Ostrand, Aaron Anodide, Herbert Foster, and Tarak Goradia.
A visual test development environment for GUI systems. In Proceed-
ings of the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA), volume 23,2 of ACM Software Engineering Notes,
pages 82–92, New York, March 2–5 1998. ACM Press.

[OB88] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for
specifying and generating functional tests. Communications of the ACM,
31(6):676–686, June 1988.

[OO90] Kurt M. Olender and Leon J. Osterweil. Cecil: A sequencing constraint
language for automatic static analysis generation. IEEE Transactions on
Software Engineering, 16(3):268–280, 1990.

[OO92] Kurt M. Olender and Leon J. Osterweil. Interprocedural static analysis of
sequencing constraints. ACM Transactions on Software Engineering and
Methodologies, 1(1):21–52, 1992.

[Ors98] Alessandro Orso. Integration Testing of Object-Oriented Software. PhD
thesis, Politecnico di Milano, 1998.

[PJ97] Adam A. Porter and Philip M. Johnson. Assessing software review meet-
ings: Results of a comparative analysis of two experimental studies. IEEE
Transactions on Software Engineering, 23(3):129–145, March 1997.

[PP98] Dennis K. Peters and David L. Parnas. Using Test Oracles Generated
from Program Documentation. IEEE Transactions on Software Engineer-
ing, 24(3):161–173, 1998.

[PPP+97] James M. Perpich, Dewayne E. Perry, Adam A. Porter, Lawrence G.
Votta, and Michael W. Wade. Anywhere, anytime code inspections: Us-
ing the web to remove inspection bottlenecks in large-scale software de-
velopment. In Proceedings of the International Conference on Software
Engineering (ICSE), Boston, Massachusetts, 1997.

476 BIBLIOGRAPHY

[PPW+05] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Christian
Kühnel, M. Baumgartner, B. Sostawa, R. Zölch, and T. Stauner. One
evaluation of model-based testing and its automation. In Proceedings of
the 27th international Conference on Software Engineering (ICSE), pages
392–401, St. Louis, MO, 2005.

[PTY95] Mauro Pezzè, Richard Taylor, and Michal Young. Graph models for
reachability analysis of concurrent programs. ACM Transactions on Soft-
ware Engineering and Methodologies, 4(2):171–213, April 1995.

[PW85] David L. Parnas and David M. Weiss. Active design reviews: principles
and practices. In Proceedings of the 8th International Conference on
Software Engineering (ICSE), pages 132–136, London, England, 1985.

[PY99] Christina Pavlopoulou and Michal Young. Residual test coverage moni-
toring. In Proceedings of the International Conference on Software En-
gineering (ICSE), pages 277–284, 1999.

[RAO92] Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley.
Specification-based test oracles for reactive systems. In Proceedings
of the 14th International Conference on Software Engineering (ICSE),
pages 105–118, Melbourne, Australia, 1992.

[RH97] Gregg Rothermel and Mary Jean Harrold. A safe, efficient regression test
selection technique. ACM Transactions on Software Engineering and
Methodology, 6(2):173–210, April 1997.

[Ros95] David S. Rosenblum. A practical approach to programming with asser-
tions. IEEE Transactions on Software Engineering, 21(1):19–31, 1995.

[ROT89] Debra J. Richardson, Owen O’Malley, and Cynthia Tittle. Approaches to
specification-based testing. In Proceedings of the ACM SIGSOFT Sym-
posium on Software Testing, Analysis, and Verification (ISSTA 89), 1989.

[RRL99] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow anal-
ysis of program fragments. In Proceedings of the 7th European Software
Engineering Conference held jointly with the 7th ACM International Sym-
posium on Foundations of Software Engineering(ESEC/FSE), pages 235–
252, Toulouse, France, 1999. Springer-Verlag.

[Rus91] Glen W. Russell. Experience with inspection in ultralarge-scale develop-
ment. IEEE Software, 8(1):25–31, 1991.

[RW85] Sandra Rapps and Elaine Weyuker. Selecting software test data using
data flow information. IEEE Transactions on Software Engineering,
11(4):367–375, April 1985.

[SB99] Emin Gün Sirer and Brian N. Bershad. Using production grammars in
software testing. In Proceedings of the 2nd Conference on Domain-
Specific Languages (DSL ’99), pages 1–14, Austin, Texas, October 1999.
USENIX, ACM Press.

BIBLIOGRAPHY 477

[SBN+97] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and
Thomas Anderson. Eraser: A dynamic data race detector for multi-
threaded programs. ACM Transactions on Computer Systems, 15(4):391–
411, 1997.

[SC96] Phil Stocks and David Carrington. A framework for specification-based
testing. IEEE Transactions on Software Engineering, 22(11):777–793,
1996.

[SE04] David Saff and Michael D. Ernst. Mock object creation for test factoring.
In Proceedings of the Workshop on Program Analysis for Software Tools
and Engineering (PASTE ’04), pages 49–51, Washington DC, 2004.

[SJLY00] Chris Sauer, D. Ross Jeffery, Lesley Land, and Philip Yetton. The ef-
fectiveness of software development technical reviews: A behaviorally
motivated program of research. IEEE Transactions on Software Engi-
neering, 26(1):1–14, 2000.

[SS90] Mehmet Sahinoglu and Eugene Spafford. Sequential statistical proce-
dure in mutation-based testing. In Proceedings of the 28th Annual Spring
Reliability Seminar, pages 127–148, Boston, April 1990. Central New
England Council of IEEE.

[Ste96] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceed-
ings of the Symposium on Principles of Programming Languages, pages
32–41, 1996.

[Ste99] Arthur G. Stephenson. Mars climate orbiter: Mishap investigation board
report. Technical report, NASA, November 1999.

[TFW93] Pascale Thévenod-Fosse and Héléne Waeselynck. Statemate applied to
statistical software testing. In Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA), pages 99–109, Cam-
bridge, MA, 1993.

[TRC93] Margaret C. Thompson, Debra J. Richardson, and Lori A. Clarke. An
information flow model of fault detection. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pages 182–
192, 1993.

[Tuf90] Edward R. Tufte. Envisioning Information. Graphic Press, Cheshire CT,
1990.

[Tuf97] Edward R. Tufte. Visual Explanations: Images and Quantities, Evidence
and Narrative. Graphic Press, Cheshire CT, 1997.

[Tuf01] Edward R. Tufte. The Visual Display of Quantitative Information.
Graphic Press, Cheshire CT, 2nd edition, 2001.

[Tuf06] Edward R. Tufte. Beautiful Evidence. Graphic Press, Cheshire CT, 2006.

478 BIBLIOGRAPHY

[Uni00] United State Department of Health and Human Services. Standards for
privacy of individually identifiable health information (regulations per-
taining to entities by the Health Insurance Portability and Accountabil-
ity Act of 1996 (HIPAA). Text and commentary available at http:
//www.hhs.gov/ocr/hipaa/finalreg.html, Dec 2000.

[Uni04] United States Computer Emergency Response Team (CERT). libpng fails
to properly check length of transparency chunk (tRNS) data. Vulnerabil-
ity Note VU#388984, available at http://www.kb.cert.org/vuls/id/388984,
November 2004.

[vBDZ89] Gregor von Bochman, Rachida Dssouli, and J. R. Zhao. Trace analysis
for conformance and arbitration testing. IEEE Transactions on Software
Engineering, 15(11):1347–1356, November 1989.

[vBP94] Gregor von Bochmann and Alexandre Petrenko. Protocol Testing: Re-
view of Methods and Relevance for Software Testing. Technical Report
IRO-923, Department d’Informatique et de Recherche Opérationnelle,
Université de Montréal, 1994.

[Wei07] Mark Allen Weiss. Data Structures and Algorithm Analysis in Java.
Addison-Wesley, Boston, 2nd edition, 2007.

[Wey98] Elaine J. Weyuker. Testing component-based software: A cautionary tale.
IEEE Software, 15(5):54–59, September/October 1998.

[WHH80] Martin R. Woodward, David Hedley, and Michael A. Hennell. Experi-
ence with path analysis and testing of programs. IEEE Transactions on
Software Engineering, 6(3):278–286, May 1980.

[WO80] Elaine J. Weyuker and Thomas J. Ostrand. Theories of program testing
and the the application of revealing subdomains. IEEE Transactions on
Software Engineering, 6(3):236–246, May 1980.

[YT89] Michal Young and Richard N. Taylor. Rethinking the taxonomy of fault
detection techniques. In Proceedings of the International Conference on
Software Engineering (ICSE), pages 53–62, Pittsburgh, May 1989.

[Zel05] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, San Francisco, 2005.

Index

A&T plan, 458
abstract classes, 277

testing, 281
abstraction function, 58, 110
abstraction in finite state models, 138
acceptance testing, 421–423
accessibility

W3C Web content accessibility guidelines, 426
adaptive systems, 452
adequacy

fault-based, 319
of test suites, 151

algebraic laws
for data model verification, 144

alias, 94–96
in data flow testing, 241
interprocedural analysis, 97

all definitions adequacy criterion, 240
all definitions coverage, 241
all DU pairs adequacy criterion, 239, 295
all DU pairs coverage, 239
all DU paths adequacy criterion, 240
all DU paths coverage, 240
all-paths analysis, 85
Alloy finite state verification tool, 144
alpha and beta test, 10, 423
alpha test, 10
alternate expression, alternate program

in fault-based testing, 315
analysis of dynamic memory use, 360–363
analysis plan, 382–386
AND-states

in statecharts, 286
any-path analysis, 85
API (application program interface), 413
architectural design, 6

impact on static analysis and test, 40
argument

in data flow analysis, 94
Ariane 5 incident, 406
array

in data flow analysis, 94, 236
in data flow testing, 241

assembly testing, 413–415
assertion

in symbolic execution, 105

assumed precondition, 194, 199
atomic blocks

in Promela, 122
atomic operation, 132
atomic transaction

serializability, 34
automating analysis and test, 439
availability, 10, 44
available expressions

data flow analysis, 85

Büchi automaton, 125
backbone strategy, 410
Backus Naur Form (BNF), 257
backward data flow analysis, 87
basic block, 60

coverage, 216
basic condition, 219, 251

coverage, 253
basic condition adequacy criterion, 219
basic condition coverage, 219
basis set of a graph, 228
BDD, see ordered binary decision diagram (OBDD)
behavior models

extracting from execution, 365–369
beta test, 10, 423
bias

in test case selection, 164
big bang testing, 408
binary decision diagram, see ordered binary decision

diagram (OBDD)
black-box testing, 154, 161, 162
BNF, see Backus Naur Form
Boolean connective, 251
Boolean expression, 251
bottom-up integration testing, 410
boundary condition grammar-based criterion, 262
boundary interior criterion, 223
boundary interior loop coverage, 250
boundary value testing, 185, 194
boundary values, 172
branch adequacy criterion, 217, 257
branch and condition adequacy, 220
branch coverage, 217, 227

simulated with mutation, 320
brute force test case generation, 167

479

480 INDEX

buffer overflow, 30, 50
build plan, 6, 408
build-and-test cycle, 327

call coverage, 229
call graph, 63–65

analysis of Java throws clause, 65
Capability Maturity Model (CMM), 341
capture and replay, 337
catalog-based testing, 194–204
category-partition testing, 180–188

category, 180, 181
error constraints, 186
property constraints, 186
regression test selection, 432

cause-effect graphs, 253
certification testing

in SRET, 380
CFG, see control flow graph
characteristic function, 135
checklist, 37, 344–348

for Java source code, 346, 347
choice

in category partition, 180
class

reasoning about, 109
classes of values, 180, 185, 194
Cleanroom process, 378, 399
CMM, see Capability Maturity Model
code generation

from finite state models, 130
cognitive burden and aids, 448–449
collaboration diagram, 293
collective code ownership, 351
combinatorial testing, 179

for polymorphism, 302
combining techniques, 7
commercial off-the-shelf components (COTS), 414

in integration testing, 410
communication protocol, 246, 249
comparing testing criteria, 230
comparison-based oracle, 332
competent programmer hypothesis, 314
compiler

grammar-based testing, 257
complete

state transition relation, 70
complete analysis, 21
completeness

structuring quality process for, 40
complex condition, 251
complex document structure

grammar-based testing, 257
component, 414

component and assembly testing, 413–415
component-based system, 414
component-based testing, 405

compositional reasoning, 108
compound condition adequacy, 220
compound condition coverage, 253
conclusion of inference rule, 109
concurrency, 277

concurrency fault, 356
specifying properties, 24

concurrency control protocol, 35
condition testing, 219–222
conformance testing, 116, 130
conservative analysis, 20, 21, 91
consistency checks

internal and external, 377
consistent

self-consistency, 17
constraint

in decision tables, 253
context independence

in interprocedural analysis, 97
context-sensitive analysis, 65, 96
contract, 413, 415

as precondition, postcondition pair, 105
interface of component, 414
monitoring satisfactory completion, 400
of procedure as Hoare triple, 109

control dependence graph, 80
control flow graph, 59–63
control flow testing, 212

model-based, 257
regression testing, 429

controllability, 329
correctness, 43

and operating conditions, 45
correctness conjectures, 377
cost

depends on time between error and fault de-
tection, 29, 376

estimating and controlling, 382
of faults, 49
verification vs. development cost, 4

cost-effectiveness
structuring quality process for, 40

COTS, see commercial off-the-shelf components
counting residual faults, 322
coupling effect hypothesis, 314
critical dependence, 384
critical module, 412
critical paths, 383
critical systems, 44
cross-quality requirements, 6
CSP

basis of Spin guarded commands, 122
cyclomatic complexity, 444
cyclomatic testing, 228

dangling pointer, 357
data collection, 49

INDEX 481

data dependence graph, 80
data flow (DF) regression test, 432
data flow adequacy criterion, 239
data flow analysis, 447

with arrays and pointers, 94, 236
data flow analysis algorithm, 82–84
data flow equation, 83
data flow graph

deriving test cases from, 257
data flow model, 77
data flow testing

for object-oriented programs, 295
data model verification, 140–146
data race, 356
data structure

in data flow testing, 241
reasoning about, 109

database
problem tracking, 11

deadlock, 32, 356
debugging, 449–451
decision structure, 251–255
decision table, 253
defect

repair cost predictor, 40
defensive programming, 33

leads to unreachable code, 230
definition

in a data flow model, 77
in catalog-based testing, 194, 199

definition-clear path, 78
definition-use association, see definition-use pair
definition-use pair (DU pair), 77, 82, 236, 238
definition-use path (DU path), 238
delocalization

inspection techniques to deal with, 344
dependability, 10, 15, 43, 421

measures of, 10
vs. time-to-market, 40

dependable, 16
dependence, 77
design

activities paired with verification, 3
architectural, 6
feasibility study, 5
test design vs. test execution, 5

design for test, 35, 330, 375, 376, 389
risk-driven strategy, 419
system architecture and build plan, 408

design pattern
vs. framework, 414

design rule
to simplify verification, 447

design secret
and modular reasoning, 109

desperate tester strategy, 410
deterministic, 24

state transition relation, 70
development risk, 391
development testing

in SRET, 380
diagnosability, 408
digraph, see directed graph
direct data dependence, 78
directed graph, 57
distraction

cognitive burden, 448
distributed

specifying properties, 24
distributed systems

finite state verification applicable to, 121
divide and conquer, 35
document object model (DOM), 415

as a component interface contract, 415
documentation, 455
documentation quality, 458
DOM, see document object model
domain-specific language

grammar-based testing, 257
dominator, 80
double-checked locking idiom, 117, 130
driver, 408
DU pair, see definition-use pair
DU path, see defintion-use path
dual

of a directed graph, 68
dynamic analysis, 355
dynamic binding, 277, 301–303
dynamic memory allocation faults, 357
dynamic memory analysis, 360–363
dynamic method dispatch

representation in call graph, 63

egoless programming, 351
elementary condition, 219
elementary items

identifying, 194
embedded control system, 246
encapsulation, 272

and test oracles, 300
modular reasoning, 109

entry and exit testing (procedure call testing), 229
environment, 328
environmental needs, 460
equivalent mutant, 319
equivalent scenarios, 300
erroneous condition testing, 185, 194
error

off-by-one, 185
error propagation, 236
error values, 172
estimating population sizes, 322
exception, 277, 308–309

analysis in Java, 97

482 INDEX

as implicit control flow, 60, 309
test cases for, 281

executing test cases, 327
execution history priority schema, 436
execution risk, 391
exhaustive testing, 20
explicit model checking

vs. symbolic model checking, 138
explicit requirement

vs. implicit requirement, 43
exploratory testing, 424
extensional representation, 134
external and internal qualities, 42
extreme programming (XP), 351, 381, 401

fail-fast, 30
failure

critical vs. noncritical, 44
fairness properties, 125
false alarms, 129
fault

analysis, 12
categorization, 49
distribution, 391
injection, 323
localization, 408
model, 314–316
propagation to failure, 212
revealing priority schema, 436
seeding, 154, 314, 315

fault-based testing, 154, 313
adequacy criterion, 156, 319
of hardware, 323
vs. functional testing, 163

feasibility study, 5, 46, 382
feature-oriented integration strategy, 412
features to be analyzed or tested, 460
feedback, 36–37, 399, 408

in the Cleanroom process, 378
feedback loop, 49
finite models of software, 55
finite state machine (FSM), 65–73, 359

conformance testing, 130
correctness relations, 70
deriving test cases from, 246–250
don’t care transition, 250
error transition, 250
model derived from class specification, 282
self transition, 250

finite state verification, 113, 360, 447
FLAVERS finite state verification tool, 139
flow analysis, 359

vs. finite state verification, 113
flow-insensitive, 97
formal specification

for symbolic execution, 356
forward, any-path analysis

static taint analysis, 92
forward data flow analysis, 85, 90
fossil code, 230
framework, 414
FSM, see finite state machine
function (mathematics vs. programs), 170
functional specification, 162
functional testing, 154, 161, 166

garbage detector, 363
gen set

in data flow analysis, 85
varying, 92

generating test cases, 327
generating test case specifications, 172
generating test data, 328–329
generics, 306–308
glass-box testing, see structural testing
global property, 420
graceful degradation, 45
grammars

deriving tests from, 257–265
graphical user interface

specifying properties, 24
guarded commands

in Promela, 122

halting problem, 18
hazards, 44
hierarchical (compositional) reasoning, 108
hierarchical interprocedural analysis, 97
HIPAA safeguards, 420
Hoare triple, 108

in test oracle, 335
HTML

DOM model, 415
HTTP, see Hypertext Transport Protocol
Hypertext Transport Protocol (HTTP), 35, 36

immediate dominator, 80
implementation, 17
implicit control flow, 60, 309
implicit requirement, 43
incident

Apache 2 buffer overflow, 407
Apache 2.0.48 memory leak, 409
Ariane 5 failure, 406
libPNG buffer overflow, 406
loss of Mars Climate Orbiter, 407

incremental development
and scaffolding, 329

independent verification and validation (IV&V), 400,
419

independently testable feature (ITF), 170
indivisible action, 132
inevitability

flow analysis, 90

INDEX 483

infeasibility
identifying infeasible paths with symbolic ex-

ecution, 102
infeasible path, 105
problem in test coverage, 230–232, 243
unsatisfiable test obligations, 156

inference rule, 109
information clutter

cognitive burden, 448
information hiding

and modular reasoning, 109
inheritance, 272

in object-oriented testing, 303–306
representation in call graph, 63
testing inherited and overridden methods, 281

inspection, 37, 341
benefits and bottlenecks, 46

inspection process, 344
inspector, 297
inspector/modifiers, 297
instruction reordering, 132
integration faults

taxonomy, 407
integration strategies

feature-oriented, 412
integration testing, 405

for object-oriented programs, 286–293
strategies, 408–412

intensional model, 134–138
interclass structural testing, 297
interclass testing, 286–293
interface contract of component, 414
interface specification, 413, 415
internal and external qualities, 42
interpreter

grammar-based testing, 257
interprocedural control flow (call graph), 63
interprocedural data flow analysis, 96
intraclass structural testing, 295
intraclass testing, 281–286
intraprocedural control flow graph, 59
invariant, 358

assertion, 105
preserved in a loop, 106
structural, 335

ISO/IEC 9126 standard
quality metrics, 445

items to be verified, 458
ITF, see independently testable feature
IV&V, see independent verification and validation

Java inspection checklist, 346, 347
JUnit, 330, 331

kill, 78
in data flow analysis, 82
mutation analysis, 319

kill set
in data flow analysis, 85
varying, 92

lattice, 93
LCSAJ, see linear code sequence and jump
libPNG buffer overflow incident, 406
linear code sequence and jump (LCSAJ), 60, 227
lines of code

static metric, 443
live mutants, 319
live variables

data flow analysis, 85
liveness properties, 125
LOC

source lines of code, 443
lock, 356
lockset analysis, 363–365
loop boundary adequacy criterion, 227
loop invariant, 105
lost update problem, 132

may immediately precede (MIP) relation, 139
MC/DC, see modified condition/decision coverage
Mealy machine, 65
mean time between failures (MTBF), 10, 44, 378
memory

analysis, 360–363
fault, 357, 360
leak, 357, 360, 409

metrics, 389
MIP, see may immediately precede relation
missing code fault, 163
missing path faults, 215
misspelled variable, 90
mock, 330
model, 55

correspondence, 129–134
extraction, 129
granularity, 131–134
important attributes of, 55
intensional, 134
refinement, 138–140

model checking, see finite state verification, 447
model-based testing, 154, 171, 245

regression test selection, 432
modified condition/decision coverage (MC/DC), 221,

255
required by RTCA/DO-178B standard, 222, 379

modifier, 297
modular specifications and reasoning, 109
module and unit testing, 405
monitoring and planning, 41
monitoring the quality process, 389–394
MTBF, see mean time between failures
multiple condition coverage, 220
mutant, 315

484 INDEX

mutation analysis, 315–324
vs. structural testing, 320

mutation operator, 315, 316, 318

necessary condition, 22
nightly build-and-test cycle, 327, 420
node adequacy criterion, 257
nondeterministic, 24
nonfunctional properties

in component interface contract, 415
nonlinearity, 4
nonlocality

cognitive burden, 448
normal conditions

selected in catalog-based testing, 194

OBDD, see ordered binary decision diagram
object reference

in data flow analysis, 94
object-oriented method dispatch

representation in call graph, 63
object-oriented software

issues in testing, 272
orthogonal approach to testing, 280
testing, 271

observability, 36, 329, 408
OCL

assertions about data models, 140
ODC, see orthogonal defect classification
operation

in catalog-based testing, 194
operational profile, 422

in SRET, 380
optimistic inaccuracy, 20, 21
OR-state

in statechart, 284
oracle, 8, 328, 332–338

for object-oriented programs, 298–301
from finite state machine, 249

ordered binary decision diagram (OBDD), 135
orthogonal defect classification (ODC), 392
outsourcing, 401
overall quality, 458

pair programming, 351, 381, 401
pairwise combination testing, 188–194
parameter characteristic, 180, 181
parameterized type, 306–308
partial functionality, 45
partial oracle, 333
partial order reduction, 134, 138
partition, 35–36

categories into choices, 180, 185
partition testing, 162–167
patch level, 11
patch level release, 11
path adequacy criterion, 222

path coverage, 222
path testing, 222–228

and data interactions, 236
peer review, 401
performance, 419
Perl

taint mode, 91
personnel risk, 386, 390
pessimistic inaccuracy, 20, 21
plan, 41

analysis and test plan, 8
analysis and test plan document, 458–460
monitoring, 8
relation to strategy, 379
selecting analysis and test tools, 441
test and analysis, 382

planning and monitoring, 41
sandwich integration strategy, 412

planning tools, 441–443
point release, 11
pointer

in data flow analysis, 94, 236
in data flow testing, 241

pointer arithmetic
in data flow analysis, 94

polymorphism, 277, 301–303
post-dominator, 81
postcondition, 105, 358

in catalog-based testing, 194, 199
in test oracle, 335
of state transition, 249

powerset lattice, 93
pre-dominator, 81
precondition, 105, 358

in catalog-based testing, 194, 197
in test oracle, 335
of state transition, 249

predicate, 251
premise of inference rule, 109
preserving an invariant, 106
principles of test and analysis, 29
prioritization

of regression test cases, 434–436
probabilistic grammar-based criteria, 265
problem tracking database, 11
procedure call testing, 229–230
procedure entry and exit testing, 229
process

improvement, 12, 49, 394–399
management, 441
monitoring, 389–394
visibility, 36, 41, 383, 389

process qualities
vs. product qualities, 42

production coverage criterion, 262
program

generation, 130

INDEX 485

generic term for artifact under test, 161
verifier, 447

program analysis, 355
program dependence

graph representation of, 80
program location

in fault-based testing, 315
Promela (Spin input language), 121, 122, 129

test case generation, 329
propagation from fault to failure, 212
protocol, 246, 249
proxy measure, 41

test coverage, 156

quality
cross-quality requirements, 6
goal, 42
manager, 382
plan, 8, 376, 458
process, 39, 376–377
team, 399–402

quantifier
in assertions, 337

race condition, 32, 117, 132
random testing, 162
RCA, see root cause analysis
reaching definition, 82

data flow equation, 83
reading techniques in inspection, 344
redundancy, 32–33
reference

in data flow analysis, 94
refining finite state models, 138–140
region

in control flow analysis, 59
regression test, 11, 418, 427–436

prioritization, 434–436
selection, 428–434

regular expressions
deriving tests from, 257–265

relational algebra, 144
for data model verification, 140

release
point release vs. patch, 11

reliability, 10, 44, 45, 419
report, 462–465
representative value classes, 171
representative values, 180, 185
requirement

engineering, 420
implicit vs. explicit, 43
risk, 391
specification, 16, 162

residual faults
statistical estimation, 322

resources and responsibilities, 460

responsibilities
allocating, 50

restriction, 33–35
retest all, 427
reuse

unreachable code in, 230
review

phase in inspection, 344
risk

generic to process management, 390
planning, 386–389
specific to quality management, 391

robustness, 45
root cause analysis (RCA), 37, 49, 394
RTCA/DO-178B standard, 379
run-time support for testing, 327

safe
analysis, 21

safety, 44, 45, 420
properties, 125
property of system and environment, 420
specification, 45

sandwich or backbone, 410
scaffolding, 8, 328–332, 408

generic vs. specific, 330
scalability

of finite state verification techniques, 114
scenarios, 415
schedule risk, 386, 390
schedule visibility, 36
scripting rule

grammar-based testing, 257
SDL, 246
security, 420

finite state verification applicable to, 121
security hazard

preventing with Perl taint mode, 91
seeded faults, 154, 314, 315
selection

of test cases, 151
selective regression test execution, 434–436
self-monitoring and adaptive systems, 452
semantic constraints

in category-partition method, 180, 186
sensitivity, 29–32
sensitivity testing, 422
sequence diagram, 293
sequencing properties, 125
serializability, 34
severity levels

in fault classification, 392, 397
short-circuit evaluation, 221
Simple Mail Transport Protocol (SMTP), 36
simple transition coverage, 286
single state path coverage, 250
single transition path coverage, 250

486 INDEX

singularity in input space, 164
SMTP, see Simple Mail Transport Protocol
software reliability engineered testing (SRET), 380,

399
sound

analysis, 21
special value testing, 164
specification, 17

as precondition and postcondition assertions,
105

correctness relative to, 44
decomposing for category-partition testing, 180,

181
requirement, 16

specification-based testing, 154, 161, 166
regression test selection, 432

Spin finite state verification tool, 121
spiral process

in SRET approach, 380
spiral process model, 376
spurious reports

in finite state verification, 138
SQL

as a component interface contract, 415
SRET, see software reliability engineered testing
state transition table

representation of finite state machine, 70
state diagram, see statechart
state space, 58
state space exploration, 116–134
state space explosion problem, 126
state transition diagram

representation of finite state machine, 70
state transition table

representation of finite state machine, 69
state-based intraclass testing, 281
state-based testing

object state, 282
state-dependent behavior, 272
statechart, 246, 282

of object behavior, 284
stateless component interfaces, 35
statement adequacy criterion, 215
statement coverage, 156, 215, 227

simulated with mutation, 320
static analysis, 48, 341, 355

automation, 445–448
static metrics, 443–445
statistical approximation, 45
statistical estimation of population sizes, 322
statistical mutation analysis, 321
statistical testing, 378, 421

vs. systematic testing, 422
strategy, 41, 377–381

document, 458
relation to plan, 379

stress testing, 420

strong mutation, 321
structural integration test strategy, 410
structural invariant, 110, 335
structural priority schema, 436
structural testing, 154, 211

of classes, 293–298
vs. functional testing, 161, 163
vs. mutation analysis, 320

stub, 329, 408
subsumes, 157
sufficient condition, 22, 23
summary information in symbolic execution, 104
superstate

in statechart, 284
suspend and resume criteria, 460
symbolic execution, 101, 356–359

vs. finite state verification, 113
symbolic model checking, 134, 135, 138
symbolic testing, 358–359
symbolic values

for variables in symbolic execution, 106
synchronized block (in Java), 356
syntax

grammar-based testing, 257
system integration, 408
system testing, 418–421
systematic test case generation, 167

taint mode in Perl, 91
tasks and schedule, 460
technology risk, 386, 390
template, 306–308
temporal logic, 125
T ERk coverage, 227
test

adequacy criterion, 153
deliverable, 460
driver, 329
execution, 48, 153
harness, 329
input, 152
obligation, 153, 154
oracle, 332–338
pass/fail criterion, 152
plan, 382–386
scenarios, 415
specification, 153
strategy document, 458

test case, 153
maintenance, 427

test case specification, 172
document, 462
generating, 180, 186

test coverage
as proxy measure for thoroughness, 156

test design
early, 48

INDEX 487

specification document, 460–462
test first

in XP, 381, 401
testability

design for, 330, 375, 376, 389
testing history, 304
testing team, 400
theorem prover, 447, 448

in symbolic execution, 107
thread, 116

dynamic analysis of locks, 363–365
testing, 412

throws clause check, 65, 97
time-to-market

vs. dependability, 40
timeliness

structuring quality process for, 40
top-down and bottom-up testing, 410
trade-offs

among goals, 42
transition coverage, 249
transition table

representation of finite state machine, 69
type checking, 33, 447

UML
data models, 140
sequence and collaboration diagrams, 293
statechart, 284

undecidability, 18, 113
undecidability and unsatisfiable test obligations, 156
unit

work assignment, 170
unit and integration test suites

unsuitable for system testing, 418
unit testing

for object-oriented programs, 282–286
unreachable code, 230
usability, 423–425

specifying and verifying properties, 24
usability testing, 6

assigned to separate team, 460
usage profile, 44, 378
use

in a data flow model, 77
use/include relation, 286
useful

distinct from dependable, 16
useful mutant, 316
usefulness, 43, 418
useless definition, 90
user stories, 381

V model, 17, 376, 405
V&V, see verification and validation
valid mutant, 316
validated precondition, 194, 197, 199

validation, 15, 17
acceptance testing as, 418
vs. verification, 7

variable
in catalog-based testing, 194
initialization analysis, 87

verification, 16
of self-consistency and well-formedness, 17
purpose of functional testing, 162
system testing as, 418
vs. validation, 7

verification and validation (V&V), 6
version control, 449
visibility, 36, 41, 383, 389

W3C Web content accessibility guidelines, 426
waterfall process model, 376
WCAG

W3C Web content accessibility guidelines, 426
weak mutation analysis, 321
weakening a predicate, 104
well-formedness and self-consistency, 17
white-box testing, see structural testing

XML
as a component interface contract, 415
DOM model, 415

XML schema
grammar-based testing, 262

XP, see extreme programming

488 INDEX

