Software Testing and Analysis:
Process, Principles, and
Technigues

i 1807
: ®WILEY
12007

MVINNILNIDIS

[———
BICENTENNIAL

THE WILEY BICENTENNIAL-KNOWLEDGE FOR GENERATIONS

ach generation has its unique needs and aspirations. When Charles Wiley first
opened his small printing shop in lower Manhattan in 1807, it was a generation
of boundless potential searching for an identity. And we were there, helping to
define a new American literary tradition. Over half a century later, in the midst
of the Second Industrial Revolution, it was a generation focused on building the
future. Once again, we were there, supplying the critical scientific, technical, and
engineering knowledge that helped frame the world. Throughout the 20th
Century, and into the new millennium, nations began to reach out beyond their
own borders and a new international community was born. Wiley was there,
expanding its operations around the world to enable a global exchange of ideas,
opinions, and know-how.

For 200 years, Wiley has been an integral part of each generation’s journey,
enabling the flow of information and understanding necessary to meet their needs
and fulfill their aspirations. Today, bold new technologies are changing the way
we live and learn. Wiley will be there, providing you the must-have knowledge
you need to imagine new worlds, new possibilities, and new opportunities.

Generations come and go, but you can always count on Wiley to provide you the
knowledge you need, when and where you need it!

Csf Pea [BT L2

WiLLIAM J. PESCE PETER BOOTH WILEY
PRESIDENT AND CHIEF EXECUTIVE OFFICER CHAIRMAN OF THE BOARD

Software Testing and Analysis:
Process, Principles, and
Technigues

Mauro Pezzé
Universitd di Milano Bicocca

Michal Young
University of Oregon

BICENTENNIAL

1807

SWILEY
200 7

BICENTENNIAL

BICENTENNIAL

AMVINN3ILNAIDIA

PUBLISHER Daniel Sayre

SENIOR PRODUCTION EDITOR Lisa Wojcik
EDITORIAL ASSISTANT Lindsay Murdock
COVER DESIGNER Madelyn Lesure
COVER PHOTO Rick Fischer/Masterfile

WILEY 200TH ANNIVERSARY LOGO DESIGN Richard J. Pacifico

This book was typeset by the authors using pdfI&TjEXand printed and bound
by Malloy Lithographing. The cover was printed by Phoenix Color Corp.
This book is printed on acid free paper. oo

Copyright ©) 2008 John Wiley & Sons, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act,
without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222
Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax

(201) 748-6008, website http://www.wiley.com/go/permissions.

To order books or for customer service please, call 1-800-CALL WILEY (225-5945).

ISBN-13 978-0-471-45593-6
Printed in the United States of America
10987564321

Contents

List of Figures

List of Tables

Fundamentals of Test and Analysis

Software Test and Analysis in a Nutshell

1.1 Engineering Processes and Verification
1.2 BasicQuestions
1.3 When Do Verification and Validation Start and End?
1.4 What Techniques Should Be Applied?
1.5 How Can We Assess the Readiness of a Product?
1.6 How Can We Ensure the Quality of Successive Releases?
1.7 How Can the Development Process Be Improved?

A Framework for Test and Analysis

2.1 Validation and Verification
2.2 Degreesof Freedom,
2.3 Varieties of Software

Basic Principles

3.1 Sensitivity
32 Redundancy.
33 Restriction
34 Partition
35 Visibility
3.6 Feedback

Test and Analysis Activities Within a Software Process

4.1 TheQuality Process
4.2 Planning and Monitoring L.
43 QualityGoals
4.4 Dependability Properties,
45 Analysis e

xi

XV

[y

W W W

11
11

15
15
18
23

29
29
32
33
35
36
36

Vi

CONTENTS

4.6 Testing
477 TImprovingthe Process
4.8 Organizational Factors

II Basic Techniques

5 Finite Models
5.1 Overview e e e e e e e
5.2 Finite Abstractions of Behavior
5.3 Control Flow Graphs
54 CallGraphs Lo
5.5 Finite State Machines

6 Dependence and Data Flow Models
6.1 Definition-Use Pairs,
6.2 DataFlow Analysis,
6.3 Classic Analyses: Liveand Avail
6.4 From Execution to Conservative Flow Analysis
6.5 Data Flow Analysis with Arrays and Pointers
6.6 Interprocedural Analysis

7 Symbolic Execution and Proof of Properties
7.1 Symbolic State and Interpretation
7.2 Summary Information oo
7.3 Loopsand ASSErtionso
7.4 Compositional Reasoning
7.5 Reasoning about Data Structures and Classes

8 Finite State Verification
8.1 Overview e
8.2 State Space Exploration,
8.3 The State Space Explosion Problem
8.4 The Model Correspondence Problem
8.5 Granularity of Modeling
8.6 IntensionalModels
8.7 Model Refinement
8.8 Data Model Verification with Relational Algebra

IIT Problems and Methods

9 Test Case Selection and Adequacy
9.1 OVerview
9.2 Test Specificationsand Cases
9.3 Adequacy Criteria
9.4 Comparing Criteria oo vt

53

55
55
58
59
63
65

77
77
82
85
91
94
96

101
102
104
105
108
109

113
113
116
126
129
131
134
138
140

CONTENTS vii

10 Functional Testing

10.1
10.2
10.3
10.4

OVErVIEW o o i
Random versus Partition Testing Strategies
A Systematic Approach o Lo
Choosing a Suitable Approach

11 Combinatorial Testing

11.1
11.2
11.3
11.4

OVEIVIEW o oo
Category-Partition Testing
Pairwise Combination Testing
Catalog-Based Testing

12 Structural Testing

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

OVEIVIEW o it
Statement Testing
Branch Testing
Condition Testing
Path Testing
Procedure Call Testing
Comparing Structural Testing Criteria
The Infeasibility Problem

13 Data Flow Testing

13.1
13.2
13.3
13.4
13.5

OVEIVIEW oo it
Definition-Use Associations
Data Flow Testing Criteria
Data Flow Coverage with Complex Structures
The Infeasibility Problem

14 Model-Based Testing

14.1
14.2
14.3
14.4
14.5

OVerview
Deriving Test Cases from Finite State Machines
Testing Decision Structures
Deriving Test Cases from Control and Data Flow Graphs
Deriving Test Cases from Grammars

15 Testing Object-Oriented Software

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

Overview e
Issues in Testing Object-Oriented Software
An Orthogonal ApproachtoTest
Intraclass Testing
Testing with State Machine Models
Interclass Testing
Structural Testing of Classes
OraclesforClasses
Polymorphism and Dynamic Binding

161
161
162
167
174

179
180
180
188
194

211
212
215
217
219
222
229
230
230

235
236
236
239
241
243

245
245
246
251
257
257

271

viii

CONTENTS

15.10 Inheritance
ISA1Genericity v v v e e
1512 Exceptionso e

16 Fault-Based Testing

16.1
16.2
16.3
16.4
16.5

OVeIVIEW o o e
Assumptions in Fault-Based Testing
Mutation Analysis oL
Fault-Based Adequacy Criteria
Variations on Mutation Analysis

17 Test Execution

17.1
17.2
17.3
17.4
17.5
17.6
17.7

OVeIVIEW o vt et e e
From Test Case Specifications to TestCases
Scaffolding L
Generic versus Specific Scaffolding
TestOracles
Self-ChecksasOracles
CaptureandReplay

18 Inspection

18.1
18.2
18.3
18.4
18.5

OVEIVIEW o oottt e
The Inspection Team
The Inspection Process
Checklists
Pair Programming L oL,

19 Program Analysis

19.1
19.2
19.3
19.4
19.5
19.6
19.7

OVEIVIEW o oottt e
Symbolic Execution in Program Analysis
Symbolic Testing
Summarizing Execution Pathso
Memory Analysis L.
Lockset Analysis
Extracting Behavior Models from Execution

IV Process

20 Planning and Monitoring the Process

20.1
20.2
20.3
20.4
20.5
20.6

OVEeIVIEW o o v s
Qualityand Process
Test and Analysis Strategies
Testand AnalysisPlans
RiskPlanning
Monitoring the Process

313
313
314
315
319
321

327
327
328
329
330
332
334
337

341
341
343
344
345
351

355
355
356
358
359
360
363
365

CONTENTS ix

20.7 Improving the Process
20.8 The Quality Team

21 Integration and Component-based Software Testing
21.1 OVerview oot e e
21.2 Integration Testing Strategies
21.3 Testing Components and Assemblies

22 System, Acceptance, and Regression Testing
22.1 OVeIVIEW . . . o v v vt s e e
222 SystemTesting
223 Acceptance Testing L.
224 Usability
22.5 Regression Testing
22.6 Regression Test Selection Techniques
22.7 Test Case Prioritization and Selective Execution.

23 Automating Analysis and Test
23.1 OVervIeW vt e e
23.2 Automation and Planning
233 Process Management L.
234 StaticMetricso
23.5 Test Case Generation and Execution
23.6 Static AnalysisandProof L oo
237 Cognitive Aids
23.8 VersionControl o
239 Debugging e
23.10 Choosing and Integrating Tools

24 Documenting Analysis and Test
241 OVEIVIEW o v vttt e e e e e
24.2 Organizing Documents
24.3 Test Strategy Document L.
244 Analysisand TestPlan
24.5 Test Design Specification Documents
24.6 Testand AnalysisReports o0

Bibliography

Index

394
399

405
405
408
413

417
417
418
421
423
427
428
434

439
439
441
441
443
445
445
448
449
449
451

455
455
456
458
458
460
462

467

479

X

CONTENTS

List of Figures

1

1.1

2.1
2.2

3.1
32

4.1

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Selectivereading
Analysis and testing activities

Validation and verification,
Verification trade-off dimensions

Unpredictable failure and predictable failure
Initialize before use problem

Dependability properties L.

Abstraction coalesces execution states
Constructing control flow graphs
Java method to collapse adjacent newline characters
Statements broken across basicblocks 0oL
Linear-code sequence and jump (LCSAJ)
Over-approximationinacall graph
Context sensitivity oL o
Exponential explosion of calling contexts inacall graph

Finite state machine specification of line-end conversion procedure

Correctness relations for a finite state machine model
Procedure to convert among Dos, Unix, and Macintosh line ends . . .

Completed FSM specification of line-end conversion procedure

GCD calculationinJava L.
Control flow graph of GCD method
Data dependence graph of GCDmethod
Calculating control dependence
Control dependence tree of GCD method
Reaching definitions algorithm
Available expressions algorithm
Java method with potentially uninitialized variable
Control flow with definitions anduses
Annotated CFG for detecting uses of uninitialized variables

Xi

16
19

31
34

58
59
61
62
62
64
66
67
69
70
72
73

Xii

LIST OF FIGURES

6.11
6.12
6.13

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

9.1

10.1
10.2
10.3

11.1
11.2
11.3
11.4

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

13.1
13.2

CGI program in Python with misspelled variable 91
Powerset lattice 93
Spurious execution paths in interprocedural analysis 97
Binary search procedure 103
Concrete and symbolic tracing 104
Finite state verification, 115
Misapplication of the double-check initialization pattern 118
FSM models from Figure 8.2 119
Promela finite state model 120
Excerpts of Spin verification tool transcript 121
Spin guided simulation trace describing race condition 123
A graphical interpretation of Spin guided simulation trace 124
Dining philosophers in Promela 128
A simple dataraceinJava oL 131
Coarse and fine-grain models of interleaving 132
Lostupdate problem, 133
OBDD encoding of a propositional formula 136
OBDD representation of transition relation 137
Data model of a simple Website 141
Alloy model of a Website. 142
Alloy model of a Web site (continued) 143
A Web site that violates the “browsability” property 145
A Java method for collapsing sequences of blanks 155
A Java class for finding roots of a quadratic equation 165
A quasi-partition of a program’s inputdomain 167
The functional testing process oo 169
Specification of Check configuration 182
Specificationof cgidecode 195
Elementary items of specification cgidecode 198
Test case specifications for cgi_decode generated after step2 201
The C functioncgidecode 213
Control flow graph of function cgidecode 214
The control flow graph of C function cgi decode’ 218
Deriving a tree from a control flow graph for boundary/interior testing 223
Buggy self-organizing list, 224
Control flow graph of C functionsearch 225
Tree of boundary/interior sub-paths for C function search 226
Subsumption relations among structural test adequacy criteria 231
The C functioncgidecode 237

A C procedure with a large number of DU paths 241

LIST OF FIGURES

xiii

13.3 Pointer arithmetic

14.1 Functional specification of feature Maintenance
14.2 The finite state machine corresponding to Maintenance
14.3 Functional specification of feature Pricing
14.4 Decision table for Pricing
14.5 Set of test cases corresponding to the modified adequacy criterion . .
14.6 Functional specification of Process shipping order
14.7 Control flow model of Process shipping order
14.8 Node-adequate testsuite
14.9 Branch-adequate testsuite
14.10 Functional specification of Advanced search
14.11 BNF description of Advanced search
14.12 XML schema for Product configuration
14.13 BNF description of Product configuration
14.14 Test case for feature Advanced Search
14.15 The BNF description of Product Configuration
14.16 Sample seed probabilities for the BNF of Product Configuration . . .

15.1 Part of a Java implementation of class Model
15.2 More of the Java implementation of class Model
15.3 Class diagram for the Lineltem hierarchy.
15.4 Part of a Java implementation of class Account.
15.5 TImpact of object-oriented design on analysis and test.
15.6 Statechart specification of classModel
15.7 Finite state machine corresponding to the statechart in Figure 15.6 . .
15.8 Statechart specification of classOrder
15.9 Finite state machine corresponding to the statechart in Figure 15.8 . .
15.10 Class diagram of the Chipmunk Web presence
15.11 Use/include relation for the class diagram in Figure 15.10
15.12 Sequence diagram for configuringanorder
15.13 Partial intraclass control flow graph for class Model
15.14 Summary information for structural interclass testing
15.15 Polymorphic methodcall
15.16 Part of a Java implementation of the abstract class Lineltem
15.17 Part of a Java implementation of class Compositeltem

16.1 Programtransduce
16.2 Sample mutation operators forC
16.3 Sample mutants for program Transduce
16.4 Editdistancecheck Lo L.

17.1 JUnittestsinJFlex,
17.2 Test harness with comparison-based testoracle
17.3 Testing with self-checks
17.4 Structural invariant as run-time self-check

Xiv

LIST OF FIGURES

18.1

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

20.1
20.2
20.3

21.1

22.1
222
22.3
224
22.5
22.6

23.1

241

Detailed description referenced by a checklistitem. 349
A Cprogram invoking cgidecode 361
Purify verification tool transcript. 362
Model of memory states 363
Concurrent threads with shared variables 364
Lockset state transition diagram 365
A Java method for inserting anode inan AVL tree 367
Sample set of predicates for behavior program analysis 368
Testcases foran AVLtree 369
Behavioral models for method insert 370
Alternative schedules L. 385
A sample A&T schedule, 387
Typical fault distributionovertime 392
Chipmunk Web presence hierarchy 411
Version 1.0 of the C function cgidecode 430
Version 2.0 of the C function cgidecode 431
Coverage of structural test cases for cgidecode 432
Control flow graph of function cgi_decode version2.0 433
New definitions and uses forcgidecode 434
Flow graph model of the extended shipping order specification 435
CodeCrawler code size visualization 450

Sample document naming conventions 456

List of Tables

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12.1

13.1
13.2

14.1

15.1
15.2
15.3
15.4
15.5
15.6

20.1

211

Example categories and value classes 187
Test case specifications for Check configuration 189
Parameters and values for Display control 190
Pairwise coverage of three parameters 191
Pairwise coverage of five parameters 192
Constraints for Display control 193
Atestcatalog 202
Summary of catalog-based test cases for cgidecode 205
Test cases forcgidecode 215
Definitions and uses for C function cgi.decode 238
DU pairs for C function cgidecode 239
A test suite derived from the FSM of Figure 14.2 249
Test cases to satisfy transition coverage criterion 285
Simple transition coverage 289
Equivalent scenarios oo 301
Pairwise combinatorial coverage of polymorphic binding 302
Testing history for class Lineltem 304
Testing history for class Compositeltem 306
Standard severity levels for root cause analysis 397
Integration faults. L oL 407

XV

Xvi LIST OF TABLES

Preface

This book addresses software test and analysis in the context of an overall effort to
achieve quality. It is designed for use as a primary textbook for a course in software
test and analysis or as a supplementary text in a software engineering course, and as a
resource for software developers.

The main characteristics of this book are:

e It assumes that the reader’s goal is to achieve a suitable balance of cost, sched-
ule, and quality. It is not oriented toward critical systems for which ultra-high
reliability must be obtained regardless of cost, nor will it be helpful if one’s aim
is to cut cost or schedule regardless of consequence.

e [t presents a selection of techniques suitable for near-term application, with suf-
ficient technical background to understand their domain of applicability and to
consider variations to suit technical and organizational constraints. Techniques
of only historical interest and techniques that are unlikely to be practical in the
near future are omitted.

e It promotes a vision of software testing and analysis as integral to modern soft-
ware engineering practice, equally as important and technically demanding as
other aspects of development. This vision is generally consistent with current
thinking on the subject, and is approached by some leading organizations, but is
not universal.

e It treats software testing and static analysis techniques together in a coherent
framework, as complementary approaches for achieving adequate quality at ac-
ceptable cost.

Why This Book?

One cannot “test quality into”” a badly constructed software product, but neither can one
build quality into a product without test and analysis. The goal of acceptable quality
at acceptable cost is both a technical and a managerial challenge, and meeting the goal
requires a grasp of both the technical issues and their context in software development.

Xvii

Xviii

Preface

It is widely acknowledged today that software quality assurance should not be a
phase between development and deployment, but rather a set of ongoing activities in-
terwoven with every task from initial requirements gathering through evolution of the
deployed product. Realization of this vision in practice is often only partial. It requires
careful choices and combinations of techniques fit to the organization, products, and
processes, but few people are familiar with the full range of techniques, from inspection
to testing to automated analyses. Those best positioned to shape the organization and
its processes are seldom familiar with the technical issues, and vice versa. Moreover,
there still persists in many organizations a perception that quality assurance requires
less skill or background than other aspects of development.

This book provides students with a coherent view of the state of the art and practice,
and provides developers and managers with technical and organizational approaches to
push the state of practice toward the state of the art.

Who Is This Book For?

Students who read portions of this book will gain a basic understanding of principles
and issues in software test and analysis, including an introduction to process and or-
ganizational issues. Developers, including quality assurance professionals, will find a
variety of techniques with sufficient discussion of technical and process issues to sup-
port adaptation to the particular demands of their organization and application domain.
Technical managers will find a coherent approach to weaving software quality assur-
ance into the overall software process. All readers should obtain a clearer view of the
interplay among technical and nontechnical issues in crafting an approach to software
quality.

Students, developers, and technical managers with a basic background in computer
science and software engineering will find the material in this book accessible without
additional preparation. Some of the material is technically demanding, but readers may
skim it on a first reading to get the big picture, and return to it at need.

A basic premise of this book is that effective quality assurance is best achieved
by selection and combination of techniques that are carefully woven into (not grafted
onto) a software development process for a particular organization. A software quality
engineer seeking technical advice will find here encouragement to consider a wider
context and participate in shaping the development process. A manager whose faith
lies entirely in process, to the exclusion of technical knowledge and judgment, will
find here many connections between technical and process issues, and a rationale for a
more comprehensive view.

How to Read This Book

This book is designed to permit selective reading. Most readers should begin with
Part I, which presents fundamental principles in a coherent framework and lays the
groundwork for understanding the strengths and weaknesses of individual techniques
and their application in an effective software process. Part II brings together basic tech-

Xix

nical background for many testing and analysis methods. Those interested in particular
methods may proceed directly to the relevant chapters in Part III of the book. Where
there are dependencies, the Required Background section at the beginning of a chap-
ter indicates what should be read in preparation. Part IV discusses how to design a
systematic testing and analysis process and incorporates it into an overall development
process, and may be read either before or after Part II1.

Readers new to the field of software test and analysis can obtain an overview by reading
Chapters

1 Software Test and Analysis in a nutshell
2 | A Framework for Test and Analysis

4 | Test and Analysis Activities within a Software Process
10 | Functional Testing

11 | Combinatorial Testing

14 | Model-Based Testing

15 | Testing Object-Oriented Software

17 | Test Execution

18 | Inspection

19 | Program Analysis

20 | Planning and Monitoring the Process

Notes for Instructors

This book can be used in an introductory course in software test and analysis or as a
supplementary text in an undergraduate software engineering course.

An introductory graduate-level or an undergraduate level course in software test and
analysis can cover most of the book. In particular, it should include

e All of Part I (Fundamentals of Test and Analysis), which provides a complete
overview.

e Most of Part II (Basic Techniques), which provides fundamental background,
possibly omitting the latter parts of Chapters 6 (Dependence and Data Flow
Models) and 7 (Symbolic Execution and Proof of Properties). These chapters are
particularly suited for students who focus on theoretical foundations and those
who plan to study analysis and testing more deeply.

e A selection of materials from Parts III (Problems and Methods) and IV (Process).

For a course with more emphasis on techniques than process, we recommend

e Chapter 10 (Functional Testing), to understand how to approach black-box test-
ing.

e The overview section and at least one other section of Chapter 11 (Combinatorial
Testing) to grasp some combinatorial techniques.

XX Preface

e Chapter 12 (Structural Testing), through Section 12.3, to introduce the basic cov-
erage criteria.

o Chapter 13 (Data Flow Testing), through Section 13.3, to see an important appli-
cation of data flow analysis to software testing.

e The overview section and at least one other section of Chapter 14 (Model-based
Testing) to grasp the interplay between models and testing.

e Chapter 15 (Testing Object-Oriented Software) to appreciate implications of the
object-oriented paradigm on analysis and testing.

e Chapter 17 (Test Execution), to manage an easily overlooked set of problems
and costs.

e Chapter 18 (Inspection) to grasp the essential features of inspection and appreci-
ate the complementarity of analysis and test.

e Chapter 19 (Program Analysis) to understand the role of automated program
analyses and their relation to testing and inspection techniques.

e Chapters 20 (Planning and Monitoring the Process), 21 (Integration and Component-
based Software Testing), and 22 (System, Acceptance, and Regression Testing)
to widen the picture of the analysis and testing process.

For a stronger focus on software process and organizational issues, we recommend

o Chapter 10 (Functional Testing), a selection from Chapters 11 and 14 (Com-
binatorial Testing and Model-Based Testing), and Chapters 15 (Testing Object-
Oriented Software), 17 (Test Execution), 18 (Inspection), and 19 (Program Anal-
ysis) to provide a basic overview of techniques.

e Part IV, possibly omitting Chapter 23 (Automating Analysis and Test), for a
comprehensive view of the quality process.

When used as a supplementary text in an undergraduate software engineering course,
Chapters 1 (Software Test and Analysis in a Nutshell), and 2 (A Framework for Test
and Analysis) can provide a brief overview of the field. We recommend completing
these two essential chapters along with either Chapter 4, or a selection of chapters
from Part II1, or both, depending on the course schedule. Chapter 4 (Test and Analysis
Activities within a Software Process) can be used to understand the essential aspects
of a quality process. The following chapters from Part III will help students grasp
essential techniques:

e Chapter 10 (Functional Testing) and a selection of techniques from Chapters 11
(Combinatorial Testing) and 14 (Model-Based Testing), to grasp basic black-box
testing techniques.

e Chapter 12 (Structural Testing), through Section 12.3, to introduce basic cover-
age criteria.

XX1

Undergraduate-level course on software test and analysis

Graduate-level course with emphasis on process

Graduate-level course with emphasis on techniques

Supplementary text in an undergraduate software engineering course

5 0 SW A&T in a Nutshell
g 2 I | [] AFramework for A&T
£ 1 . L
=8 3 L] Basic Principles
£S5 4 A&T within a SW Process
82 (I
o 5 : : Finite Models
s 6 Dependence and Data Flow
E_g 7 : : Symbolic Execution & Proof
g 8 Finite State Verification
9 [][] TestCase Selection & Adequacy
10 [Functional Testing
11 | | [| Combinatorial Testing
12 [] structural Testing
§ 13 R Data Flow Testing
S 14 Model-Based Testing
f} 15 : : Testing Object Oriented Software
S 16 Fault Based Testing
g oz || | TestExecution
f % 18 e Inspection
{E’ ,_g 19 [Program Analysis
20][] Planning and Monitoring
21] Integration Testing
oy 22 : : System, Acceptance & Regression
o § 23 | || | Automating A&T
& 24 Documenting A&T

Figure

1: Selecting core material by need

Essential material for the general reader
D Essential chapter for a short course
D Next priority for selective reading

D Topics for a longer course or a
second reading

XXii

Preface

e Chapter 15 (Testing Object-Oriented Software), through Section 15.3, to appre-
ciate implications of the object oriented paradigm on analysis and testing.

e Chapter 17 (Test Execution), to manage an easily overlooked set of problems
and costs.

e Chapter 18 (Inspection), to grasp the essential features of inspection.

In addition, Chapter 20 (Planning and Monitoring the Process) is useful to gain
a deeper appreciation of the interplay between software quality activities and other
aspects of a software process.

If the computer science graduate curriculum does not include a course devoted
to analysis and testing, we recommend that a graduate software engineering course
also cover Chapters 5 (Finite Models), 8 (Finite State Verification), and 19 (Program
Analysis) to provide essential technical background.

Supplementary material and a discussion forum are available on the book Web site,
http://www.wiley.com/college/pezze

Part |

Fundamentals of Test and
Analysis

Chapter 1

Software Test and Analysis in
a Nutshell

Before considering individual aspects and techniques of software analysis and testing,
it is useful to view the “big picture” of software quality in the context of a software
development project and organization. The objective of this chapter is to introduce
the range of software verification and validation (V&V) activities and a rationale for
selecting and combining them within a software development process. This overview is
necessarily cursory and incomplete, with many details deferred to subsequent chapters.

1.1 Engineering Processes and Verification

Engineering disciplines pair design and construction activities with activities that check
intermediate and final products so that defects can be identified and removed. Software
engineering is no exception: Construction of high-quality software requires comple-
mentary pairing of design and verification activities throughout development.

Verification and design activities take various forms ranging from those suited to
highly repetitive construction of noncritical items for mass markets to highly cus-
tomized or highly critical products. Appropriate verification activities depend on the
engineering discipline, the construction process, the final product, and quality require-
ments.

Repetition and high levels of automation in production lines reduce the need for
verification of individual products. For example, only a few key components of prod-
ucts like screens, circuit boards, and toasters are verified individually. The final prod-
ucts are tested statistically. Full test of each individual product may not be economical,
depending on the costs of testing, the reliability of the production process, and the costs
of field failures.

Even for some mass market products, complex processes or stringent quality re-
quirements may require both sophisticated design and advanced product verification
procedures. For example, computers, cars, and aircraft, despite being produced in se-
ries, are checked individually before release to customers. Other products are not built

3

4

Software Test and Analysis in a Nutshell

in series, but are engineered individually through highly evolved processes and tools.
Custom houses, race cars, and software are not built in series. Rather, each house,
each racing car, and each software package is at least partly unique in its design and
functionality. Such products are verified individually both during and after production
to identify and eliminate faults.

Verification of goods produced in series (e.g., screens, boards, or toasters) consists
of repeating a predefined set of tests and analyses that indicate whether the products
meet the required quality standards. In contrast, verification of a unique product, such
as a house, requires the design of a specialized set of tests and analyses to assess the
quality of that product. Moreover, the relationship between the test and analysis results
and the quality of the product cannot be defined once for all items, but must be assessed
for each product. For example, the set of resistance tests for assessing the quality of
a floor must be customized for each floor, and the resulting quality depends on the
construction methods and the structure of the building.

Verification grows more difficult with the complexity and variety of the products.
Small houses built with comparable technologies in analogous environments can be
verified with standardized procedures. The tests are parameterized to the particular
house, but are nonetheless routine. Verification of a skyscraper or of a house built
in an extreme seismic area, on the other hand, may not be easily generalized, instead
requiring specialized tests and analyses designed particularly for the case at hand.

Software is among the most variable and complex of artifacts engineered on a reg-
ular basis. Quality requirements of software used in one environment may be quite
different and incompatible with quality requirements of a different environment or ap-
plication domain, and its structure evolves and often deteriorates as the software system
grows. Moreover, the inherent nonlinearity of software systems and uneven distribu-
tion of faults complicates verification. If an elevator can safely carry a load of 1000 kg,
it can also safely carry any smaller load, but if a procedure correctly sorts a set of 256
elements, it may fail on a set of 255 or 53 or 12 elements, as well as on 257 or 1023.

The cost of software verification often exceeds half the overall cost of software de-
velopment and maintenance. Advanced development technologies and powerful sup-
porting tools can reduce the frequency of some classes of errors, but we are far from
eliminating errors and producing fault-free software. In many cases new development
approaches introduce new subtle kinds of faults, which may be more difficult to reveal
and remove than classic faults. This is the case, for example, with distributed software,
which can present problems of deadlock or race conditions that are not present in se-
quential programs. Likewise, object-oriented development introduces new problems
due to the use of polymorphism, dynamic binding, and private state that are absent or
less pronounced in procedural software.

The variety of problems and the richness of approaches make it challenging to
choose and schedule the right blend of techniques to reach the required level of quality
within cost constraints. There are no fixed recipes for attacking the problem of verify-
ing a software product. Even the most experienced specialists do not have pre-cooked
solutions, but need to design a solution that suits the problem, the requirements, and
the development environment.

Basic Questions

1.2 Basic Questions

To start understanding how to attack the problem of verifying software, let us consider
a hypothetical case. The Board of Governors of Chipmunk Computers, an (imaginary)
computer manufacturer, decides to add new online shopping functions to the company
Web presence to allow customers to purchase individually configured products. Let us
assume the role of quality manager. To begin, we need to answer a few basic questions:

e When do verification and validation start? When are they complete?

e What particular techniques should be applied during development of the product
to obtain acceptable quality at an acceptable cost?

e How can we assess the readiness of a product for release?
e How can we control the quality of successive releases?

e How can the development process itself be improved over the course of the cur-
rent and future projects to improve products and make verification more cost-
effective?

1.3 When Do Verification and Validation Start and End?

Although some primitive software development processes concentrate testing and anal-
ysis at the end of the development cycle, and the job title “tester” in some organizations
still refers to a person who merely executes test cases on a complete product, today it
is widely understood that execution of tests is a small part of the verification and vali-
dation process required to assess and maintain the quality of a software product.

Verification and validation start as soon as we decide to build a software product,
or even before. In the case of Chipmunk Computers, when the Board of Governors
asks the information technology (IT) manager for a feasibility study, the IT manager
considers not only functionality and development costs, but also the required qualities
and their impact on the overall cost.

The Chipmunk software quality manager participates with other key designers in
the feasibility study, focusing in particular on risk analysis and the measures needed to
assess and control quality at each stage of development. The team assesses the impact
of new features and new quality requirements on the full system and considers the con-
tribution of quality control activities to development cost and schedule. For example,
migrating sales functions into the Chipmunk Web site will increase the criticality of
system availability and introduce new security issues. A feasibility study that ignored
quality could lead to major unanticipated costs and delays and very possibly to project
failure.

The feasibility study necessarily involves some tentative architectural design, for
example, a division of software structure corresponding to a division of responsibility
between a human interface design team and groups responsible for core business soft-
ware (“business logic”) and supporting infrastructure, and a rough build plan breaking

6

Software Test and Analysis in a Nutshell

the project into a series of incremental deliveries. Opportunities and obstacles for cost-
effective verification are important considerations in factoring the development effort
into subsystems and phases, and in defining major interfaces.

Overall architectural design divides work and separates qualities that can be verified
independently in the different subsystems, thus easing the work of the testing team as
well as other developers. For example, the Chipmunk design team divides the system
into a presentation layer, back-end logic, and infrastructure. Development of the three
subsystems is assigned to three different teams with specialized experience, each of
which must meet appropriate quality constraints. The quality manager steers the early
design toward a separation of concerns that will facilitate test and analysis.

In the Chipmunk Web presence, a clean interface between the presentation layer
and back end logic allows a corresponding division between usability testing (which
is the responsibility of the human interface group, rather than the quality group) and
verification of correct functioning. A clear separation of infrastructure from business
logic serves a similar purpose. Responsibility for a small kernel of critical functions is
allocated to specialists on the infrastructure team, leaving effectively checkable rules
for consistent use of those functions throughout other parts of the system.

Taking into account quality constraints during early breakdown into subsystems
allows for a better allocation of quality requirements and facilitates both detailed design
and testing. However, many properties cannot be guaranteed by one subsystem alone.
The initial breakdown of properties given in the feasibility study will be detailed during
later design and may result in “cross-quality requirements” among subsystems. For
example, to guarantee a given security level, the infrastructure design team may require
verification of the absence of some specific security holes (e.g., buffer overflow) in
other parts of the system.

The initial build plan also includes some preliminary decisions about test and anal-
ysis techniques to be used in development. For example, the preliminary prototype
of Chipmunk on-line sales functionality will not undergo complete acceptance testing,
but will be used to validate the requirements analysis and some design decisions. Ac-
ceptance testing of the first release will be based primarily on feedback from selected
retail stores, but will also include complete checks to verify absence of common secu-
rity holes. The second release will include full acceptance test and reliability measures.

If the feasibility study leads to a project commitment, verification and validation
(V&V) activities will commence with other development activities, and like develop-
ment itself will continue long past initial delivery of a product. Chipmunk’s new Web-
based functions will be delivered in a series of phases, with requirements reassessed
and modified after each phase, so it is essential that the V&V plan be cost-effective over
a series of deliveries whose outcome cannot be fully known in advance. Even when
the project is “complete,” the software will continue to evolve and adapt to new con-
ditions, such as a new version of the underlying database, or new requirements, such
as the opening of a European sales division of Chipmunk. V&V activities continue
through each small or large change to the system.

What Techniques Should Be Applied?

Why Combine Techniques?
No single test or analysis technique can serve all purposes. The primary reasons for
combining techniques, rather than choosing a single “best” technique, are

o Effectiveness for different classes of faults. For example, race conditions are
very difficult to find with conventional testing, but they can be detected with
static analysis techniques.

e Applicability at different points in a project. For example, we can apply inspec-
tion techniques very early to requirements and design representations that are not
suited to more automated analyses.

e Differences in purpose. For example, systematic (nonrandom) testing is aimed
at maximizing fault detection, but cannot be used to measure reliability; for that,
statistical testing is required.

e Trade-offs in cost and assurance. For example, one may use a relatively expen-
sive technique to establish a few key properties of core components (e.g., a se-
curity kernel) when those techniques would be too expensive for use throughout

a project.

1.4 What Techniques Should Be Applied?

The feasibility study is the first step of a complex development process that should lead
to delivery of a satisfactory product through design, verification, and validation activ-
ities. Verification activities steer the process toward the construction of a product that
satisfies the requirements by checking the quality of intermediate artifacts as well as
the ultimate product. Validation activities check the correspondence of the intermediate
artifacts and the final product to users’ expectations.

The choice of the set of test and analysis techniques depends on quality, cost,
scheduling, and resource constraints in development of a particular product. For the
business logic subsystem, the quality team plans to use a preliminary prototype for
validating requirements specifications. They plan to use automatic tools for simple
structural checks of the architecture and design specifications. They will train staff for
design and code inspections, which will be based on company checklists that identify
deviations from design rules for ensuring maintainability, scalability, and correspon-
dence between design and code.

Requirements specifications at Chipmunk are written in a structured, semiformal
format. They are not amenable to automated checking, but like any other software ar-
tifact they can be inspected by developers. The Chipmunk organization has compiled
a checklist based on their rules for structuring specification documents and on expe-
rience with problems in requirements from past systems. For example, the checklist
for inspecting requirements specifications at Chipmunk asks inspectors to confirm that
each specified property is stated in a form that can be effectively tested.

The analysis and test plan requires inspection of requirements specifications, design

8

Software Test and Analysis in a Nutshell

specifications, source code, and test documentation. Most source code and test docu-
mentation inspections are a simple matter of soliciting an off-line review by one other
developer, though a handful of critical components are designated for an additional
review and comparison of notes. Component interface specifications are inspected by
small groups that include a representative of the “provider” and “consumer” sides of
the interface, again mostly off-line with exchange of notes through a discussion service.
A larger group and more involved process, including a moderated inspection meeting
with three or four participants, is used for inspection of a requirements specification.

Chipmunk developers produce functional unit tests with each development work
assignment, as well as test oracles and any other scaffolding required for test execution.
Test scaffolding is additional code needed to execute a unit or a subsystem in isolation.
Test oracles check the results of executing the code and signal discrepancies between
actual and expected outputs.

Test cases at Chipmunk are based primarily on interface specifications, but the ex-
tent to which unit tests exercise the control structure of programs is also measured. If
less than 90% of all statements are executed by the functional tests, this is taken as an
indication that either the interface specifications are incomplete (if the missing cover-
age corresponds to visible differences in behavior), or else additional implementation
complexity hides behind the interface. Either way, additional test cases are devised
based on a more complete description of unit behavior.

Integration and system tests are generated by the quality team, working from a
catalog of patterns and corresponding tests. The behavior of some subsystems or com-
ponents is modeled as finite state machines, so the quality team creates test suites that
exercise program paths corresponding to each state transition in the models.

Scaffolding and oracles for integration testing are part of the overall system archi-
tecture. Oracles for individual components and units are designed and implemented
by programmers using tools for annotating code with conditions and invariants. The
Chipmunk developers use a home-grown test organizer tool to bind scaffolding to code,
schedule test runs, track faults, and organize and update regression test suites.

The quality plan includes analysis and test activities for several properties distinct
from functional correctness, including performance, usability, and security. Although
these are an integral part of the quality plan, their design and execution are delegated
in part or whole to experts who may reside elsewhere in the organization. For example,
Chipmunk maintains a small team of human factors experts in its software division.
The human factors team will produce look-and-feel guidelines for the Web purchasing
system, which together with a larger body of Chipmunk interface design rules can be
checked during inspection and test. The human factors team also produces and executes
a usability testing plan.

Parts of the portfolio of verification and validation activities selected by Chipmunk
are illustrated in Figure 1.1. The quality of the final product and the costs of the quality
assurance activities depend on the choice of the techniques to accomplish each activity.
Most important is to construct a coherent plan that can be monitored. In addition to
monitoring schedule progress against the plan, Chipmunk records faults found during
each activity, using this as an indicator of potential trouble spots. For example, if the
number of faults found in a component during design inspections is high, additional
dynamic test time will be planned for that component.

What Techniques Should Be Applied? 9

Requirements Requirements Architectural Detailed Unit Integration

Elicitation Specification Design Design Coding & Delivery METIEETED

| Identify qualites |

| Plan acceptance test |

Verify
Specifications

Execute Test Cases and Validate Generate Test

Improve
Process

Plan and Monitor

| Plan system test |

| Plan unit & integration test

| Monitor the A&T process

| Validate specifications |

| Analyze architectural design |

| Inspect architectural design |

| Inspect detailed design |

| Code inspection

Cases

Generate system test |

| Generate integration test |

| Generate unit test |

| Generate regression test |

| Update regression test |

Software

| Design scaffolding |

| Design oracles |

| Execute unit test |

| Analyze coverage |

| Generate structural test |

| Execute integration test |

| Execute system test |

| Execute acceptance test |

| Execute regression test |

| Collect data on faults |

| Analyze faults and improve the process |

Figure 1.1: Main analysis and testing activities through the software life cycle.

10 Software Test and Analysis in a Nutshell

A dependability
A availability
AMTBF

A reliability

A alpha test

A beta test

1.5 How Can We Assess the Readiness of a Product?

Analysis and testing activities during development are intended primarily to reveal
faults so that they can be removed. Identifying and removing as many faults as possible
is a useful objective during development, but finding all faults is nearly impossible and
seldom a cost-effective objective for a nontrivial software product. Analysis and test
cannot go on forever: Products must be delivered when they meet an adequate level
of functionality and quality. We must have some way to specify the required level of
dependability and to determine when that level has been attained.

Different measures of dependability are appropriate in different contexts. Avail-
ability measures the quality of service in terms of running versus down time; mean
time between failures (MTBF) measures the quality of the service in terms of time
between failures, that is, length of time intervals during which the service is available.
Reliability is sometimes used synonymously with availability or MTBF, but usually
indicates the fraction of all attempted operations (program runs, or interactions, or
sessions) that complete successfully.

Both availability and reliability are important for the Chipmunk Web presence. The
availability goal is set (somewhat arbitrarily) at an average of no more than 30 minutes
of down time per month. Since 30 one-minute failures in the course of a day would be
much worse than a single 30-minute failure, MTBF is separately specified as at least
one week. In addition, a reliability goal of less than 1 failure per 1000 user sessions
is set, with a further stipulation that certain critical failures (e.g., loss of data) must be
vanishingly rare.

Having set these goals, how can Chipmunk determine when it has met them? Mon-
itoring systematic debug testing can provide a hint, but no more. A product with only
a single fault can have a reliability of zero if that fault results in a failure on every exe-
cution, and there is no reason to suppose that a test suite designed for finding faults is
at all representative of actual usage and failure rate.

From the experience of many previous projects, Chipmunk has empirically deter-
mined that in its organization, it is fruitful to begin measuring reliability when debug
testing is yielding less than one fault (“bug”) per day of tester time. For some appli-
cation domains, Chipmunk has gathered a large amount of historical usage data from
which to define an operational profile, and these profiles can be used to generate large,
statistically valid sets of randomly generated tests. If the sample thus tested is a valid
model of actual executions, then projecting actual reliability from the failure rate of
test cases is elementary. Unfortunately, in many cases such an operational profile is not
available.

Chipmunk has an idea of how the Web sales facility will be used, but it cannot
construct and validate a model with sufficient detail to obtain reliability estimates from
a randomly generated test suite. They decide, therefore, to use the second major ap-
proach to verifying reliability, using a sample of real users. This is commonly known as
alpha testing if the tests are performed by users in a controlled environment, observed
by the development organization. If the tests consist of real users in their own envi-
ronment, performing actual tasks without interference or close monitoring, it is known
as beta testing. The Chipmunk team plans a very small alpha test, followed by a longer
beta test period in which the software is made available only in retail outlets. To ac-

How Can We Ensure the Quality of Successive Releases?

11

celerate reliability measurement after subsequent revisions of the system, the beta test
version will be extensively instrumented, capturing many properties of a usage profile.

1.6 How Can We Ensure the Quality of Successive
Releases?

Software test and analysis does not stop at the first release. Software products of-
ten operate for many years, frequently much beyond their planned life cycle, and un-
dergo many changes. They adapt to environment changes—for example, introduction
of new device drivers, evolution of the operating system, and changes in the underly-
ing database. They also evolve to serve new and changing user requirements. Ongoing
quality tasks include test and analysis of new and modified code, reexecution of system
tests, and extensive record-keeping.

Chipmunk maintains a database for tracking problems. This database serves a dual
purpose of tracking and prioritizing actual, known program faults and their resolution
and managing communication with users who file problem reports. Even at initial
release, the database usually includes some known faults, because market pressure sel-
dom allows correcting all known faults before product release. Moreover, “bugs” in the
database are not always and uniquely associated with real program faults. Some prob-
lems reported by users are misunderstandings and feature requests, and many distinct
reports turn out to be duplicates which are eventually consolidated.

Chipmunk designates relatively major revisions, involving several developers, as
“point releases,” and smaller revisions as “patch level” releases. The full quality pro-
cess is repeated in miniature for each point release, including everything from inspec-
tion of revised requirements to design and execution of new unit, integration, system,
and acceptance test cases. A major point release is likely even to repeat a period of
beta testing.

Patch level revisions are often urgent for at least some customers. For example,
a patch level revision is likely when a fault prevents some customers from using the
software or when a new security vulnerability is discovered. Test and analysis for patch
level revisions is abbreviated, and automation is particularly important for obtaining
a reasonable level of assurance with very fast turnaround. Chipmunk maintains an
extensive suite of regression tests. The Chipmunk development environment supports
recording, classification, and automatic re-execution of test cases. Each point release
must undergo complete regression testing before release, but patch level revisions may
be released with a subset of regression tests that run unattended overnight.

When fixing one fault, it is all too easy to introduce a new fault or re-introduce
faults that have occurred in the past. Chipmunk developers add new regression test
cases as faults are discovered and repaired.

1.7 How Can the Development Process Be Improved?

As part of an overall process improvement program, Chipmunk has implemented a
quality improvement program. In the past, the quality team encountered the same

point release

patch level
release

regression test

12

Software Test and Analysis in a Nutshell

defects in project after project. The quality improvement program tracks and classifies
faults to identify the human errors that cause them and weaknesses in test and analysis
that allow them to remain undetected.

Chipmunk quality improvement group members are drawn from developers and
quality specialists on several project teams. The group produces recommendations that
may include modifications to development and test practices, tool and technology sup-
port, and management practices. The explicit attention to buffer overflow in networked
applications at Chipmunk is the result of failure analysis in previous projects.

Fault analysis and process improvement comprise four main phases: Defining the
data to be collected and implementing procedures for collecting it; analyzing collected
data to identify important fault classes; analyzing selected fault classes to identify
weaknesses in development and quality measures; and adjusting the quality and de-
velopment process.

Collection of data is particularly crucial and often difficult. Earlier attempts by
Chipmunk quality teams to impose fault data collection practices were a dismal fail-
ure. The quality team possessed neither carrots nor sticks to motivate developers under
schedule pressure. An overall process improvement program undertaken by the Chip-
munk software division provided an opportunity to better integrate fault data collection
with other practices, including the normal procedure for assigning, tracking, and re-
viewing development work assignments. Quality process improvement is distinct from
the goal of improving an individual product, but initial data collection is integrated in
the same bug tracking system, which in turn is integrated with the revision and config-
uration control system used by Chipmunk developers.

The quality improvement group defines the information that must be collected for
faultiness data to be useful as well as the format and organization of that data. Par-
ticipation of developers in designing the data collection process is essential to balance
the cost of data collection and analysis with its utility, and to build acceptance among
developers.

Data from several projects over time are aggregated and classified to identify classes
of faults that are important because they occur frequently, because they cause particu-
larly severe failures, or because they are costly to repair. These faults are analyzed to
understand how they are initially introduced and why they escape detection. The im-
provement steps recommended by the quality improvement group may include specific
analysis or testing steps for earlier fault detection, but they may also include design
rules and modifications to development and even to management practices. An im-
portant part of each recommended practice is an accompanying recommendation for
measuring the impact of the change.

Summary

The quality process has three distinct goals: improving a software product (by pre-
venting, detecting, and removing faults), assessing the quality of the software product
(with respect to explicit quality goals), and improving the long-term quality and cost-
effectiveness of the quality process itself. Each goal requires weaving quality assurance

How Can the Development Process Be Improved?

13

and improvement activities into an overall development process, from product incep-
tion through deployment, evolution, and retirement.

Each organization must devise, evaluate, and refine an approach suited to that or-
ganization and application domain. A well-designed approach will invariably combine
several test and analysis techniques, spread across stages of development. An array
of fault detection techniques are distributed across development stages so that faults
are removed as soon as possible. The overall cost and cost-effectiveness of techniques
depends to a large degree on the extent to which they can be incrementally re-applied
as the product evolves.

Further Reading

This book deals primarily with software analysis and testing to improve and assess
the dependability of software. That is not because qualities other than dependability
are unimportant, but rather because they require their own specialized approaches and
techniques. We offer here a few starting points for considering some other important
properties that interact with dependability. Norman’s The Design of Everyday Things
[Nor90] is a classic introduction to design for usability, with basic principles that apply
to both hardware and software artifacts. A primary reference on usability for interactive
computer software, and particularly for Web applications, is Nielsen’s Designing Web
Usability [Nie00]. Bishop’s text Computer Security: Art and Science [Bis02] is a good
introduction to security issues. The most comprehensive introduction to software safety
is Leveson’s Safeware [Lev95].

Exercises

1.1. Philip has studied “just-in-time” industrial production methods and is convinced
that they should be applied to every aspect of software development. He argues
that test case design should be performed just before the first opportunity to
execute the newly designed test cases, never earlier. What positive and negative
consequences do you foresee for this just-in-time test case design approach?

1.2. A newly hired project manager at Chipmunk questions why the quality manager
is involved in the feasibility study phase of the project, rather than joining the
team only when the project has been approved, as at the new manager’s previous
company. What argument(s) might the quality manager offer in favor of her
involvement in the feasibility study?

1.3. Chipmunk procedures call for peer review not only of each source code module,
but also of test cases and scaffolding for testing that module. Anita argues that
inspecting test suites is a waste of time; any time spent on inspecting a test case
designed to detect a particular class of fault could more effectively be spent in-
specting the source code to detect that class of fault. Anita’s project manager,

14

Software Test and Analysis in a Nutshell

1.4.

L.5.

1.6.

1.7.

on the other hand, argues that inspecting test cases and scaffolding can be cost-
effective when considered over the whole lifetime of a software product. What
argument(s) might Anita’s manager offer in favor of this conclusion?

The spiral model of software development prescribes sequencing incremental
prototyping phases for risk reduction, beginning with the most important project
risks. Architectural design for testability involves, in addition to defining testable
interface specifications for each major module, establishing a build order that
supports thorough testing after each stage of construction. How might spiral
development and design for test be complementary or in conflict?

You manage an online service that sells downloadable video recordings of classic
movies. A typical download takes one hour, and an interrupted download must be
restarted from the beginning. The number of customers engaged in a download
at any given time ranges from about 10 to about 150 during peak hours. On
average, your system goes down (dropping all connections) about two times per
week, for an average of three minutes each time. If you can double availability or
double mean time between failures, but not both, which will you choose? Why?

Having no a priori operational profile for reliability measurement, Chipmunk
will depend on alpha and beta testing to assess the readiness of its online pur-
chase functionality for public release. Beta testing will be carried out in retail
outlets, by retail store personnel, and then by customers with retail store per-
sonnel looking on. How might this beta testing still be misleading with respect
to reliability of the software as it will be used at home and work by actual cus-
tomers? What might Chipmunk do to ameliorate potential problems from this
reliability misestimation?

The junior test designers of Chipmunk Computers are annoyed by the proce-
dures for storing test cases together with scaffolding, test results, and related
documentation. They blame the extra effort needed to produce and store such
data for delays in test design and execution. They argue for reducing the data to
store to the minimum required for reexecuting test cases, eliminating details of
test documentation, and limiting test results to the information needed for gener-
ating oracles. What argument(s) might the quality manager use to convince the
junior test designers of the usefulness of storing all this information?

Chapter 2

A Framework for Test and
Analysis

The purpose of software test and analysis is either to assess software qualities or else
to make it possible to improve the software by finding defects. Of the many kinds of
software qualities, those addressed by the analysis and test techniques discussed in this
book are the dependability properties of the software product.

There are no perfect test or analysis techniques, nor a single “best” technique for
all circumstances. Rather, techniques exist in a complex space of trade-offs, and of-
ten have complementary strengths and weaknesses. This chapter describes the nature
of those trade-offs and some of their consequences, and thereby a conceptual frame-
work for understanding and better integrating material from later chapters on individual
techniques.

It is unfortunate that much of the available literature treats testing and analysis
as independent or even as exclusive choices, removing the opportunity to exploit their
complementarities. Armed with a basic understanding of the trade-offs and of strengths
and weaknesses of individual techniques, one can select from and combine an array of
choices to improve the cost-effectiveness of verification.

2.1 Validation and Verification

While software products and processes may be judged on several properties ranging
from time-to-market to performance to usability, the software test and analysis tech-
niques we consider are focused more narrowly on improving or assessing dependabil-
ity.

Assessing the degree to which a software system actually fulfills its requirements,
in the sense of meeting the user’s real needs, is called validation. Fulfilling require-
ments is not the same as conforming to a requirements specification. A specification is
a statement about a particular proposed solution to a problem, and that proposed solu-
tion may or may not achieve its goals. Moreover, specifications are written by people,
and therefore contain mistakes. A system that meets its actual goals is useful, while a

15

A validation

16 A Framework for Test and Analysis

Actual Needs and .
Constraints User Acceptance (alpha, beta test) Delivered
Package
1o
o
b System < System Test System
Specifications Integration
Analysis /
Review
S Subsystem Integration Test
Design/Specs Sl

Analysis /
Review
Unit/Component Unit/
Specs Module Test | Components

User review of external behavior as it is
determined or becomes visible

5

Validation >
Verification >

Figure 2.1: Validation activities check work products against actual user requirements,
while verification activities check consistency of work products.

Legend

A dependable system that is consistent with its specification is dependable.'

A verification “Verification” is checking the consistency of an implementation with a specifica-
tion. Here, “specification” and “implementation” are roles, not particular artifacts. For
example, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation”; checking whether the detailed design
is consistent with the overall design would then be verification of the detailed design.
Later, the same detailed design could play the role of “specification” with respect to

A good requirements document, or set of documents, should include both a requirements analysis and
a requirements specification, and should clearly distinguish between the two. The requirements analysis
describes the problem. The specification describes a proposed solution. This is not a book about requirements
engineering, but we note in passing that confounding requirements analysis with requirements specification
will inevitably have negative impacts on both validation and verification.

Validation and Verification

17

source code, which would be verified against the design. In every case, though, ver-
ification is a check of consistency between two descriptions, in contrast to validation
which compares a description (whether a requirements specification, a design, or a
running system) against actual needs.

Figure 2.1 sketches the relation of verification and validation activities with respect
to artifacts produced in a software development project. The figure should not be inter-
preted as prescribing a sequential process, since the goal of a consistent set of artifacts
and user satisfaction are the same whether the software artifacts (specifications, design,
code, etc.) are developed sequentially, iteratively, or in parallel. Verification activities
check consistency between descriptions (design and specifications) at adjacent levels
of detail, and between these descriptions and code.? Validation activities attempt to
gauge whether the system actually satisfies its intended purpose.

Validation activities refer primarily to the overall system specification and the final
code. With respect to overall system specification, validation checks for discrepancies
between actual needs and the system specification as laid out by the analysts, to en-
sure that the specification is an adequate guide to building a product that will fulfill its
goals. With respect to final code, validation aims at checking discrepancies between
actual need and the final product, to reveal possible failures of the development process
and to make sure the product meets end-user expectations. Validation checks between
the specification and final product are primarily checks of decisions that were left open
in the specification (e.g., details of the user interface or product features). Chapter 4
provides a more thorough discussion of validation and verification activities in partic-
ular software process models.

We have omitted one important set of verification checks from Figure 2.1 to avoid
clutter. In addition to checks that compare two or more artifacts, verification includes
checks for self-consistency and well-formedness. For example, while we cannot judge
that a program is “correct” except in reference to a specification of what it should do,
we can certainly determine that some programs are “incorrect” because they are ill-
formed. We may likewise determine that a specification itself is ill-formed because it
is inconsistent (requires two properties that cannot both be true) or ambiguous (can be
interpreted to require some property or not), or because it does not satisfy some other
well-formedness constraint that we impose, such as adherence to a standard imposed
by a regulatory agency.

Validation against actual requirements necessarily involves human judgment and
the potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci-
fication should be sufficiently precise and unambiguous that there can be no disagree-
ment about whether a particular system behavior is acceptable. While the term festing
is often used informally both for gauging usefulness and verifying the product, the
activities differ in both goals and approach. Our focus here is primarily on dependabil-
ity, and thus primarily on verification rather than validation, although techniques for
validation and the relation between the two is discussed further in Chapter 22.

Dependability properties include correctness, reliability, robustness, and safety.
Correctness is absolute consistency with a specification, always and in all circum-
stances. Correctness with respect to nontrivial specifications is almost never achieved.

2This part of the diagram is a variant of the well-known “V model” of verification and validation.

18 A Framework for Test and Analysis

undecidability

halting problem

Reliability is a statistical approximation to correctness, expressed as the likelihood
of correct behavior in expected use. Robustness, unlike correctness and reliability,
weighs properties as more and less critical, and distinguishes which properties should
be maintained even under exceptional circumstances in which full functionality can-
not be maintained. Safety is a kind of robustness in which the critical property to be
maintained is avoidance of particular hazardous behaviors. Dependability properties
are discussed further in Chapter 4.

2.2 Degrees of Freedom

Given a precise specification and a program, it seems that one ought to be able to
arrive at some logically sound argument or proof that a program satisfies the specified
properties. After all, if a civil engineer can perform mathematical calculations to show
that a bridge will carry a specified amount of traffic, shouldn’t we be able to similarly
apply mathematical logic to verification of programs?

For some properties and some very simple programs, it is in fact possible to obtain
a logical correctness argument, albeit at high cost. In a few domains, logical correct-
ness arguments may even be cost-effective for a few isolated, critical components (e.g.,
a safety interlock in a medical device). In general, though, one cannot produce a com-
plete logical “proof™ for the full specification of practical programs in full detail. This
is not just a sign that technology for verification is immature. It is, rather, a conse-
quence of one of the most fundamental properties of computation.

Even before programmable digital computers were in wide use, computing pioneer
Alan Turing proved that some problems cannot be solved by any computer program.
The universality of computers — their ability to carry out any programmed algorithm,
including simulations of other computers — induces logical paradoxes regarding pro-
grams (or algorithms) for analyzing other programs. In particular, logical contradic-
tions ensue from assuming that there is some program P that can, for some arbitrary
program Q and input /, determine whether QO eventually halts. To avoid those log-
ical contradictions, we must conclude that no such program for solving the “halting
problem” can possibly exist.

Countless university students have encountered the halting problem in a course
on the theory of computing, and most of those who have managed to grasp it at all
have viewed it as a purely theoretical result that, whether fascinating or just weird, is
irrelevant to practical matters of programming. They have been wrong. Almost every
interesting property regarding the behavior of computer programs can be shown to
“embed” the halting problem, that is, the existence of an infallible algorithmic check
for the property of interest would imply the existence of a program that solves the
halting problem, which we know to be impossible.

In theory, undecidability of a property S merely implies that for each verification
technique for checking S, there is at least one “pathological” program for which that
technique cannot obtain a correct answer in finite time. It does not imply that verifica-
tion will always fail or even that it will usually fail, only that it will fail in at least one
case. In practice, failure is not only possible but common, and we are forced to accept
a significant degree of inaccuracy.

Degrees of Freedom 19

Perfect verification of
arbitrary properties by
logical proof or
exhaustive testing
(infinite effort)

Theorem proving:
Unbounded effort to
verify general properties

Model Checking:
Decidable but possibly
intractable checking of

simple temporal properties

Typical
Data flow testing
analysis technique

Precise analysis of
simple syntactic
properties

Simplified
properties

Optimistic
inaccuracy

PessimisticY

inaccuracy

Figure 2.2: Verification trade-off dimensions

20 A Framework for Test and Analysis

A pessimistic
A optimistic

Program testing is a verification technique and is as vulnerable to undecidability
as other techniques. Exhaustive testing, that is, executing and checking every possible
behavior of a program, would be a “proof by cases,” which is a perfectly legitimate way
to construct a logical proof. How long would this take? If we ignore implementation
details such as the size of the memory holding a program and its data, the answer is
“forever.” That is, for most programs, exhaustive testing cannot be completed in any
finite amount of time.

Suppose we do make use of the fact that programs are executed on real machines
with finite representations of memory values. Consider the following trivial Java class:

1 class Trivial{
2 static int sum(int a, int b) { return a + b; }

}

The Java language definition states that the representation of an int is 32 binary
digits, and thus there are only 232 x 232 = 264 ~ 10?! different inputs on which the
method Trivial.sum() need be tested to obtain a proof of its correctness. At one nanosec-
ond (102 seconds) per test case, this will take approximately 10'? seconds, or about
30,000 years.

A technique for verifying a property can be inaccurate in one of two directions (Fig-
ure 2.2). It may be pessimistic, meaning that it is not guaranteed to accept a program
even if the program does possess the property being analyzed, or it can be optimistic
if it may accept some programs that do not possess the property (i.e., it may not detect
all violations). Testing is the classic optimistic technique, because no finite number
of tests can guarantee correctness. Many automated program analysis techniques for
properties of program behaviors? are pessimistic with respect to the properties they are
designed to verify. Some analysis techniques may give a third possible answer, “don’t
know.” We can consider these techniques to be either optimistic or pessimistic depend-
ing on how we interpret the “don’t know” result. Perfection is unobtainable, but one
can choose techniques that err in only a particular direction.

A software verification technique that errs only in the pessimistic direction is called
a conservative analysis. It might seem that a conservative analysis would always be
preferable to one that could accept a faulty program. However, a conservative analysis
will often produce a very large number of spurious error reports, in addition to a few
accurate reports. A human may, with some effort, distinguish real faults from a few
spurious reports, but cannot cope effectively with a long list of purported faults of
which most are false alarms. Often only a careful choice of complementary optimistic
and pessimistic techniques can help in mutually reducing the different problems of the
techniques and produce acceptable results.

In addition to pessimistic and optimistic inaccuracy, a third dimension of compro-
mise is possible: substituting a property that is more easily checked, or constraining
the class of programs that can be checked. Suppose we want to verify a property S,
but we are not willing to accept the optimistic inaccuracy of testing for S, and the only

3Why do we bother to say “properties of program behaviors” rather than “program properties?” Because
simple syntactic properties of program text, such as declaring variables before they are used or indenting
properly, can be decided efficiently and precisely.

Degrees of Freedom

21

A Note on Terminology
Many different terms related to pessimistic and optimistic inaccuracy appear in the
literature on program analysis. We have chosen these particular terms because it is
fairly easy to remember which is which. Other terms a reader is likely to encounter
include:

Safe: A safe analysis has no optimistic inaccuracy; that is, it accepts only correct
programs. In other kinds of program analysis, safety is related to the goal of
the analysis. For example, a safe analysis related to a program optimization is
one that allows that optimization only when the result of the optimization will be
correct.

Sound: Soundness is a term to describe evaluation of formulas. An analysis of a
program P with respect to a formula F is sound if the analysis returns True only
when the program actually does satisfy the formula. If satisfaction of a formula
F is taken as an indication of correctness, then a sound analysis is the same as a
safe or conservative analysis.

If the sense of F is reversed (i.e., if the truth of F indicates a fault rather than cor-
rectness) then a sound analysis is not necessarily conservative. In that case it is
allowed optimistic inaccuracy but must not have pessimistic inaccuracy. (Note,
however, that use of the term sound has not always been consistent in the soft-
ware engineering literature. Some writers use the term unsound as we use the
term optimistic.)

Complete: Completeness, like soundness, is a term to describe evaluation of formu-
las. An analysis of a program P with respect to a formula F is complete if the
analysis always returns True when the program actually does satisfy the formula.
If satisfaction of a formula F is taken as an indication of correctness, then a com-
plete analysis is one that admits only optimistic inaccuracy. An analysis that is
sound but incomplete is a conservative analysis.

22

A Framework for Test and Analysis

available static analysis techniques for S result in such huge numbers of spurious error
messages that they are worthless. Suppose we know some property S’ that is a suffi-
cient, but not necessary, condition for S (i.e., the validity of " implies S, but not the
contrary). Maybe §’ is so much simpler than S that it can be analyzed with little or
no pessimistic inaccuracy. If we check §' rather than S, then we may be able to pro-
vide precise error messages that describe a real violation of ' rather than a potential
violation of S.

Many examples of substituting simple, checkable properties for actual properties
of interest can be found in the design of modern programming languages. Consider,
for example, the property that each variable should be initialized with a value before its
value is used in an expression. In the C language, a compiler cannot provide a precise
static check for this property, because of the possibility of code like the following:

inti, sum;
int first=1;
for (i=0; i<10; ++i) {
if (first) {
sum=0; first=0;
}

sum +=i;

0w N O OB~ W N =

}

It is impossible in general to determine whether each control flow path can be
executed, and while a human will quickly recognize that the variable sum is initialized
on the first iteration of the loop, a compiler or other static analysis tool will typically
not be able to rule out an execution in which the initialization is skipped on the first
iteration. Java neatly solves this problem by making code like this illegal; that is, the
rule is that a variable must be initialized on all program control paths, whether or not
those paths can ever be executed.

Software developers are seldom at liberty to design new restrictions into the pro-
gramming languages and compilers they use, but the same principle can be applied
through external tools, not only for programs but also for other software artifacts. Con-
sider, for example, the following condition that we might wish to impose on require-
ments documents:

(1) Each significant domain term shall appear with a definition in the glossary of
the document.

This property is nearly impossible to check automatically, since determining whether
a particular word or phrase is a “significant domain term” is a matter of human judg-
ment. Moreover, human inspection of the requirements document to check this require-
ment will be extremely tedious and error-prone. What can we do? One approach is to
separate the decision that requires human judgment (identifying words and phrases as
“significant”) from the tedious check for presence in the glossary.

(1a) Each significant domain term shall be set off in the requirements document
by the use of a standard style ferm. The default visual representation of the

Varieties of Software

23

term style is a single underline in printed documents and purple text in on-line
displays.

(1b) Each word or phrase in the ferm style shall appear with a definition in the
glossary of the document.

Property (1a) still requires human judgment, but it is now in a form that is much
more amenable to inspection. Property (1b) can be easily automated in a way that
will be completely precise (except that the task of determining whether definitions
appearing in the glossary are clear and correct must also be left to humans).

As a second example, consider a Web-based service in which user sessions need not
directly interact, but they do read and modify a shared collection of data on the server.
In this case a critical property is maintaining integrity of the shared data. Testing for
this property is notoriously difficult, because a “race condition” (interference between
writing data in one process and reading or writing related data in another process) may
cause an observable failure only very rarely.

Fortunately, there is a rich body of applicable research results on concurrency con-
trol that can be exploited for this application. It would be foolish to rely primarily on
direct testing for the desired integrity properties. Instead, one would choose a (well-
known, formally verified) concurrency control protocol, such as the two-phase locking
protocol, and rely on some combination of static analysis and program testing to check
conformance to that protocol. Imposing a particular concurrency control protocol sub-
stitutes a much simpler, sufficient property (two-phase locking) for the complex prop-
erty of interest (serializability), at some cost in generality; that is, there are programs
that violate two-phase locking and yet, by design or dumb luck, satisfy serializability
of data access.

It is a common practice to further impose a global order on lock accesses, which
again simplifies testing and analysis. Testing would identify execution sequences in
which data is accessed without proper locks, or in which locks are obtained and re-
linquished in an order that does not respect the two-phase protocol or the global lock
order, even if data integrity is not violated on that particular execution, because the
locking protocol failure indicates the potential for a dangerous race condition in some
other execution that might occur only rarely or under extreme load.

With the adoption of coding conventions that make locking and unlocking actions
easy to recognize, it may be possible to rely primarily on flow analysis to determine
conformance with the locking protocol, with the role of dynamic testing reduced to
a “back-up” to raise confidence in the soundness of the static analysis. Note that the
critical decision to impose a particular locking protocol is not a post-hoc decision that
can be made in a testing “phase” at the end of development. Rather, the plan for
verification activities with a suitable balance of cost and assurance is part of system
design.

2.3 Varieties of Software

The software testing and analysis techniques presented in the main parts of this book
were developed primarily for procedural and object-oriented software. While these

24

A Framework for Test and Analysis

“generic” techniques are at least partly applicable to most varieties of software, partic-
ular application domains (e.g., real-time and safety-critical software) and construction
methods (e.g., concurrency and physical distribution, graphical user interfaces) call for
particular properties to be verified, or the relative importance of different properties,
as well as imposing constraints on applicable techniques. Typically a software system
does not fall neatly into one category but rather has a number of relevant characteristics
that must be considered when planning verification.

As an example, consider a physically distributed (networked) system for scheduling
a group of individuals. The possibility of concurrent activity introduces considerations
that would not be present in a single-threaded system, such as preserving the integrity
of data. The concurrency is likely to introduce nondeterminism, or else introduce an
obligation to show that the system is deterministic, either of which will almost certainly
need to be addressed through some formal analysis. The physical distribution may
make it impossible to determine a global system state at one instant, ruling out some
simplistic approaches to system test and, most likely, suggesting an approach in which
dynamic testing of design conformance of individual processes is combined with static
analysis of their interactions. If in addition the individuals to be coordinated are fire
trucks, then the criticality of assuring prompt response will likely lead one to choose a
design that is amenable to strong analysis of worst-case behavior, whereas an average-
case analysis might be perfectly acceptable if the individuals are house painters.

As a second example, consider the software controlling a “soft” dashboard display
in an automobile. The display may include ground speed, engine speed (rpm), oil pres-
sure, fuel level, and so on, in addition to a map and navigation information from a
global positioning system receiver. Clearly usability issues are paramount, and may
even impinge on safety (e.g., if critical information can be hidden beneath or among
less critical information). A disciplined approach will not only place a greater empha-
sis on validation of usability throughout development, but to the extent possible will
also attempt to codify usability guidelines in a form that permits verification. For ex-
ample, if the usability group determines that the fuel gauge should always be visible
when the fuel level is below a quarter of a tank, then this becomes a specified property
that is subject to verification. The graphical interface also poses a challenge in effec-
tively checking output. This must be addressed partly in the architectural design of the
system, which can make automated testing feasible or not depending on the interfaces
between high-level operations (e.g., opening or closing a window, checking visibility
of a window) and low-level graphical operations and representations.

Summary

Verification activities are comparisons to determine the consistency of two or more
software artifacts, or self-consistency, or consistency with an externally imposed cri-
terion. Verification is distinct from validation, which is consideration of whether soft-
ware fulfills its actual purpose. Software development always includes some validation
and some verification, although different development approaches may differ greatly
in their relative emphasis.

Precise answers to verification questions are sometimes difficult or impossible to

Varieties of Software

25

obtain, in theory as well as in practice. Verification is therefore an art of compromise,
accepting some degree of optimistic inaccuracy (as in testing) or pessimistic inaccu-
racy (as in many static analysis techniques) or choosing to check a property that is only
an approximation of what we really wish to check. Often the best approach will not be
exclusive reliance on one technique, but careful choice of a portfolio of test and anal-
ysis techniques selected to obtain acceptable results at acceptable cost, and addressing
particular challenges posed by characteristics of the application domain or software.

Further Reading

The “V” model of verification and validation (of which Figure 2.1 is a variant) appears
in many software engineering textbooks, and in some form can be traced at least as
far back as Myers’ classic book [Mye79]. The distinction between validation and ver-
ification as given here follow’s Boehm [Boe81], who has most memorably described
validation as “building the right system” and verification as “building the system right.”

The limits of testing have likewise been summarized in a famous aphorism, by
Dijkstra [Dij72] who pronounced that “Testing can show the presence of faults, but
not their absence.” This phrase has sometimes been interpreted as implying that one
should always prefer formal verification to testing, but the reader will have noted that
we do not draw that conclusion. Howden’s 1976 paper [How76] is among the earliest
treatments of the implications of computability theory for program testing.

A variant of the diagram in Figure 2.2 and a discussion of pessimistic and optimistic
inaccuracy were presented by Young and Taylor [YT89]. A more formal characteriza-
tion of conservative abstractions in static analysis, called abstract interpretation, was
introduced by Cousot and Cousot in a seminal paper that is, unfortunately, nearly un-
readable [CC77]. We enthusiastically recommend Jones’s lucid introduction to abstract
interpretation [JN95], which is suitable for readers who have a firm general background
in computer science and logic but no special preparation in programming semantics.

There are few general treatments of trade-offs and combinations of software test-
ing and static analysis, although there are several specific examples, such as work in
communication protocol conformance testing [vBDZ89, FvBK*91]. The two-phase
locking protocol mentioned in Section 2.2 is described in several texts on databases;
Bernstein et al. [BHGR87] is particularly thorough.

Exercises

2.1. The Chipmunk marketing division is worried about the start-up time of the new
version of the RodentOS operating system (an (imaginary) operating system of
Chipmunk). The marketing division representative suggests a software require-
ment stating that the start-up time shall not be annoying to users.

Explain why this simple requirement is not verifiable and try to reformulate the
requirement to make it verifiable.

26

A Framework for Test and Analysis

2.2.

2.3.

2.4.

Consider a simple specification language SL that describes systems diagrammat-
ically in terms of functions, which represent data transformations and correspond
to nodes of the diagram, and flows, which represent data flows and correspond
to arcs of the diagram.* Diagrams can be hierarchically refined by associating a
function F (a node of the diagram) with an SL specification that details function
F. Flows are labeled to indicate the type of data.

Suggest some checks for self-consistency for SL.

A calendar program should provide timely reminders; for example, it should
remind the user of an upcoming event early enough for the user to take action,
but not too early. Unfortunately, “early enough” and “too early” are qualities
that can only be validated with actual users. How might you derive verifiable
dependability properties from the timeliness requirement?

It is sometimes important in multi-threaded applications to ensure that a se-
quence of accesses by one thread to an aggregate data structure (e.g., some kind
of table) appears to other threads as an atomic transaction. When the shared
data structure is maintained by a database system, the database system typically
uses concurrency control protocols to ensure the atomicity of the transactions it
manages. No such automatic support is typically available for data structures
maintained by a program in main memory.

Among the options available to programmers to ensure serializability (the illu-
sion of atomic access) are the following:

e The programmer could maintain very coarse-grain locking, preventing any
interleaving of accesses to the shared data structure, even when such inter-
leaving would be harmless. (For example, each transaction could be encap-
sulated in an single synchronized Java method.) This approach can cause a
great deal of unnecessary blocking between threads, hurting performance,
but it is almost trivial to verify either automatically or manually.

e Automated static analysis techniques can sometimes verify serializability
with finer-grain locking, even when some methods do not use locks at all.
This approach can still reject some sets of methods that would ensure seri-
alizability.

e The programmer could be required to use a particular concurrency con-
trol protocol in his or her code, and we could build a static analysis tool
that checks for conformance with that protocol. For example, adherence
to the common two-phase-locking protocol, with a few restrictions, can be
checked in this way.

e We might augment the data accesses to build a serializability graph struc-
ture representing the “happens before” relation among transactions in test-
ing. It can be shown that the transactions executed in serializable manner
if and only if the serializability graph is acyclic.

4Readers expert in Structured Analysis may have noticed that SL resembles a simple Structured Analysis
specification

Varieties of Software

27

2.5.

Compare the relative positions of these approaches on the three axes of verifi-
cation techniques: pessimistic inaccuracy, optimistic inaccuracy, and simplified
properties.

When updating a program (e.g., for removing a fault, changing or adding a func-
tionality), programmers may introduce new faults or expose previously hidden
faults. To be sure that the updated version maintains the functionality provided
by the previous version, it is common practice to reexecute the test cases de-
signed for the former versions of the program. Reexecuting test cases designed
for previous versions is called regression testing.

When testing large complex programs, the number of regression test cases may
be large. If updated software must be expedited (e.g., to repair a security vul-
nerability before it is exploited), test designers may need to select a subset of
regression test cases to be reexecuted.

Subsets of test cases can be selected according to any of several different criteria.
An interesting property of some regression test selection criteria is that they do
not to exclude any test case that could possibly reveal a fault.

How would you classify such a property according to the sidebar of page 21?

28 A Framework for Test and Analysis

Chapter 3

Basic Principles

Mature engineering disciplines are characterized by basic principles. Principles pro-
vide a rationale for defining, selecting, and applying techniques and methods. They are
valid beyond a single technique and over a time span in which techniques come and
go, and can help engineers study, define, evaluate, and apply new techniques.

Analysis and testing (A&T) has been common practice since the earliest software
projects. A&T activities were for a long time based on common sense and individual
skills. It has emerged as a distinct discipline only in the last three decades.

This chapter advocates six principles that characterize various approaches and tech-
niques for analysis and testing: sensitivity, redundancy, restriction, partition, visibility,
and feedback. Some of these principles, such as partition, visibility, and feedback, are
quite general in engineering. Others, notably sensitivity, redundancy, and restriction,
are specific to A&T and contribute to characterizing A&T as a discipline.

3.1 Sensitivity

Human developers make errors, producing faults in software. Faults may lead to fail-
ures, but faulty software may not fail on every execution. The sensitivity principle
states that it is better to fail every time than sometimes.

Consider the cost of detecting and repairing a software fault. If it is detected im-
mediately (e.g., by an on-the-fly syntactic check in a design editor), then the cost of
correction is very small, and in fact the line between fault prevention and fault de-
tection is blurred. If a fault is detected in inspection or unit testing, the cost is still
relatively small. If a fault survives initial detection efforts at the unit level, but triggers
a failure detected in integration testing, the cost of correction is much greater. If the
first failure is detected in system or acceptance testing, the cost is very high indeed,
and the most costly faults are those detected by customers in the field.

A fault that triggers a failure on every execution is unlikely to survive past unit
testing. A characteristic of faults that escape detection until much later is that they
trigger failures only rarely, or in combination with circumstances that seem unrelated
or are difficult to control. For example, a fault that results in a failure only for some
unusual configurations of customer equipment may be difficult and expensive to detect.

29

30

Basic Principles

A fault that results in a failure randomly but very rarely — for example, a race condition
that only occasionally causes data corruption — may likewise escape detection until the
software is in use by thousands of customers, and even then be difficult to diagnose and
correct.

The small C program in Figure 3.1 has three faulty calls to string copy procedures.
The call to strcpy, strncpy, and stringCopy all pass a source string “Muddled,” which
is too long to fit in the array middle. The vulnerability of strcpy is well known, and is
the culprit in the by-now-standard buffer overflow attacks on many network services.
Unfortunately, the fault may or may not cause an observable failure depending on the
arrangement of memory (in this case, it depends on what appears in the position that
would be middle[7], which will be overwritten with a newline character). The standard
recommendation is to use strncpy in place of strcpy. While strncpy avoids overwriting
other memory, it truncates the input without warning, and sometimes without properly
null-terminating the output. The replacement function stringCopy, on the other hand,
uses an assertion to ensure that, if the target string is too long, the program always fails
in an observable manner.

The sensitivity principle says that we should try to make these faults easier to detect
by making them cause failure more often. It can be applied in three main ways: at the
design level, changing the way in which the program fails; at the analysis and testing
level, choosing a technique more reliable with respect to the property of interest; and at
the environment level, choosing a technique that reduces the impact of external factors
on the results.

Replacing strcpy and strncpy with stringCopy in the program of Figure 3.1 is a
simple example of application of the sensitivity principle in design. Run-time array
bounds checking in many programming languages (including Java but not C or C++)
is an example of the sensitivity principle applied at the language level. A variety of
tools and replacements for the standard memory management library are available to
enhance sensitivity to memory allocation and reference faults in C and C++.

The fail-fast property of Java iterators is another application of the sensitivity prin-
ciple. A Java iterator provides a way of accessing each item in a collection data struc-
ture. Without the fail-fast property, modifying the collection while iterating over it
could lead to unexpected and arbitrary results, and failure might occur rarely and be
hard to detect and diagnose. A fail-fast iterator has the property that an immediate and
observable failure (throwing ConcurrentModificationException) occurs when the illegal
modification occurs. Although fail-fast behavior is not guaranteed if the update occurs
in a different thread, a fail-fast iterator is far more sensitive than an iterator without the
fail-fast property.

So far, we have discussed the sensitivity principle applied to design and code: al-
ways privilege design and code solutions that lead to consistent behavior, that is, such
that fault occurrence does not depend on uncontrolled execution conditions that may
mask faults, thus resulting in random failures. The sensitivity principle can also be
applied to test and analysis techniques. In this case, we privilege techniques that cause
faults to consistently manifest in failures.

Deadlock and race conditions in concurrent systems may depend on the relative
speed of execution of the different threads or processes, and a race condition may lead

Sensitivity

31

0 N O O M W N =

W NN NN MDD DNDMNDNDNDDNDDNDND 2+ 2 = 2 2 a o
O © 0 N O O & WN - O © 0N O O »h WOWNMN = O O©

31

/ﬂ'*
* Worse than broken: Are you feeling lucky?
Y/

#include <assert.h>

char before[] = "=Before=";
char middle[] = "Middle";
char after[] = "=After=";

void show() {
printf("$s\n%s\n%s\n", before, middle, after);

}

void stringCopy(char *target, const char *source, int howBig);

int main(int argc, char *argv) {

show();

strcpy(middle, "Muddled"); /* Fault, but may not fail */

show();

strncpy(middle, "Muddled", sizeof(middle)); /* Fault, may not fail */
show();

stringCopy(middle, "Muddled" sizeof(middle)); /* Guaranteed to fail */
show();

}

/* Sensitive version of strncpy; can be counted on to fail

*in an observable way EVERY time the source is too large

* for the target, unlike the standard strncpy or strcpy.

*/

void stringCopy(char *target, const char *source, int howBig) {
assert(strlen(source) < howBig);
strcpy(target, source);

}

Figure 3.1: Standard C functions strcpy and strncpy may or may not fail when the
source string is too long. The procedure stringCopy is sensitive: It is guaranteed to fail
in an observable way if the source string is too long.

32

Basic Principles

to an observable failure only under rare conditions. Testing a concurrent system on
a single configuration may fail to reveal deadlocks and race conditions. Repeating
the tests with different configurations and system loads may help, but it is difficult to
predict or control the circumstances under which failure occurs. We may observe that
testing is not sensitive enough for revealing deadlocks and race conditions, and we
may substitute other techniques that are more sensitive and less dependent on factors
outside the developers’ and testers’ control. Model checking and reachability analysis
techniques are limited in the scope of the faults they can detect, but they are very
sensitive to this particular class of faults, having the advantage that they attain complete
independence from any particular execution environment by systematically exploring
all possible interleavings of processes.

Test adequacy criteria identify partitions of the input domain of the unit under test
that must be sampled by test suites. For example, the statement coverage criterion
requires each statement to be exercised at least once, that is, it groups inputs according
to the statements they execute. Reliable criteria require that inputs belonging to the
same class produce the same test results: They all fail or they all succeed. When this
happens, we can infer the correctness of a program with respect to the a whole class of
inputs from a single execution. Unfortunately, general reliable criteria do not exist!.

Code inspection can reveal many subtle faults. However, inspection teams may
produce completely different results depending on the cohesion of the team, the disci-
pline of the inspectors, and their knowledge of the application domain and the design
technique. The use of detailed checklists and a disciplined review process may reduce
the influence of external factors, such as teamwork attitude, inspectors’ discipline, and
domain knowledge, thus increasing the predictability of the results of inspection. In
this case, sensitivity is applied to reduce the influence of external factors.

Similarly, skilled test designers can derive excellent test suites, but the quality of
the test suites depends on the mood of the designers. Systematic testing criteria may
not do better than skilled test designers, but they can reduce the influence of external
factors, such as the tester’s mood.

3.2 Redundancy

Redundancy is the opposite of independence. If one part of a software artifact (pro-
gram, design document, etc.) constrains the content of another, then they are not en-
tirely independent, and it is possible to check them for consistency.

The concept and definition of redundancy are taken from information theory. In
communication, redundancy can be introduced into messages in the form of error-
detecting and error-correcting codes to guard against transmission errors. In software
test and analysis, we wish to detect faults that could lead to differences between in-
tended behavior and actual behavior, so the most valuable form of redundancy is in the
form of an explicit, redundant statement of intent.

Where redundancy can be introduced or exploited with an automatic, algorithmic
check for consistency, it has the advantage of being much cheaper and more thorough

'Existence of a general, reliable test coverage criterion would allow us to prove the equivalence of pro-
grams. Readers interested in this topic will find more information in Chapter 9.

Restriction

33

than dynamic testing or manual inspection. Static type checking is a classic application
of this principle: The type declaration is a statement of intent that is at least partly
redundant with the use of a variable in the source code. The type declaration constrains
other parts of the code, so a consistency check (type check) can be applied.

An important trend in the evolution of programming languages is introduction of
additional ways to declare intent and automatically check for consistency. For example,
Java enforces rules about explicitly declaring each exception that can be thrown by a
method.

Checkable redundancy is not limited to program source code, nor is it something
that can be introduced only by programming language designers. For example, soft-
ware design tools typically provide ways to check consistency between different design
views or artifacts. One can also intentionally introduce redundancy in other software
artifacts, even those that are not entirely formal. For example, one might introduce
rules quite analogous to type declarations for semistructured requirements specifica-
tion documents, and thereby enable automatic checks for consistency and some limited
kinds of completeness.

When redundancy is already present — as between a software specification docu-
ment and source code — then the remaining challenge is to make sure the information
is represented in a way that facilitates cheap, thorough consistency checks. Checks that
can be implemented by automatic tools are usually preferable, but there is value even
in organizing information to make inconsistency easier to spot in manual inspection.

Of course, one cannot always obtain cheap, thorough checks of source code and
other documents. Sometimes redundancy is exploited instead with run-time checks.
Defensive programming, explicit run-time checks for conditions that should always
be true if the program is executing correctly, is another application of redundancy in
programming.

3.3 Restriction

When there are no acceptably cheap and effective ways to check a property, sometimes
one can change the problem by checking a different, more restrictive property or by
limiting the check to a smaller, more restrictive class of programs.

Consider the problem of ensuring that each variable is initialized before it is used,
on every execution. Simple as the property is, it is not possible for a compiler or
analysis tool to precisely determine whether it holds. See the program in Figure 3.2 for
an illustration. Can the variable k ever be uninitialized the first time i is added to it?
If someCondition(0) always returns true, then k will be initialized to zero on the first
time through the loop, before k is incremented, so perhaps there is no potential for a
run-time error — but method someCondition could be arbitrarily complex and might
even depend on some condition in the environment. Java’s solution to this problem is to
enforce a stricter, simpler condition: A program is not permitted to have any syntactic
control paths on which an uninitialized reference could occur, regardless of whether
those paths could actually be executed. The program in Figure 3.2 has such a path, so
the Java compiler rejects it.

Java’s rule for initialization before use is a program source code restriction that

34 Basic Principles

1 /** A trivial method with a potentially uninitialized variable.
2 * Maybe someCondition(0) is always true, and therefore k is
3 * always initialized before use ... but it's impossible, in
4 * general, to know for sure. Java rejects the method.
5 Y/
6 static void questionable() {
7 intk;
8 for (inti=0; i < 10; ++i) {
9 if (someCondition(i)) {
10 k=0;
11 } else {
12 K+=1i;
13 }
14 }
15 System.out.printin(k);
16 }
17}

Figure 3.2: Can the variable k ever be uninitialized the first time i is added to it? The
property is undecidable, so Java enforces a simpler, stricter property.

enables precise, efficient checking of a simple but important property by the compiler.
The choice of programming language(s) for a project may entail a number of such
restrictions that impact test and analysis. Additional restrictions may be imposed in
the form of programming standards (e.g., restricting the use of type casts or pointer
arithmetic in C), or by tools in a development environment. Other forms of restriction
can apply to architectural and detailed design.

Consider, for example, the problem of ensuring that a transaction consisting of a
sequence of accesses to a complex data structure by one process appears to the outside
world as if it had occurred atomically, rather than interleaved with transactions of other
processes. This property is called serializability: The end result of a set of such trans-
actions should appear as if they were applied in some serial order, even if they didn’t.

One way to ensure serializability is to make the transactions really serial (e.g., by
putting the whole sequence of operations in each transaction within a Java synchro-
nized block), but that approach may incur unacceptable performance penalties. One
would like to allow interleaving of transactions that don’t interfere, while still ensuring
the appearance of atomic access, and one can devise a variety of locking and versioning
techniques to achieve this. Unfortunately, checking directly to determine whether the
serializability property has been achieved is very expensive at run-time, and precisely
checking whether it holds on all possible executions is impossible. Fortunately, the
problem becomes much easier if we impose a particular locking or versioning scheme
on the program at design time. Then the problem becomes one of proving, on the one
hand, that the particular concurrency control protocol has the desired property, and then

Partition

35

checking that the program obeys the protocol. Database researchers have completed
the first step, and some of the published and well-known concurrency control protocols
are trivial to check at run-time and simple enough that (with some modest additional
restrictions) they can be checked even by source code analysis.

From the above examples it should be clear that the restriction principle is useful
mainly during design and specification; it can seldom be applied post hoc on a com-
plete software product. In other words, restriction is mainly a principle to be applied in
design for test. Often it can be applied not only to solve a single problem (like detecting
potential access of uninitialized variables, or nonserializable execution of transactions)
but also at a more general, architectural level to simplify a whole set of analysis prob-
lems.

Stateless component interfaces are an example of restriction applied at the archi-
tectural level. An interface is stateless if each service request (method call, remote
procedure call, message send and reply) is independent of all others; that is, the service
does not “remember” anything about previous requests. Stateless interfaces are far eas-
ier to test because the correctness of each service request and response can be checked
independently, rather than considering all their possible sequences or interleavings. A
famous example of simplifying component interfaces by making them stateless is the
Hypertext Transport Protocol (HTTP) 1.0 of the World-Wide-Web, which made Web
servers not only much simpler and more robust but also much easier to test.

3.4 Partition

Partition, often also known as “divide and conquer,” is a general engineering principle.
Dividing a complex problem into subproblems to be attacked and solved independently
is probably the most common human problem-solving strategy. Software engineering
in particular applies this principle in many different forms and at almost all develop-
ment levels, from early requirements specifications to code and maintenance. Analysis
and testing are no exception: the partition principle is widely used and exploited.

Partitioning can be applied both at process and technique levels. At the process
level, we divide complex activities into sets of simple activities that can be attacked
independently. For example, testing is usually divided into unit, integration, subsystem,
and system testing. In this way, we can focus on different sources of faults at different
steps, and at each step, we can take advantage of the results of the former steps. For
instance, we can use units that have been tested as stubs for integration testing. Some
static analysis techniques likewise follow the modular structure of the software system
to divide an analysis problem into smaller steps.

Many static analysis techniques first construct a model of a system and then analyze
the model. In this way they divide the overall analysis into two subtasks: first simplify
the system to make the proof of the desired properties feasible and then prove the
property with respect to the simplified model. The question “Does this program have
the desired property?” is decomposed into two questions, “Does this model have the
desired property?” and “Is this an accurate model of the program?”

Since it is not possible to execute the program with every conceivable input, sys-
tematic testing strategies must identify a finite number of classes of test cases to exe-

36

Basic Principles

cute. Whether the classes are derived from specifications (functional testing) or from
program structure (structural testing), the process of enumerating test obligations pro-
ceeds by dividing the sources of information into significant elements (clauses or spe-
cial values identifiable in specifications, statements or paths in programs), and creating
test cases that cover each such element or certain combinations of elements.

3.5 Visibility

Visibility means the ability to measure progress or status against goals. In software
engineering, one encounters the visibility principle mainly in the form of process vis-
ibility, and then mainly in the form of schedule visibility: ability to judge the state of
development against a project schedule. Quality process visibility also applies to mea-
suring achieved (or predicted) quality against quality goals. The principle of visibility
involves setting goals that can be assessed as well as devising methods to assess their
realization.

Visibility is closely related to observability, the ability to extract useful information
from a software artifact. The architectural design and build plan of a system determines
what will be observable at each stage of development, which in turn largely determines
the visibility of progress against goals at that stage.

A variety of simple techniques can be used to improve observability. For exam-
ple, it is no accident that important Internet protocols like HTTP and SMTP (Simple
Mail Transport Protocol, used by Internet mail servers) are based on the exchange of
simple textual commands. The choice of simple, human-readable text rather than a
more compact binary encoding has a small cost in performance and a large payoff in
observability, including making construction of test drivers and oracles much simpler.
Use of human-readable and human-editable files is likewise advisable wherever the
performance cost is acceptable.

A variant of observability through direct use of simple text encodings is provid-
ing readers and writers to convert between other data structures and simple, human-
readable and editable text. For example, when designing classes that implement a
complex data structure, designing and implementing also a translation from a simple
text format to the internal structure, and vice versa, will often pay back handsomely in
both ad hoc and systematic testing. For similar reasons it is often useful to design and
implement an equality check for objects, even when it is not necessary to the function-
ality of the software product.

3.6 Feedback

Feedback is another classic engineering principle that applies to analysis and testing.
Feedback applies both to the process itself (process improvement) and to individual
techniques (e.g., using test histories to prioritize regression testing).

Systematic inspection and walkthrough derive part of their success from feedback.
Participants in inspection are guided by checklists, and checklists are revised and re-
fined based on experience. New checklist items may be derived from root cause anal-

Feedback

37

ysis, analyzing previously observed failures to identify the initial errors that lead to
them.

Summary

Principles constitute the core of a discipline. They form the basis of methods, tech-
niques, methodologies and tools. They permit understanding, comparing, evaluating
and extending different approaches, and they constitute the lasting basis of knowledge
of a discipline.

The six principles described in this chapter are

e Sensitivity: better to fail every time than sometimes,
e Redundancy: making intentions explicit,

e Restriction: making the problem easier,

Partition: divide and conquer,
e Visibility: making information accessible, and

e Feedback: applying lessons from experience in process and techniques.

Principles are identified heuristically by searching for a common denominator of
techniques that apply to various problems and exploit different methods, sometimes
borrowing ideas from other disciplines, sometimes observing recurrent phenomena.
Potential principles are validated by finding existing and new techniques that exploit
the underlying ideas. Generality and usefulness of principles become evident only
with time. The initial list of principles proposed in this chapter is certainly incom-
plete. Readers are invited to validate the proposed principles and identify additional
principles.

Further Reading

Analysis and testing is a relatively new discipline. To our knowledge, the principles
underlying analysis and testing have not been discussed in the literature previously.
Some of the principles advocated in this chapter are shared with other software engi-
neering disciplines and are discussed in many books. A good introduction to software
engineering principles is the third chapter of Ghezzi, Jazayeri, and Mandrioli’s book
on software engineering [GJIMO2].

38

Basic Principles

Exercises

3.1.

3.2

3.3.

3.4.

Indicate which principles guided the following choices:

1. Use an externally readable format also for internal files, when possible.
2. Collect and analyze data about faults revealed and removed from the code.

3. Separate test and debugging activities; that is, separate the design and ex-
ecution of test cases to reveal failures (test) from the localization and re-
moval of the corresponding faults (debugging).

4. Distinguish test case design from execution.
5. Produce complete fault reports.

6. Use information from test case design to improve requirements and design
specifications.

7. Provide interfaces for fully inspecting the internal state of a class.

A simple mechanism for augmenting fault tolerance consists of replicating com-
putation and comparing the obtained results. Can we consider redundancy for
fault tolerance an application of the redundancy principle?

A system safety specification describes prohibited behaviors (what the system
must never do). Explain how specified safety properties can be viewed as an
implementation of the redundancy principle.

Process visibility can be increased by extracting information about the progress
of the process. Indicate some information that can be easily produced to increase
process visibility.

Chapter 4

Test and Analysis Acftivities
Within a Software Process

Dependability and other qualities of software are not ingredients that can be added in
a final step before delivery. Rather, software quality results from a whole set of in-
terdependent activities, among which analysis and testing are necessary but far from
sufficient. And while one often hears of a testing “phase” in software development,
as if testing were a distinct activity that occurred at a particular point in development,
one should not confuse this flurry of test execution with the whole process of soft-
ware test and analysis any more than one would confuse program compilation with
programming.

Testing and analysis activities occur throughout the development and evolution of
software systems, from early in requirements engineering through delivery and subse-
quent evolution. Quality depends on every part of the software process, not only on
software analysis and testing; no amount of testing and analysis can make up for poor
quality arising from other activities. On the other hand, an essential feature of soft-
ware processes that produce high-quality products is that software test and analysis is
thoroughly integrated and not an afterthought.

4.1 The Quality Process

One can identify particular activities and responsibilities in a software development
process that are focused primarily on ensuring adequate dependability of the software
product, much as one can identify other activities and responsibilities concerned pri-
marily with project schedule or with product usability. It is convenient to group these
quality assurance activities under the rubric “quality process,” although we must also
recognize that quality is intertwined with and inseparable from other facets of the over-
all process. Like other parts of an overall software process, the quality process provides
a framework for selecting and arranging activities aimed at a particular goal, while
also considering interactions and trade-offs with other important goals. All software
development activities reflect constraints and trade-offs, and quality activities are no

39

40

Test and Analysis Activities Within a Software Process

exception. For example, high dependability is usually in tension with time to market,
and in most cases it is better to achieve a reasonably high degree of dependability on
a tight schedule than to achieve ultra-high dependability on a much longer schedule,
although the opposite is true in some domains (e.g., certain medical devices).

The quality process should be structured for completeness, timeliness, and cost-
effectiveness. Completeness means that appropriate activities are planned to detect
each important class of faults. What the important classes of faults are depends on the
application domain, the organization, and the technologies employed (e.g., memory
leaks are an important class of faults for C++ programs, but seldom for Java programs).
Timeliness means that faults are detected at a point of high leverage, which in practice
almost always means that they are detected as early as possible. Cost-effectiveness
means that, subject to the constraints of completeness and timeliness, one chooses
activities depending on their cost as well as their effectiveness. Cost must be considered
over the whole development cycle and product life, so the dominant factor is likely to
be the cost of repeating an activity through many change cycles.

Activities that one would typically consider as being in the domain of quality as-
surance or quality improvement, that is, activities whose primary goal is to prevent or
detect faults, intertwine and interact with other activities carried out by members of a
software development team. For example, architectural design of a software system
has an enormous impact on the test and analysis approaches that will be feasible and
on their cost. A precise, relatively formal architectural model may form the basis for
several static analyses of the model itself and of the consistency between the model
and its implementation, while another architecture may be inadequate for static analy-
sis and, if insufficiently precise, of little help even in forming an integration test plan.

The intertwining and mutual impact of quality activities on other development ac-
tivities suggests that it would be foolish to put off quality activities until late in a project.
The effects run not only from other development activities to quality activities but also
in the other direction. For example, early test planning during requirements engineer-
ing typically clarifies and improves requirements specifications. Developing a test plan
during architectural design may suggest structures and interfaces that not only facilitate
testing earlier in development, but also make key interfaces simpler and more precisely
defined.

There is also another reason for carrying out quality activities at the earliest oppor-
tunity and for preferring earlier to later activities when either could serve to detect the
same fault: The single best predictor of the cost of repairing a software defect is the
time between its introduction and its detection. A defect introduced in coding is far
cheaper to repair during unit test than later during integration or system test, and most
expensive if it is detected by a user of the fielded system. A defect introduced during
requirements engineering (e.g., an ambiguous requirement) is relatively cheap to repair
at that stage, but may be hugely expensive if it is only uncovered by a dispute about the
results of a system acceptance test.

Planning and Monitoring

41

4.2 Planning and Monitoring

Process visibility is a key factor in software process in general, and software quality
processes in particular. A process is visible to the extent that one can answer the ques-
tion, “How does our progress compare to our plan?” Typically, schedule visibility is a
main emphasis in process design (“Are we on schedule? How far ahead or behind?”),
but in software quality process an equal emphasis is needed on progress against quality
goals. If one cannot gain confidence in the quality of the software system long before
it reaches final testing, the quality process has not achieved adequate visibility.

A well-designed quality process balances several activities across the whole devel-
opment process, selecting and arranging them to be as cost-effective as possible, and to
improve early visibility. Visibility is particularly challenging and is one reason (among
several) that quality activities are usually placed as early in a software process as possi-
ble. For example, one designs test cases at the earliest opportunity (not “just in time’)
and uses both automated and manual static analysis techniques on software artifacts
that are produced before actual code.

Early visibility also motivates the use of “proxy” measures, that is, use of quantifi-
able attributes that are not identical to the properties that one really wishes to measure,
but that have the advantage of being measurable earlier in development. For example,
we know that the number of faults in design or code is not a true measure of reliability.
Nonetheless, one may count faults uncovered in design inspections as an early indica-
tor of potential quality problems, because the alternative of waiting to receive a more
accurate estimate from reliability testing is unacceptable.

Quality goals can be achieved only through careful planning of activities that are
matched to the identified objectives. Planning is integral to the quality process and
is elaborated and revised through the whole project. It encompasses both an overall
strategy for test and analysis, and more detailed test plans.

The overall analysis and test strategy identifies company- or project-wide standards
that must be satisfied: procedures for obtaining quality certificates required for certain
classes of products, techniques and tools that must be used, and documents that must
be produced. Some companies develop and certify procedures following international
standards such as ISO 9000 or SEI Capability Maturity Model, which require detailed
documentation and management of analysis and test activities and well-defined phases,
documents, techniques, and tools. A&T strategies are described in detail in Chapter 20,
and a sample strategy document for the Chipmunk Web presence is given in Chapter 24.

The initial build plan for Chipmunk Web-based purchasing functionality includes
an analysis and test plan. A complete analysis and test plan is a comprehensive descrip-
tion of the quality process and includes several items: It indicates objectives and scope
of the test and analysis activities; it describes documents and other items that must be
available for performing the planned activities, integrating the quality process with the
software development process; it identifies items to be tested, thus allowing for simple
completeness checks and detailed planning; it distinguishes features to be tested from
those not to be tested; it selects analysis and test activities that are considered essential
for success of the quality process; and finally it identifies the staff involved in analysis
and testing and their respective and mutual responsibilities.

process visibility

A&T strategy

A&T plan

42 Test and Analysis Activities Within a Software Process

internal and external
qualities

The final analysis and test plan includes additional information that illustrates con-
straints, pass and fail criteria, schedule, deliverables, hardware and software require-
ments, risks, and contingencies. Constraints indicate deadlines and limits that may be
derived from the hardware and software implementation of the system under analysis
and the tools available for analysis and testing. Pass and fail criteria indicate when a test
or analysis activity succeeds or fails, thus supporting monitoring of the quality process.
The schedule describes the individual tasks to be performed and provides a feasible
schedule. Deliverables specify which documents, scaffolding and test cases must be
produced, and indicate the quality expected from such deliverables. Hardware, envi-
ronment and tool requirements indicate the support needed to perform the scheduled
activities. The risk and contingency plan identifies the possible problems and provides
recovery actions to avoid major failures. The test plan is discussed in more detail in
Chapter 20.

4.3 Quality Goals

Process visibility requires a clear specification of goals, and in the case of quality pro-
cess visibility this includes a careful distinction among dependability qualities. A team
that does not have a clear idea of the difference between reliability and robustness,
for example, or of their relative importance in a project, has little chance of attaining
either. Goals must be further refined into a clear and reasonable set of objectives. If
an organization claims that nothing less than 100% reliability will suffice, it is not set-
ting an ambitious objective. Rather, it is setting no objective at all, and choosing not to
make reasoned trade-off decisions or to balance limited resources across various activi-
ties. It is, in effect, abrogating responsibility for effective quality planning, and leaving
trade-offs among cost, schedule, and quality to an arbitrary, ad hoc decision based on
deadline and budget alone.

The relative importance of qualities and their relation to other project objectives
varies. Time-to-market may be the most important property for a mass market product,
usability may be more prominent for a Web based application, and safety may be the
overriding requirement for a life-critical system.

Product qualities are the goals of software quality engineering, and process qual-
ities are means to achieve those goals. For example, development processes with a
high degree of visibility are necessary for creation of highly dependable products. The
process goals with which software quality engineering is directly concerned are often
on the “cost” side of the ledger. For example, we might have to weigh stringent re-
liability objectives against their impact on time-to-market, or seek ways to improve
time-to-market without adversely impacting robustness.

Software product qualities can be divided into those that are directly visible to a
client and those that primarily affect the software development organization. Reliabil-
ity, for example, is directly visible to the client. Maintainability primarily affects the
development organization, although its consequences may indirectly affect the client
as well, for example, by increasing the time between product releases. Properties that
are directly visible to users of a software product, such as dependability, latency, us-

Dependability Properties

43

ability, and throughput, are called external properties. Properties that are not directly
visible to end users, such as maintainability, reusability, and traceability, are called in-
ternal properties, even when their impact on the software development and evolution
processes may indirectly affect users.

The external properties of software can ultimately be divided into dependability
(does the software do what it is intended to do?) and usefulness. There is no precise
way to distinguish these, but a rule of thumb is that when software is not dependable,
we say it has a fault, or a defect, or (most often) a bug, resulting in an undesirable
behavior or failure.

It is quite possible to build systems that are very reliable, relatively free from
hazards, and completely useless. They may be unbearably slow, or have terrible user
interfaces and unfathomable documentation, or they may be missing several crucial
features. How should these properties be considered in software quality? One answer
is that they are not part of quality at all unless they have been explicitly specified, since
quality is the presence of specified properties. However, a company whose products are
rejected by its customers will take little comfort in knowing that, by some definitions,
they were high-quality products.

We can do better by considering quality as fulfillment of required and desired prop-
erties, as distinguished from specified properties. For example, even if a client does not
explicitly specify the required performance of a system, there is always some level of
performance that is required to be useful.

One of the most critical tasks in software quality analysis is making desired proper-
ties explicit, since properties that remain unspecified (even informally) are very likely
to surface unpleasantly when it is discovered that they are not met. In many cases these
implicit requirements can not only be made explicit, but also made sufficiently precise
that they can be made part of dependability or reliability. For example, while it is better
to explicitly recognize usability as a requirement than to leave it implicit, it is better yet
to augment! usability requirements with specific interface standards, so that a deviation
from the standards is recognized as a defect.

4.4 Dependability Properties

The simplest of the dependability properties is correctness: A program or system is
correct if it is consistent with its specification. By definition, a specification divides
all possible system behaviors? into two classes, successes (or correct executions) and
failures. All of the possible behaviors of a correct system are successes.

A program cannot be mostly correct or somewhat correct or 30% correct. It is
absolutely correct on all possible behaviors, or else it is not correct. It is very easy
to achieve correctness, since every program is correct with respect to some (very bad)

'Interface standards augment, rather than replace, usability requirements because conformance to the
standards is not sufficient assurance that the requirement is met. This is the same relation that other spec-
ifications have to the user requirements they are intended to fulfill. In general, verifying conformance to
specifications does not replace validating satisfaction of requirements.

2We are simplifying matters somewhat by considering only specifications of behaviors. A specification
may also deal with other properties, such as the disk space required to install the application. A system may
thus also be “incorrect” if it violates one of these static properties.

dependability

usefulness

correctness

44

Test and Analysis Activities Within a Software Process

reliability

availability

MTBF

safety

hazards

specification. Achieving correctness with respect to a useful specification, on the other
hand, is seldom practical for nontrivial systems. Therefore, while correctness may
be a noble goal, we are often interested in assessing some more achievable level of
dependability.

Reliability is a statistical approximation to correctness, in the sense that 100% reli-
ability is indistinguishable from correctness. Roughly speaking, reliability is a measure
of the likelihood of correct function for some “unit” of behavior, which could be a sin-
gle use or program execution or a period of time. Like correctness, reliability is relative
to a specification (which determines whether a unit of behavior is counted as a success
or failure). Unlike correctness, reliability is also relative to a particular usage profile.
The same program can be more or less reliable depending on how it is used.

Particular measures of reliability can be used for different units of execution and
different ways of counting success and failure. Availability is an appropriate measure
when a failure has some duration in time. For example, a failure of a network router
may make it impossible to use some functions of a local area network until the ser-
vice is restored; between initial failure and restoration we say the router is “down” or
“unavailable.” The availability of the router is the time in which the system is “up”
(providing normal service) as a fraction of total time. Thus, a network router that av-
erages 1 hour of down time in each 24-hour period would have an availability of %, or
95.8%.

Mean time between failures (MTBF) is yet another measure of reliability, also
using time as the unit of execution. The hypothetical network switch that typically
fails once in a 24-hour period and takes about an hour to recover has a mean time
between failures of 23 hours. Note that availability does not distinguish between two
failures of 30 minutes each and one failure lasting an hour, while MTBF does.

The definitions of correctness and reliability have (at least) two major weaknesses.
First, since the success or failure of an execution is relative to a specification, they are
only as strong as the specification. Second, they make no distinction between a failure
that is a minor annoyance and a failure that results in catastrophe. These are simplify-
ing assumptions that we accept for the sake of precision, but in some circumstances —
particularly, but not only, for critical systems — it is important to consider dependabil-
ity properties that are less dependent on specification and that do distinguish among
failures depending on severity.

Software safety is an extension of the well-established field of system safety into
software. Safety is concerned with preventing certain undesirable behaviors, called
hazards. It is quite explicitly not concerned with achieving any useful behavior apart
from whatever functionality is needed to prevent hazards. Software safety is typically
a concern in “critical” systems such as avionics and medical systems, but the basic
principles apply to any system in which particularly undesirable behaviors can be dis-
tinguished from run-of-the-mill failure. For example, while it is annoying when a word
processor crashes, it is much more annoying if it irrecoverably corrupts document files.
The developers of a word processor might consider safety with respect to the hazard
of file corruption separately from reliability with respect to the complete functional
requirements for the word processor.

Just as correctness is meaningless without a specification of allowed behaviors,

Dependability Properties

45

safety is meaningless without a specification of hazards to be prevented, and in practice
the first step of safety analysis is always finding and classifying hazards. Typically,
hazards are associated with some system in which the software is embedded (e.g., the
medical device), rather than the software alone. The distinguishing feature of safety
is that it is concerned only with these hazards, and not with other aspects of correct
functioning.

The concept of safety is perhaps easier to grasp with familiar physical systems.
For example, lawn-mowers in the United States are equipped with an interlock device,
sometimes called a “dead-man switch.” If this switch is not actively held by the op-
erator, the engine shuts off. The dead-man switch does not contribute in any way to
cutting grass; its sole purpose is to prevent the operator from reaching into the mower
blades while the engine runs.

One is tempted to say that safety is an aspect of correctness, because a good system
specification would rule out hazards. However, safety is best considered as a quality
distinct from correctness and reliability for two reasons. First, by focusing on a few
hazards and ignoring other functionality, a separate safety specification can be much
simpler than a complete system specification, and therefore easier to verify. To put it
another way, while a good system specification should rule out hazards, we cannot be
confident that either specifications or our attempts to verify systems are good enough
to provide the degree of assurance we require for hazard avoidance. Second, even if
the safety specification were redundant with regard to the full system specification, it is
important because (by definition) we regard avoidance of hazards as more crucial than
satisfying other parts of the system specification.

Correctness and reliability are contingent upon normal operating conditions. It is
not reasonable to expect a word processing program to save changes normally when the
file does not fit in storage, or to expect a database to continue to operate normally when
the computer loses power, or to expect a Web site to provide completely satisfactory
service to all visitors when the load is 100 times greater than the maximum for which
it was designed. Software that fails under these conditions, which violate the premises
of its design, may still be “correct” in the strict sense, yet the manner in which the
software fails is important. It is acceptable that the word processor fails to write the
new file that does not fit on disk, but unacceptable to also corrupt the previous version
of the file in the attempt. It is acceptable for the database system to cease to function
when the power is cut, but unacceptable for it to leave the database in a corrupt state.
And it is usually preferable for the Web system to turn away some arriving users rather
than becoming too slow for all, or crashing. Software that gracefully degrades or fails
“softly” outside its normal operating parameters is robust.

Software safety is a kind of robustness, but robustness is a more general notion that
concerns not only avoidance of hazards (e.g., data corruption) but also partial function-
ality under unusual situations. Robustness, like safety, begins with explicit consider-
ation of unusual and undesirable situations, and should include augmenting software
specifications with appropriate responses to undesirable events.

Figure 4.1 illustrates the relation among dependability properties.

Quality analysis should be part of the feasibility study. The sidebar on page 47

robustness

46

Test and Analysis Activities Within a Software Process

Reliable but not correct: Robust but not safe:

failures can occur rarely catastrophic failures can occur
o 0
— —
Correct but not safe: Safe but not correct:
the specification is inadequate annoying failures can occur

Figure 4.1: Relation among dependability properties

shows an excerpt of the feasibility study for the Chipmunk Web presence. The pri-
mary quality requirements are stated in terms of dependability, usability, and security.
Performance, portability and interoperability are typically not primary concerns at this
stage, but they may come into play when dealing with other qualities.

4.5 Analysis

Analysis techniques that do not involve actual execution of program source code play a
prominent role in overall software quality processes. Manual inspection techniques and
automated analyses can be applied at any development stage. They are particularly well
suited at the early stages of specifications and design, where the lack of executability
of many intermediate artifacts reduces the efficacy of testing.

Inspection, in particular, can be applied to essentially any document including re-
quirements documents, architectural and more detailed design documents, test plans
and test cases, and of course program source code. Inspection may also have secondary
benefits, such as spreading good practices and instilling shared standards of quality. On
the other hand, inspection takes a considerable amount of time and requires meetings,
which can become a scheduling bottleneck. Moreover, re-inspecting a changed compo-
nent can be as expensive as the initial inspection. Despite the versatility of inspection,
therefore, it is used primarily where other techniques are either inapplicable or where
other techniques do not provide sufficient coverage of common faults.

Automated static analyses are more limited in applicability (e.g., they can be ap-
plied to some formal representations of requirements models but not to natural lan-
guage documents), but are selected when available because substituting machine cy-
cles for human effort makes them particularly cost-effective. The cost advantage of
automated static analyses is diminished by the substantial effort required to formalize
and properly structure a model for analysis, but their application can be further mo-

Analysis

47

Excerpt of Web Presence Feasibility Study

Purpose of this document

This document was prepared for the Chipmunk IT management team. It describes
the results of a feasibility study undertaken to advise Chipmunk corporate management
whether to embark on a substantial redevelopment effort to add online shopping func-
tionality to the Chipmunk Computers’ Web presence.

Goals

The primary goal of a Web presence redevelopment is to add online shopping facili-
ties. Marketing estimates an increase of 15% over current direct sales within 24 months,
and an additional 8% savings in direct sales support costs from shifting telephone price
inquiries to online price inquiries. [...]

Architectural Requirements

The logical architecture will be divided into three distinct subsystems: human in-
terface, business logic, and supporting infrastructure. Each major subsystem must be
structured for phased development, with initial features delivered 6 months from in-
ception, full features at 12 months, and a planned revision at 18 months from project
inception. [...]

Quality Requirements

Dependability: With the introduction of direct sales and customer relationship man-
agement functions, dependability of Chipmunk’s Web services becomes business-
critical. A critical core of functionality will be identified, isolated from less critical func-
tionality in design and implementation, and subjected to the highest level of scrutiny.
We estimate that this will be approximately 20% of new development and revisions, and
that the V&V costs for those portions will be approximately triple the cost of V&V for
noncritical development.

Usability: The new Web presence will be, to a much greater extent than before, the
public face of Chipmunk Computers. [...]

Security: Introduction of online direct ordering and billing raises a number of secu-
rity issues. Some of these can be avoided initially by contracting with one of several
service companies that provide secure credit card transaction services. Nonetheless,
order tracking, customer relationship management, returns, and a number of other func-
tions that cannot be effectively outsourced raise significant security and privacy issues.
Identifying and isolating security concerns will add a significant but manageable cost to
design validation. [...]

48

Test and Analysis Activities Within a Software Process

tivated by their ability to thoroughly check for particular classes of faults for which
checking with other techniques is very difficult or expensive. For example, finite state
verification techniques for concurrent systems requires construction and careful struc-
turing of a formal design model, and addresses only a particular family of faults (faulty
synchronization structure). Yet it is rapidly gaining acceptance in some application do-
mains because that family of faults is difficult to detect in manual inspection and resists
detection through dynamic testing.

Sometimes the best aspects of manual inspection and automated static analysis can
be obtained by carefully decomposing properties to be checked. For example, suppose
a desired property of requirements documents is that each special term in the appli-
cation domain appear in a glossary of terms. This property is not directly amenable
to an automated static analysis, since current tools cannot distinguish meaningful do-
main terms from other terms that have their ordinary meanings. The property can be
checked with manual inspection, but the process is tedious, expensive, and error-prone.
A hybrid approach can be applied if each domain term is marked in the text. Manually
checking that domain terms are marked is much faster and therefore less expensive than
manually looking each term up in the glossary, and marking the terms permits effective
automation of cross-checking with the glossary.

4.6 Testing

Despite the attractiveness of automated static analyses when they are applicable, and
despite the usefulness of manual inspections for a variety of documents including but
not limited to program source code, dynamic testing remains a dominant technique. A
closer look, though, shows that dynamic testing is really divided into several distinct
activities that may occur at different points in a project.

Tests are executed when the corresponding code is available, but testing activities
start earlier, as soon as the artifacts required for designing test case specifications are
available. Thus, acceptance and system test suites should be generated before integra-
tion and unit test suites, even if executed in the opposite order.

Early test design has several advantages. Tests are specified independently from
code and when the corresponding software specifications are fresh in the mind of ana-
lysts and developers, facilitating review of test design. Moreover, test cases may high-
light inconsistencies and incompleteness in the corresponding software specifications.
Early design of test cases also allows for early repair of software specifications, pre-
venting specification faults from propagating to later stages in development. Finally,
programmers may use test cases to illustrate and clarify the software specifications,
especially for errors and unexpected conditions.

No engineer would build a complex structure from parts that have not themselves
been subjected to quality control. Just as the “earlier is better” rule dictates using in-
spection to reveal flaws in requirements and design before they are propagated to pro-
gram code, the same rule dictates module testing to uncover as many program faults
as possible before they are incorporated in larger subsystems of the product. At Chip-
munk, developers are expected to perform functional and structural module testing be-
fore a work assignment is considered complete and added to the project baseline. The

Improving the Process

49

test driver and auxiliary files are part of the work product and are expected to make re-
execution of test cases, including result checking, as simple and automatic as possible,
since the same test cases will be used over and over again as the product evolves.

4.7 Improving the Process

While the assembly-line, mass production industrial model is inappropriate for soft-
ware, which is at least partly custom-built, there is almost always some commonality
among projects undertaken by an organization over time. Confronted by similar prob-
lems, developers tend to make the same kinds of errors over and over, and consequently
the same kinds of software faults are often encountered project after project. The qual-
ity process, as well as the software development process as a whole, can be improved
by gathering, analyzing, and acting on data regarding faults and failures.

The goal of quality process improvement is to find cost-effective countermeasures
for classes of faults that are expensive because they occur frequently, or because the
failures they cause are expensive, or because, once detected, they are expensive to
repair. Countermeasures may be either prevention or detection and may involve either
quality assurance activities (e.g., improved checklists for design inspections) or other
aspects of software development (e.g., improved requirements specification methods).

The first part of a process improvement feedback loop, and often the most difficult
to implement, is gathering sufficiently complete and accurate raw data about faults and
failures. A main obstacle is that data gathered in one project goes mainly to benefit
other projects in the future and may seem to have little direct benefit for the current
project, much less to the persons asked to provide the raw data. It is therefore helpful to
integrate data collection as well as possible with other, normal development activities,
such as version and configuration control, project management, and bug tracking. It
is also essential to minimize extra effort. For example, if revision logs in the revision
control database can be associated with bug tracking records, then the time between
checking out a module and checking it back in might be taken as a rough guide to cost
of repair.

Raw data on faults and failures must be aggregated into categories and prioritized.
Faults may be categorized along several dimensions, none of them perfect. Fortu-
nately, a flawless categorization is not necessary; all that is needed is some categoriza-
tion scheme that is sufficiently fine-grained and tends to aggregate faults with similar
causes and possible remedies, and that can be associated with at least rough estimates
of relative frequency and cost. A small number of categories — maybe just one or two
— are chosen for further study.

The analysis step consists of tracing several instances of an observed fault or failure
back to the human error from which it resulted, or even further to the factors that led
to that human error. The analysis also involves the reasons the fault was not detected
and eliminated earlier (e.g., how it slipped through various inspections and levels of
testing). This process is known as “root cause analysis,” but the ultimate aim is for
the most cost-effective countermeasure, which is sometimes but not always the ulti-
mate root cause. For example, the persistence of security vulnerabilities through buffer
overflow errors in network applications may be attributed at least partly to widespread

root cause
analysis

50

Test and Analysis Activities Within a Software Process

use of programming languages with unconstrained pointers and without array bounds
checking, which may in turn be attributed to performance concerns and a requirement
for interoperability with a large body of legacy code. The countermeasure could involve
differences in programming methods (e.g., requiring use of certified “safe” libraries for
buffer management), or improvements to quality assurance activities (e.g., additions to
inspection checklists), or sometimes changes in management practices.

4.8 Organizational Factors

The quality process includes a wide variety of activities that require specific skills and
attitudes and may be performed by quality specialists or by software developers. Plan-
ning the quality process involves not only resource management but also identification
and allocation of responsibilities.

A poor allocation of responsibilities can lead to major problems in which pursuit
of individual goals conflicts with overall project success. For example, splitting re-
sponsibilities of development and quality-control between a development and a quality
team, and rewarding high productivity in terms of lines of code per person-month dur-
ing development may produce undesired results. The development team, not rewarded
to produce high-quality software, may attempt to maximize productivity to the detri-
ment of quality. The resources initially planned for quality assurance may not suffice if
the initial quality of code from the*“very productive” development team is low. On the
other hand, combining development and quality control responsibilities in one undif-
ferentiated team, while avoiding the perverse incentive of divided responsibilities, can
also have unintended effects: As deadlines near, resources may be shifted from quality
assurance to coding, at the expense of product quality.

Conflicting considerations support both the separation of roles (e.g., recruiting
quality specialists), and the mobility of people and roles (e.g, rotating engineers be-
tween development and testing tasks).

At Chipmunk, responsibility for delivery of the new Web presence is distributed
among a development team and a quality assurance team. Both teams are further artic-
ulated into groups. The quality assurance team is divided into the analysis and testing
group, responsible for the dependability of the system, and the usability testing group,
responsible for usability. Responsibility for security issues is assigned to the infras-
tructure development group, which relies partly on external consultants for final tests
based on external attack attempts.

Having distinct teams does not imply a simple division of all tasks between teams
by category. At Chipmunk, for example, specifications, design, and code are inspected
by mixed teams; scaffolding and oracles are designed by analysts and developers; in-
tegration, system, acceptance, and regression tests are assigned to the test and analysis
team; unit tests are generated and executed by the developers; and coverage is checked
by the testing team before starting integration and system testing. A specialist has been
hired for analyzing faults and improving the process. The process improvement spe-
cialist works incrementally while developing the system and proposes improvements
at each release.

Organizational Factors

51

Summary

Test and analysis activities are not a late phase of the development process, but rather
a wide set of activities that pervade the whole process. Designing a quality process
with a suitable blend of test and analysis activities for the specific application domain,
development environment, and quality goals is a challenge that requires skill and expe-
rience.

A well-defined quality process must fulfill three main goals: improving the soft-
ware product during and after development, assessing its quality before delivery, and
improving the process within and across projects. These challenging goals can be
achieved by increasing visibility, scheduling activities as early as practical, and mon-
itoring results to adjust the process. Process visibility — that is, measuring and com-
paring progress to objectives — is a key property of the overall development process.
Performing A&T activities early produces several benefits: It increases control over
the process, it hastens fault identification and reduces the costs of fault removal, it pro-
vides data for incrementally tuning the development process, and it accelerates product
delivery. Feedback is the key to improving the process by identifying and removing
persistent errors and faults.

Further Reading

Qualities of software are discussed in many software engineering textbooks; the dis-
cussion in Chapter 2 of Ghezzi, Jazayeri, and Mandrioli [GIMO02] is particularly useful.
Process visibility is likewise described in software engineering textbooks, usually with
an emphasis on schedule. Musa [Mus04] describes a quality process oriented partic-
ularly to establishing a quantifiable level of reliability based on models and testing
before release. Chillarege et al. [CBC192] present principles for gathering and ana-
lyzing fault data, with an emphasis on feedback within a single process but applicable
also to quality process improvement.

Exercises

4.1. We have stated that 100% reliability is indistinguishable from correctness, but
they are not quite identical. Under what circumstance might an incorrect pro-
gram be 100% reliable? Hint: Recall that a program may be more or less re-
liable depending on how it is used, but a program is either correct or incorrect
regardless of usage.

4.2. We might measure the reliability of a network router as the fraction of all packets
that are correctly routed, or as the fraction of total service time in which packets
are correctly routed. When might these two measures be different?

4.3. If I am downloading a very large file over a slow modem, do I care more about
the availability of my internet service provider or its mean time between failures?

52

Test and Analysis Activities Within a Software Process

4.4.

4.5.

4.6.

4.17.

4.8.

Can a system be correct and yet unsafe?

Under what circumstances can making a system more safe make it less reliable?

Software application domains can be characterized by the relative importance of
schedule (calendar time), total cost, and dependability. For example, while all
three are important for game software, schedule (shipping product in September
to be available for holiday purchases) has particular weight, while dependability
can be somewhat relaxed. Characterize a domain you are familiar with in these
terms.

Consider responsiveness as a desirable property of an Internet chat program. The
informal requirement is that messages typed by each member of a chat session
appear instantaneously on the displays of other users. Refine this informal re-
quirement into a concrete specification that can be verified. Is anything lost in
the refinement?

Identify some correctness, robustness and safety properties of a word processor.

Part I

Basic Technigues

53

Chapter

Finite Models

From wind-tunnels to Navier-Stokes equations to circuit diagrams to finite-element
models of buildings, engineers in all fields of engineering construct and analyze mod-
els. Fundamentally, modeling addresses two problems in engineering. First, analysis
and test cannot wait until the actual artifact is constructed, whether that artifact is a
building or a software system. Second, it is impractical to test the actual artifact as
thoroughly as we wish, whether that means subjecting it to all foreseeable hurricane
and earthquake forces, or to all possible program states and inputs. Models permit us
to start analysis earlier and repeat it as a design evolves, and allows us to apply ana-
Iytic methods that cover a much larger class of scenarios than we can explicitly test.
Importantly, many of these analyses may be automated.

This chapter presents some basic concepts in models of software and some families
of models that are used in a wide variety of testing and analysis techniques. Several of
the analysis and testing techniques described in subsequent chapters use and specialize
these basic models. The fundamental concepts and trade-offs in the design of models
is necessary for a full understanding of those test and analysis techniques, and is a
foundation for devising new techniques and models to solve domain-specific problems.

5.1 Overview

A model is a representation that is simpler than the artifact it represents but preserves
(or at least approximates) some important attributes of the actual artifact. Our concern
in this chapter is with models of program execution, and not with models of other
(equally important) attributes such as the effort required to develop the software or its
usability. A good model of (or, more precisely, a good class of models) must typically
be:

Compact: A model must be representable and manipulable in a reasonably compact
form. What is “reasonably compact” depends largely on how the model will
be used. Models intended for human inspection and reasoning must be small
enough to be comprehensible. Models intended solely for automated analysis

55

model

56 Finite Models

may be far too large and complex for human comprehension, but must still be
sufficiently small or regular for computer processing.

Predictive: A model used in analysis or design must represent some salient charac-
teristics of the modeled artifact well enough to distinguish between “good” and
“bad” outcomes of analysis, with respect to those characteristics.

Typically, no single model represents all characteristics well enough to be useful
for all kinds of analysis. One does not, for example, use the same model to
predict airflow over an aircraft fuselage and to design internal layout for efficient
passenger loading and safe emergency exit.

Semantically meaningful: Beyond distinguishing between predictions of success and
failure, it is usually necessary to interpret analysis results in a way that permits
diagnosis of the causes of failure. If a finite-element model of a building predicts
collapse in a category five hurricane, we want to know enough about that col-
lapse to suggest revisions to the design. Likewise, if a model of an accounting
system predicts a failure when used concurrently by several clients, we need a
description of that failure sufficient to suggest possible revisions.

Sufficiently general: Models intended for analysis of some important characteristic
(e.g., withstanding earthquakes or concurrent operation by many clients) must
be general enough for practical use in the intended domain of application.

We may sometimes tolerate limits on design imposed by limitations of our mod-
eling and analysis techniques. For example, we may choose a conventional
bridge design over a novel design because we have confidence in analysis tech-
niques for the former but not the latter, and we may choose conventional con-
currency control protocols over novel approaches for the same reason. However,
if a program analysis technique for C programs is applicable only to programs
without pointer variables, we are unlikely to find much use for it.

Since design models are intended partly to aid in making and evaluating design
decisions, they should share these characteristics with models constructed primarily
for analysis. However, some kinds of models — notably the widely used UML design
notations — are designed primarily for human communication, with less attention to
semantic meaning and prediction.

Models are often used indirectly in evaluating an artifact. For example, some mod-
els are not themselves analyzed, but are used to guide test case selection. In such cases,
the qualities of being predictive and semantically meaningful apply to the model to-
gether with the analysis or testing technique applied to another artifact, typically the
actual program or system.

Overview 57

Graph Representations
We often use directed graphs to represent models of programs. Usually we draw
them as “box and arrow” diagrams, but to reason about them it is important to un-
derstand that they have a well-defined mathematical meaning, which we review here.

A directed graph is composed of a set of nodes N and a relation E on the set (that is,
a set of ordered pairs), called the edges. It is conventional to draw the nodes as points
or shapes and to draw the edges as arrows. For example:

Nodes: {a,b,c} Drawn as Or drawn as

Edges: {(a,b), (a,c), (c,a)} e‘ b b a .

Typically, the nodes represent entities of some kind, such as procedures or classes
or regions of source code. The edges represent some relation among the entities. For
example, if we represent program control flow using a directed graph model, an edge
(a,b) would be interpreted as the statement “program region a can be directly followed
by program region b in program execution.”

We can label nodes with the names or descriptions of the entities they represent. If
nodes a and b represent program regions containing assignment statements, we might
draw the two nodes and an edge (a,b) connecting them in this way:

h 4

N

a = f(x),

Sometimes we draw a single diagram to represent more than one directed graph,
drawing the shared nodes only once. For example, we might draw a single diagram in
which we express both that class B extends (is a subclass of) class A and that class B
has a field that is an object of type C. We can do this by drawing edges in the “extends”
relation differently than edges in the “includes” relation.

Nodes and edges of Nodes and edges of Drawn together
“extends” relation “includes” relation A

({4,8,C}.{(A,B)}) {{A4,B,C},{(8,0)})

B C

Drawings of graphs can be refined in many ways, for example, depicting some re-
lations as attributes rather than directed edges. Important as these presentation choices
may be for clear communication, only the underlying sets and relations matter for rea-
soning about models.

58 Finite Models

state space

rielelo=elel TeI lo=el X)
w00 F—0e)

OCoO—Ce0

(2b)

Figure 5.1: Abstraction elides details of execution states and in so doing may cause an
abstract model execution state to represent more than one concrete program execution
state. In the illustration, program state is represented by three attributes, each with two
possible values, drawn as light or dark circles. Abstract model states retain the first two
attributes and elide the third. The relation between (1a) and (1b) illustrates coarsening
of the execution model, since the first and third program execution steps modify only
the omitted attribute. The relation between (2a) and (2b) illustrates introduction of
nondeterminism, because program execution states with different successor states have
been merged.

5.2 Finite Abstractions of Behavior

A single program execution can be viewed as a sequence of states alternating with
actions (e.g., machine operations).! The possible behaviors of a program are a set of
such sequences. If we abstract from the physical limits of a particular machine, for all
but the most trivial programs the set of possible execution sequences is infinite. That
whole set of states and transitions is called the state space of the program. Models of
program execution are abstractions of that space.

States in the state space of program execution are related to states in a finite model
of execution by an abstraction function. Since an abstraction function suppresses some
details of program execution, it lumps together execution states that differ with respect
to the suppressed details but are otherwise identical. Figure 5.1 illustrates two effects of
abstraction: The execution model is coarsened (sequences of transitions are collapsed
into fewer execution steps), and nondeterminism is introduced (because information
required to make a deterministic choice is sacrificed).

Finite models of program execution are inevitably imperfect. Collapsing the po-

'We put aside, for the moment, the possibility of parallel or concurrent execution. Most but not all models
of concurrent execution reduce it to an equivalent serial execution in which operation by different procedures
are interleaved, but there also exist models for which our treatment here is insufficient.

Control Flow Graphs

59

if (...) switch(...) {

case
case ...

default:

Figure 5.2: Building blocks for constructing intraprocedural control flow graphs.
Other control constructs are represented analogously. For example, the for construct
of C, C++, and Java is represented as if the initialization part appeared before a while
loop, with the increment part at the end of the while loop body.

tentially infinite states of actual execution into a finite number of representative model
states necessarily involves omitting some information. While one might hope that the
omitted information is irrelevant to the property one wishes to verify, this is seldom
completely true. In Figure 5.1, parts 2(a) and 2(b) illustrate how abstraction can cause
a set of deterministic transitions to be modeled by a nondeterministic choice among
transitions, thus making the analysis imprecise. This in turn can lead to “false alarms”
in analysis of models.

5.3 Control Flow Graphs

It is convenient and intuitive to construct models whose states are closely related to
locations in program source code. In general, we will associate an abstract state with
a whole region (that is, a set of locations) in a program. We know that program source
code is finite, so a model that associates a finite amount of information with each of a
finite number of program points or regions will also be finite.

Control flow of a single procedure or method can be represented as an intraproce-
dural control flow graph, often abbreviated as control flow graph or CFG. The intra-
procedural control flow graph is a directed graph in which nodes represent regions
of the source code and directed edges represent the possibility that program execution
proceeds from the end of one region directly to the beginning of another, either through
sequential execution or by a branch. Figure 5.2 illustrates the representation of typical
control flow constructs in a control flow graph.

In terms of program execution, we can say that a control flow graph model retains

A control flow
graph

60 Finite Models

A basic block

some information about the program counter (the address of the next instruction to be
executed), and elides other information about program execution (e.g., the values of
variables). Since information that determines the outcome of conditional branches is
elided, the control flow graph represents not only possible program paths but also some
paths that cannot be executed. This corresponds to the introduction of nondeterminism
illustrated in Figure 5.1.

The nodes in a control flow graph could represent individual program statements,
or even individual machine operations, but it is desirable to make the graph model
as compact and simple as possible. Usually, therefore, nodes in a control flow graph
model of a program represent not a single point but rather a basic block, a maximal
program region with a single entry and single exit point.

A basic block typically coalesces adjacent, sequential statements of source code,
but in some cases a single syntactic program statement is broken across basic blocks
to model control flow within the statement. Figures 5.3 and 5.4 illustrate construction
of a control flow graph from a Java method. Note that a sequence of two statements
within the loop has been collapsed into a single basic block, but the for statement and
the complex predicate in the if statement have been broken across basic blocks to model
their internal flow of control.

Some analysis algorithms are simplified by introducing a distinguished node to
represent procedure entry and another to represent procedure exit. When these distin-
guished start and end nodes are used in a CFG, a directed edge leads from the start
node to the node representing the first executable block, and a directed edge from each
procedure exit (e.g., each return statement and the last sequential block in the program)
to the distinguished end node. Our practice will be to draw a start node identified with
the procedure or method signature, and to leave the end node implicit.

The intraprocedural control flow graph may be used directly to define thorough-
ness criteria for testing (see Chapters 9 and 12). Often the control flow graph is used
to define another model, which in turn is used to define a thoroughness criterion. For
example, some criteria are defined by reference to linear code sequences and jumps
(LCSAIJs), which are essentially subpaths of the control flow graph from one branch
to another. Figure 5.5 shows the LCSAJs derived from the control flow graph of Fig-
ure 5.4.

For use in analysis, the control flow graph is usually augmented with other informa-
tion. For example, the data flow models described in the next chapter are constructed
using a CFG model augmented with information about the variables accessed and mod-
ified by each program statement.

Not all control flow is represented explicitly in program text. For example, if an
empty string is passed to the collapseNewlines method of Figure 5.3, the exception
java.lang.StringIndexOutOfBoundsException will be thrown by String.charAt, and ex-
ecution of the method will be terminated. This could be represented in the CFG as a
directed edge to an exit node. However, if one includes such implicit control flow edges
for every possible exception (for example, an edge from each reference that might lead
to a null pointer exception), the CFG becomes rather unwieldy.

More fundamentally, it may not be simple or even possible to determine which
of the implicit control flow edges can actually be executed. We can reason about the
call to argStr.charAt(cldx) within the body of the for loop and determine that cldx must

Control Flow Graphs

61

] e
2 * Remove/collapse multiple newline characters.
3 *
4 * @param String string to collapse newlines in.
5 * @return String
6 Y/
7 public static String collapseNewlines(String argStr)
8 {
9 char last = argStr.charAt(0);
10 StringBuffer argBuf = new StringBuffer();
1
12 for (int cldx = 0 ; cldx < argStr.length(); cldx++)
13 {
14 char ch = argStr.charAt(cldx);
15 if ch!="\n’ || last!="\n")
16
17 argBuf.append(ch);
18 last = ch;
19 }
20 }
21
22 return argBuf.toString();
23 }

Figure 5.3: A Java method to collapse adjacent newline characters, from the
StringUtilities class of the Velocity project of the open source Apache project. (c) 2001
Apache Software Foundation, used with permission.

62 Finite Models

D

public static String collapseNewlines(String argStr) Q’ﬂ—

v

{

b2
char last = argStr.charAt(0);
StringBuffer argBuf = new StringBuffer();

for (intcldx =0

v

G:Idx < argStr.length(); @3)4

Truh

xﬁFals

{ b4
char ch = argStr.charAt(cldx);
if (ch!="n'

False——Tru

Il last 1= \n') @ iT
Tru

last = ch;

argBuf.append(ch);

-

(
cldx++)

@

%eturn argBuf.toString();
}

N

jL

Figure 5.4: A control flow graph corresponding to the Java method in Figure 5.3. The
for statement and the predicate of the if statement have internal control flow branches,
so those statements are broken across basic blocks.

From
entry
entry
entry
entry
iX
jL
jL
jL

bl
bl
bl
bl

Sequence of Basic Blocks

b2 b3

b2 b3 b4

b2 b3 b4 b5

b2 b3 b4 b5 b6 b7

b8

b3 b4
b3 b4 b5
b3 b4 bS5 b6 b7

To
iX
T
jE
jL
return
iT
jE
jL

Figure 5.5: Linear code sequences and jumps (LCSAJs) corresponding to the Java
method in Figure 5.3 and the control flow graph in Figure 5.4. Note that proceeding to
the next sequential basic block is not considered a “jump” for purposes of identifying

LCSAIJs.

Call Graphs

63

always be within bounds, but we cannot reasonably expect an automated tool for ex-
tracting control flow graphs to perform such inferences. Whether to include some or
all implicit control flow edges in a CFG representation therefore involves a trade-off
between possibly omitting some execution paths or representing many spurious paths.
Which is preferable depends on the uses to which the CFG representation will be put.

Even the representation of explicit control flow may differ depending on the uses
to which a model is put. In Figure 5.3, the for statement has been broken into its
constituent parts (initialization, comparison, and increment for next iteration), each of
which appears at a different point in the control flow. For some kinds of analysis, this
breakdown would serve no useful purpose. Similarly, a complex conditional expres-
sion in Java or C is executed by ‘“short-circuit” evaluation, so the single expression
i > 0 && i < 10 can be broken across two basic blocks (the second test is not executed
if the first evaluates to false). If this fine level of execution detail is not relevant to an
analysis, we may choose to ignore short-circuit evaluation and treat the entire condi-
tional expression as if it were fully evaluated.

5.4 Call Graphs

The intraprocedural control flow graph represents possible execution paths through a
single procedure or method. Interprocedural control flow can also be represented as
a directed graph. The most basic model is the call graph, in which nodes represent
procedures (methods, C functions, etc.) and edges represent the “calls” relation. For
example, a call graph representation of the program that includes the collapseNewlines
method above would include a node for StringUtils.collapseNewlines with a directed
edge to method String.charAt.

Call graph representations present many more design issues and trade-offs than
intraprocedural control flow graphs; consequently, there are many variations on the ba-
sic call graph representation. For example, consider that in object-oriented languages,
method calls are typically made through object references and may be bound to meth-
ods in different subclasses depending on the current binding of the object. A call graph
for programs in an object-oriented language might therefore represent the calls relation
to each of the possible methods to which a call might be dynamically bound. More of-
ten, the call graph will explicitly represent only a call to the method in the declared
class of an object, but it will be part of a richer representation that includes inheritance
relations. Constructing an abstract model of executions in the course of analysis will
involve interpreting this richer structure.

Figure 5.6 illustrates overestimation of the calls relation due to dynamic dispatch.
The static call graph includes calls through dynamic bindings that never occur in exe-
cution. The call graph includes an (impossible) call from A.check() to C.foo() because
A.foo() calls myC.foo() and myC’s declared class is C. However, since myC is always an
object of subclass S, and S overrides foo(), the call to myC.foo() can only reach S.foo().
In this case a more precise analysis could show that myC is always bound to an object
of subclass S, but in general such precision is expensive or even impossible.

If a call graph model represents different behaviors of a procedure depending on
where the procedure is called, we call it context-sensitive. For example, a context-

64 Finite Models

1 public class C {

2

3 public static C cFactory(String kind) {

4 if (kind == "C") return new C();

5 if (kind == "S") return new S();

6 return null;

7y

8

9 void foo() {
10 System.out.printin("You called the parent’s method");
11 }
12
13 public static void main(String args|[]) {
14 (new A()).check();
15 }
16 }
17
18 class S extends C {
19 void foo() {
20 System.out.printin("You called the child’s method");
21 }
2 }
23
24 class A{
25 void check() {
26 C myC = C.cFactory("sS");
27 myC.foo();
28 }
29 |}

A.check()
A
C.foo S.foo C.cFactory(String)

Figure 5.6: Overapproximation in a call graph. Although the method A.check() can
never actually call C.foo(), a typical call graph construction will include it as a possible
call.

Finite State Machines

65

sensitive model of collapseNewlines might distinguish between one call in which the
argument string cannot possibly be empty, and another in which it could be. Context-
sensitive analyses can be more precise than context-insensitive analyses when the model
includes some additional information that is shared or passed among procedures. In-
formation not only about the immediate calling context, but about the entire chain of
procedure calls may be needed, as illustrated in Figure 5.7. In that case the cost of
context-sensitive analysis depends on the number of paths from the root (main pro-
gram) to each lowest level procedure. The number of paths can be exponentially larger
than the number of procedures, as illustrated in Figure 5.8.

The Java compiler uses a typical call graph model to enforce the language rule
that all checked exceptions are either handled or declared in each method. The throws
clauses in a method declaration are provided by the programmer, but if they were not,
they would correspond exactly to the information that a context insensitive analysis of
exception propagation would associate with each procedure (which is why the compiler
can check for completeness and complain if the programmer omits an exception that
can be thrown).

5.5 Finite State Machines

Most of the models discussed above can be extracted from programs. Often, though,
models are constructed prior to or independent of source code, and serve as a kind of
specification of allowed behavior. Finite state machines of various kinds are particu-
larly widely used.

In its simplest form, a finite state machine (FSM) is a finite set of states and a set
of transitions among states, that is, a directed graph in which nodes represent program
states and edges represent operations that transform one program state into another.
Since there may be infinitely many program states, the finite set of state nodes must be
an abstraction of the concrete program states.

A transition from one state node a to another state node b denotes the possibility
that a concrete program state corresponding to a can be followed immediately by a
concrete program state corresponding to b. Usually we label the edge to indicate a
program operation, condition, or event associated with the transition. We may label
transitions with both an external event or a condition (what must happen or be true for
the program to make a corresponding state change) and with a program operation that
can be thought of as a “response” to the event. Such a finite state machine with event
/ response labels on transitions is called a Mealy machine.

Figure 5.9 illustrates a specification for a converter among Dos, Unix, and Macin-
tosh line end conventions in the form of a Mealy machine. An “event” for this specifi-
cation is reading a character or encountering end-of-file. The possible input characters
are divided into four categories: carriage return, line feed, end-of-file, and everything
else. The states represent both program control points and some information that may
be stored in program variables.

There are three kinds of correctness relations that we may reason about with respect
to finite state machine models, illustrated in Figure 5.10. The first is internal properties,
such as completeness and determinism. Second, the possible executions of a model,

Mealy machine

66 Finite Models
1 public class Context {
2 public static void main(String args|[]) {
3 Context ¢ = new Context();
4 c.foo(3);
5 c.bar(17);
6 }
7
8 void foo(int n) {
9 int[] myArray = new int[n];
10 depends(myArray, 2) ;
11 }
12
13 void bar(int n) {
14 int[] myArray = new int[n J;
15 depends(myArray, 16) ;
16 }
17
18 void depends(int[] a, intn) {
19 a[n] = 42;
20 }
21}
main main
C.foo C.bar C.foo(3) C.bar(17)
\/ 4 A
C.depends C.depends(int[3],a,2) | |C.depends(int[17],a,16)

Figure 5.7: The Java code above can be represented by the context-insensitive call
graph at left. However, to capture the fact that method depends never attempts to store
into a nonexistent array element, it is necessary to represent parameter values that
differ depending on the context in which depends is called, as in the context-sensitive

call graph on the right.

Finite State Machines

67

(1 context: A)

(2 contexts: AB, AC)

(4 contexts: ABD, ABE, ACD, ACE)

(8 contexts: ...)

(16 calling contexts: ...)

Figure 5.8: The number of paths in a call graph — and therefore the number of calling
contexts in a context-sensitive analysis — can be exponentially larger than the number
of procedures, even without recursion.

68

Finite Models

Duals
In a control flow graph, nodes are associated with program regions, that is, with
blocks of program code that perform computation. In a finite state machine represen-
tation, computations are associated with edges rather than nodes. This difference is
unimportant, because one can always exchange nodes with edges without any loss of
information, as illustrated by the following CFG and FSM representations:

A
B

D
C

E
F
G

The graph on the right is called the dual of the graph on the left. Taking the dual of
the graph on the right, one obtains again the graph on the left.

The choice between associating nodes or edges with computations performed by
a program is only a matter of convention and convenience, and is not an important
difference between CFG and FSM models. In fact, aside from this minor difference
in customary presentation, the control flow graph is a particular kind of finite state
machine model in which the abstract states preserve some information about control
flow (program regions and their execution order) and elide all other information about
program state.

Finite State Machines

69

LF

Looking for
optional DOS LF

Other char

append

append

CR
emit

Other char
apend

W' Within
line

EOF
LF CR EOF other
e | e/emit | 1/emit | d/- w / append
e/emit | 1/emit | d/emit | w/append
1 |e/- d/- w / append

Figure 5.9: Finite state machine (Mealy machine) description of line-end conversion
procedure, depicted as a state transition diagram (top) and as a state transition table
(bottom). An omission is obvious in the tabular representation, but easy to overlook in

the state transition diagram.

70

Finite Models

FSM Model Program
ééglic static Tablel
getTablel () {
if (ref == null) {
synchronized (Tablel) {
Required if (ref —- null)(
. ref = new Tablel();
Properties ref.initialize();
}
}
}
return ref;
bo.o.
: The model is syntactically
The model satisfies well-fromed, consistent, The model accurately
the specification and complete represents the program

Figure 5.10: Correctness relations for a finite state machine model. Consistency and
completeness are internal properties, independent of the program or a higher-level
specification. If, in addition to these internal properties, a model accurately represents
a program and satisfies a higher-level specification, then by definition the program
itself satisfies the higher-level specification.

described by paths through the FSM, may satisfy (or not) some desired property. Third,
the finite state machine model should accurately represent possible behaviors of the
program. Equivalently, the program should be a correct implementation of the finite
state machine model. We will consider each of the three kinds of correctness relation
in turn with respect to the FSM model of Figure 5.9.

Many details are purposely omitted from the FSM model depicted in Figure 5.9, but
it is also incomplete in an undesirable way. Normally, we require a finite state machine
specification to be complete in the sense that it prescribes the allowed behavior(s) for
any possible sequence of inputs or events. For the line-end conversion specification,
the state transition diagram does not include a transition from state / on carriage return;
that is, it does not specify what the program should do if it encounters a carriage return
immediately after a line feed.

An alternative representation of finite state machines, including Mealy machines, is
the state transition table, also illustrated in Figure 5.9. There is one row in the transition
table for each state node and one column for each event or input. If the FSM is complete
and deterministic, there should be exactly one transition in each table entry. Since this
table is for a Mealy machine, the transition in each table entry indicates both the next
state and the response (e.g., d/emit means “emit and then proceed to state d”). The
omission of a transition from state / on a carriage return is glaringly obvious when the
state transition diagram is written in tabular form.

Analysis techniques for verifying properties of models will be presented in subse-
quent chapters. For the current example, we illustrate with informal reasoning. The
desired property of this program and of its FSM models is that, for every possible
execution, the output file is identical to the input file except that each line ending is
replaced by the line-end convention of the target format. Note, however, that the emit

Finite State Machines

71

action is responsible for emitting a line ending along with whatever text has been ac-
cumulated in a buffer. While emit is usually triggered by a line ending in the input,
it is also used to reproduce any text in the buffer when end-of-file is reached. Thus,
if the last line of an input file is not terminated with a line ending, a line ending will
nonetheless be added. This discrepancy between specification and implementation is
somewhat easier to detect by examining the FSM model than by inspecting the program
text.

To consider the third kind of correctness property, consistency between the model
and the implementation, we must define what it means for them to be consistent. The
most general way to define consistency is by considering behaviors. Given a way
to compare a sequence of program actions to a path through the finite state machine
(which in general will involve interpreting some program events and discarding others),
a program is consistent with a finite state machine model if every possible program
execution corresponds to a path through the model.”

Matching sequences of program actions to paths through a finite state machine
model is a useful notion of consistency if we are testing the program, but it is not a
practical way to reason about all possible program behaviors. For that kind of reason-
ing, it is more helpful to also require a relation between states in the finite state machine
model and concrete program execution states.

It should be possible to describe the association of concrete program states with
abstract FSM states by an abstraction function. The abstraction function maps each
concrete program state to exactly one FSM state. Moreover, if some possible step
op in program execution takes the concrete program state from some state before to
some state after, then one of two conditions must apply: If the FSM model does not
include transitions corresponding to op, then program state before and program state
after must be associated with the same abstract state in the model. If the FSM does
include transitions corresponding to op, then there must be a corresponding transition
in the FSM model that connects program state before to program state after.

Using the second notion of conformance, we can reason about whether the imple-
mentation of the line-end conversion program of Figure 5.11 is consistent with the FSM
of Figure 5.9 or Figure 5.12. Note that, in contrast to the control flow graph models
considered earlier, most of the interesting “state” is in the variables pos and atCR. We
posit that the abstraction function might be described by the following table:

Abstract state | Concrete state
Lines | atCR | pos
e (Empty buffer) | 2-12 | O 0
w (Within line) | 12 0 >0
1 (Looking for LF) | 12 1 0
d (Done) | 35 - -

2 As with other abstraction functions used in reasoning about programs, the mapping is from concrete
representation to abstract representation, and not from abstract to concrete. This is because the mapping
from concrete to abstract is many-to-one, and its inverse is therefore not a mathematical function (which by
definition maps each object in the domain set into a single object in the range).

72 Finite Models

1 /** Convert each line from standard input */
2 void transduce() {
3
4 #define BUFLEN 1000
5 char buf[BUFLEN]; /* Accumulate line into this buffer %/
6 int pos =0; /* Index for next character in buffer */
7
8 char inChar; /* Next character from input */
9
10 int atCR = 0; /* 0="within line”, 1="optional DOS LF” */
11
12 while ((inChar = getchar()) != EOF) {
13 switch (inChar) {
14 case LF:
15 if (atCR) { /* Optional DOS LF */
16 atCR = 0;
17 }else { /* Encountered CR within line */
18 emit(buf, pos);
19 pos = 0;
20 }
21 break;
22 case CR:
23 emit(buf, pos);
24 pos = 0;
25 atCR =1;
26 break;
27 default:
28 if (pos >= BUFLEN-2) fail("Buffer overflow");
29 buf[pos++] = inChar;
30 } /% switch %/
31 }
32 if (pos > 0) {
33 emit(buf, pos);
34 }
3B}

Figure 5.11: Procedure to convert among Dos, Unix, and Macintosh line ends.

Finite State Machines

73

LF CR EOF other
e | e/emit | 1/emit | d/- w / append
e/emit | 1/emit | d/emit | w/append
1 |e/- I/emit | d/- w / append

Figure 5.12: Completed finite state machine (Mealy machine) description of line-end
conversion procedure, depicted as a state-transition table (bottom). The omitted tran-
sition in Figure 5.9 has been added.

With this state abstraction function, we can check conformance between the source
code and each transition in the FSM. For example, the transition from state e to state
[is interpreted to mean that, if execution is at the head of the loop with pos equal to
zero and atCR also zero (corresponding to state e), and the next character encountered
is a carriage return, then the program should perform operations corresponding to the
emit action and then enter a state in which pos is zero and atCR is 1 (corresponding to
state /). It is easy to verify that this transition is implemented correctly. However, if
we examine the transition from state / to state w, we will discover that the code does
not correspond because the variable atCR is not reset to zero, as it should be. If the
program encounters a carriage return, then some text, and then a line feed, the line feed
will be discarded — a program fault.

The fault in the conversion program was actually detected by the authors through
testing, and not through manual verification of correspondence between each transition
and program source code. Making the abstraction function explicit was nonetheless
important to understanding the nature of the error and how to repair it.

Summary

Models play many of the same roles in software development as in engineering of
other kinds of artifacts. Models must be much simpler than the artifacts they describe,
but must preserve enough essential detail to be useful in making choices. For models
of software execution, this means that a model must abstract away enough detail to
represent the potentially infinite set of program execution states by a finite and suitably
compact set of model states.

Some models, such as control flow graphs and call graphs, can be extracted from
programs. The key trade-off for these extracted models is precision (retaining enough
information to be predictive) versus the cost of producing and storing the model. Other
models, including many finite state machine models, may be constructed before the
program they describe, and serve as a kind of intermediate-level specification of in-
tended behavior. These models can be related to both a higher-level specification of
intended behavior and the actual program they are intended to describe.

The relation between finite state models and programs is elaborated in Chapter 6.
Analysis of models, particularly those involving concurrent execution, is described

74

Finite Models

further in Chapter 8.

Further Reading

Finite state models of computation have been studied at least since the neural models
of McColloch and Pitts [MP43], and modern finite state models of programs remain
close to those introduced by Mealy [Mea55] and Moore [Mo0056]. Lamport [Lam89]
provides the clearest and most accessible introduction the authors know regarding what
a finite state machine model “means” and what it means for a program to conform to
it. Guttag [Gut77] presents an early explication of the abstraction relation between a
model and a program, and why the abstraction function goes from concrete to abstract
and not vice versa. Finite state models have been particularly important in develop-
ment of reasoning and tools for concurrent (multi-threaded, parallel, and distributed)
systems; Pezze, Taylor, and Young [PTY95] overview finite models of concurrent pro-
grams.

Exercises

5.1. We construct large, complex software systems by breaking them into manage-
able pieces. Likewise, models of software systems may be decomposed into
more manageable pieces. Briefly describe how the requirements of model com-
pactness, predictiveness, semantic meaningfulness, and sufficient generality ap-
ply to approaches for modularizing models of programs. Give examples where
possible.

5.2. Models are used in analysis, but construction of models from programs often
requires some form of analysis. Why bother, then? If one is performing an
initial analysis to construct a model to perform a subsequent analysis, why not
just merge the initial and subsequent analysis and dispense with defining and
constructing the model? For example, if one is analyzing Java code to construct
a call graph and class hierarchy that will be used to detect overriding of inherited
methods, why not just analyze the source code directly for method overriding?

5.3. Linear code sequence and jump (LCSAJ) makes a distinction between “sequen-
tial” control flow and other control flow. Control flow graphs, on the other hand,
make no distinction between sequential and nonsequential control flow. Consid-
ering the criterion of model predictiveness, is there a justification for this distinc-
tion?

5.4. What upper bound can you place on the number of basic blocks in a program,
relative to program size?

Finite State Machines 75

5.5. A directed graph is a set of nodes and a set of directed edges. A mathematical
relation is a set of ordered pairs.

1. If we consider a directed graph as a representation of a relation, can we
ever have two distinct edges from one node to another?

2. Each ordered pair in the relation corresponds to an edge in the graph. Is the
set of nodes superfluous? In what case might the set of nodes of a directed
graph be different from the set of nodes that appear in the ordered pairs?

5.6. We have described how abstraction can introduce nondeterminism by discarding
some of the information needed to determine whether a particular state transi-
tion is possible. In addition to introducing spurious transitions, abstraction can
introduce states that do not correspond to any possible program execution state
— we say such states are infeasible. Can we still have an abstraction function
from concrete states to model states if some of the model states are infeasible?

5.7. Can the number of basic blocks in the control flow graph representation of a
program ever be greater than the number of program statements? If so, how? If
not, why not?

76 Finite Models

Chapter 6

Dependence and Data
Flow Models

The control flow graph and state machine models introduced in the previous chapter
capture one aspect of the dependencies among parts of a program. They explicitly
represent control flow but deemphasize transmission of information through program
variables. Data flow models provide a complementary view, emphasizing and making
explicit relations involving transmission of information.

Models of data flow and dependence in software were originally developed in the
field of compiler construction, where they were (and still are) used to detect opportuni-
ties for optimization. They also have many applications in software engineering, from
testing to refactoring to reverse engineering. In test and analysis, applications range
from selecting test cases based on dependence information (as described in Chap-
ter 13) to detecting anomalous patterns that indicate probable programming errors,
such as uses of potentially uninitialized values. Moreover, the basic algorithms used
to construct data flow models have even wider application and are of particular interest
because they can often be quite efficient in time and space.

6.1 Definition-Use Pairs

The most fundamental class of data flow model associates the point in a program where
a value is produced (called a “definition”) with the points at which the value may be
accessed (called a “use”). Associations of definitions and uses fundamentally capture
the flow of information through a program, from input to output.

Definitions occur where variables are declared or initialized, assigned values, or
received as parameters, and in general at all statements that change the value of one or
more variables. Uses occur in expressions, conditional statements, parameter passing,
return statements, and in general in all statements whose execution extracts a value
from a variable. For example, in the standard greatest common divisor (GCD) algo-
rithm of Figure 6.1, line 1 contains a definition of parameters x and y, line 3 contains
a use of variable y, line 6 contains a use of variable tmp and a definition of variable y,

Tl

78 Dependence and Data Flow Models

AKkill

A definition-clear
path

A direct data
dependence

1 public int gcd(int x, int y) { /*A:defxy

2 int tmp; /* deftmp 7/

3 while (y 1= 0) { /*B:usey ¥

4 tmp=x%Yy; /* C: use Xx,y, def tmp */
5 X=Y; /*D:usey, defx ¥/

6 y =tmp; /* E:use tmp, defy ¥/
7 }

8 return x; /* F:usex*/
o}

Figure 6.1: Java implementation of Euclid’s algorithm for calculating the greatest
common denominator of two positive integers. The labels A—F are provided to relate
statements in the source code to graph nodes in subsequent figures.

and the return in line 8 is a use of variable x.

Each definition-use pair associates a definition of a variable (e.g., the assignment
to y in line 6) with a use of the same variable (e.g., the expression y != 0 in line 3). A
single definition can be paired with more than one use, and vice versa. For example,
the definition of variable y in line 6 is paired with a use in line 3 (in the loop test), as
well as additional uses in lines 4 and 5. The definition of x in line 5 is associated with
uses in lines 4 and 8.

A definition-use pair is formed only if there is a program path on which the value
assigned in the definition can reach the point of use without being overwritten by an-
other value. If there is another assignment to the same value on the path, we say that
the first definition is killed by the second. For example, the declaration of tmp in line 2
is not paired with the use of tmp in line 6 because the definition at line 2 is killed by the
definition at line 4. A definition-clear path is a path from definition to use on which the
definition is not killed by another definition of the same variable. For example, with
reference to the node labels in Figure 6.2, path E, B,C, D is a definition-clear path from
the definition of y in line 6 (node E of the control flow graph) to the use of y in line 5
(node D). Path A,B,C,D,E is not a definition-clear path with respect to tmp because
of the intervening definition at node C.

Definition-use pairs record a kind of program dependence, sometimes called direct
data dependence. These dependencies can be represented in the form of a graph, with
a directed edge for each definition-use pair. The data dependence graph representation
of the GCD method is illustrated in Figure 6.3 with nodes that are program statements.
Different levels of granularity are possible. For use in testing, nodes are typically basic
blocks. Compilers often use a finer-grained data dependence representation, at the
level of individual expressions and operations, to detect opportunities for performance-
improving transformations.

The data dependence graph in Figure 6.3 captures only dependence through flow
of data. Dependence of the body of the loop on the predicate governing the loop is not
represented by data dependence alone. Control dependence can also be represented
with a graph, as in Figure 6.5, which shows the control dependencies for the GCD

Definition-Use Pairs

79

4| public int gcd

4

public int ged(int x, int y) {

™)

O

int tmp; def={x, y, tmp}
use ={}
v
while (y !=0)
{
def={}

{ use = {y}

ﬁFals Tlue

tmp=x%y;
def = {tmp }
use ={x, y}
4
D
X=Y;
def = { x}
use = {y}
E

def = {y}
L use = {tmp}

L{eturn X;
}
def = {}

use = {x}

Figure 6.2: Control flow graph of GCD method in Figure 6.1.

80 Dependence and Data Flow Models

A dominator

A immediate
dominator

public int ged(int x, int y) { A
int tmp;

(tmp=x%y; ()« -
:\tmp -y
v

|
|
|
(y = tmp; ® !
g |
|
|
1

|
|
|
|
|
|
|
|
|
|
| i \
| | |
A A A 4

[while (y'=0) @ (x=y; (D)

{
[return X; q
}

Figure 6.3: Data dependence graph of GCD method in Figure 6.1, with nodes for
statements corresponding to the control flow graph in Figure 6.2. Each directed edge
represents a direct data dependence, and the edge label indicates the variable that
transmits a value from the definition at the head of the edge to the use at the tail of the
edge.

- ———— =

method. The control dependence graph shows direct control dependencies, that is,
where execution of one statement controls whether another is executed. For example,
execution of the body of a loop or if statement depends on the result of a predicate.

Control dependence differs from the sequencing information captured in the control
flow graph. The control flow graph imposes a definite order on execution even when
two statements are logically independent and could be executed in either order with the
same results. If a statement is control- or data-dependent on another, then their order
of execution is not arbitrary. Program dependence representations typically include
both data dependence and control dependence information in a single graph with the
two kinds of information appearing as different kinds of edges among the same set of
nodes.

A node in the control flow graph that is reached on every execution path from entry
point to exit is control dependent only on the entry point. For any other node N, reached
on some but not all execution paths, there is some branch that controls execution of N in
the sense that, depending on which way execution proceeds from the branch, execution
of N either does or does not become inevitable. It is this notion of control that control
dependence captures.

The notion of dominators in a rooted, directed graph can be used to make this
intuitive notion of “controlling decision” precise. Node M dominates node N if every
path from the root of the graph to N passes through M. A node will typically have
many dominators, but except for the root, there is a unique immediate dominator of
node N, which is closest to NV on any path from the root and which is in turn dominated

Definition-Use Pairs

81

—— public int gcd -

A
public int gcd(int x, int y) { @
int tmp;

/—thile (y 1= 0){ (B)e—,
(imp=x 0y ©
x=y; (D)

(y = mp; B
L»Creturn x;} (If)

Figure 6.4: Calculating control dependence for node E in the control flow graph of
the GCD method. Nodes C, D, and E in the gray region are post-dominated by E;
that is, execution of E is inevitable in that region. Node B has successors both within
and outside the gray region, so it controls whether E is executed; thus E is control-
dependent on B.

by all the other dominators of N. Because each node (except the root) has a unique
immediate dominator, the immediate dominator relation forms a tree.

The point at which execution of a node becomes inevitable is related to paths from
a node to the end of execution — that is, to dominators that are calculated in the re-
verse of the control flow graph, using a special “exit” node as the root. Dominators
in this direction are called post-dominators, and dominators in the normal direction of
execution can be called pre-dominators for clarity.

We can use post-dominators to give a more precise definition of control depen-
dence. Consider again a node N that is reached on some but not all execution paths.
There must be some node C with the following property: C has at least two succes-
sors in the control flow graph (i.e., it represents a control flow decision); C is not
post-dominated by N (N is not already inevitable when C is reached); and there is a
successor of C in the control flow graph that is post-dominated by N. When these con-
ditions are true, we say node N is control-dependent on node C. Figure 6.4 illustrates
the control dependence calculation for one node in the GCD example, and Figure 6.5
shows the control dependence relation for the method as a whole.

A post-dominator

A pre-dominator

82 Dependence and Data Flow Models

public int ged(int x, int y) { A
int tmp;

X
Qwhile (y!'=0) { @ G‘eturn X; @
{ 3

Gmp =x%Yy; (C) (y =tmp; @

A reaching definition

(x=y; ©)

Figure 6.5: Control dependence tree of the GCD method. The loop test and the return
statement are reached on every possible execution path, so they are control-dependent
only on the entry point. The statements within the loop are control-dependent on the
loop test.

6.2 Data Flow Analysis

Definition-use pairs can be defined in terms of paths in the program control flow graph.
As we have seen in the former section, there is an association (d, u) between a definition
of variable v at d and a use of variable v at u if and only if there is at least one control
flow path from d to u with no intervening definition of v. We also say that definition
vg reaches u, and that v; is a reaching definition at u. If, on the other hand, a control
flow path passes through another definition e of the same variable v, we say that v, kills
v4 at that point.

It would be possible to compute definition-use pairs by searching the control flow
graph for individual paths of the form described above. However, even if we consider
only loop-free paths, the number of paths in a graph can be exponentially larger than
the number of nodes and edges. Practical algorithms therefore cannot search every
individual path. Instead, they summarize the reaching definitions at a node over all the
paths reaching that node.

An efficient algorithm for computing reaching definitions (and several other prop-
erties, as we will see below) is based on the way reaching definitions at one node are
related to reaching definitions at an adjacent node. Suppose we are calculating the
reaching definitions of node n, and there is an edge (p,n) from an immediate predeces-
sor node p. We observe:

e If the predecessor node p can assign a value to variable v, then the definition v,
reaches n. We say the definition v, is generated at p.

e If a definition v, of variable v reaches a predecessor node p, and if v is not
redefined at that node (in which case we say the v, is killed at that point), then
the definition is propagated on from p to n.

Data Flow Analysis

83

These observations can be stated in the form of an equation describing sets of reach-
ing definitions. For example, reaching definitions at node E in Figure 6.2 are those at
node D, except that D adds a definition of y and replaces (kills) an earlier definition of
y:

Reach(E) = (Reach(D)\ {xa})U{xp}

This rule can be broken down into two parts to make it a little more intuitive and
more efficient to implement. The first part describes how node E receives values from
its predecessor D, and the second describes how it modifies those values for its succes-
sors:

Reach(E) = ReachOut(D)
ReachOut(D) (Reach(D)\ {xa})U{xp}

In this form, we can easily express what should happen at the head of the while
loop (node B in Figure 6.2), where values may be transmitted both from the beginning
of the procedure (node A) and through the end of the body of the loop (node E). The
beginning of the procedure (node A) is treated as an initial definition of parameters
and local variables. (If a local variable is declared but not initialized, it is treated as a
definition to the special value “uninitialized.”)

Reach(B) = ReachOut(A)U ReachOut(E)
ReachOut(A) = gen(A) = {xa,ya,tmp,}
ReachOut(E) = (Reachin(E)\{ya})U{ye}

In general, for any node n with predecessors pred(n),

Reach(n) = U ReachOut(m)
mepred(n)
ReachOut(n) = (Reachln(n)\ kill(n))U gen(n)

Remarkably, the reaching definitions can be calculated simply and efficiently, first
initializing the reaching definitions at each node in the control flow graph to the empty
set, and then applying these equations repeatedly until the results stabilize. The algo-
rithm is given as pseudocode in Figure 6.6.

84 Dependence and Data Flow Models

Algorithm Reaching definitions

Input: A control flow graph G = (nodes, edges)
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = {v,} if variable v is defined at n, otherwise {}
kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n € nodes loop
ReachOut(n) = {} ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList \ {n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(n) = Upneprea(n) REAChOUL(m);
ReachOut(n) = (Reach(n) \ kill(n)) Ugen(n) ;
if (ReachOut(n) # oldVal) then
// Propagate changed value to successor nodes
workList = workList U succ(n)
end if;
end loop;

Figure 6.6: An iterative work-list algorithm to compute reaching definitions by apply-
ing each flow equation until the solution stabilizes.

Classic Analyses: Live and Avail

85

6.3 Classic Analyses: Live and Avail

Reaching definition is a classic data flow analysis adapted from compiler construction
to applications in software testing and analysis. Other classical data flow analyses
from compiler construction can likewise be adapted. Moreover, they follow a common
pattern that can be used to devise a wide variety of additional analyses.

Available expressions is another classical data flow analysis, used in compiler con-
struction to determine when the value of a subexpression can be saved and reused rather
than recomputed. This is permissible when the value of the subexpression remains un-
changed regardless of the execution path from the first computation to the second.

Available expressions can be defined in terms of paths in the control flow graph. An
expression is available at a point if, for all paths through the control flow graph from
procedure entry to that point, the expression has been computed and not subsequently
modified. We say an expression is generated (becomes available) where it is computed
and is killed (ceases to be available) when the value of any part of it changes (e.g.,
when a new value is assigned to a variable in the expression).

As with reaching definitions, we can obtain an efficient analysis by describing the
relation between the available expressions that reach a node in the control flow graph
and those at adjacent nodes. The expressions that become available at each node (the
gen set) and the expressions that change and cease to be available (the kil set) can be
computed simply, without consideration of control flow. Their propagation to a node
from its predecessors is described by a pair of set equations:

Avail(n) = ﬂ AvailOut(m)
mépred(n)
AvailOut(n) = (Avail(n)\ kill(n)) U Gen(n)

The similarity to the set equations for reaching definitions is striking. Both propa-
gate sets of values along the control flow graph in the direction of program execution
(they are forward analyses), and both combine sets propagated along different control
flow paths. However, reaching definitions combines propagated sets using set union,
since a definition can reach a use along any execution path. Available expressions com-
bines propagated sets using set intersection, since an expression is considered available
at a node only if it reaches that node along all possible execution paths. Thus we say
that, while reaching definitions is a forward, any-path analysis, available expressions
is a forward, all-paths analysis. A work-list algorithm to implement available expres-
sions analysis is nearly identical to that for reaching definitions, except for initialization
and the flow equations, as shown in Figure 6.7.

Applications of a forward, all-paths analysis extend beyond the common subexpres-
sion detection for which the Avail algorithm was originally developed. We can think
of available expressions as tokens that are propagated from where they are generated
through the control flow graph to points where they might be used. We obtain different
analyses by choosing tokens that represent some other property that becomes true (is
generated) at some points, may become false (be killed) at some other points, and is

forward analysis

any-path analysis

all-paths analysis

86 Dependence and Data Flow Models

Algorithm Available expressions

Input: A control flow graph G = (nodes, edges), with a distinguished root node start.
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = all expressions e computed at node n
kill(n) = expressions e computed anywhere, whose value is changed at #;
kill(start) is the set of all e.

Output: Avail(n) = the available expressions at node n

for n € nodes loop
AvailOut(n) = set of all e defined anywhere ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList \ {n} ;
oldVal = AvailOut(n) ;

// Apply flow equations, propagating values from predecessors
Avail(n) = epred(n)Availout(m);
AvailOut(n) = (Avail(n) \ kill(n)) Ugen(n) ;
if (AvailOut(n) # oldVal) then
// Propagate changes to successors
workList = workList U succ(n)
end if;
end loop;

Figure 6.7: An iterative work-list algorithm for computing available expressions.

Classic Analyses: Live and Avail

87

1 /** A trivial method with a potentially uninitialized variable.
2 * Java compilers reject the program. The compiler uses
3 * data flow analysis to determine that there is a potential
4 * (syntactic) execution path on which k is used before it
5 * has been assigned an initial value.
6 vl
7 static void questionable() {
8 intk;
9 for (int i=0; i < 10; ++i) {

10 if (someCondition(i)) {

11 k=0;

12 } else {

13 K +=1i;

14 }

15 }

16 System.out.printin(k);

17 }

18 }

Figure 6.8: Function questionable (repeated from Chapter 3) has a potentially unini-
tialized variable, which the Java compiler can detect using data flow analysis.

evaluated (used) at certain points in the graph. By associating appropriate sets of tokens
in gen and kill sets for a node, we can evaluate other properties that fit the pattern

“G occurs on all execution paths leading to U, and there is no intervening
occurrence of K between the last occurrence of G and U.”

G, K, and U can be any events we care to check, so long as we can mark their occur-
rences in a control flow graph.

An example problem of this kind is variable initialization. We noted in Chapter 3
that Java requires a variable to be initialized before use on all execution paths. The
analysis that enforces this rule is an instance of Avail. The tokens propagated through
the control flow graph record which variables have been assigned initial values. Since
there is no way to “uninitialize” a variable in Java, the kill sets are empty. Figure 6.8
repeats the source code of an example program from Chapter 3. The corresponding
control flow graph is shown with definitions and uses in Figure 6.9 and annotated with
gen and kill sets for the initialized variable check in Figure 6.10.

Reaching definitions and available expressions are forward analyses; that is, they
propagate values in the direction of program execution. Given a control flow graph
model, it is just as easy to propagate values in the opposite direction, backward from
nodes that represent the next steps in computation. Backward analyses are useful for
determining what happens after an event of interest. Live variables is a backward
analysis that determines whether the value held in a variable may be subsequently

backward
analysis

88

Dependence and Data Flow Models

| static void questionable() {

I

Ent k;

false Gk =03}

def = {}
use = {}
' 3
Eor (int i=0; <B/
def = {i}
use = {}
(i< 10; @‘
K def={}
| |use = {i}
true
v
if (someCondition(i)) { @
def = {}
o L=z
tru falseﬁv
. E Eelse _
=1 Lhadt der =11
¥ N\
[Hi) } ©
def = {i}
use = {i}

0

‘(System.out.println(k);

®)

def =

Figure 6.9: Control flow graph of the source code in Figure 6.8, annotated with vari-

able definitions and uses.

use = {k}

Classic Analyses: Live and Avail

89

| static void questionable() { |

i KT=7ik

ik ®

Gor(inti:O; B
i gen = {i} I;

I
{k=0;) E oo F
false [\ gen =1k {k +=i;}] gen = (K}

\ (System.out.printin(k); H
I

/ G< 10; ®< \

Figure 6.10: Control flow graph of the source code in Figure 6.8, annotated with gen
and kill sets for checking variable initialization using a forward, all-paths Avail anal-
ysis. (Empty gen and kill sets are omitted.) The Avail set flowing from node G to node
C will be {i,k}, but the Avail set flowing from node B to node C is {i}. The all-paths
analysis intersects these values, so the resulting Avail(C) is {i}. This value propagates
through nodes C and D to node F, which has a use of k as well as a definition. Since
k & Avail(F), a possible use of an uninitialized variable is detected.

90

Dependence and Data Flow Models

used. Because a variable is considered live if there is any possible execution path on
which it is used, a backward, any-path analysis is used.

A variable is live at a point in the control flow graph if, on some execution path, its
current value may be used before it is changed. Live variables analysis can be expressed
as set equations as before. Where Reach and Avail propagate values to a node from its
predecessors, Live propagates values from the successors of a node. The gen sets are
variables used at a node, and the kill sets are variables whose values are replaced. Set
union is used to combine values from adjacent nodes, since a variable is live at a node
if it is live at any of the succeeding nodes.

Live(n) = U LiveOur(m)
mésucc(n)
LiveOut(n) = (Live(n)\ kill(n)) UGen(n)

These set equations can be implemented using a work-list algorithm analogous
to those already shown for reaching definitions and available expressions, except that
successor edges are followed in place of predecessors and vice versa.

Like available expressions analysis, live variables analysis is of interest in testing
and analysis primarily as a pattern for recognizing properties of a certain form. A
backward, any-paths analysis allows us to check properties of the following form:

“After D occurs, there is at least one execution path on which G occurs
with no intervening occurrence of K.”

Again we choose tokens that represent properties, using gen sets to mark occurrences
of G events (where a property becomes true) and kill sets to mark occurrences of K
events (where a property ceases to be true).

One application of live variables analysis is to recognize useless definitions, that
is, assigning a value that can never be used. A useless definition is not necessarily a
program error, but is often symptomatic of an error. In scripting languages like Perl and
Python, which do not require variables to be declared before use, a useless definition
typically indicates that a variable name has been misspelled, as in the common gateway
interface (CGI) script of Figure 6.11.

We have so far seen a forward, any-path analysis (reaching definitions), a forward,
all-paths analysis (available definitions), and a backward, any-path analysis (live vari-
ables). One might expect, therefore, to round out the repertoire of patterns with a
backward, all-paths analysis, and this is indeed possible. Since there is no classical
name for this combination, we will call it “inevitability”” and use it for properties of the
form

“After D occurs, G always occurs with no intervening occurrence of K’
or, informally,
“D inevitably leads to G before K~

Examples of inevitability checks might include ensuring that interrupts are reenabled
after executing an interrupt-handling routine in low-level code, files are closed after
opening them, and so on.

From Execution to Conservative Flow Analysis

91

1 class SampleForm(FormData):
2 """ Used with Python cgi module
3 to hold and validate data
4 from HTML form """
5
6 fieldnames = (name’, ’‘email’, ’comment’)
7
8 # Trivial example of validation. The bug would be
9 # harder to see in a real validation method.
10 def validate(self):
11 valid = 1;
12 if self.name == "" : valid = 0
13 if self.email=="":vald=0
14 if self.comment == "" : valid =0
15 return valid

Figure 6.11: Part of a CGI program (Web form processing) in Python. The misspelled
variable name in the data validation method will be implicitly declared and will not
be rejected by the Python compiler or interpreter, which could allow invalid data to
be treated as valid. The classic live variables data flow analysis can show that the
assignment to valid is a useless definition, suggesting that the programmer probably
intended to assign the value to a different variable.

6.4 From Execution to Conservative Flow Analysis

Data flow analysis algorithms can be thought of as a kind of simulated execution. In
place of actual values, much smaller sets of possible values are maintained (e.g., a
single bit to indicate whether a particular variable has been initialized). All possible
execution paths are considered at once, but the number of different states is kept small
by associating just one summary state at each program point (node in the control flow
graph). Since the values obtained at a particular program point when it is reached
along one execution path may be different from those obtained on another execution
path, the summary state must combine the different values. Considering flow analysis
in this light, we can systematically derive a conservative flow analysis from a dynamic
(that is, run-time) analysis.

As an example, consider the “taint-mode” analysis that is built into the program-
ming language Perl. Taint mode is used to prevent some kinds of program errors that
result from neglecting to fully validate data before using it, particularly where invali-
dated data could present a security hazard. For example, if a Perl script wrote to a file
whose name was taken from a field in a Web form, a malicious user could provide a full
path to sensitive files. Taint mode detects and prevents use of the “tainted” Web form
input in a sensitive operation like opening a file. Other languages used in CGI scripts
do not provide such a monitoring function, but we will consider how an analogous
static analysis could be designed for a programming language like C.

92

Dependence and Data Flow Models

When Perl is running in taint mode, it tracks the sources from which each variable
value was derived, and distinguishes between safe and tainted data. Tainted data is any
input (e.g., from a Web form) and any data derived from tainted data. For example,
if a tainted string is concatenated with a safe string, the result is a tainted string. One
exception is that pattern matching always returns safe strings, even when matching
against tainted data — this reflects the common Perl idiom in which pattern matching
is used to validate user input. Perl’s taint mode will signal a program error if tainted
data is used in a potentially dangerous way (e.g., as a file name to be opened).

Perl monitors values dynamically, tagging data values and propagating the tags
through computation. Thus, it is entirely possible that a Perl script might run with-
out errors in testing, but an unanticipated execution path might trigger a taint mode
program error in production use. Suppose we want to perform a similar analysis, but
instead of checking whether “tainted” data is used unsafely on a particular execution,
we want to ensure that tainted data can never be used unsafely on any execution. We
may also wish to perform the analysis on a language like C, for which run-time tagging
is not provided and would be expensive to add. So, we can consider deriving a conser-
vative, static analysis that is like Perl’s taint mode except that it considers all possible
execution paths.

A data flow analysis for taint would be a forward, any-path analysis with tokens
representing tainted variables. The gen set at a program point would be a set containing
any variable that is assigned a tainted value at that point. Sets of tainted variables would
be propagated forward to a node from its predecessors, with set union where a node in
the control flow graph has more than one predecessor (e.g., the head of a loop).

There is one fundamental difference between such an analysis and the classic data
flow analyses we have seen so far: The gen and kill sets associated with a program
point are not constants. Whether or not the value assigned to a variable is tainted (and
thus whether the variable belongs in the gen set or in the kill set) depends on the set
of tainted variables at that program point, which will vary during the course of the
analysis.

There is a kind of circularity here — the gen set and kill set depend on the set of
tainted variables, and the set of tainted variables may in turn depend on the gen and kill
set. Such circularities are common in defining flow analyses, and there is a standard
approach to determining whether they will make the analysis unsound. To convince
ourselves that the analysis is sound, we must show that the output values computed by
each flow equation are monotonically increasing functions of the input values. We will
say more precisely what “increasing” means below.

The determination of whether a computed value is tainted will be a simple function
of the set of tainted variables at a program point. For most operations of one or more
arguments, the output is tainted if any of the inputs are tainted. As in Perl, we may
designate one or a few operations (operations used to check an input value for validity)
as taint removers. These special operations always return an untainted value regardless
of their inputs.

Suppose we evaluate the taintedness of an expression with the input set of tainted
variables being {a,b}, and again with the input set of tainted variables being {a,b,c}.
Even without knowing what the expression is, we can say with certainty that if the
expression is tainted in the first evaluation, it must also be tainted in the second evalu-

From Execution to Conservative Flow Analysis

93

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

Figure 6.12: The powerset lattice of set {a,b,c}. The powerset contains all subsets of
the set and is ordered by set inclusion.

ation, in which the set of tainted input variables is larger. This also means that adding
elements to the input tainted set can only add elements to the gen set for that point, or
leave it the same, and conversely the kill set can only grow smaller or stay the same.
We say that the computation of tainted variables at a point increases monotonically.

To be more precise, the monotonicity argument is made by arranging the possible
values in a lattice. In the sorts of flow analysis framework considered here, the lattice
is almost always made up of subsets of some set (the set of definitions, or the set of
tainted variables, etc.); this is called a powerset lattice because the powerset of set A is
the set of all subsets of A. The bottom element of the lattice is the empty set, the top is
the full set, and lattice elements are ordered by inclusion as in Figure 6.12. If we can
follow the arrows in a lattice from element x to element y (e.g., from {a} to {a,b,c}),
then we say y > x. A function f is monotonically increasing if

y>x= f(y) > f(x)

Not only are all of the individual flow equations for taintedness monotonic in this
sense, but in addition the function applied to merge values where control flow paths
come together is also monotonic:

ADB=AUCDBUC

If we have a set of data flow equations that is monotonic in this sense, and if we
begin by initializing all values to the bottom element of the lattice (the empty set in this
case), then we are assured that an iterative data flow analysis will converge on a unique
minimum solution to the flow equations.

powerset lattice

94

Dependence and Data Flow Models

A alias

The standard data flow analyses for reaching definitions, live variables, and avail-
able expressions can all be justified in terms of powerset lattices. In the case of available
expressions, though, and also in the case of other all-paths analyses such as the one we
have called “inevitability,” the lattice must be flipped over, with the empty set at the top
and the set of all variables or propositions at the bottom. (This is why we used the set
of all tokens, rather than the empty set, to initialize the Avail sets in Figure 6.7.)

6.5 Data Flow Analysis with Arrays and Pointers

The models and flow analyses described in the preceding section have been limited
to simple scalar variables in individual procedures. Arrays and pointers (including
object references and procedure arguments) introduce additional issues, because it is
not possible in general to determine whether two accesses refer to the same storage
location. For example, consider the following code fragment:

1 afi] = 13;

2 k = afj];

Are these two lines a definition-use pair? They are if the values of i and j are equal,
which might be true on some executions and not on others. A static analysis cannot, in
general, determine whether they are always, sometimes, or never equal, so a source of
imprecision is necessarily introduced into data flow analysis.

Pointers and object references introduce the same issue, often in less obvious ways.
Consider the following snippet:

1 a[2] = 42;

2 i =b[2];

It seems that there cannot possibly be a definition-use pair involving these two
lines, since they involve none of the same variables. However, arrays in Java are dy-
namically allocated objects accessed through pointers. Pointers of any kind introduce
the possibility of aliasing, that is, of two different names referring to the same stor-
age location. For example, the two lines above might have been part of the following
program fragment:

1 int[]a=new int[3];
int[]b=a;

a[2] = 42;
i =b[2];

H~ WON

Here a and b are aliases, two different names for the same dynamically allocated
array object, and an assignment to part of a is also an assignment to part of b.

The same phenomenon, and worse, appears in languages with lower-level pointer
manipulation. Perhaps the most egregious example is pointer arithmetic in C:

1 p = &b;

2 P+i)=k;

Data Flow Analysis with Arrays and Pointers

95

It is impossible to know which variable is defined by the second line. Even if
we know the value of i, the result is dependent on how a particular compiler arranges
variables in memory.

Dynamic references and the potential for aliasing introduce uncertainty into data
flow analysis. In place of a definition or use of a single variable, we may have a
potential definition or use of a whole set of variables or locations that could be aliases
of each other. The proper treatment of this uncertainty depends on the use to which
the analysis will be put. For example, if we seek strong assurance that v is always
initialized before it is used, we may not wish to treat an assignment to a potential alias
of v as initialization, but we may wish to treat a use of a potential alias of v as a use of
V.

A useful mental trick for thinking about treatment of aliases is to translate the un-
certainty introduced by aliasing into uncertainty introduced by control flow. After all,
data flow analysis already copes with uncertainty about which potential execution paths
will actually be taken; an infeasible path in the control flow graph may add elements
to an any-paths analysis or remove results from an all-paths analysis. It is usually ap-
propriate to treat uncertainty about aliasing consistently with uncertainty about control
flow. For example, considering again the first example of an ambiguous reference:

1 afi] =13;

2 k =al;

We can imagine replacing this by the equivalent code:
afi] = 13;
if (i ==) {
k =all];
}else {
k= alj];
}

o g~ W N =

In the (imaginary) transformed code, we could treat all array references as distinct,
because the possibility of aliasing is fully expressed in control flow. Now, if we are
using an any-path analysis like reaching definitions, the potential aliasing will result
in creating a definition-use pair. On the other hand, an assignment to a[j] would not
kill a previous assignment to afi]. This suggests that, for an any-path analysis, gen sets
should include everything that might be referenced, but kill sets should include only
what is definitely referenced.

If we were using an all-paths analysis, like available expressions, we would obtain
a different result. Because the sets of available expressions are intersected where con-
trol flow merges, a definition of a[i] would make only that expression, and none of its
potential aliases, available. On the other hand, an assignment to a[j] would kill a[i]. This
suggests that, for an all-paths analysis, gen sets should include only what is definitely
referenced, but kill sets should include all the possible aliases.

Even in analysis of a single procedure, the effect of other procedures must be con-
sidered at least with respect to potential aliases. Consider, for example, this fragment
of a Java method:

96 Dependence and Data Flow Models

context-sensitive
analysis

public void transfer (Custinfo fromCust, Custinfo toCust) {

]
2

3 PhoneNum fromHome = fromCust.gethomePhone();
4 PhoneNum fromWork = fromCust.getworkPhone();
5
6
7

PhoneNum toHome = toCust.gethomePhone();
PhoneNum toWork = toCust.getworkPhone();

We cannot determine whether the two arguments fromCust and toCust are refer-
ences to the same object without looking at the context in which this method is called.
Moreover, we cannot determine whether fromHome and fromWork are (or could be)
references to the same object without more information about how Custlnfo objects are
treated elsewhere in the program.

Sometimes it is sufficient to treat all nonlocal information as unknown. For ex-
ample, we could treat the two Custinfo objects as potential aliases of each other, and
similarly treat the four PhoneNum objects as potential aliases. Sometimes, though,
large sets of aliases will result in analysis results that are so imprecise as to be use-
less. Therefore data flow analysis is often preceded by an interprocedural analysis to
calculate sets of aliases or the locations that each pointer or reference can refer to.

6.6 Interprocedural Analysis

Most important program properties involve more than one procedure, and as mentioned
earlier, some interprocedural analysis (e.g., to detect potential aliases) is often required
as a prelude even to intraprocedural analysis. One might expect the interprocedural
analysis and models to be a natural extension of the intraprocedural analysis, following
procedure calls and returns like intraprocedural control flow. Unfortunately, this is
seldom a practical option.

If we were to extend data flow models by following control flow paths through
procedure calls and returns, using the control flow graph model and the call graph
model together in the obvious way, we would observe many spurious paths. Figure 6.13
illustrates the problem: Procedure foo and procedure bar each make a call on procedure
sub. When procedure call and return are treated as if they were normal control flow, in
addition to the execution sequences (A,X,Y,B) and (C,X,Y,D), the combined graph
contains the impossible paths (A,X,Y,D) and (C,X,Y,B).

It is possible to represent procedure calls and returns precisely, for example by
making a copy of the called procedure for each point at which it is called. This would
result in a context-sensitive analysis. The shortcoming of context sensitive analysis
was already mentioned in the previous chapter: The number of different contexts in
which a procedure must be considered could be exponentially larger than the number
of procedures. In practice, a context-sensitive analysis can be practical for a small
group of closely related procedures (e.g., a single Java class), but is almost never a
practical option for a whole program.

Some interprocedural properties are quite independent of context and lend them-
selves naturally to analysis in a hierarchical, piecemeal fashion. Such a hierarchical

Interprocedural Analysis

97

Ciogn___sub(-)

Figure 6.13: Spurious execution paths result when procedure calls and returns are
treated as normal edges in the control flow graph. The path (A,X,Y,D) appears in the
combined graph, but it does not correspond to an actual execution order.

analysis can be both precise and efficient. The analyses that are provided as part of
normal compilation are often of this sort. The unhandled exception analysis of Java is
a good example: Each procedure (method) is required to declare the exceptions that it
may throw without handling. If method M calls method N in the same or another class,
and if N can throw some exception, then M must either handle that exception or de-
clare that it, too, can throw the exception. This analysis is simple and efficient because,
when analyzing method M, the internal structure of N is irrelevant; only the results of
the analysis at N (which, in Java, is also part of the signature of N) are needed.

Two conditions are necessary to obtain an efficient, hierarchical analysis like the ex-
ception analysis routinely carried out by Java compilers. First, the information needed
to analyze a calling procedure must be small: It must not be proportional either to the
size of the called procedure, or to the number of procedures that are directly or in-
directly called. Second, it is essential that information about the called procedure be
independent of the caller; that is, it must be context-independent. When these two con-
ditions are true, it is straightforward to develop an efficient analysis that works upward
from leaves of the call graph. (When there are cycles in the call graph from recursive
or mutually recursive procedures, an iterative approach similar to data flow analysis
algorithms can usually be devised.)

Unfortunately, not all important properties are amenable to hierarchical analysis.
Potential aliasing information, which is essential to data flow analysis even within in-
dividual procedures, is one of those that are not. We have seen that potential aliasing
can depend in part on the arguments passed to a procedure, so it does not have the
context-independence property required for an efficient hierarchical analysis. For such
an analysis, additional sacrifices of precision must be made for the sake of efficiency.

Even when a property is context-dependent, an analysis for that property may be
context-insensitive, although the context-insensitive analysis will necessarily be less
precise as a consequence of discarding context information. At the extreme, a linear
time analysis can be obtained by discarding both context and control flow information.

Context- and flow-insensitive algorithms for pointer analysis typically treat each

flow-insensitive

98

Dependence and Data Flow Models

statement of a program as a constraint. For example, on encountering an assignment
1 X=y;

where y is a pointer, such an algorithm simply notes that x may refer to any of the
same objects that y may refer to. References(x) 2 References(y) is a constraint that is
completely independent of the order in which statements are executed. A procedure
call, in such an analysis, is just an assignment of values to arguments. Using efficient
data structures for merging sets, some analyzers can process hundreds of thousands of
lines of source code in a few seconds. The results are imprecise, but still much better
than the worst-case assumption that any two compatible pointers might refer to the
same object.

The best approach to interprocedural pointer analysis will often lie somewhere be-
tween the astronomical expense of a precise, context- and flow-sensitive pointer anal-
ysis and the imprecision of the fastest context- and flow-insensitive analyses. Unfor-
tunately, there is not one best algorithm or tool for all uses. In addition to context and
flow sensitivity, important design trade-offs include the granularity of modeling refer-
ences (e.g., whether individual fields of an object are distinguished) and the granularity
of modeling the program heap (that is, which allocated objects are distinguished from
each other).

Summary

Data flow models are used widely in testing and analysis, and the data flow analysis
algorithms used for deriving data flow information can be adapted to additional uses.
The most fundamental model, complementary to models of control flow, represents the
ways values can flow from the points where they are defined (computed and stored) to
points where they are used.

Data flow analysis algorithms efficiently detect the presence of certain patterns in
the control flow graph. Each pattern involves some nodes that initiate the pattern and
some that conclude it, and some nodes that may interrupt it. The name “data flow
analysis” reflects the historical development of analyses for compilers, but patterns
may be used to detect other control flow patterns.

An any-path analysis determines whether there is any control flow path from the
initiation to the conclusion of a pattern without passing through an interruption. An all-
paths analysis determines whether every path from the initiation necessarily reaches a
concluding node without first passing through an interruption. Forward analyses check
for paths in the direction of execution, and backward analyses check for paths in the
opposite direction. The classic data flow algorithms can all be implemented using
simple work-list algorithms.

A limitation of data flow analysis, whether for the conventional purpose or to check
other properties, is that it cannot distinguish between a path that can actually be exe-
cuted and a path in the control flow graph that cannot be followed in any execution. A
related limitation is that it cannot always determine whether two names or expressions
refer to the same object.

Fully detailed data flow analysis is usually limited to individual procedures or a few
closely related procedures (e.g., a single class in an object-oriented program). Analyses

Interprocedural Analysis

99

that span whole programs must resort to techniques that discard or summarize some
information about calling context, control flow, or both. If a property is independent
of calling context, a hierarchical analysis can be both precise and efficient. Potential
aliasing is a property for which calling context is significant. There is therefore a trade-
off between very fast but imprecise alias analysis techniques and more precise but much
more expensive techniques.

Further Reading

Data flow analysis techniques were originally developed for compilers, as a systematic
way to detect opportunities for code-improving transformations and to ensure that those
transformations would not introduce errors into programs (an all-too-common experi-
ence with early optimizing compilers). The compiler construction literature remains
an important source of reference information for data flow analysis, and the classic
“Dragon Book™ text [ASUS86] is a good starting point.

Fosdick and Osterweil recognized the potential of data flow analysis to detect pro-
gram errors and anomalies that suggested the presence of errors more than two decades
ago [FO76]. While the classes of data flow anomaly detected by Fosdick and Oster-
weil’s system has largely been obviated by modern strongly typed programming lan-
guages, they are still quite common in modern scripting and prototyping languages.
Olender and Osterweil later recognized that the power of data flow analysis algo-
rithms for recognizing execution patterns is not limited to properties of data flow,
and developed a system for specifying and checking general sequencing properties
[0090, O092].

Interprocedural pointer analyses — either directly determining potential aliasing re-
lations, or deriving a “points-to” relation from which aliasing relations can be derived
— remains an area of active research. At one extreme of the cost-versus-precision
spectrum of analyses are completely context- and flow-insensitive analyses like those
described by Steensgaard [Ste96]. Many researchers have proposed refinements that
obtain significant gains in precision at small costs in efficiency. An important direc-
tion for future work is obtaining acceptably precise analyses of a portion of a large
program, either because a whole program analysis cannot obtain sufficient precision at
acceptable cost or because modern software development practices (e.g., incorporating
externally developed components) mean that the whole program is never available in
any case. Rountev et al. present initial steps toward such analyses [RRL99]. A very
readable overview of the state of the art and current research directions (circa 2001) is
provided by Hind [HinO1].

100 Dependence and Data Flow Models

Exercises

6.1.

6.2.

6.3.

6.4.

For a graph G = (N, V) with a root » € N, node m dominates node n if every path
from r to n passes through m. The root node is dominated only by itself.

The relation can be restated using flow equations.

(a) When dominance is restated using flow equations, will it be stated in the
form of an any-path problem or an all-paths problem? Forward or back-
ward? What are the tokens to be propagated, and what are the gen and kill
sets?

(b) Give a flow equation for Dom(n).

(c) If the flow equation is solved using an iterative data flow analysis, what
should the set Dom(n) be initialized to at each node n?

(d) Implement an iterative solver for the dominance relation in a programming
language of your choosing.

The first line of input to your program is an integer between 1 and 100 in-
dicating the number k of nodes in the graph. Each subsequent line of input
will consist of two integers, m and n, representing an edge from node m
to node n. Node 0 designates the root, and all other nodes are designated
by integers between 0 and kK — 1. The end of the input is signaled by the
pseudo-edge (—1,—1).

The output of your program should be a sequences of lines, each containing
two integers separated by blanks. Each line represents one edge of the Dom
relation of the input graph.

(e) The Dom relation itself is not a tree. The immediate dominators relation is
a tree. Write flow equations to calculate immediate dominators, and then
modify the program from part (d) to compute the immediate dominance
relation.

Write flow equations for inevitability, a backward, all-paths intraprocedural anal-
ysis. Event (or program point) g is inevitable at program point p if every execu-
tion path from p to a normal exit point passes through g.

The Java language automatically initializes fields of objects, in contrast to local
variables of methods that the programmer is responsible for initializing. Given
what you know of intra- and interprocedural data flow analysis, explain why the
language designers may have made these design choices.

Show the data and control dependence graphs for the binary search program of
Figure 7.1 on page 103.

Chapter 7

Symbolic Execution and
Proof of Properties

Symbolic execution builds predicates that characterize the conditions under which ex-
ecution paths can be taken and the effect of the execution on program state. Extracting
predicates through symbolic execution is the essential bridge from the complexity of
program behavior to the simpler and more orderly world of logic. It finds important
applications in program analysis, in generating test data, and in formal verification'
(proofs) of program correctness.

Conditions under which a particular control flow path is taken can be determined
through symbolic execution. This is useful for identifying infeasible program paths
(those that can never be taken) and paths that could be taken when they should not. It is
fundamental to generating test data to execute particular parts and paths in a program.

Deriving a logical representation of the effect of execution is essential in methods
that compare a program’s possible behavior to a formal specification. We have noted
in earlier chapters that proving the correctness of a program is seldom an achievable or
useful goal. Nonetheless the basic methods of formal verification, including symbolic
execution, underpin practical techniques in software analysis and testing. Symbolic
execution and the techniques of formal verification find use in several domains:

e Rigorous proofs of properties of (small) critical subsystems, such as a safety
kernel of a medical device;

e Formal verification of critical properties (e.g., security properties) that are par-
ticularly resistant to dynamic testing;

e Formal verification of algorithm descriptions and logical designs that are much
less complex than their implementations in program code.

!'Throughout this book we use the term verification in the broad sense of checking whether a program
or system is consistent with some form of specification. The broad sense of verification includes, for ex-
ample, inspection techniques and program testing against informally stated specifications. The term formal
verification is used in the scientific literature in a much narrower sense to denote techniques that construct a
mathematical proof of consistency between some formal representation of a program or design and a formal
specification.

101

102

Symbolic Execution and Proof of Properties

More fundamentally, the techniques of formal reasoning are a conceptual foundation
for a variety of analysis techniques, ranging from informal reasoning about program
behavior and correctness to automated checks for certain classes of errors.

7.1 Symbolic State and Interpretation

Tracing execution is familiar to any programmer who has attempted to understand the
behavior of source code by simulating execution. For example, one might trace a
single statement in the binary search routine of Figure 7.1 as shown on the left side
of Figure 7.2. One can just as easily use symbolic values like L and H in place of
concrete values, as shown on the right side of Figure 7.2. Tracing execution with
symbolic values and expressions is the basis of symbolic execution.

When tracing execution with concrete values, it is clear enough what to do with a
branch statement, for example, an if or while test: The test predicate is evaluated with
the current values, and the appropriate branch is taken. If the values bound to variables
are symbolic expressions, however, both the True and False outcomes of the decision
may be possible. Execution can be traced through the branch in either direction, and
execution of the test is interpreted as adding a constraint to record the outcome. For
example, consider

while (high >= low) {

Suppose the symbolic state after one loop iteration is
low =0
o — H-1
A mid = Z-

If we trace execution of the test assuming a True outcome (leading to a second
iteration of the loop), the loop condition becomes a constraint in the symbolic state
immediately after the while test:

low =0

. —1
. H-1
mld:T
H-1
7 120

Later, when we consider the branch assuming a False outcome of the test, the new
constraint is negated and becomes ﬂ(HT_l — 12> 0) or, equivalently, HT_l —1<0.

Execution can proceed in this way down any path in the program. One can think
of “satisfying” the predicate by finding concrete values for the symbolic variables that
make it evaluate to True; this corresponds to finding data values that would force execu-
tion of that program path. If no such satisfying values are possible, then that execution
path cannot be executed with any data values; we say it is an infeasible path.

Symbolic State and Interpretation

103

0o N o o~ O DN =

/** Binary search for key in sorted array dictKeys, returning

* corresponding value from dictValues or null if key does

* not appear in dictKeys. Standard binary search algorithm

* as described in any elementary text on data structures and algorithms.
* */

char * binarySearch(char *key, char *dictkeys][], char *dictValues]],
int dictSize) {

int low = 0;
int high = dictSize - 1;
int mid;

int comparison;

while (high >= low) {
mid = (high + low) / 2;
comparison = strcmp(dictKeys[mid], key);
if (comparison < 0) {
/* dictKeys[mid] too small; look higher */
low = mid + 1;
} else if (comparison > 0) {
/* dictKeys[mid] too large; look lower */
high = mid - 1;
} else {
/* found */
return dictValues[mid];
}

}

return 0; /* null means not found */

}

Figure 7.1: Binary search procedure.

104

Symbolic Execution and Proof of Properties

before before

low | 12 low | L

high | 15 high | H

mid | — mid | —

mid = (high + low) / 2; mid = (high + low) / 2;

after after

low | 12 low | L

high | 15 high | H

Figure 7.2: Hand-tracing an execution step with concrete values (left) and symbolic
values (right).

7.2 Summary Information

If there were only a finite number of execution paths in a program, then in principle
a symbolic executor could trace each of them and obtain a precise representation of a
predicate that characterizes each one. From even a few execution steps in the preced-
ing small example, one can see that the representation of program state will quickly
become unwieldy. Moreover, there are a potentially infinite number of program exe-
cution paths to consider. An automated symbolic executor can cope with much more
complex symbolic expressions than a human, but even an automated tool will not get
far with brute force evaluation of every program path.

Since the representation of program state is a logical predicate, there is an alterna-
tive to keeping a complete representation of the state at every point: a weaker predicate
can always be substituted for the complete representation. That is, if the representation
of the program state at some point in execution is P, and if W =- P, then substituting
W for P will result in a predicate that still correctly describes the execution state, but
with less precision. We call W a summary of P.

Consider the computation of mid in line 17 of the binary search example from
Figure 7.1. If we are reasoning about the performance of binary search, the fact that
the value of mid lies halfway between the values of low and high is important, but if
we are reasoning about functional correctness it matters only that mid lies somewhere
between them. Thus, if we had low = L Ahigh = H Amid = M, and if we could show
L < H, we could replace M = (L+ H) /2 by the weaker condition L <M < H.

Note that the weaker predicate L < mid < H is chosen based on what must be
true for the program to execute correctly. This is not information that can be derived
automatically from source code; it depends as well on our understanding of the code
and our rationale for believing it to be correct. A predicate stating what should be true
at a given point can be expressed in the form of an assertion. When we assert that
predicate W is true at a point in a program, we mark our intention both to verify it at
that point (by showing that W is implied by the predicates that describe the program
state at that point) and to replace part of the program state description P by W at that

Loops and Assertions

105

point.

One of the prices of weakening the predicate in this way will be that satisfying the
predicate is no longer sufficient to find data that forces the program execution along
that path. If the complete predicate P is replaced by a weaker predicate W, then test
data that satisfies W is necessary to execute the path, but it may not be sufficient.
Showing that W cannot be satisfied is still tantamount to showing that the execution
path is infeasible.

7.3 Loops and Assertions

The number of execution paths through a program with one or more loops is potentially
infinite, or at least unimaginably huge. This may not matter for symbolic execution
along a single, relatively simple execution path. It becomes a major obstacle if sym-
bolic execution is used to reason about a path involving several iterations of a loop, or
to reason about all possible program executions.

To reason about program behavior in a loop, we can place within the loop an asser-
tion that states a predicate that is expected to be true each time execution reaches that
point. Such an assertion is called an invariant. Each time program execution reaches
the invariant assertion, we can weaken the description of program state. If the program
state is represented by P, and the assertion is W, we must first ascertain W = P (the
assertion is satisfied along that path), and then we can substitute W for P.

Suppose every loop contained such an assertion, and suppose in addition there was
an assertion at the beginning of the program (perhaps just the trivial predicate True)
and a final assertion at the end. In that case, every possible execution path would
consist of a sequence of segments from one assertion to the next. The assertion at the
beginning of a segment is the precondition for that segment, and the assertion at the
end of the segment is the postcondition. If we were able to execute each such segment
independently, starting with only the precondition and then checking that the assertion
at the end of the segment is satisfied, we would have shown that every assertion is
satisfied on every possible program execution — that is, we would have verified correct
execution on an infinite number of program paths by verifying the finite number of
segments from which the paths are constructed.

We illustrate the technique by using assertions to check the logic of the binary
search algorithm implemented by the program in Figure 7.1. The first precondition and
the final postcondition serve as a specification of correct behavior as a kind of contract:
If the client ensures the precondition, the program will ensure the postcondition.

The binary search procedure depends on the array dictKeys being sorted. Thus we
might have a precondition assertion like the following:

Vi, j,0 <i< j<size: dictKeys|i] < dictKeys|j]
Here we interpret s < ¢ for strings as indicating lexical order consistent with the C

library strcmp; that is, we assume that s < ¢ whenever strcmp(s,t) < 0. For convenience
we will abbreviate the predicate above as sorted.

A loop invariant

A precondition
A postcondition

106

Symbolic Execution and Proof of Properties

We can associate the following assertion with the while statement at line 16:
Vi,0 < i < size : dictkeys|i] = key = low < i < high

In other words, we assert that the key can appear only between low and high, if it
appears anywhere in the array. We will abbreviate this condition as inrange.

Inrange must be true when we first reach the loop, because at that point the range
low .. .high is the same as 0...size — 1. For each path through the body of the loop, the
symbolic executor would begin with the invariant assertion above, and determine that
it is true again after following that path. We say the invariant is preserved.

While the inrange predicate should be true on each iteration, it is not the complete
loop invariant. The sorted predicate remains true and will be used in reasoning. In
principle it is also part of the invariant, although in informal reasoning we may not
bother to write it down repeatedly. The full invariant is therefore sorted A inrange.

Let us consider the path from line 16 through line 21 and back to the loop test. We
begin by assuming that the loop invariant assertion holds at the beginning of the seg-
ment. Where expressions in the invariant refer to program variables whose values may
change, they are replaced by symbols representing the initial values of those variables.
The variable bindings will be

low =L
A high=H

We need not introduce symbols to represent the values of dictKeys, dictVals, key, or
size. Since those variables are not changed in the procedure, we can use the variable
names directly. The condition, instantiated with symbolic values, will be

Vi, j,0 <i< j<size:dictKeys[i] < dictKeys][]]
A Vk,0 <k <size:dictkeysfk]| =key = L<k<H

Passing through the while test into the body of the loop adds the clause H > L to
this condition. Execution of line 17 adds a binding of |(H +L)/2] to variable mid,
where |x] is the integer obtained by rounding x toward zero. As we have discussed,
this can be simplified with an assertion so that the bindings and condition become

low =L (bindings)
A high=H
A mid=M
A Vi, j,0<i< j<size: dictKeys[i] < dictKeys|;] (sorted)
A Vk,0 <k <size:dictkeysk]| =key =L <k<H (inrange)
N H>M>L

Tracing the execution path into the first branch of the if statement to line 21, we
add the constraint that strcmp(dictKeys[mid], key) returns a negative value, which we
interpret as meaning the probed entry is lexically less than the string value of the key.
Thus we arrive at the symbolic constraint

Loops and Assertions

107

low =L
high=H
mid =M

Vi, j,0 <i< j<size: dictKeys[i] < dictKeys]/]
Vk,0 < k < size : dictkeys[k]| = key =L <k<H
H>M>L

dictKeys[M] < key

> > > > > >

The assignment in line 21 then modifies a variable binding without otherwise dis-
turbing the conditions, giving us

low=M-+1
high=H
mid =M

Vi, 7,0 <i< j<size: dictKeys[i] < dictKeys]/]
Vk,0 < k < size : dictkeysk] =key =L <k <H
H>M>L

dictKeys[M] < key

>>> > > >

Finally, we trace execution back to the while test at line 16. Now our obligation is
to show that the invariant still holds when instantiated with the changed set of variable
bindings. The sorted condition has not changed, and showing that it is still true is
trivial. The interesting part is the inrange predicate, which is instantiated with a new
value for low and thus becomes

Vk,0 < k < size : dictkeys[k] =key =M+ 1 <k<H

Now the verification step is to show that this predicate is a logical consequence
of the predicate describing the program state. This step requires purely logical and
mathematical reasoning, and might be carried out either by a human or by a theorem-
proving tool. It no longer depends in any way upon the program. The task performed
by the symbolic executor is essentially to transform a question about a program (is the
invariant preserved on a particular path?) into a question of logic alone.

The path through the loop on which the probed key is too large, rather than too
small, proceeds similarly. The path on which the probed key matches the sought key
returns from the procedure, and our obligation there (trivial in this case) is to verify
that the contract of the procedure has been met.

The other exit from the procedure occurs when the loop terminates without locating
a matching key. The contract of the procedure is that it should return the null pointer
(represented in the C language by 0) only if the key appears nowhere in dictKeys|0..size-
1]. Since the null pointer is returned whenever the loop terminates, the postcondition
of the loop is that key is not present in dictKeys.

The loop invariant is used to show that the postcondition holds when the loop termi-
nates. What symbolic execution can verify immediately after a loop is that the invariant

108 Symbolic Execution and Proof of Properties

Hoare triple

is true but the loop test is false. Thus we have

low =L (bindings)
A high=H
A Vi, 7,0 <i< j<size: dictKeys]i] < dictKeys|[j] (sorted)
A Vk,0 <k <size:dictkeysk]| =key =L <k<H (inrange)
AN L>H

Knowing that presence of the key in the array implies L < H, and that in fact L > H,
we can conclude that the key is not present. Thus the postcondition is established, and
the procedure fulfills its contract by returning the null pointer in this case.

Finding and verifying a complete set of assertions, including an invariant assertion
for each loop, is difficult in practice. Even the small example above is rather tedious
to verify by hand. More realistic examples can be quite demanding even with the aid
of symbolic execution tools. If it were easy or could be fully automated, we might
routinely use this method to prove the correctness of programs. Writing down a full
set of assertions formally, and rigorously verifying them, is usually reserved for small
and extremely critical modules, but the basic approach we describe here can also be
applied in a much less formal manner and is quite useful in finding holes in an informal
correctness argument.

7.4 Compositional Reasoning

The binary search procedure is very simple. There is only one loop, containing a single
if statement. It was not difficult to reason about individual paths through the control
flow. If the procedure contained nested loops or more conditional branches, we could
in principle still proceed in that manner as long as each cycle in the control flow graph
were broken by at least one assertion. It would, however, be very difficult to think
about programs in this manner and to choose appropriate assertions. It is better if our
approach follows the hierarchical structure of the program, both at a small scale (e.g.,
control flow within a single procedure) and at larger scales (across multiple procedures,
classes, subsystems, etc.).

The steps for verifying the binary search procedure above already hint at a hier-
archical approach. The loop invariant was not placed just anywhere in the loop. We
associated it with the beginning of the loop so that we could follow a standard style
of reasoning that allows us to compose facts about individual pieces of a program to
derive facts about larger pieces. In this hierarchical or compositional style, the effect
of any program block is described by a Hoare triple:

(| pre|) block (| post)

The meaning of this triple is that if the program is in a state satisfying the precondition
pre at entry to the block, then after execution of the block it will be in a state satisfying
the postcondition post.

There are standard templates, or schemata, for reasoning with triples. In the previ-
ous section we were following this schema for reasoning about while loops:

Reasoning about Data Structures and Classes

109

(rnch s (1))
(1) while(C) { S } (I A—Cl)

The formula above the line is the premise of an inference, and the formula below
the line is the conclusion. An inference rule states that if we can verify the premise,
then we can infer the conclusion. The premise of this inference rule says that the loop
body preserves invariant /: If the invariant / is true before the loop, and if the condition
C governing the loop is also true, then the invariant is established again after executing
the loop body S. The conclusion says that the loop as a whole takes the program from
a state in which the invariant is true to a state satisfying a postcondition composed of
the invariant and the negation of the loop condition.

The important characteristic of these rules is that they allow us to compose proofs
about small parts of the program into proofs about larger parts. The inference rule for
while allows us to take a triple about the body of a loop and infer a triple about the
whole loop. There are similar rules for building up triples describing other kinds of
program blocks. For example:

(IPAC)) thenpart (Q)) (IPAC)) elsepart (Q))
(|P)) if (C) {thenpart } else { elsepart } (Q|)

This style of reasoning essentially lets us summarize the effect of a block of pro-
gram code by a precondition and a postcondition. Most importantly, we can summarize
the effect of a whole procedure in the same way. The contract of the procedure is a
precondition (what the calling client is required to provide) and a postcondition (what
the called procedure promises to establish or return). Once we have characterized the
contract of a procedure in this way, we can use that contract wherever the procedure
is called. For example, we might summarize the effect of the binary search procedure
this way:

Vi, j,0 <i< j<size: keys[i] < keys][j]])
s = binarySearch(k, keys, vals, size)

((s=vA3i,0<i<size:keys[i] =kAvals[i] =v))
Vo (s=0A Ai,0<i<size: keys[i] =k)

7.5 Reasoning about Data Structures and Classes

The contract of the binary search procedure can be specified in a relatively simple,
self-contained manner. Imagine, though, that it is part of a module that maintains a
dictionary structure (e.g., the relation between postal codes and the nearest airport with
air-freight capability). In that case, the responsibility for keeping the table in sorted
order would belong to the module itself, and not to its clients. If implemented in a
modern object-oriented language, the data structure would not even be visible to the
client, but would rather be encapsulated within a class.

contract

110 Symbolic Execution and Proof of Properties

structural invariant

abstraction function

Modular reasoning about programs must follow the modular structure of program
designs, with the same layering of design secrets. We must have ways of specifying
contracts for classes and other modules that do not expose what the program constructs
encapsulate. Fortunately there are well-developed methods for modular specification
and verification of modules that encapsulate data structures.

A data structure module provides a collection of procedures (methods) whose spec-
ifications are strongly interrelated. Their contracts with clients are specified by relating
them to an abstract model of their (encapsulated) inner state. For example, the behavior
of a dictionary object can be abstractly modeled as a set of (key, value) pairs. Reflect-
ing the desired encapsulation and information hiding, the abstract model of the value
of a dictionary structure is the same whether the structure is implemented using sorted
arrays, a hash table, or a tree.

A module may be required to establish and preserve certain structural character-
istics of the data structure it maintains. For example, if the dictionary structure is
maintained as a pair of sorted arrays, then it is the responsibility of the dictionary mod-
ule to maintain the arrays in sorted order. If the structure is a balanced search tree, then
the responsibility is to properly initialize and maintain the tree structure. This is called
a structural invariant, and it is directly analogous to a loop invariant. When reasoning
about a loop invariant, we begin by showing that it is established when execution first
reaches the loop; this corresponds to showing that the data structure is properly initial-
ized. The methods of the data structure module correspond to paths through the body
of the loop. Each method must preserve the structural invariant; that is, if the invariant
holds before invocation of the method, then it must still hold when the method returns.

The second responsibility of a class or other data structure module is that its be-
havior must faithfully reflect the abstract model. To make this precise, one posits an
abstraction function that maps concrete object states to abstract model states. The ab-
straction function for a dictionary object would map the object to a set of (key,value)
pairs. Using the conventional notation ¢ for an abstraction function, the contract of
the get method of java.util. Map might include a pre- and postcondition that can be ex-
pressed as the Hoare triple

(I, v) € g (dict)])
o = dict.get(k)
(lo=vl)

Explicit consideration of the abstract model, abstraction function, and structural
invariant of a class or other data structure model is the basis not only of formal or
informal reasoning about correctness, but also of designing test cases and test oracles.

Summary

Symbolic execution is a bridge from an operational view of program execution to logi-
cal and mathematical statements. The basic symbolic execution technique is like hand
execution using symbols rather than concrete values. To use symbolic execution for
loops, procedure calls, and data structures encapsulated in modules (e.g., classes), it
is necessary to proceed hierarchically, composing facts about small parts into facts

Reasoning about Data Structures and Classes

111

about larger parts. Compositional reasoning is closely tied to strategies for specifying
intended behavior.

Symbolic execution is a fundamental technique that finds many different applica-
tions. Test data generators use symbolic execution to derive constraints on input data.
Formal verification systems combine symbolic execution to derive logical predicates
with theorem provers to prove them. Many development tools use symbolic execution
techniques to perform or check program transformations, for example, unrolling a loop
for performance or refactoring source code.

Human software developers can seldom carry out symbolic execution of program
code in detail, but often use it (albeit informally) for reasoning about algorithms and
data structure designs. The approach to specifying preconditions, postconditions, and
invariants is also widely used in programming, and is at least partially supported by
tools for run-time checking of assertions.

Further Reading

The techniques underlying symbolic execution were developed by Floyd [Flo67] and
Hoare [Hoa69], although the fundamental ideas can be traced all the way back to Tur-
ing and the beginnings of modern computer science. Hantler and King [HK76] provide
an excellent clear introduction to symbolic execution in program verification. Kem-
merer and Eckman [KE85] describe the design of an actual symbolic execution system,
with discussion of many pragmatic details that are usually glossed over in theoretical
descriptions.

Generation of test data using symbolic execution was pioneered by Clarke [Cla76],
and Howden [How77, How78] described an early use of symbolic execution to test
programs. The PREfix tool described by Bush, Pincus, and Sielaff [BPS00] is a modern
application of symbolic testing techniques with several refinements and simplifications
for adequate performance on large programs.

112

Symbolic Execution and Proof of Properties

Exercises

7.1.

7.2

7.3.

7.4.

7.5.

We introduce symbols to represent variables whose value may change, but we do
not bother to introduce symbols for variables whose value remains unchanged in
the code we are symbolically executing. Why are new symbols necessary in the
former case but not in the latter?

Demonstrate that the statement return dictValues[mid] at line 27 of the binary
search program of Figure 7.1 always returns the value of the input key.

Compute an upper bound to the number of iterations through the while loop of
the binary search program of Figure 7.1.

The body of the loop of the binary search program of Figure 7.1 can be modified
as follows:

if (comparison < 0) {
/* dictKeys[mid] too small; look higher */
low = mid + 1;
¥
if (comparison > 0) {
/* dictKeys[mid] too large; look lower */
high = mid - 1;
}

if (comparison=0) {
/* found */
return dictValues[mid];
}

0 N o o~ ODN =

—_ A
N = O ©

Demonstrate that the path that traverses the false branch of all three statements
is infeasible.

Write the pre- and postconditions for a program that finds the index of the max-
imum element in a nonempty set of integers.

Chapter 8

Finite State Verification

Finite state verification techniques are intermediate in power and cost between con-
struction of simple control and data flow models, on the one hand, and reasoning with
the full strength of symbolic execution and theorem proving on the other. They auto-
matically explore finite but potentially very large representations of program behavior
to address important properties. They are particularly useful for checking properties
for which testing is inadequate. For example, synchronization faults in multi-threaded
programs may trigger failures very rarely, or under conditions that are nearly impos-
sible to re-create in testing, but finite state verification techniques can detect them by
exhaustively considering all possible interleavings of concurrent processes. Finite state
verification can similarly be used to systematically explore possible instantiations of a
data model.

8.1 Overview

Most important properties of program execution are undecidable in general, but finite
state verification can automatically prove some significant properties of a finite model
of the infinite execution space. Of course, there is no magic: We must carefully rec-
oncile and balance trade-offs among the generality of the properties to be checked,
the class of programs or models that can be checked, computational effort, and human
effort to use the techniques.

Symbolic execution and formal reasoning can prove many properties of program
behavior, but the power to prove complex properties is obtained at the cost of devising
complex conditions and invariants and expending potentially unbounded computational
effort. Construction of control and data flow models, on the other hand, can be fully
and efficiently automated, but is typically limited to very simple program properties.
Finite state verification borrows techniques from symbolic execution and formal verifi-
cation, but like control and data flow analysis, applies them to models that abstract the
potentially infinite state space of program behavior into finite representations. Finite
state verification techniques fall between basic flow analyses and full-blown formal
verification in the richness of properties they can address and in the human guidance
and computational effort they require.

113

114

Finite State Verification

Since even simple properties of programs are undecidable in general, one cannot
expect an algorithmic technique to provide precise answers in all cases. Often finite
state verification is used to augment or substitute for testing when the optimistic inac-
curacy of testing (due to examining only a sample of the program state space) is unac-
ceptable. Techniques are therefore often designed to provide results that are tantamount
to formal proofs of program properties. In trade for this assurance, both the programs
and properties that can be checked are severely restricted. Restrictions on program
constructs typically appear in procedures for deriving a finite state model from a pro-
gram, generating program code from a design model, or verifying consistency between
a program and a separately constructed model.

Finite state verification techniques include algorithmic checks, but it is misleading
to characterize them as completely automated. Human effort and considerable skill
are usually required to prepare a finite state model and a suitable specification for the
automated analysis step. Very often there is an iterative process in which the first
several attempts at verification produce reports of impossible or unimportant faults,
which are addressed by repeatedly refining the specification or the model.

The automated step can be computationally costly, and the computational cost can
impact the cost of preparing the model and specification. A considerable amount of
manual effort may be expended just in obtaining a model that can be analyzed within
available time and memory, and tuning a model or specification to avoid combinatorial
explosion is itself a demanding task. The manual task of refining a model and spec-
ification to obtain either assurance or useful reports of real faults in design or coding
is much less expensive if the analysis step is near-interactive than if it requires several
minutes or hours.

Some analysis techniques perform quite tolerably on small models, but their com-
putational demands grow very rapidly with model size. These may be perfectly accept-
able for a simple model of a critical component, such as a protocol whose description
does not depend on the size of the system in which it is implemented. In other cases,
scalability of the finite state verification technique is likely to be a limiting factor in its
useful application.

Finite state verification techniques vary widely in the balance they strike on issues
of generality, precision, automation, computational effort, and scalability. A core idea
shared by all is that a question about a program is translated into a simpler question
about a finite state model of the program, as illustrated in Figure 8.1. Ultimately, one
question about the program (Does it conform to the property we want to check?) is
divided into two (Does the model conform to the simpler property we can check? Is it
an accurate model of the program?)

The model may be derived from an actual program, like the control flow and data
flow models described in prior chapters, or from some other design artifact (e.g., a pro-
gram specification). Restrictions on the program may be required to derive a model
automatically from a program. It is also possible to derive program code from anno-
tated models.! If either the model or the program is derived automatically from the
other, we may be able to do so in a way that guarantees consistency between the two.

'Note that one may independently derive several different models from one program, but deriving one
program from several different models is much more difficult.

Overview

115

public static Tablel
getTablel () {

if (ref == null) {
synchronized (Tablel) {

if (ref == null){

ref = new Tablel();
ref.initialize();
}
}
}
return ref;

Jooo

PROGRAM or DESIGN

Derive models
of software
or design

No concurrent
modifications of
Table1

__ Direct check of source/design

(impractical or impossible) —> PROPERTY OF INTEREST

Implication

_ Algorithmiccheck ~ _ pROPERTY OF THE MODEL
of the model for the property

never(<d>and <y>)

Figure 8.1: The finite state verification framework.

116

Finite State Verification

We may also be able to check consistency automatically even if the derivation is not
automatic. Alternatively, the accuracy of the model may be assessed by conformance
testing, treating the model as a kind of specification. The combination of finite state
verification and conformance testing is often more effective than directly testing for
the property of interest, because a discrepancy that is easily discovered in conformance
testing may very rarely lead to a run-time violation of the property (e.g., it is much
easier to detect that a particular lock is not held during access to a shared data structure
than to catch the occasional data race that the lock protects against).

A property to be checked can be implicit in a finite state verification tool (e.g., a tool
specialized just for detecting potential null pointer references), or it may be expressed
in a specification formalism that is purposely limited to a class of properties that can
be effectively verified using a particular checking technique. Often the real property
of interest is not amenable to efficient automated checking, but a simpler and more
restrictive property is. That is, the property checked by a finite state verification tool
may be sufficient but not necessary for the property of interest. For example, verifying
freedom from race conditions on a shared data structure is much more difficult than
verifying that some lock is always held by threads accessing that structure; the latter
is a sufficient but not necessary condition for the former. This means that we may
exclude correct software that we are not able to verify, but we can be sure that the
accepted software satisfies the property of interest.

8.2 State Space Exploration

While some finite state models of program execution can be derived rather directly
from syntactic program structure (e.g., control flow graph models of individual pro-
cedures), this is not always so. In particular, an adequate finite state machine model
of a program or system with multiple threads of control (Java threads, Ada tasks, op-
erating system processes, etc.) must include all the possible ways execution of the
individual threads can be interleaved. A global model of the reachable system states
and transitions can be systematically explored by tracing all the possible sequences of
interactions.

Let us begin with several simplifying assumptions. We assume that we can deter-
mine in advance how many threads of control, or processes make up the system, and
that we can obtain a finite state machine model of each. We assume also that we can
identify the points at which processes can interact and all the ways that execution of
one process may affect another. A state of the whole system model, then, is a tuple
representing the state of each individual process model, and a transition in the system
model is a transition of one or more of the individual processes, acting individually or
in concert.

From one global system state, several different individual or joint transitions of
the component processes may be possible. That is, execution in the global model is
nondeterministic. This should be no surprise, as it reflects the real situation in multi-
threaded software, with execution dependent on uncontrolled factors like the arrival of
asynchronous interrupts, process scheduler decisions, and the relative execution speed
of different processes. It is these unpredictable and uncontrollable factors that make

State Space Exploration

117

effectively testing programs and systems with multiple threads of control difficult. A
test case may run correctly a million times in a test configuration and fail the first time
a client uses it.

Given an appropriate model and an execution rule, exploring all the possible states
reachable by the system is a completely mechanical process. If “good” states can
be easily distinguished from “bad” states, then the whole process of exploring and
checking the state space model can be automatic. Even the simplest and most brute-
force state space exploration tools can systematically check many times more states in
a minute than a person could in a month.

We illustrate with a simple and somewhat contrived example. In a certain multi-
threaded module of the Chipmunk on-line purchasing system, there is an in-memory
data structure that is initialized by reading configuration tables at system start-up. Ini-
tialization of the data structure must appear atomic (the structure should not be accessed
while initialization is underway). Moreover, it must be reinitialized on occasion. The
structure is kept in memory, rather than read from a database on each use, because it
is small, changes rarely, and is accessed very frequently. A Chipmunk programmer
has noticed that obtaining a monitor lock for each and every access (which is what a
Java “synchronized” method does) substantially reduces concurrency and slows user
response time. The programmer has recently learned of the double-checked locking
idiom to avoid unnecessary locking during data structure initialization. Unfortunately,
the programmer does not fully comprehend the double-check idiom and its underlying
assumptions, and produces the faulty implementation excerpted in Figure 8.2.

The fault in this example is simple: The double-check idiom is applicable only
to initialization, not to modification of a structure after initialization.2 However, it is
not easy for a person to comprehend all the possible ways that multiple threads could
interleave while concurrently executing these methods, and it is surprisingly easy to
convince oneself that the faulty implementation avoids race conditions. Moreover, it is
extremely difficult to find them with conventional testing. Even under heavy load, the
potential race condition in the code of Figure 8.2 very rarely leads to run-time failure
and may not appear at all depending on the scheduling policies and resources of a
particular Java run-time system.

A potential failure is simple to find by systematically tracing through all the pos-
sible interleavings of two threads. We begin by constructing a finite state machine
model of each individual thread. For method lookup in Figure 8.2, the state machines
in Figure 8.3 describe the actions of an individual thread executing methods lookup and
relnit, but we do not know in advance how many distinct threads might be executing
concurrently.

Java threading rules ensure that in a system state in which one thread has obtained a
monitor lock, the other thread cannot make a transition to obtain the same lock. We can
observe that the locking prevents both threads from concurrently calling the initialize
method. However, another race condition is possible, between two concurrent threads
each executing the lookup method.

2In fact even a correctly implemented double-check pattern can fail in Java due to properties of the Java
memory model, as discussed below.

118 Finite State Verification

1 /** A singleton class with mis-application of double-check pattern. */
2 class Tablel {
3 private static Table1 ref = null; // Singleton instance
4 private boolean needslnit = true; // To trigger lazy re-initializatiion
5 private ElementClass [] theValues;
6
7 private Table1() { } / Initialization is separate
8
9 /** Initialization with double-check pattern. */
10 public static Table1 getTable1() {
11 if (ref == null) { synchedInitialize(); }
12 return ref;
13 }
14
15 private static synchronized void synchedlnitialize() {
16 if (ref == null) {
17 Table1 tmp = new Table1();
18 tmp.initialize();
19 ref = tmp; }
20 }
21
22 /** Trigger re-initialization on next access */
23 public void reinit() { needslInit = true; }
24
25 /** Initialize or re-initialize. Must appear atomic to lookup. */
26 private synchronized void initialize() {
32
33 needslnit = false;
34 }
35
36 /** Lookup value, lazily re-init. (WRONG!) */
37 public int lookup(int i) {
38 if (needslnit) {
39 synchronized(this) {
40 if (needslnit) {
41 this.initialize();
42 }
43 }
44 }
45 return theValuesJi].getX() + theValues[i].getY();
46 }
47
60 ...
61 }

Figure 8.2: Double-check pattern, misapplied to reinitialization.

State Space Exploration 119

(a)
lookup()

needslnit==true

(b)

obtain lock

(c)

needslnit==true

(d)
needslnit==false

needslnit=false

needslnit==false

(e)

,—release lock

)

reading

(x)

reinit()

needslnit=true

(y)

®

Figure 8.3: Finite state models of individual threads executing the lookup and relnit
methods from Figure 8.2. Each state machine may be replicated to represent concurrent

threads executing the same method.

120 Finite State Verification

bool needsinit = true, /* Models variable by same name */
locked = false, /* To model synchronized block */
modifying = false; /* To test for race condition */

if :z (needslnit) ->
/* "synchonized(this) {* */

1
2
3
4
5 proctype Lookup(intid) {
6
7
8 atomic { ! locked -> locked = true; };

9 if
10 i1 (needslnit) ->
11 /* Body of "intialize()” modeled here */
12 assert (! modifying); /* Test for write/write race */
13 modifying = true;
14 /* The actual modification happens here */
15 modifying = false ;
16 needslnit = false;
17 1 (! needslnit) ->
18 skip;
19 fi;
20 /* "}” (end synchronized block) */
21 locked = false ;
22 fi;
23 /* Return a value from lookup() */
24 assert (! modifying); /* Test for read/write race */
25}
26
27 proctype relnit() {
28 needslinit = true;
29 }
30
31 init {
32 run relnit();
33 run Lookup(1);
34 run Lookup(2);
35}

Figure 8.4: Promela finite state model of faulty double-check implementation.

State Space Exploration 121

Depth= 10 States= 51 Transitions= 92 Memory= 2.302
pan: assertion violated ! (modifying) (at depth 17)
pan: wrote pan_in.trail
(Spin Version 4.2.5 —-— 2 April 2005)
0.16 real 0.00 user 0.03 sys

Figure 8.5: Excerpts of Spin verification tool transcript. Spin has performed a depth-
first search of possible executions of the model, exploring 10 states and 51 state tran-
sitions in 0.16 seconds before finding a sequence of 17 transitions from the initial state
of the model to a state in which one of the assertions in the model evaluates to False.

Tracing possible executions by hand — “desk checking” multi-threaded execution
— is capable in principle of finding the race condition between two concurrent threads
executing the lookup method, but it is at best tedious and in general completely im-
practical. Fortunately, it can be automated, and many state space analysis tools can
explore millions of states in a short time. For example, a model of the faulty code from
Figure 8.2 was coded in the Promela modeling language and submitted to the Spin
verification tool. In a few seconds, Spin systematically explored the state space and
reported a race condition, as shown in Figure 8.5.

A few seconds of automated analysis to find a critical fault that can elude exten-
sive testing seems a very attractive option. Indeed, finite state verification should be
a key component of strategies for eliminating faults in multi-threaded and distributed
programs, as well as some kinds of security problems (which are similarly resistant to
systematic sampling in conventional program testing) and some other domains. On the
other hand, we have so far glossed over several limitations and problems of state space
exploration, each of which also appears in other forms of finite state verification. We
will consider two fundamental and related issues in the following sections: the size of
the state space to be explored, and the challenge of obtaining a model that is sufficiently
precise without making the state space explosion worse.

122 Finite State Verification

The Promela Modeling Language

The Promela language for finite state models of communicating processes, which is
interpreted by the verification tool Spin, is described in a book and on-line references
(see Further Reading at the end of this chapter). Here we present a very brief and
partial introduction to aid in reading the example code of Figure 8.4.

A Promela program describes a set of processes, roughly analogous to threads in
Java. A single process type (proctype) can be instantiated more than once with run
statements to create multiple instances of a process, much as thread objects can be
created from a class in a Java program. A Promela model consists of some global data
type and variable declarations, followed by some process type declarations, and finally
a “main” process init.

Many lexical conventions of Promela are borrowed from the C language, and should
be familiar to C and Java programmers. Comments are enclosed in /* and */, syntactic
nesting is indicated by braces { and }, and assignment is indicated by a single = while
an equality comparison is indicated by ==. As in C, nonzero values are interpreted as
True and zero is Boolean False.

Promela borrows syntax and semantics for “guarded commands” from Communi-
cating Sequential Processes (CSP), a formal notation for describing communicating
processes. A guarded command in Promela is written expression -> statements and
means that the statements can be executed only when the guarding expression is true.
If the expression evaluates to zero or is otherwise disabled, execution of the guarded
statement is blocked. Thus, the statement

atomic { ! locked -> locked = true; }

in Figure 8.4 can be used to represent acquiring a monitor lock, because execution
blocks at this point until locked has the value False. The guard is enclosed in an atomic
block to prevent another process taking the lock between evaluation of the guard con-
dition and execution of the statement.

The concept of enabling or blocking in guarded commands is used in conditional
and looping constructs. Alternatives in an if. . . fi construct, marked syntactically with ::,
begin with guarded commands. If none of the alternatives is enabled (all of the guards
evaluate to False), then the whole if construct blocks. If more than one of the guarded
alternatives is enabled, the if construct does not necessarily choose the first among them,
as a programmer might expect from analogous if. . . else if. . . constructs in conventional
programming languages. Any of the enabled alternatives can be nondeterministically
chosen for execution; in fact the Spin tool will consider the possible consequences
of each choice. The do...od construct similarly chooses nondeterministically among
enabled alternatives, but repeats until a break or goto is evaluated in one of the guarded
commands.

The simplest way to check properties of a Promela model is with assertions, like the
two assert statements in Figure 8.4. Spin searches for any possible execution sequence
in which an assertion can be violated. Sequencing properties can also be specified in
the form of temporal logic formulas, or encoded as state machines.

State Space Exploration 123

preparing trail, please wait...done
Starting :init: with pid O
spin: warning, "pan_in", proctype Lookup,

"int id’ variable is never used

Starting relInit with pid 1

1: proc 0 (:init:) line 33 "pan_in" (state 1) [(run relInit())]
Starting Lookup with pid 2

2: proc 0 (:init:) line 34 "pan_in" (state 2) [(run Lookup(l))]
Starting Lookup with pid 3

3: proc 0 (:init:) line 35 "pan_in" (state 3) [(run Lookup(2))]

4: proc 3 (Lookup) line 7 "pan_in" (state 1) [(needsInit)]

5: proc 3 (Lookup) line 9 "pan_in" (state 2) [(!(locked))]

<merge 0 now @3>

5: proc 3 (Lookup) line 9 "pan_in" (state 3) [locked = 1]

6: proc 3 (Lookup) line 11 "pan_in" (state 5) [(needsInit)]

7: proc 3 (Lookup) line 13 "pan_in" (state 6) [assert (! (modifying))]

8: proc 3 (Lookup) line 14 "pan_in" (state 7) [modifying = 1]

9: proc 3 (Lookup) line 16 "pan_in" (state 8) [modifying = 0]
10: proc 3 (Lookup) line 17 "pan_in" (state 9) [needsInit = 0]

11: proc 3 (Lookup) line 22 "pan_in" (state 14) [locked = 0]

12: proc 1 (reInit) line 29 "pan_in" (state 1) [needsInit = 1]

13: proc 2 (Lookup) line 7 "pan_in" (state 1) [(needsInit)]

14: proc 2 (Lookup) line 9 "pan_in" (state 2) [(!(locked))]

<merge 0 now @3>

14: proc 2 (Lookup) line 9 "pan_in" (state 3) [locked = 1]

15: proc 2 (Lookup) line 11 "pan_in" (state 5) [(needsInit)]

16: proc 2 (Lookup) line 13 "pan_in" (state 6) [assert (! (modifying))]

17: proc 2 (Lookup) line 14 "pan_in" (state 7) [modifying = 1]
spin: trail ends after 17 steps
fprocesses: 4

17: proc 3 (Lookup) line 25 "pan_in" (state 17)

17: proc 2 (Lookup) line 16 "pan_in" (state 8)

17: proc 1 (reInit) line 30 "pan_in" (state 2)

17: proc 0 (:init:) line 36 "pan_in" (state 4)

4 processes created
Exit-Status 0

Figure 8.6: A Spin guided simulation trace describes each of the 17 steps from the
initial model state to the state in which the assertion |(modifying) is violated. For ex-
ample, in step 8, one of the two processes (threads) simulating execution of the Lookup
method sets the global variable modifying fo True, represented as the integer value 1.
A graphical representation of this trace is presented in Figure 8.7.

124 Finite State Verification

proc 3 (lookup) proc 1 (reinit) proc 2 (lookup)

((a)fpublic init lookup(int i)
((b)) if (needsinit) {
((e)) synchronized(this) {
((d)) if (needslnit) {
() this.initialize();
}
}
}

((x))public void reinit()
(y)) {needslnit = true; }

((a)fpublic init lookup(int i)
(b)) i (needslnit) {

r.'é.tu m ((c)) synchronized(this) {
theValuesli].getX() : (@) if (needsnit) {
+ theValues]i].getY(); Read/write this.initialize();
} Race condition

States (f) and (d)

Legend

Process number and name
roc # (procname
P (p) from Spin trace output

Code from original Java
program

State identifier from FSM
model

Figure 8.7: A graphical interpretation of Spin guided simulation output (Figure 8.6) in
terms of Java source code (Figure 8.2) and state machines (Figure 8.3).

State Space Exploration 125

Safety and Liveness Properties

Properties of concurrent systems can be divided into simple safety properties, se-
quencing safety properties, and liveness properties.

Simple safety properties divide states of the system into “good” (satisfying the prop-
erty) and “bad” (violating the property). They are easiest to specify, and least expensive
to check, because we can simply provide a predicate to be evaluated at each state. Of-
ten simple safety properties relate the local state of one process to local states of other
processes. For example, the assertion assert(! modifying) in the Promela code of Fig-
ure 8.4 states a mutual exclusion property between two instances of the lookup process.
When simple safety properties are expressed in temporal logic, they have the form Clp,
where p is a simple predicate with no temporal modalities.

Safety properties about sequences of events are similar, but treat the history of
events preceding a state as an attribute of that state. For example, an assertion that
two operations a and b strictly alternate is a safety property about the history of those
events; a “bad” state is one in which a or b is about to be performed out of order.
Sequencing properties can be specified in temporal logic, but do not require it: They
are always equivalent to simple safety properties embedded in an “observer” process.
Checking a sequencing property adds the same degree of complexity to the verification
process as adding an explicit observer process, whether there is a real observer (which
is straightforward to encode for some kinds of model, and nearly impossible for others)
or whether the observer is implicit in the checking algorithm (as it would be using a
temporal logic predicate with the Spin tool).

True liveness properties, sometimes called “eventuality” properties, are those that
can only be violated by an infinite length execution. For example, if we assert that p
must eventually be true (¢ p), the assertion is violated only by an execution that runs
forever with p continuously false. Liveness properties are useful primarily as a way
of abstracting over sequences of unknown length. For example, fairness properties are
an important class of liveness properties. When we say, for example, that a mutual
exclusion protocol must be fair, we do not generally mean that all processes have an
equal chance to obtain a resource; we merely assert that no process can be starved
forever. Liveness properties (including fairness properties) must generally be stated
in temporal logic, or encoded directly in a Biichi automaton that appears similar to
a deterministic finite state acceptor but has different rules for acceptance. A finite
state verification tool finds violations of liveness properties by searching for execution
loops in which the predicate that should eventually be true remains false; this adds
considerably to the computational cost of verification.

A common mnemonic for safety and liveness is that safety properties say “nothing
bad happens,” while liveness properties say ‘‘something good eventually happens.*

Properties involving real time (e.g., “the stop signal is sent within 5 seconds of re-
ceiving the damage signal”) are technically safety properties in which the “bad thing”
is expiration of a timer. However, naive models involving time are so expensive that
it is seldom practical to simply add a clock to a model and use simple safety proper-
ties. Usually it is best to keep reasoning about time separate from verifying untimed
properties with finite state verification.

126

Finite State Verification

8.3 The State Space Explosion Problem

The finite state model of faulty code described in the previous section is very simple:
two processes concurrently executing the lookup method, another executing the trivial
relnit method, and an even more trivial administrative process to start them. While it is
quite tedious to trace out all the potential interleavings of these processes by hand,? an
automated verification tool can do so almost instantaneously.

Unfortunately, larger and more complex models may cause the same tools to grind
for hours or days without producing a result, typically ending by exhausting all avail-
able memory. The number of states in a concurrent system with P processes, each
with K individual states, is at most the number of possible P-tuples of K values, that is,
K?. Synchronization and other dependencies among processes will limit the number of
reachable states to a somewhat smaller number. Nonetheless, the number of reachable
states does typically grow exponentially with the number of processes.

Figure 8.8 and the sidebar on page 127 illustrate state space explosion with the
classical dining philosophers problem. This exponential blow-up in the number of
reachable states is not just an artifact of a naive modeling methodology. It has been
proved, in a variety of models of concurrent execution, that decision procedures even
for very simple properties like freedom from deadlock or race conditions is PSPACE-
complete. This means that in the worst case, exponential complexity is almost certainly
unavoidable in any procedure that can answer the kinds of questions we use state space
exploration to answer.

The known complexity results strongly imply that, in the worst case, no finite state
verification technique can be practical. Worst case complexity results, however, say
nothing about the performance of verification techniques on typical problems. Experi-
ence with a variety of automated techniques tells us a fair amount about what to expect:
Many techniques work very well when applied on well-designed models, within a lim-
ited domain, but no single finite state verification technique gives satisfactory results
on all problems. Moreover, crafting a model that accurately and succinctly captures the
essential structure of a system, and that can be analyzed with reasonable performance
by a given verification tool, requires creativity and insight as well as understanding of
the verification approach used by that tool.

31t is a useful exercise to try this, because even though the number of reachable states is quite small, it
is remarkably difficult to enumerate them by hand without making mistakes. Programmers who attempt to
devise clever protocols for concurrent operation face the same difficulty, and if they do not use some kind of
automated formal verification, it is not an exaggeration to say they almost never get it right.

The State Space Explosion Problem 127

An lllustration of State Space Explosion

Consider the classic dining philosophers problem, in which an equal number of
philosophers and forks are arranged around a table. A philosopher must lift both ad-
jacent forks before eating. A Promela model of the dining philosophers problem is
shown in Figure 8.8. With 5 philosophers and 5 forks, Spin finds the potential dead-
lock in less than a second of search, exploring only 145 unique states of the system.
With 10 philosophers and 10 forks, Spin with default settings begins to cut off the
search at a depth of 9999 execution steps, but still finds the deadlock at a depth of
9995 steps, generating 18,313 unique states while executing a depth-first search. With
15 philosophers and 15 forks, Spin explores 148,897 states before finding a deadlock,
and again the error trace it creates is too long to be useful in diagnosis. Spin can be
instructed to use a breadth-first search or iterate to find a shorter error trace, but these
options cause it to generate over half a million unique states and exhaust its default
allocation of memory. A version of the model with 10 forks and only 9 philosophers
generates 404,796 unique states with the default settings, with an inconclusive result
since it finds no errors but terminates the search at depth 9999 (after 195 minutes on
the same computer that analyzed the first example in a few seconds). One can increase
the allocation of memory and wait longer for a result, but from the rate of growth it is
evident that an approach of buying bigger and faster machines will not scale to a much
larger model.

Fortunately, the deadlock produced by a system of just three philosophers is a per-
fectly good representation of the potential deadlock in a system of 10 or 15 or 100
philosopher processes. State space enumeration is most effective when the essential
structure of a system can be represented by a much smaller model.

128

Finite State Verification

1 mtype ={ Up, Down, /* Fork operations *
2 Thinking, Hungry, Eating /* What philosophers do */ }
3
4 proctype fork(chan opChannel) {
5 do
6 opChannel?Up; /* First | can be lifted ... */
7 opChannel?Down; /* Then | can be set down ... */
8 od; /* Then lifted again, and so on */
9 }
10
11 proctype philosopher(chan leftFork, rightFork) {
12 show mtype myState = Thinking;
13 do
14 myState = Hungry;
15 leftFork!Up;
16 rightFork!Up;
17 myState = Eating;
18 rightFork!Down;
19 leftFork!Down;
20 myState = Thinking;
21 od;
22 }
23
24 #define NumSeats 10
25 chan forkinterface[NumSeats] = [0] of {mtype} ;
26 init {
27 inti=0;
28 do :: i < NumSeats ->
29 run fork(forkinterfaceli]);
30 i=i+l;
31 ;1 i >= NumSeats -> break;
32 od;
33 i=0;
34 do :: i < NumSeats ->
35 run philosopher(forkinterfacel[i], forkinterface[(i+1)%NumSeats 1);
36 i=i+l;
37 ;1 i >= NumSeats-1 -> break;
38 od;
39 }
40

Figure 8.8: The classic dining philosophers problem in Promela. The number of unique
states explored before finding the potential deadlock (with default settings) grows from
145 with 5 philosophers, to 18,313 with 10 philosophers, to 148,897 with 15 philoso-
phers.

The Model Correspondence Problem

129

8.4 The Model Correspondence Problem

In the simple examples above, we have written Promela models by hand to verify con-
current execution in Java programs. One may ask how we can be sure that the Promela
models accurately represent the possible behaviors of the Java programs, particularly
if there are conceptual errors in the design of the Java programs. This is a serious
problem, and it has no fully satisfactory solution.

We could verify correspondence between a finite state model and a program in one
of three ways. First, we could automatically extract a model from the program source
code (or compiled code, e.g., Java byte code), using procedures that we have verified
once and for all. Second, we could turn the derivation relation around, producing
program source code automatically from a model, treating the model as a kind of design
document. The third option is to apply some combination of static analysis and testing
to verify correspondence between model and program.

Automatically extracting models from programs is an attractive option, with the
important advantage that the correctness of the extraction tool can be verified once and
for all. In this approach, sophisticated and expensive verification can be justified and
carried out by tool developers who are much more expert in finite state verification
than users of the tool. The previous section strongly hints at the chief obstacle to
model extraction: A model that blindly mirrors all details of program execution is
likely to suffer from a much worse state space explosion than a model that has been
carefully crafted to capture just the relevant essence of synchronization structure. A
model that omits some crucial detail, on the other hand, can produce so many ‘“false
alarm” reports (failures that are possible in the model but not in the program) that the
results are useless. The challenge for automatic model extraction, then, is to capture
just enough of the relevant detail to be accurate, while abstracting enough to keep state
space explosion under control.

Some abstraction of program details can be completely automated. For example,
dependence analysis can be used to identify portions of the program that are irrelevant
to checking a particular property. For this reason, it is often worthwhile to extract dif-
ferent models from the same program, to check different properties of interest. Where
the required level of detail cannot be determined a priori by program analysis, some-
times a coarse initial model can be iteratively refined until either a verification or a
counter-example is achieved. This is discussed further in Section 8.7.

Human cleverness in model design and automated support for model extraction are
not mutually exclusive. For example, an important tactic in building finite state models
is abstracting data values. It would be far too expensive to represent all the possible
states of a queue of integers, for instance, but one might be able to capture enough
information in the predicate isEmpty(Q). Sometimes a choice of predicates is strongly
suggested by control structure of the program, and may even be found automatically
by a model extraction tool. In other cases the user may be able to provide much better
predicates to guide automated model extraction.

One can also reverse the model extraction process, starting with a finite state model
and generating program code. Usually what can be generated is not the whole appli-
cation, but it may be a component or skeleton in which the relevant behavior is local-
ized. Essentially, this is equivalent to requiring the developer to manually distinguish

130

Finite State Verification

the finite state model from other aspects of the application, but it can be much easier
to specify how the finite state model is combined with other application details than to
specify how the finite state model is extracted from the completed application. Program
generation from (verifiable) finite state models, like program generation in general, is
most applicable within constrained or well-understood application domains.

If a model is automatically extracted, or a program is automatically generated from
a model, then correspondence between model and program can be verified once and for
all by verifying the method of derivation. If, however, the derivation method is at least
partly manual, then it will be necessary to gain confidence in their consistency by some
other approach. Static program analysis can be helpful, but in the worst case a static
analysis that verifies consistency between a model and a program can be as complex
as a static analysis for extracting a model. More typically, conformance is verified by
testing.

The details of an approach to conformance testing depend primarily on the form of
the model and on what can be observed from program execution. A typical scenario is
that the program model is equivalent to a deterministic finite state machine (FSM), and
the only relevant observable aspect of program execution is a set of events (e.g., system
calls or instrumented points) that correspond to event labels in the FSM model. A
single execution is then consistent with the model if the observed sequence of execution
events corresponds to a sequence of state transitions in a traversal of the model. The
basic approach can be extended in several ways, for example, by testing against each of
several communicating state machines separately or in parallel, by checking portions
of program state against model state, or by considering multiple possible traversals
in parallel if the model is inherently nondeterministic or the correspondence between
observed program events and model state transitions is ambiguous. There is a well-
developed body of testing techniques based on state machine models, some of which
are discussed further in Chapter 14.

One may ask what advantage finite state verification has over simply testing the
program for the property of interest, if we must still resort to conformance testing to
verify the accuracy of a model. For example, if we are using finite state verification to
show absence of race conditions, and then testing the program for conformance to the
verified model, why not simply use testing to check for race conditions directly in the
program?

In fact, the combination of finite state verification with testing can be both less ex-
pensive and more effective than testing alone. Consider again our simple example of
misapplication of the double-check pattern in Figure 8.2. Tens of thousands of test ex-
ecutions can fail to reveal the race condition in this code, depending on the way threads
are scheduled on a particular hardware platform and Java virtual machine implementa-
tion. Testing for a discrepancy between model and program, on the other hand, is fairly
straightforward because the model of each individual state machine can be checked
independently (in fact all but one are trivial). The complexity that stymies testing
comes from nondeterministic interleaving of their execution, but this interleaving is
completely irrelevant to conformance testing.

Granularity of Modeling 131

1 /** Trivial race between two increments. A version of this program
2 * appears in many books on concurrency or operating systems; it is
3 * the "hello world” of race conditions.
4 Y
5 class Unsafe implements Runnable {
6 static inti=1; /* Before increments, value is 1. And after? */
7
8 /** Each thread increments i by 1 %/
9 public void run() {
10 i=i+1;
11 }
12
13 /** Two threads interleave their updates */
14 public static void main(String[] argv) {
15 Unsafe unsafe = new Unsafe();
16 Thread racerP = new Thread(unsafe);
17 racerP.start();
18 Thread racerQ = new Thread(unsafe);
19 racerQ.start();
20
21 /* Wait for both to finish */
22 try {
23 racerPjoin(); racerQ.join();
24 } catch (InterruptedException e) {
25 System.err.printin("Unexpected interruption");
26 }
27
28 /* What values could i possibly have? */
29 System.out.printin("i: " +i);
30 }
31
32 }

Figure 8.9: A simple data race in Java. The possible ending values of i depend on how
the statement i = i+1 in one thread is interleaved with the same sequence in the other
thread.

8.5 Granularity of Modeling

Showing that each thread or process in a program performs actions in an order con-
sistent with its FSM model, and that the effect of each sequence of actions is modeled
correctly, is not quite enough. We also need to consider the granularity of those actions
— the points at which actions from one thread can be interrupted by actions of another.

Consider the trivial program of Figure 8.9. The race condition is apparent: Both
threads RacerP and RacerQ increment shared variable i. The possible ending values

132 Finite State Verification

S S B
To) [wo

i=i+1 i=i+1

Figure 8.10: Coarse and fine-grain models of the same program from Figure 8.9. In
the coarse-grain model, i will be increased by 2, but other outcomes are possible in the
finer grain model in which the shared variable i is loaded into temporary variable or
register, updated locally, and then stored.

of i depend on whether i=i+1 is an atomic (indivisible) action, or a sequence of smaller
operations. The coarse-grain FSM of Figure 8.10 treats each statement as an atomic
action, while the fine-grain FSM in the same figure breaks the increment operation
into separate load, add, and store steps. Only the finer grain FSM can reveal the “lost
update” problem illustrated in Figure 8.11.

Even representing each memory access as an individual action is not always suf-
ficient. Programming language definitions usually allow compilers to perform some
rearrangements in the order of instructions. What appears to be a simple store of a
value into a memory cell may be compiled into a store into a local register, with the
actual store to memory appearing later (or not at all, if the value is replaced first).
Two loads or stores to different memory locations may also be reordered for reasons
of efficiency. Moreover, when a machine instruction to store a value into memory is
executed by a parallel or distributed computer, the value may initially be placed in the
cache memory of a local processor, and only later written into a memory area accessed
by other processors. These reorderings are not under programmer control, nor are they
directly visible, but they can lead to subtle and unpredictable failures in multi-threaded
programs.

As an example, consider once again the flawed program of Figure 8.2. Suppose
we corrected it to use the double-check idiom only for lazy initialization and not for
updates of the data structure. It would still be wrong, and unfortunately it is unlikely

Granularity of Modeling 133

RacerP RacerQ
(a)
b
t=t+1;
u=u+t;
y
-
(d) (2)
Legend
racerP Thread name from Java
code and FSM model
(a) Fine-grain model of
operations from Java code

State identifier from FSM
model (fine grain)

Figure 8.11: The lost update problem, in which only one of the two increments affects
the final value of i. The illustrated sequence of operations from the program of Fig-
ure 8.9 can be found using the finer grain model of Figure 8.10, but is not revealed by
the coarser grain model.

134

Finite State Verification

we would discover the flaw through finite state verification. Our model in Promela
assumes that memory accesses occur in the order given in the Java program, but Java
does not guarantee that they will be executed in that order. In particular, while the
programmer may assume that initialization invoked in line 18 of the Java program is
completed before field ref is set in line 19, Java makes no such guarantee.

Breaking sequences of operations into finer pieces exacerbates the state explosion
problem, but as we have seen, making a model too coarse risks failure to detect some
possible errors. Moreover, conformance testing may not be much help in determining
whether a model depends on unjustified assumptions of atomicity. Interruptions in a
sequence of program operations that are mistakenly modeled as an atomic action may
not only be extremely rare and dependent on uncontrolled features of the execution
environment, such as system load or the activity of connected devices, but may also
depend on details of a particular language compiler.

Conformance testing is not generally effective in detecting that a finite state model
of a program relies on unwarranted assumptions of atomicity and ordering of memory
accesses, particularly when those assumptions may be satisfied by one compiler or
machine (say, in the test environment) and not by another (as in the field). Tools for
extracting models, or for generating code from models, have a potential advantage in
that they can be constructed to assume no more than is actually guaranteed by the
programming language.

Many state space analysis tools will attempt to dynamically determine when a se-
quence of operations in one process can be treated as if it were atomic without affecting
the results of analysis. For example, the Spin verification tool uses a technique called
partial order reduction to recognize when the next event from one process can be freely
reordered with the next event from another, so only one of the orders need be checked.
Many finite state verification tools provide analogous facilities, and though they cannot
completely compensate for the complexity of a model that is more fine-grained than
necessary, they reduce the penalty imposed on the cautious model-builder.

8.6 Intensional Models

The computational cost of enumerating reachable states, particularly the storage re-
quired to recognize states that have already been explored, is often a limiting factor in
applying finite state verification tools. Sometimes (but not always) this expense can be
significantly reduced by using intensional (symbolic) representations that describe sets
of reachable states without enumerating each one individually.

The idea of symbolic or intensional representations can be illustrated with sets of
integers. Consider the set

{2,4,6,8,10,12,14,16,18}

The extensional representation, given above, lists the elements of the set. The same set
can be represented intensionally as

{xeéN|] xmod2=0 A 0<x<20}

Intensional Models

135

The predicate x mod 2 =0 A 0 < x < 20, which is true for elements included in the
set and false for excluded elements, is called a characteristic function. The length of
the representation of the characteristic function does not necessarily grow with the size
of the set it describes. For example, the set

{xeN|] xmod2=0 A 0<x<80}

contains four times as many elements as the one above, and yet the length of the repre-
sentation is the same.

It could be advantageous to use similarly compact representations for sets of reach-
able states and transitions among them. For example, ordered binary decision diagrams
(OBDDs) are a representation of Boolean functions that can be used to describe the
characteristic function of a transition relation. Transitions in the model state space are
pairs of states (the state before and the state after executing the transition), and the
Boolean function represented by the OBDD takes a pair of state descriptions and re-
turns True exactly if there is a transition between such a pair of states. The OBDD is
built by an iterative procedure that corresponds to a breadth-first expansion of the state
space (i.e., creating a representation of the whole set of states reachable in k + 1 steps
from the set of states reachable in k steps). If the OBDD representation does not grow
too large to be manipulated in memory, it stabilizes when all the transitions that can
occur in the next step are already represented in the OBDD form.

Finding a compact intensional representation of the model state space is not, by
itself, enough. In addition we must have an algorithm for determining whether that
set satisfies the property we are checking. For example, an OBDD can be used to
represent not only the transition relation of a set of communicating state machines, but
also a class of temporal logic specification formulas. The OBDD representations of
model and specification can be combined to produce a representation of just the set of
transitions leading to a violation of the specification. If that set is empty, the property
has been verified. This approach is known as symbolic model checking, and has been
spectacularly successful in dealing with some models of concurrent system (primarily
for hardware, but sometimes also for software).

Encoding transition relations as OBDDs can be divided into two parts: represent-
ing transition relations as Boolean functions, and representing Boolean functions as
OBDDs. Representing Boolean functions as OBDDs is straightforward, as illustrated
in Figure 8.12. Essentially the BDD is a decision tree that has been transformed into
an acyclic graph by merging nodes leading to identical subtrees. The merging is made
efficient by ordering the decisions in the same way on all paths from the root of the
decision tree to the leaves, which represent outcomes. Constructing the representation
of transition relations as Boolean functions, on the other hand, can be quite involved.
Figure 8.13 illustrates some of the basic ideas.

In the worst case, intensional representations are no more compact than listing the
elements of a set. In fact, information theory tells us that if we have a large set S of
states, a representation capable of distinguishing each subset of S (all elements of 25)
cannot be more compact on average than the representation that simply lists elements of
the chosen subset. When intensional representations work well, it is because we do not
produce arbitrary sets of reachable states; rather, there is a good deal of structure and
regularity in the state space, and that regularity is exploited in symbolic representations.

136 Finite State Verification

Figure 8.12: Ordered binary decision diagram (OBDD) encoding of the Boolean
proposition a = b A ¢, which is equivalent to ~a VN (b Ac). The formula and OBDD
structure can be thought of as a function from the Boolean values of a, b, and c to a
single Boolean value True or False.

Intensional Models

137

(A) (C)

b (X0=1)

b(X0=1) X X
ol 1] o
R
X2 X
5 o) ol 11 ol 11

o | el ol

(B) v
Xo X1X2 X3X4 WmW Xq
0 00 00 S — o] [
1 00 01
1 01 10
sym from state to state F T

Figure 8.13: Ordered binary decision diagram (OBDD) representation of a transition
relation, in three steps. In part (A), each state and symbol in the state machine is
assigned a Boolean label. For example, state sy is labeled 00. In part (B), transitions
are encoded as tuples (sym, from,to) indicating a transition from state from fo state to
on input symbol sym. In part (C), the transition tuples correspond to paths leading to
the True leaf of the OBDD, while all other paths lead to False. The OBDD represents
a characteristic function that takes valuations of xq ...x4 and returns True only if it
corresponds to a state transition.

138

Finite State Verification

A good rule of thumb is that finite state verification tools that use intensional rep-
resentations (typically called symbolic model checkers) are more effective, the more
regularity is captured in the model, while an explicit model checker (like Spin) is apt
to be at least as effective where little regularity can be captured, or where the kinds
of regularity that can be captured can also be exploited in explicit state space explo-
ration (e.g., the partial order reductions used by Spin). Unfortunately, this advice is
rather vague, because we do not know a precise way to describe or measure the kinds
of regularity that affect verification tool performance.

Whether a finite state verification tool performs explicit state enumeration or ma-
nipulates an intensional representation can be partly hidden from the tool user, and it is
possible for a single tool “front end” for building or extracting models to be connected
to multiple “back end” verification engines.

8.7 Model Refinement

Because construction of finite state models requires a delicate balance between preci-
sion and efficiency, often the first model we construct will be unsatisfactory — either
the verification tool will produce reports of potential failures that are obviously impos-
sible, or it will exhaust resources before producing any result at all. Minor differences
in the model can have large effects on tractability of the verification procedure, so in
practice finite state verification is often an iterative process of constructing a model,
attempting verification, and then either abstracting the model further (if the verification
exhausts computational resources or the user’s patience before obtaining a conclusive
result) or making the model more precise to eliminate spurious results (i.e., a report of
a potential error that cannot actually occur).

An iterative process of model refinement can be at least partly automated. We begin
with a very coarse model that can be efficiently constructed and analyzed, and then we
add detail specifically aimed at ruling out spurious error reports. There are two main
approaches: adding detail directly to the model, or adding premises to the property to
be checked.

Initially, we try to verify that a very coarse model M satisfies property P:

M P

However, M is only an approximation of the real system, and we find that the veri-
fication finds a violation of P because of some execution sequences that are possible in
M, but not in the real system. In the first approach, we examine the counter-example
(an execution trace of M that violates P but is impossible in the real system) and create
a new model M, that is more precise in a way that will eliminate that particular exe-
cution trace (and many similar traces). We attempt verification again with the refined
model:

My =P

If verification fails again, we repeat the process to obtain a new model M3, and
so on, until verification succeeds with some “good enough” model M, or we obtain a
counter-example that corresponds to an execution of the actual program.

Model Refinement

139

One kind of model that can be iteratively refined in this way is Boolean pro-
grams. The initial Boolean program model of an (ordinary) program omits all vari-
ables; branches (if, while, etc.) refer to a dummy Boolean variable whose value is un-
known. Boolean programs are refined by adding variables, with assignments and tests
— but only Boolean variables. For instance, if a counter-example produced by trying to
verify a property of a pump controller shows that the waterLevel variable cannot be ig-
nored, a Boolean program might be refined by adding a Boolean variable corresponding
to a predicate in which waterLevel is tested (say, waterLevel < highLimit), rather than
adding the variable waterLevel itself. For some kinds of interprocedural control flow
analysis, it is possible to completely automate the step of choosing additional Boolean
variables to refine M; into M;; and eliminate some spurious executions.

In the second approach, M remains fixed,* but premises that constrain executions
to be checked are added to the property P. When bogus behaviors of M violate P, we
add a constraint C; to rule them out and try the modified verification problem:

MEC =P

If the modified verification problem fails because of additional bogus behaviors,
we try again with new constraints Cy:

ME(CING)=P

so on until verification either succeeds or produces a valid counter-example.

The FLAVERS finite state verification tool is an example of the second approach,
adding constraints to refine a model of concurrent execution. A FLAVERS model ap-
proximates concurrent execution with a pairwise “may immediately precede” (MIP)
relation among operations in different threads. Because MIP relates only pairs of indi-
vidual process states, rather than k-tuples for a model with k processes, its size is only
quadratic in the size of the state machine model, rather than exponential in the number
of processes. Moreover, a reasonably good approximation of the MIP relation can be
obtained in cubic time.’

If one thinks of each MIP edge in the program model as representing possible inter-
ruption of one thread and continuation of another, it is apparent that paths combining
transitions within individual processes and MIP transitions between processes can rep-
resent all paths through the global state space. Many additional paths, which would
not appear in a more precise global model of possible executions, are also represented.
The overapproximation leads to spurious error reports involving impossible execution
paths.

Additional spurious error reports result from eliding details of data variables. In
the Boolean programs approach to model refinement, we would refine the model by

“In practice the model M may be augmented slightly to facilitate observing significant events in the
constraint, but the augmentation does not restrict or change the possible behaviors of the model M.

SPublished algorithms for computing the “may immediately precede” relation, or the closely related “may
happen in parallel” (MHP) relation, range from O(n®) to O(n°®) where 7 is the sum of the sizes of the indi-
vidual state machine models or control flow graphs. They differ depending on the thread interactions under
consideration (e.g., a MIP calculation for Ada tasks would use diffferent constraints than a MIP calculation
for Java threads) as well as algorithmic approach.

140

Finite State Verification

expanding the finite state representation of the process. With FLAVERS, in contrast, in-
formation about the variable value is represented in a separate constraint state machine,
which may be provided by the user or extracted automatically from the program to be
verified. Only violations of property P that satisfy all the constraints C; are reported.
The same approach of adding constraints is used to eliminate spurious error reports
resulting from the MIP overestimation of possible concurrency.

8.8 Data Model Verification with Relational Algebra

Many information systems have relatively simple logic and algorithms, with much of
their complexity in the structure of the data they maintain. A data model is a key design
description for such systems. It is typically described, for example, in the class and
object diagrams of a Unified Modeling Language (UML) design document, possibly
augmented by assertions in the Object Constraint Language (OCL). The finite state
verification techniques we have described are suited to reasoning about complex or
subtle program logic, but are quite limited in dealing with complex data. Fortunately,
suitable finite state verification techniques can also be devised for reasoning about data
models.

The data model consists of sets of data and relations among them. Often a data
model describes many individual relations and constraints; the challenge is in know-
ing whether all of the individual constraints are consistent, and whether together they
ensure the desired properties of the system as a whole. Constructing and testing a
portion or partial version of the system may provide some increased confidence in the
realizability of the system, but even with incremental development it can happen that a
fundamental problem in the data model is discovered only after a great deal of devel-
opment effort has been invested in the flawed model. Reasoning about the model itself
is a more timely and cost-effective way to find and correct these flaws.

Let us consider, for example, a simple Web site with a data model described as sets
and relations as follows:

e A set of pages, divided among restricted, unrestricted, and maintenance pages.
Unrestricted pages are freely accessible, while restricted pages are accessible
only to registered users, and pages in maintenance are currently inaccessible to
both sets of users.

e A set of users, classified as administrator, registered, and unregistered users.

o A set of links relations among pages. Different relations describe different kinds
of links. Private links lead to restricted pages, public links lead to unrestricted
pages, and maintenance links lead to pages undergoing maintenance.

e A setof access rights relations between users and pages, relating different classes
of users to the pages they can access. Unregistered users can access only unre-
stricted pages, registered users can access both restricted and unrestricted pages,
and an administrator can access all pages, including pages under maintenance.

Data Model Verification with Relational Algebra

141

users page

—] — | l

unregistered unrestricted maintenance
public
—private
administrator | | registered LCan accessj\ restricted maintenance
can access——' |public—
can access——
| can access—/l\ private
can access maintenance——
can access
LEGEND
A
SetB A B
7? specializes
set A . .
B There is a relation r
between sets A and B

Figure 8.14: The data model of a simple Web site.

So far we have identified the sets involved in the relations, which we call their
signature. To complete the description we need to indicate the rules that constrain
relations among specific elements. For example we may:

e Exclude self loops from “links” relations; that is, specify that a page should not
be directly linked to itself.

e Allow at most one type of link between two pages. Note that relations need not
be symmetric; that is, the relation between A and B is distinct from the relation
between B and A, so there can be a link of type private from A to B and a link of
type public from B back to A.

e Require the Web site to be connected; that is, require that there be at least one
way of following links from the home page to each other page of the site.

A data model can be visualized as a diagram with nodes corresponding to sets and
edges representing relations, as in Figure 8.14.

142 Finite State Verification

1 module WebSite
2
3 // Pages include three disjoint sets of links
4 sig Page{ disj linksPriv, linksPub, linksMain: set Page }
5 // Each type of link points to a particular class of page
6 fact connPub{ all p: Page, s: Site | p.linksPub in s.unres }
7 fact connPriv{ all p: Page, s: Site | p.linksPriv in s.res }
8 fact connMain{ all p: Page, s: Site | p.linksMain in s.main }
9 // Self loops are not allowed
10 fact noSelfLoop{ no p: Page| p in p.linksPriv+p.linksPub+p.linksMain }
11
12 // Users are characterized by the set of pages that they can access
13 sig User{ pages: setPage }
14 // Users are partitioned into three sets
15 part sig Administrator, Registered, Unregistered extends User {}
16 // Unregistered users can access only the home page, and unrestricted pages
17 fact accUnregistered{
18 all u: Unregistered, s: Site| u.pages = (s.home+s.unres) }
19 // Registered users can access home, restricted and unrestricted pages
20 fact accRegistered{
21 all u: Registered, s: Site|
22 u.pages = (s.home+s.res+s.unres)
23}
24 // Administrators can access all pages
25 fact accAdministrator{
26 all u: Administrator, s: Site|
27 u.pages = (s.home+s.res+s.unres+s.main)
28}
29
30 // A web site includes one home page and three disjoint sets
31 //of pages: restricted, unrestricted and maintenance
32 static sig Site{
33 home: Page,
34 disj res, unres, main: set Page
35 }{
36 // All pages are accessible from the home page (" is transitive closure)
37 all p: (res+unres+main)| p in home."(linksPub-+linksPriv+linksMain)
38 }
39

Figure 8.15: Alloy model of a Web site with different kinds of pages, users, and access
rights (data model part). Continued in Figure 8.16.

Data Model Verification with Relational Algebra

143

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

module WebSite

// We consider one Web site that includes one home page
// and some other pages
fun initSite() {
one s: Site| one s.home and
some s.res and
some s.unres and
some s.main

// We consider one administrator and some registered and unregistered users
fun initUsers() {one Administrator and

some Registered and

some Unregistered}

fun init() {
initSite() and initUsers()

// ANALYSIS

// Verify if there exists a solution
// with sets of cardinality at most 5
run init for 5

// check if unregistered users can visit all unrestrited pages,

//i.e., all unrestricted pages are connected to the home page with
// at least a path of public links.

// Perform analysis with sets of at most 3 objects.

//"* indicates the transtivie closure including the source element.

assert browsePub{
all p: Page, s: Site| p in s.unres implies s.home in p.* linksPub

}

check browsePub for 3

Figure 8.16: Alloy model of a Web site with different kinds of pages, users, and access
rights, continued from Figure 8.15.

144

Finite State Verification

We can reason about sets and relations using mathematical laws. For example,
set union and set intersection obey many of the same algebraic laws as addition and
subtraction of integers:

AUB=BUA commutative law
ANB=BNA "o
(AUB)UC=AU(BUC) associative law

(ANB)NC=AN(BNC) "o
AN(BUC)=(ANB)U(ANC) distributive law
etc.

These and many other laws together make up relational algebra, which is used
extensively in database processing and has many other uses.

It would be inconvenient to write down a data model directly as a collection of
mathematical formulas. Instead, we use some notation whose meaning is the same as
the mathematical formulas, but is easier to write, maintain, and comprehend. Alloy is
one such modeling notation, with the additional advantage that it can be processed by
a finite state verification tool.

The definition of the data model as sets and relations can be formalized and verified
with relational algebra by specifying signatures and constraints. Figure 8.15 presents a
formalization of the data model of the Web site in Alloy. Keyword sig (signature) iden-
tifies three sets: Pages, User, and Site. The definition of set Pages also defines three
disjoint relations among pages: linksPriv (private links), linksPub (public links), and
linksMain (maintenance links). The definition of User also defines a relation between
users and pages. User is partitioned into three disjoint sets (Administrator, Registered,
and Unregistered). The definition of Site aggregates pages into the site and identifies
the home page. Site is defined static since it is a fixed classification of objects.

The keyword facts introduces constraints.® The constraints connPub, connPriv and
connMain restrict the target of the links relations, while noSelfLoop excludes links from
a page to itself. The constraints accAdministrator, accRegistered, and accUnregistered
map users to pages. The constraint that follows the definition of Site forces the Web
site to be connected by requiring each page to belong to the transitive closure of links
starting from the Web page (operator 7).

A relational algebra specification may be over- or underconstrained. Overcon-
strained specifications are not satisfiable by any implementation, while underconstrained
specifications allow undesirable implementations; that is, implementations that violate
important properties.

In general, specifications identify infinite sets of solutions, each characterized by
a different set of objects and relations (e.g., the infinite set of Web sites with different
sets of pages, users and correct relations among them). Thus in general, properties of a
relational specification are undecidable because proving them would require examining
an infinite set of possible solutions. While attempting to prove absence of a solution
may be inconclusive, often a (counter) example that invalidates a property can be found
within a finite set of small models.

We can verify a specification over a finite set of solutions by limiting the cardinality

The order in which relations and constraints are given is irrelevant. We list constraints after the relations
they refer to.

Data Model Verification with Relational Algebra

145

res

\IinkPriv

unres

s

Figure 8.17: A Web site that violates the “browsability” property, because public page
Page_2 is not reachable from the home page using only unrestricted links. This diagram
was generated by the Alloy tool.

of the sets. In the example, we first verify that the model admits solutions for sets with
at most five elements (run init for 5 issued after an initialization of the system.) A
positive outcome indicates that the specification is not overconstrained — there are no
logical contradictions. A negative outcome would not allow us to conclude that no
solution exists, but tells us that no “reasonably small” solution exists.

We then verify that the example is not underconstrained with respect to property
browsePub that states that unregistered users must be able to visit all unrestricted pages
by accessing the site from the home page. The property is asserted by requiring that
all unrestricted pages belong to the reflexive transitive closure of the linkPub relation
from the home page (here we use operator “*’ instead of **” because the home page
is included in the closure). If we check whether the property holds for sets with at
most three elements (check browsePub for 3) we obtain a counter-example like the one
shown in Figure 8.17, which shows how the property can be violated.

The simple Web site in the example consists of two unrestricted pages (page-1,
the home page, and page_2), one restricted page (page-0), and one unregistered user
(user_2). User_2 cannot visit one of the unrestricted pages (page-2) because the only
path from the home page to page_2 goes through the restricted page page_0. The prop-
erty is violated because unrestricted browsing paths can be “interrupted” by restricted
pages or pages under maintenance, for example, when a previously unrestricted page
is reserved or disabled for maintenance by the administrator.

The problem appears only when there are public links from maintenance or re-

146

Finite State Verification

served pages, as we can check by excluding them:
1 fact descendant{
2 all p: Page, s: Site| p in s.main+s.res implies no p.linksPub

3}

This new specification would not find any counter-example in a space of cardinality 3.
We cannot conclude that no larger counter-example exists, but we may be satisfied that
there is no reason to expect this property to be violated only in larger models.

Summary

Finite state verification techniques fill an important niche in verifying critical proper-
ties of programs. They are particularly crucial where nondeterminism makes program
testing ineffective, as in concurrent execution. In principle, finite state verification of
concurrent execution and of data models can be seen as systematically exploring an
enormous space of possible program states. From a user’s perspective, the challenge
is to construct a suitable model of the software that can be analyzed with reasonable
expenditure of human and computational resources, captures enough significant detail
for verification to succeed, and can be shown to be consistent with the actual software.

Further Reading

There is a large literature on finite state verification techniques reaching back at least to
the 1960s, when Bartlett et al. [BSW69] employed what is recognizably a manual ver-
sion of state space exploration to justify the corrrectness of a communication protocol.
A number of early state space verification tools were developed initially for commu-
nication protocol verification, including the Spin tool. Holzmann’s journal description
of Spin’s design and use [Hol97], though now somewhat out of date, remains an ade-
quate introduction to the approach, and a full primer and reference manual [Hol03] is
available in book form.

The ordered binary decision diagram representation of Boolean functions, used in
the first symbolic model checkers, was introduced by Randal Bryant [Bry86]. The
representation of transition relations as OBDDs in this chapter is meant to illustrate
basic ideas but is simplified and far from complete; Bryant’s survey paper [Bry92] is
a good source for understanding applications of OBDDs, and Huth and Ryan [HROO]
provide a thorough and clear step-by-step description of how OBDDs are used in the
SMYV symbolic model checker.

Model refinement based on iterative refinements of an initial coarse model was
introduced by Ball and Rajamani in the tools Slam [BRO1a] and Bebop [BRO1b], and
by Henzinger and his colleagues in Blast [HIMSO03]. The complementary refinement
approach of FLAVERS was introduced by Dwyer and colleagues [DCCNO4].

Automated analysis of relational algebra for data modeling was introduced by
Daniel Jackson and his students with the Alloy notation and associated tools [Jac02].

Data Model Verification with Relational Algebra 147

Exercises

8.1. We stated, on the one hand, that finite state verification falls between basic flow
analysis and formal verification in power and cost, but we also stated that fi-
nite state verification techniques are often designed to provide results that are
tantamount to formal proofs of program properties. Are these two statements
contradictory? If not, how can a technique that is less powerful than formal
verification produce results that are tantamount to formal proofs?

8.2. Construct an ordered binary decision diagram (OBDD) for the proposition

x=yVz

8.3. (a) How does the size of the OBDD representation of
(xVy)A=(xAyAz)

differ depending on which variable (x, y, or z) is first in the variable ordering
(i.e., appears in the root node of the OBDD representation)? Is the size of
the OBDD equivalent for some different orderings of the variables? Why
or why not?

(b) Predict whether the order of variables would make a difference for

(xVyVz) A=(xAyAz)

8.4. A property like “if the button is pressed, then eventually the elevator will come”
is classified as a liveness property. However, the stronger real-time version “if the
button is pressed, then the elevator will arrive within 30 seconds” is technically
a safety property rather than a liveness property. Why?

148 Finite State Verification

Part lll

Problems and Methods

149

Chapter 9

Test Case Selection and
Adequacy

A key problem in software testing is selecting and evaluating test cases. This chapter
introduces basic approaches to test case selection and corresponding adequacy criteria.
It serves as a general introduction to the problem and provides a conceptual framework
for functional and structural approaches described in subsequent chapters.

Required Background

e Chapter 2
The fundamental problems and limitations of test case selection are a conse-
quence of the undecidability of program properties. A grasp of the basic problem
is useful in understanding Section 9.3.

9.1 Overview

Experience suggests that software that has passed a thorough set of systematic tests
is likely to be more dependable than software that has been only superficially or hap-
hazardly tested. Surely we should require that each software module or subsystem
undergo thorough, systematic testing before being incorporated into the main product.
But what do we mean by thorough testing? What is the criterion by which we can
judge the adequacy of a suite of tests that a software artifact has passed?

Ideally, we should like an “adequate” test suite to be one that ensures correctness
of the product. Unfortunately, that goal is not attainable. The difficulty of proving that
some set of test cases is adequate in this sense is equivalent to the difficulty of proving
that the program is correct. In other words, we could have “adequate” testing in this
sense only if we could establish correctness without any testing at all.

In practice we settle for criteria that identify inadequacies in test suites. For ex-
ample, if the specification describes different treatment in two cases, but the test suite
does not check that the two cases are in fact treated differently, then we may conclude

151

152

Test Case Selection and Adequacy

that the test suite is inadequate to guard against faults in the program logic. If no test
in the test suite executes a particular program statement, we might similarly conclude
that the test suite is inadequate to guard against faults in that statement. We may use a
whole set of (in)adequacy criteria, each of which draws on some source of information
about the program and imposes a set of obligations that an adequate set of test cases
ought to satisfy. If a test suite fails to satisfy some criterion, the obligation that has not
been satisfied may provide some useful information about improving the test suite. If
a set of test cases satisfies all the obligations by all the criteria, we still do not know
definitively that it is a well-designed and effective test suite, but we have at least some
evidence of its thoroughness.

9.2 Test Specifications and Cases

A test case includes not only input data but also any relevant execution conditions and
procedures, and a way of determining whether the program has passed or failed the
test on a particular execution. The term input is used in a very broad sense, which
may include all kinds of stimuli that contribute to determining program behavior. For
example, an interrupt is as much an input as is a file. The pass/fail criterion might be
given in the form of expected output, but could also be some other way of determining
whether a particular program execution is correct.

A test case specification is a requirement to be satisfied by one or more actual test
cases. The distinction between a test case specification and a test case is similar to the
distinction between a program specification and a program. A test case specification
might be met by several different test cases, and vice versa. Suppose, for example, we
are testing a program that sorts a sequence of words. “The input is two or more words”
would be a test case specification, while test cases with the input values “alpha beta”
and “Milano Paris London” would be two among many test cases satisfying the test
case specification. A test case with input “Milano Paris London” would satisfy both the
test case specification “the input is two or more words” and the test case specification
“the input contains a mix of lower- and upper-case alphabetic characters.”

Characteristics of the input are not the only thing that might be mentioned in a
test case specification. A complete test case specification includes pass/fail criteria
for judging test execution and may include requirements, drawn from any of several
sources of information, such as system, program, and module interface specifications;
source code or detailed design of the program itself; and records of faults encountered
in other software systems.

Test specifications drawn from system, program, and module interface specifica-
tions often describe program inputs, but they can just as well specify any observable be-
havior that could appear in specifications. For example, the specification of a database
system might require certain kinds of robust failure recovery in case of power loss, and
test specifications might therefore require removing system power at certain critical
points in processing. If a specification describes inputs and outputs, a test specification
could prescribe aspects of the input, the output, or both. If the specification is mod-
eled as an extended finite state machine, it might require executions corresponding to
particular transitions or paths in the state-machine model. The general term for such

Test Specifications and Cases 153

Testing Terms
While the informal meanings of words like “test” may be adequate for everyday
conversation, in this context we must try to use terms in a more precise and consistent
manner. Unfortunately, the terms we will need are not always used consistently in the
literature, despite the existence of an IEEE standard that defines several of them. The
terms we will use are defined as follows.

Test case: A fest case is a set of inputs, execution conditions, and a pass/fail criterion.
(This usage follows the IEEE standard.)

Test case specification: A test case specification is a requirement to be satisfied by
one or more actual test cases. (This usage follows the IEEE standard.)

Test obligation: A test obligation is a partial test case specification, requiring some
property deemed important to thorough testing. We use the term obligation to
distinguish the requirements imposed by a test adequacy criterion from more
complete test case specifications.

Test suite: A rest suite is a set of test cases. Typically, a method for functional testing
is concerned with creating a test suite. A test suite for a program, system, or
individual unit may be made up of several test suites for individual modules,
subsystems, or features. (This usage follows the IEEE standard.)

Test or test execution: We use the term fest or test execution to refer to the activity
of executing test cases and evaluating their results. When we refer to “a test,” we
mean execution of a single test case, except where context makes it clear that the
reference is to execution of a whole test suite. (The IEEE standard allows this
and other definitions.)

Adequacy criterion: A test adequacy criterion is a predicate that is true (satisfied)
or false (not satisfied) of a (program, test suite) pair. Usually a test adequacy
criterion is expressed in the form of a rule for deriving a set of test obligations
from another artifact, such as a program or specification. The adequacy criterion
is then satisfied if every test obligation is satisfied by at least one test case in the
suite.

154

Test Case Selection and Adequacy

test specifications is functional testing, although the term black-box testing and more
specific terms like specification-based testing and model-based testing are also used.

Test specifications drawn from program source code require coverage of particular
elements in the source code or some model derived from it. For example, we might
require a test case that traverses a loop one or more times. The general term for testing
based on program structure is structural testing, although the term white-box testing or
glass-box testing is sometimes used.

Previously encountered faults can be an important source of information regard-
ing useful test cases. For example, if previous products have encountered failures or
security breaches due to buffer overflows, we may formulate test requirements specif-
ically to check handling of inputs that are too large to fit in provided buffers. These
fault-based test specifications usually draw also from interface specifications, design
models, or source code, but add test requirements that might not have been otherwise
considered. A common form of fault-based testing is fault-seeding, purposely inserting
faults in source code and then measuring the effectiveness of a test suite in finding the
seeded faults, on the theory that a test suite that finds seeded faults is likely also to find
other faults.

Test specifications need not fall cleanly into just one of the categories. For example,
test specifications drawn from a model of a program might be considered specification-
based if the model is produced during program design, or structural if it is derived from
the program source code.

Consider the Java method of Figure 9.1. We might apply a general rule that requires
using an empty sequence wherever a sequence appears as an input; we would thus
create a test case specification (a test obligation) that requires the empty string as input.!
If we are selecting test cases structurally, we might create a test obligation that requires
the first clause of the if statement on line 15 to evaluate to true and the second clause to
evaluate to false, and another test obligation on which it is the second clause that must
evaluate to true and the first that must evaluate to false.

9.3 Adequacy Criteria

We have already noted that adequacy criteria are just imperfect but useful indicators of
inadequacies, so we may not always wish to use them directly to generate test specifi-
cations from which actual test cases are drawn. We will use the term fest obligation for
test specifications imposed by adequacy criteria, to distinguish them from test specifi-
cations that are actually used to derive test cases. Thus, the usual situation will be that
a set of test cases (a test suite) is created using a set of test specifications, but then the
adequacy of that test suite is measured using a different set of test obligations.

We say a test suite satisfies an adequacy criterion if all the tests succeed and if
every test obligation in the criterion is satisfied by at least one of the test cases in
the test suite. For example, the statement coverage adequacy criterion is satisfied by a
particular test suite for a particular program if each executable statement in the program
(i.e., excluding comments and declarations) is executed by at least one test case in the

Constructing and using catalogs of general rules like this is described in Chapter 10.

Adequacy Criteria

155

] e
2 * Remove/collapse multiple spaces.
3 *
4 * @param String string to remove multiple spaces from.
5 * @return String
6 Y/
7 public static String collapseSpaces(String argStr)
8 {
9 char last = argStr.charAt(0);
10 StringBuffer argBuf = new StringBuffer();
1
12 for (int cldx = 0 ; cldx < argStr.length(); cldx++)
13 {
14 char ch = argStr.charAt(cldx);
15 if(ch!l=" 7 ||last!=")
16
17 argBuf.append(ch);
18 last = ch;
19 }
20 }
21
22 return argBuf.toString();
23 }

Figure 9.1: A Java method for collapsing sequences of blanks, excerpted from the
StringUtils class of Velocity version 1.3.1, an Apache Jakarta project. (© Apache
Group, used by permission.

156

Test Case Selection and Adequacy

test suite. A fault-based adequacy criterion that seeds a certain set of faults would be
satisfied if, for each of the seeded faults, there is a test case that passes for the original
program but fails for the program with (only) that seeded fault.

It is quite possible that no test suite will satisfy a particular test adequacy criterion
for a particular program. For example, if the program contains statements that can
never be executed (perhaps because it is part of a sanity check that can be executed
only if some other part of the program is faulty), then no test suite can satisfy the
statement coverage criterion. Analogous situations arise regardless of the sources of
information used in devising test adequacy criteria. For example, a specification-based
criterion may require combinations of conditions drawn from different parts of the
specification, but not all combinations may be possible.

One approach to overcoming the problem of unsatisfiable test obligations is to sim-
ply exclude any unsatisfiable obligation from a criterion. For example, the statement
coverage criterion can be modified to require execution only of statements that can
be executed. The question of whether a particular statement or program path is exe-
cutable, or whether a particular combination of clauses in a specification is satisfiable,
or whether a program with a seeded error actually behaves differently from the original
program, are all provably undecidable in the general case. Thus, while tools may be
some help in distinguishing feasible from infeasible test obligations, in at least some
cases the distinction will be left to fallible human judgment.

If the number of infeasible test obligations is modest, it can be practical to identify
each of them, and to ameliorate human fallibility through peer review. If the number
of infeasible test obligations is large, it becomes impractical to carefully reason about
each to avoid excusing an obligation that is feasible but difficult to satisfy. A common
practice is to measure the extent to which a test suite approaches an adequacy criterion.
For example, if an adequacy criterion based on control flow paths in a program unit
induced 100 distinct test obligations, and a test suite satisfied 85 of those obligations,
then we would say that we had reached 85% coverage of the test obligations.

Quantitative measures of test coverage are widely used in industry. They are simple
and cheap to calculate, provide some indication of progress toward thorough testing,
and project an aura of objectivity. In managing software development, anything that
produces a number can be seductive. One must never forget that coverage is a rough
proxy measure for the thoroughness and effectiveness of test suites. The danger, as
with any proxy measure of some underlying goal, is the temptation to improve the
proxy measure in a way that does not actually contribute to the goal. If, for example,
80% coverage of some adequacy criterion is required to declare a work assignment
complete, developers under time pressure will almost certainly yield to the temptation
to design tests specifically to that criterion, choosing the simplest test cases that achieve
the required coverage level. One cannot entirely avoid such distortions, but to the
extent possible one should guard against them by ensuring that the ultimate measure
of performance is preventing faults from surviving to later stages of development or
deployment.

Comparing Criteria

157

9.4 Comparing Criteria

It would be useful to know whether one test adequacy criterion was more effective
than another in helping find program faults, and whether its extra effectiveness was
worthwhile with respect to the extra effort expended to satisfy it. One can imagine
two kinds of answers to such a question, empirical and analytical. An empirical an-
swer would be based on extensive studies of the effectiveness of different approaches
to testing in industrial practice, including controlled studies to determine whether the
relative effectiveness of different testing methods depends on the kind of software be-
ing tested, the kind of organization in which the software is developed and tested, and
a myriad of other potential confounding factors. The empirical evidence available falls
short of providing such clear-cut answers. An analytical answer to questions of relative
effectiveness would describe conditions under which one adequacy criterion is guar-
anteed to be more effective than another, or describe in statistical terms their relative
effectiveness.

Analytic comparisons of the strength of test coverage depends on a precise defini-
tion of what it means for one criterion to be “stronger” or “more effective” than another.
Let us first consider single test suites. In the absence of specific information, we cannot
exclude the possibility that any test case can reveal a failure. A test suite 7 that does
not include all the test cases of another test suite 73 may fail revealing the potential
failure exposed by the test cases that are in Tp but not in Ty. Thus, if we consider only
the guarantees that a test suite provides, the only way for one test suite 74 to be stronger
than another suite 73 is to include all test cases of 7p plus additional ones.

Many different test suites might satisfy the same coverage criterion. To compare
criteria, then, we consider all the possible ways of satisfying the criteria. If every test
suite that satisfies some criterion A is a superset of some test suite that satisfies criterion
B, or equivalently, every suite that satisfies A also satisfies B, then we can say that A
“subsumes” B.

Test coverage criterion A subsumes test coverage criterion B iff, for every program
P, every test set satisfying A with respect to P also satisfies B with respect to P.

In this case, if we satisfy criterion Cy, there is no point in measuring adequacy with
respect to C,. For example, a structural criterion that requires exploring all outcomes
of conditional branches subsumes statement coverage. Likewise, a specification-based
criterion that requires use of a set of possible values for attribute A and, independently,
for attribute B, will be subsumed by a criterion that requires all combinations of those
values.

Consider again the example of Figure 9.1. Suppose we apply an adequacy criterion
that imposes an obligation to execute each statement in the method. This criterion can
be met by a test suite containing a single test case, with the input value (value of argStr)
being “doesn’tEvenHaveSpaces.” Requiring both the true and false branches of each
test to be taken subsumes the previous criterion and forces us to at least provide an
input with a space that is not copied to the output, but it can still be satisfied by a suite
with just one test case. We might add a requirement that the loop be iterated zero times,
once, and several times, thus requiring a test suite with at least three test cases. The
obligation to execute the loop body zero times would force us to add a test case with the

A subsumes

158

Test Case Selection and Adequacy

empty string as input, and like the specification-based obligation to consider an empty
sequence, this would reveal a fault in the code.

Should we consider a more demanding adequacy criterion, as indicated by the sub-
sumes relation among criteria, to be a better criterion? The answer would be “yes” if
we were comparing the guarantees provided by test adequacy criteria: If criterion A
subsumes criterion B, and if any test suite satisfying B in some program is guaranteed
to find a particular fault, then any test suite satisfying A is guaranteed to find the same
fault in the program. This is not as good as it sounds, though. Twice nothing is nothing.
Adequacy criteria do not provide useful guarantees for fault detection, so comparing
guarantees is not a useful way to compare criteria.

A Dbetter statistical measure of test effectiveness is whether the probability of find-
ing at least one program fault is greater when using one test coverage criterion than
another. Of course, such statistical measures can be misleading if some test coverage
criteria require much larger numbers of test cases than others. It is hardly surprising
if a criterion that requires at least 300 test cases for program P is more effective, on
average, than a criterion that requires at least 50 test cases for the same program. It
would be better to know, if we have 50 test cases that satisfy criterion B, is there any
value in finding 250 test cases to finish satisfying the “stronger” criterion A, or would
it be just as profitable to choose the additional 250 test cases at random?

Although theory does not provide much guidance, empirical studies of particular
test adequacy criteria do suggest that there is value in pursuing stronger criteria, par-
ticularly when the level of coverage attained is very high. Whether the extra value of
pursuing a stronger adequacy criterion is commensurate with the cost almost certainly
depends on a plethora of particulars, and can only be determined by monitoring results
in individual organizations.

Open Research Issues

A good deal of theoretical research has been done on what one can conclude about
test effectiveness from test adequacy criteria. Most of the results are negative. In
general, one cannot be certain that a test suite that meets any practical test adequacy
criterion ensures correctness, or even that it is more effective at finding faults than
another test suite that does not meet the criterion. While theoretical characterization of
test adequacy criteria and their properties was once an active research area, interest has
waned, and it is likely that future theoretical progress must begin with a quite different
conception of the fundamental goals of a theory of test adequacy.

The trend in research is toward empirical, rather than theoretical, comparison of
the effectiveness of particular test selection techniques and test adequacy criteria. Em-
pirical approaches to measuring and comparing effectiveness are still at an early stage.
A major open problem is to determine when, and to what extent, the results of an em-
pirical assessment can be expected to generalize beyond the particular programs and
test suites used in the investigation. While empirical studies have to a large extent dis-
placed theoretical investigation of test effectiveness, in the longer term useful empirical
investigation will require its own theoretical framework.

Comparing Criteria

159

Further Reading

Goodenough and Gerhart made the original attempt to formulate a theory of “ade-
quate” testing [GG75]; Weyuker and Ostrand extended this theory to consider when a
set of test obligations is adequate to ensure that a program fault is revealed [WO80].
Gourlay’s exposition of a mathematical framework for adequacy criteria is among the
most lucid developments of purely analytic characterizations [Gou83]. Hamlet and
Taylor show that, if one takes statistical confidence in (absolute) program correctness
as the goal, none of the standard coverage testing techniques improve on random testing
[HT90], from which an appropriate conclusion is that confidence in absolute correct-
ness is not a reasonable goal of systematic testing. Frankl and Iakounenko’s study of
test effectiveness [FI98] is a good example of the development of empirical methods
for assessing the practical effectiveness of test adequacy criteria.

Related Topics

Test adequacy criteria and test selection techniques can be categorized by the sources
of information they draw from. Functional testing draws from program and system
specifications, and is described in Chapters 10, 11, and 14. Structural testing draws
from the structure of the program or system, and is described in Chapters 12 and 13.
The techniques for testing object-oriented software described in Chapter 15 draw on
both functional and structural approaches. Selection and adequacy criteria based on
consideration of hypothetical program faults are described in Chapter 16.

Exercises

9.1. Deterministic finite state machines (FSMs), with states representing classes of
program states and transitions representing external inputs and observable pro-
gram actions or outputs, are sometimes used in modeling system requirements.
We can design test cases consisting of sequences of program inputs that trigger
FSM transitions and the predicted program actions expected in response. We can
also define test coverage criteria relative to such a model. Which of the following
coverage criteria subsume which others?

State coverage: For each state in the FSM model, there is a test case that visits
that state.

Transition coverage: For each transition in the FSM model, there is a test case
that traverses that transition.

Path coverage: For all finite-length subpaths from a distinguished start state in
the FSM model, there is at least one test case that includes a corresponding
subpath.

State-pair coverage: For each state r in the FSM model, for each state s reach-
able from r along some sequence of transitions, there is at least one test
case that passes through state » and then reaches state s.

160

Test Case Selection and Adequacy

9.2.

9.3.

Adequacy criteria may be derived from specifications (functional criteria) or
code (structural criteria). The presence of infeasible elements in a program may
make it impossible to obtain 100% coverage. Since we cannot possibly cover in-
feasible elements, we might define a coverage criterion to require 100% coverage
of feasible elements (e.g., execution of all program statements that can actually
be reached in program execution). We have noted that feasibility of program
elements is undecidable in general. Suppose we instead are using a functional
test adequacy criterion, based on logical conditions describing inputs and out-
puts. It is still possible to have infeasible elements (logical condition A might be
inconsitent with logical condition B, making the conjunction A A B infeasible).
Would you expect distinguishing feasible from infeasible elements to be easier
or harder for functional criteria, compared to structural criteria? Why?

Suppose test suite A satisfies adequacy criterion C;. Test suite B satisfies ade-
quacy criterion Cy, and C, subsumes C;. Can we be certain that faults revealed
by A will also be revealed by B?

Chapter 10

Functional Tesfing

A functional specification is a description of intended program' behavior, distinct from
the program itself. Whatever form the functional specification takes — whether formal
or informal — it is the most important source of information for designing tests.
Deriving test cases from program specifications is called functional testing.

Functional testing, or more precisely, functional test case design, attempts to an-
swer the question “What test cases shall I use to exercise my program?”’ considering
only the specification of a program and not its design or implementation structure. Be-
ing based on program specifications and not on the internals of the code, functional
testing is also called specification-based or black-box testing.

Functional testing is typically the base-line technique for designing test cases, for
a number of reasons. Functional test case design can (and should) begin as part of
the requirements specification process, and continue through each level of design and
interface specification; it is the only test design technique with such wide and early ap-
plicability. Moreover, functional testing is effective in finding some classes of fault that
typically elude so-called white-box or glass-box techniques of structural or fault-based
testing. Functional testing techniques can be applied to any description of program be-
havior, from an informal partial description to a formal specification, and at any level
of granularity from module to system testing. Finally, functional test cases are typically
less expensive to design and execute than white-box tests.

10.1 Overview

In testing and analysis aimed at verification> — that is, at finding any discrepancies
between what a program does and what it is intended to do — one must obviously
refer to requirements as expressed by users and specified by software engineers. A

'We use the term program generically for the artifact under test, whether that artifact is a complete
application or an individual unit together with a test harness. This is consistent with usage in the testing
research literature.

2Here we focus on software verification as opposed to validation (see Chapter 2). The problems of
validating the software and its specifications, that is, checking the program behavior and its specifications
with respect to the users’ expectations, is treated in Chapter 22.

161

162 Functional Testing

A black-box testing

functional specification, that is, a description of the expected behavior of the program,
is the primary source of information for test case specification.

Functional testing, also known as black-box or specification-based testing, denotes
techniques that derive test cases from functional specifications. Usually functional
testing techniques produce test case specifications that identify classes of test cases
and are instantiated to produce individual test cases.

The core of functional test case design is partitioning® the possible behaviors of
the program into a finite number of homogeneous classes, where each such class can
reasonably be expected to be consistently correct or incorrect. In practice, the test case
designer often must also complete the job of formalizing the specification far enough to
serve as the basis for identifying classes of behaviors. An important side benefit of test
design is highlighting the weaknesses and incompleteness of program specifications.

Deriving functional test cases is an analytical process that decomposes specifica-
tions into test cases. The myriad aspects that must be taken into account during func-
tional test case specification makes the process error prone. Even expert test designers
can miss important test cases. A methodology for functional test design helps by de-
composing the functional test design process into elementary steps. In this way, it
is possible to control the complexity of the process and to separate human intensive
activities from activities that can be automated.

Sometimes, functional testing can be fully automated. This is possible, for exam-
ple, when specifications are given in terms of some formal model, such as a grammar
or an extended state machine specification. In these (exceptional) cases, the creative
work is performed during specification and design of the software. The test designer’s
job is then limited to the choice of the test selection criteria, which defines the strategy
for generating test case specifications. In most cases, however, functional test design
is a human intensive activity. For example, when test designers must work from infor-
mal specifications written in natural language, much of the work is in structuring the
specification adequately for identifying test cases.

10.2 Random versus Partition Testing Strategies

With few exceptions, the number of potential test cases for a given program is unimag-
inably huge — so large that for all practical purposes it can be considered infinite. For
example, even a simple function whose input arguments are two 32-bit integers has
264 ~ 10°* legal inputs. In contrast to input spaces, budgets and schedules are finite,
so any practical method for testing must select an infinitesimally small portion of the
complete input space.

Some test cases are better than others, in the sense that some reveal faults and others
do not.* Of course, we cannot know in advance which test cases reveal faults. At a
minimum, though, we can observe that running the same test case again is less likely

3We are using the term partition in a common but rather sloppy sense. A true partition would form
disjoint classes, the union of which is the entire space. Partition testing separates the behaviors or input
space into classes whose union is the entire space, but the classes may not be disjoint.

4Note that the relative value of different test cases would be quite different if our goal were to measure
dependability, rather than finding faults so that they can be repaired.

Random versus Partition Testing Strategies 163

Functional vs. Structural Testing

Test cases and test suites can be derived from several sources of information, in-
cluding specifications (functional and model-based testing), detailed design and source
code (structural testing), and hypothesized defects (fault-based testing). Functional test
case design is an indispensable base of a good test suite, complemented but never re-
placed by structural and fault-based testing, because there are classes of faults that only
functional testing effectively detects. Omission of a feature, for example, is unlikely to
be revealed by techniques that refer only to the code structure.

Consider a program that is supposed to accept files in either plain ASCII text, or
HTML, or PDF formats and generate standard Postscript. Suppose the programmer
overlooks the PDF functionality, so that the program accepts only plain text and HTML
files. Intuitively, a functional testing criterion would require at least one test case for
each item in the specification, regardless of the implementation; that is, it would require
the program to be exercised with at least one ASCII, one HTML, and one PDF file, thus
easily revealing the failure due to the missing code. In contrast, criteria based solely on
the code would not require the program to be exercised with a PDF file, since each part
of the code can be exercised without attempting to use that feature. Similarly, fault-
based techniques, based on potential faults in design or coding, would not have any
reason to indicate a PDF file as a potential input even if “missing case” were included
in the catalog of potential faults.

Functional specifications often address semantically rich domains, and we can use
domain information in addition to the cases explicitly enumerated in the program spec-
ification. For example, while a program may manipulate a string of up to nine alphanu-
meric characters, the program specification may reveal that these characters represent
a postal code, which immediately suggests test cases based on postal codes of vari-
ous localities. Suppose the program logic distinguishes only two cases, depending on
whether they are found in a table of U.S. zip codes. A structural testing criterion would
require testing of valid and invalid U.S. zip codes, but only consideration of the specifi-
cation and richer knowledge of the domain would suggest test cases that reveal missing
logic for distinguishing between U.S.-bound mail with invalid U.S. zip codes and mail
bound for other countries.

Functional testing can be applied at any level of granularity where some form of
specification is available, from overall system testing to individual units, although the
level of granularity and the type of software influence the choice of the specification
styles and notations, and consequently the functional testing techniques that can be
used.

In contrast, structural and fault-based testing techniques are invariably tied to pro-
gram structures at some particular level of granularity and do not scale much beyond
that level. The most common structural testing techniques are tied to fine-grain pro-
gram structures (statements, classes, etc.) and are applicable only at the level of mod-
ules or small collections of modules (small subsystems, components, or libraries).

164

Functional Testing

to reveal a fault than running a different test case, and we may reasonably hypothesize
that a test case that is very different from the test cases that precede it is more valuable
than a test case that is very similar (in some sense yet to be defined) to others.

As an extreme example, suppose we are allowed to select only three test cases for
a program that breaks a text buffer into lines of 60 characters each. Suppose the first
test case is a buffer containing 40 characters, and the second is a buffer containing 30
characters. As a final test case, we can choose a buffer containing 16 characters or
a buffer containing 100 characters. Although we cannot prove that the 100-character
buffer is the better test case (and it might not be; the fact that 16 is a power of 2 might
have some unforeseen significance), we are naturally suspicious of a set of tests that is
strongly biased toward lengths less than 60.

Accidental bias may be avoided by choosing test cases from a random distribution.
Random sampling is often an inexpensive way to produce a large number of test cases.
If we assume absolutely no knowledge on which to place a higher value on one test case
than another, then random sampling maximizes value by maximizing the number of test
cases that can be created (without bias) for a given budget. Even if we do possess some
knowledge suggesting that some cases are more valuable than others, the efficiency of
random sampling may in some cases outweigh its inability to use any knowledge we
may have.

Consider again the line-break program, and suppose that our budget is one day of
testing effort rather than some arbitrary number of test cases. If the cost of random
selection and actual execution of test cases is small enough, then we may prefer to run
a large number of random test cases rather than expending more effort on each of a
smaller number of test cases. We may in a few hours construct programs that generate
buffers with various contents and lengths up to a few thousand characters, as well as
an automated procedure for checking the program output. Letting it run unattended
overnight, we may execute a few million test cases. If the program does not correctly
handle a buffer containing a sequence of more than 60 nonblank characters (a single
“word” that does not fit on a line), we are likely to encounter this case by sheer luck if
we execute enough random tests, even without having explicitly considered this case.

Even a few million test cases is an infinitesimal fraction of the complete input space
of most programs. Large numbers of random tests are unlikely to find failures at single
points (singularities) in the input space. Consider, for example, a simple procedure for
returning the two roots of a quadratic equation ax? +bx + ¢ = 0 and suppose we choose
test inputs (values of the coefficients a, b, and ¢) from a uniform distribution ranging
from —10.0 to 10.0. While uniform random sampling would certainly cover cases in
which b — 4ac > 0 (where the equation has no real roots), it would be very unlikely
to test the case in which a = 0 and » = 0, in which case a naive implementation of the
quadratic formula

e —b++Vb?—4ac
o 2a

will divide by zero (see Figure 10.1).

Of course, it is unlikely that anyone would test only with random values. Regard-
less of the overall testing strategy, most test designers will also try some “special”
values. The test designer’s intuition comports with the observation that random sam-

Random versus Partition Testing Strategies

165

1 /** Find the two roots of ax2 + bx + ¢,
2 * thatis, the values of x for which the result is 0.
3 Y
4 class Roots {
5 double root_one, root_two;
6 int num_roots;
7 public roots(double a, double b, double c) {
8 double q;
9 double r;
10 // Apply the textbook quadratic formula:
11 // Roots = -b +- sqrt(b’2 - 4ac) / 2a
12 q = b*b - 4*a*c;
13 if(>08&&al=0){
14 // If b’2 > 4ac, there are two distinct roots
15 num_roots = 2;
16 r = (double) Math.sqrt(q) ;
17 root.one = ((0-b) + r)/(2*a);
18 roottwo = ((0-b) - r)/(2*a);
19 } else if (q==0) { / (BUG HERE)
20 // The equation has exactly one root
21 num_roots = 1;
22 root_one = (0-b)/(2*a);
23 root_two = root_one;
24 } else {
25 // The equation has no roots if b2 < 4ac
26 num_roots = 0;
27 root_one = -1;
28 root_two = -1;
29 }
30 }
31 public int num_roots() { return num_roots; }
32 public double first_root() { return root_one; }
33 public double second_root() { return root_two; }
34}

Figure 10.1: The Java class roots, which finds roots of a quadratic equation. The case
analysis in the implementation is incomplete: It does not properly handle the case
in which b* —4ac = 0 and a = 0. We cannot anticipate all such faults, but experi-
ence teaches that boundary values identifiable in a specification are disproportionately
valuable. Uniform random generation of even large numbers of test cases is ineffective
at finding the fault in this program, but selection of a few “special values” based on
the specification quickly uncovers it.

166 Functional Testing

A partition testing

A
specification-based
testing

A functional testing

pling is an ineffective way to find singularities in a large input space. The observation
about singularities can be generalized to any characteristic of input data that defines an
infinitesimally small portion of the complete input data space. If again we have just
three real-valued inputs a, b, and c, there is an infinite number of choices for which
b = ¢, but random sampling is unlikely to generate any of them because they are an
infinitesimal part of the complete input data space.

The observation about special values and random samples is by no means limited
to numbers. Consider again, for example, breaking a text buffer into lines. Since
line breaks are permitted at blanks, we would consider blanks a “special” value for
this problem. While random sampling from the character set is likely to produce a
buffer containing a sequence of at least 60 nonblank characters, it is much less likely
to produce a sequence of 60 blanks.

The reader may justifiably object that a reasonable test designer would not create
text buffer test cases by sampling uniformly from the set of all characters. The designer
would instead classify characters depending on their treatment, lumping alphabetic
characters into one class and white space characters into another. In other words, a test
designer will partition the input space into classes and will then generate test data in
a manner that is likely to choose data from each partition. Test designers seldom use
pure random sampling; usually they exploit some knowledge of application semantics
to choose samples that are more likely to include “special” or trouble-prone regions of
the input space.

Partition testing separates the input space into classes whose union is the entire
space, but the classes may not be disjoint (and thus the term partition is not mathemati-
cally accurate, although it has become established in testing terminology). Figure 10.2
illustrates a desirable case: All inputs that lead to a failure belong to at least one class
that contains only inputs that lead to failures. In this case, sampling each class in the
quasi-partition selects at least one input that leads to a failure, revealing the fault. We
could easily turn the quasi-partition of Figure 10.2 into a true partition, by considering
intersections among the classes, but sampling in a true partition would not improve the
efficiency or effectiveness of testing.

A testing method that divides the infinite set of possible test cases into a finite set
of classes, with the purpose of drawing one or more test cases from each class, is called
a partition testing method. When partitions are chosen according to information in
the specification, rather than the design or implementation, it is called specification-
based partition testing, or more briefly, functional testing. Note that not all testing of
product functionality is “functional testing.” Rather, the term is used specifically to
refer to systematic testing based on a functional specification. It excludes ad hoc and
random testing, as well as testing based on the structure of a design or implementation.

Partition testing typically increases the cost of each test case, since in addition
to generation of a set of classes, creation of test cases from each class may be more
expensive than generating random test data. In consequence, partition testing usually
produces fewer test cases than random testing for the same expenditure of time and
money. Partitioning can therefore be advantageous only if the average value (fault
detection effectiveness) is greater.

If we were able to group together test cases with such perfect knowledge that the
outcome of test cases in each class were uniform (either all successes or all failures),

A Systematic Approach

167

Figure 10.2: A quasi-partition of a program’s input space. Black circles represent
inputs that lead to failures. All elements of the input domain belong to at least one
class, but classes are not disjoint.

then partition testing would be at its theoretical best. In general we cannot do that,
nor can we even quantify the uniformity of classes of test cases. Partitioning by any
means, including specification-based partition testing, is always based on experience
and judgment that leads one to believe that certain classes of test case are “more alike”
than others, in the sense that failure-prone test cases are likely to be concentrated in
some classes. When we appealed earlier to the test designer’s intuition that one should
try boundary cases and special values, we were actually appealing to a combination
of experience (many failures occur at boundary and special cases) and knowledge that
identifiable cases in the specification often correspond to classes of input that require
different treatment by an implementation.

Given a fixed budget, the optimum may not lie in only partition testing or only
random testing, but in some mix that makes use of available knowledge. For example,
consider again the simple numeric problem with three inputs, a, b, and c. We might
consider a few special cases of each input, individually and in combination, and we
might consider also a few potentially significant relationships (e.g., a = b). If no faults
are revealed by these few test cases, there is little point in producing further arbitrary
partitions — one might then turn to random generation of a large number of test cases.

10.3 A Systematic Approach

Deriving test cases from functional specifications is a complex analytical process that
partitions the input space described by the program specification. Brute force genera-
tion of test cases, that is, direct generation of test cases from program specifications,

168

Functional Testing

seldom produces acceptable results: Test cases are generated without particular cri-
teria, and determining the adequacy of the generated test cases is almost impossible.
Brute force generation of test cases relies on test designers’ expertise and is a process
that is difficult to monitor and repeat. A systematic approach simplifies the overall pro-
cess by dividing it into elementary steps, thus decoupling different activities, dividing
brain-intensive from automatable steps, suggesting criteria to identify adequate sets of
test cases, and providing an effective means of monitoring the testing activity.

Although suitable functional testing techniques can be found for any granularity
level, a particular functional testing technique may be effective only for some kinds
of software or may require a given specification style. For example, a combinatorial
approach may work well for functional units characterized by a large number of rela-
tively independent inputs, but may be less effective for functional units characterized
by complex interrelations among inputs. Functional testing techniques designed for a
given specification notation, for example, finite state machines or grammars, are not
easily applicable to other specification styles. Nonetheless, we can identify a general
pattern of activities that captures the essential steps in a variety of different functional
test design techniques. By describing particular functional testing techniques as instan-
tiations of this general pattern, relations among the techniques may become clearer, and
the test designer may gain some insight into adapting and extending these techniques
to the characteristics of other applications and situations.

Figure 10.3 identifies the general steps of systematic approaches. The steps may
be difficult or trivial depending on the application domain and the available program
specifications. Some steps may be omitted depending on the application domain, the
available specifications and the test designers’ expertise. Instances of the process can
be obtained by suitably instantiating different steps. Although most techniques are
presented and applied as stand-alone methods, it is also possible to mix and match
steps from different techniques, or to apply different methods for different parts of the
system to be tested.

Identify Independently Testable Features Functional specifications can be large
and complex. Usually, complex specifications describe systems that can be decom-
posed into distinct features. For example, the specification of a Web site may include
features for searching the site database, registering users’ profiles, getting and storing
information provided by the users in different forms, and so on. The specification of
each of these features may comprise several functionalities. For example, the search
feature may include functionalities for editing a search pattern, searching the database
with a given pattern, and so on. Although it is possible to design test cases that exercise
several functionalities at once, designing different test cases for different functionalities
can simplify the test generation problem, allowing each functionality to be examined
separately. Moreover, it eases locating faults that cause the revealed failures. It is
thus recommended to devise separate test cases for each functionality of the system,
whenever possible.

The preliminary step of functional testing consists in partitioning the specifications
into features that can be tested separately. This can be an easy step for well-designed,
modular specifications, but informal specifications of large systems may be difficult to

A Systematic Approach

169

[Functional Specifications}

Identify
Independently
Testable
Features

Y
[Independently Testable Feature)

\c@\&{d\ 0,‘\\42/\ o

O Q

&

69@6 ’b\\)e% 1y,
QY N

Brute [Representative Values) [Model)

Force
Testing o
8,7@/. Orb

[Test Case Specifications}

Generate
Test Cases

> Test Cases

Instantiate
Tests

Scaffolding

Figure 10.3: The main steps of a systematic approach to functional program testing.

170

Functional Testing

Units and Features

Programs and software systems can be decomposed in different ways. For test-
ing, we may consider externally observable behavior (features), or the structure of the
software system (units, subsystems, and components).

Independently testable feature: An independently testable feature (ITF) is a func-

Unit:

tionality that can be tested independently of other functionalities of the software
under test. It need not correspond to a unit or subsystem of the software. For
example, a file sorting utility may be capable of merging two sorted files, and it
may be possible to test the sorting and merging functionalities separately, even
though both features are implemented by much of the same source code. (The
nearest IEEE standard term is fest item.)

As functional testing can be applied at many different granularity levels, from
unit testing through integration and system testing, so ITFs may range from the
functionality of an individual Java class or C function up to features of an inte-
grated system composed of many complete programs. The granularity of an ITF
depends on the exposed interface at whichever granularity is being tested. For
example, individual methods of a class are part of the interface of the class, and a
set of related methods (or even a single method) might be an ITF for unit testing,
but for system testing the ITFs would be features visible through a user interface
or application programming interface.

We reserve the term unit, not for any fixed syntactic construct in a particular pro-

gramming language, but for the smallest unit of work assignment in a software
project. Defining “unit” in this manner, rather than (for example) equating units
with individual Java classes or packages, or C files or functions, reflects a phi-
losophy about test and analysis. A work unit is the smallest increment by which
a software system grows or changes, the smallest unit that appears in a project
schedule and budget, and the smallest unit that may reasonably be associated
with a suite of test cases.

It follows from our definition of “unit” that, when we speak of unit testing, we
mean the testing associated with an individual work unit.

We reserve the term function for the mathematical concept, that is, a set of ordered
pairs having distinct first elements. When we refer to “functions” as syntactic elements
in some programming language, we will qualify it to distinguish that usage from the
mathematical concept. A “function” is a set of ordered pairs but a “C function” is a
syntactic element in the C programming language.

A Systematic Approach

171

decompose into independently testable features. Some degree of formality, at least to
the point of careful definition and use of terms, is usually required.

Identification of functional features that can be tested separately is different from
module decomposition. In both cases we apply the divide and conquer principle, but
in the former case, we partition specifications according to the functional behavior as
perceived by the users of the software under test,> while in the latter, we identify logical
units that can be implemented separately. For example, a Web site may require a sort
function, as a service routine, that does not correspond to an external functionality.
The sort function may be a functional feature at module testing, when the program
under test is the sort function itself, but is not a functional feature at system test, while
deriving test cases from the specifications of the whole Web site. On the other hand, the
registration of a new user profile can be identified as one of the functional features at
system-level testing, even if such functionality is spread across several modules. Thus,
identifying functional features does not correspond to identifying single modules at the
design level, but rather to suitably slicing the specifications to attack their complexity
incrementally.

Independently testable features are described by identifying all the inputs that form
their execution environments. Inputs may be given in different forms depending on the
notation used to express the specifications. In some cases they may be easily identifi-
able. For example, they can be the input alphabet of a finite state machine specifying
the behavior of the system. In other cases, they may be hidden in the specification.
This is often the case for informal specifications, where some inputs may be given ex-
plicitly as parameters of the functional unit, but other inputs may be left implicit in the
description. For example, a description of how a new user registers at a Web site may
explicitly indicate the data that constitutes the user profile to be inserted as parameters
of the functional unit, but may leave implicit the collection of elements (e.g., database)
in which the new profile must be inserted.

Trying to identify inputs may help in distinguishing different functions. For exam-
ple, trying to identify the inputs of a graphical tool may lead to a clearer distinction
between the graphical interface per se and the associated callbacks to the application.
With respect to the Web-based user registration function, the data to be inserted in the
database are part of the execution environment of the functional unit that performs the
insertion of the user profile, while the combination of fields that can be used to con-
struct such data is part of the execution environment of the functional unit that takes
care of the management of the specific graphical interface.

Identify Representative Classes of Values or Derive a Model The execution envi-
ronment of the feature under test determines the form of the final test cases, which are
given as combinations of values for the inputs to the unit. The next step of a testing
process consists of identifying which values of each input should be selected to form
test cases. Representative values can be identified directly from informal specifications
expressed in natural language. Alternatively, representative values may be selected in-

SHere the word “user” designates the individual using the specified service. It can be the user of the
system, when dealing with a system specification, but it can be another module of the system, when dealing
with detailed design specifications.

172

Functional Testing

directly through a model, which can either be produced only for the sake of testing
or be available as part of the specification. In both cases, the aim of this step is to
identify the values for each input in isolation, either explicitly through enumeration or
implicitly trough a suitable model, but not to select suitable combinations of such val-
ues (i.e., test case specifications). In this way, we separate the problem of identifying
the representative values for each input from the problem of combining them to obtain
meaningful test cases, thus splitting a complex step into two simpler steps.

Most methods that can be applied to informal specifications rely on explicit enu-
meration of representative values by the test designer. In this case, it is very impor-
tant to consider all possible cases and take advantage of the information provided by
the specification. We may identify different categories of expected values, as well as
boundary and exceptional or erroneous values. For example, when considering oper-
ations on a nonempty list of elements, we may distinguish the cases of the empty list
(an error value) and a singleton element (a boundary value) as special cases. Usually
this step determines characteristics of values (e.g., any list with a single element) rather
than actual values.

Implicit enumeration requires the construction of a (partial) model of the specifi-
cations. Such a model may be already available as part of a specification or design
model, but more often it must be constructed by the test designer, in consultation with
other designers. For example, a specification given as a finite state machine implicitly
identifies different values for the inputs by means of the transitions triggered by the
different values. In some cases, we can construct a partial model as a means of iden-
tifying different values for the inputs. For example, we may derive a grammar from
a specification and thus identify different values according to the legal sequences of
productions of the given grammar.

Directly enumerating representative values may appear simpler and less expensive
than producing a suitable model from which values may be derived. However, a formal
model may also be valuable in subsequent steps of test case design, including selection
of combinations of values. Also, a formal model may make it easier to select a larger
or smaller number of test cases, balancing cost and thoroughness, and may be less
costly to modify and reuse as the system under test evolves. Whether to invest effort in
producing a model is ultimately a management decision that depends on the application
domain, the skills of test designers, and the availability of suitable tools.

Generate Test Case Specifications Test specifications are obtained by suitably com-
bining values for all inputs of the functional unit under test. If representative values
were explicitly enumerated in the previous step, then test case specifications will be
elements of the Cartesian product of values selected for each input. If a formal model
was produced, then test case specifications will be specific behaviors or combinations
of parameters of the model, and a single test case specification could be satisfied by
many different concrete inputs. Either way, brute force enumeration of all combina-
tions is unlikely to be satisfactory.

The number of combinations in the Cartesian product of independently selected
values grows as the product of the sizes of the individual sets. For a simple functional
unit with five inputs each characterized by six values, the size of the Cartesian product

A Systematic Approach

173

is 6 = 7776 test case specifications, which may be an impractical number for test
cases for a simple functional unit. Moreover, if (as is usual) the characteristics are not
completely orthogonal, many of these combinations may not even be feasible.

Consider the input of a procedure that searches for occurrences of a complex pattern
in a Web database. Its input may be characterized by the length of the pattern and the
presence of special characters in the pattern, among other aspects. Interesting values
for the length of the pattern may be zero, one, or many. Interesting values for the
presence of special characters may be zero, one, or many. However, the combination
of value “zero” for the length of the pattern and value “many” for the number of special
characters in the pattern is clearly impossible.

The test case specifications represented by the Cartesian product of all possible
inputs must be restricted by ruling out illegal combinations and selecting a practical
subset of the legal combinations. Illegal combinations are usually eliminated by con-
straining the set of combinations. For example, in the case of the complex pattern
presented above, we can constrain the choice of one or more special characters to a
positive length of the pattern, thus ruling out the illegal cases of patterns of length zero
containing special characters.

Selection of a practical subset of legal combination can be done by adding infor-
mation that reflects the hazard of the different combinations as perceived by the test
designer or by following combinatorial considerations. In the former case, for exam-
ple, we can identify exceptional values and limit the combinations that contain such
values. In the pattern example, we may consider only one test for patterns of length
zero, thus eliminating many combinations that would otherwise be derived for patterns
of length zero. Combinatorial considerations reduce the set of test cases by limiting
the number of combinations of values of different inputs to a subset of the inputs. For
example, we can generate only tests that exhaustively cover all combinations of values
for inputs considered pair by pair.

Depending on the technique used to reduce the space represented by the Cartesian
product, we may be able to estimate the number of generated test cases generated and
modify the selected subset of test cases according to budget considerations. Subsets of
combinations of values (i.e., potential special cases) can often be derived from models
of behavior by applying suitable test selection criteria that identify subsets of interest-
ing behaviors among all behaviors represented by a model, for example by constraining
the iterations on simple elements of the model itself. In many cases, test selection cri-
teria can be applied automatically.

Generate Test Cases and Instantiate Tests The test generation process is com-
pleted by turning test case specifications into test cases and instantiating them. Test
case specifications can be turned into test cases by selecting one or more test cases for
each test case specification. Test cases are implemented by creating the scaffolding
required for their execution.

174

Functional Testing

10.4 Choosing a Suitable Approach

In the next chapters we will see several approaches to functional testing, each applying
to different kinds of specifications. Given a specification, there may be one or more
techniques well suited for deriving functional test cases, while some other techniques
may be hard or even impossible to apply or may lead to unsatisfactory results. Some
techniques can be interchanged; that is, they can be applied to the same specification
and lead to similar results. Other techniques are complementary; that is, they apply to
different aspects of the same specification or at different stages of test case generation.

The choice of approach for deriving functional test cases depends on several fac-
tors: the nature of the specification, form of the specification, expertise and experience
of test designers, structure of the organization, availability of tools, budget and quality
constraints, and costs of designing and implementing scaffolding.

Nature and form of the specification Different approaches exploit different charac-
teristics of the specification. For example, the presence of several constraints on the
input domain may suggest using a partitioning method with constraints, such as the
category-partition method described in Chapter 11, while unconstrained combinations
of values may suggest a pairwise combinatorial approach. If transitions among a finite
set of system states are identifiable in the specification, a finite state machine approach
may be indicated, while inputs of varying and unbounded size may be tackled with
grammar-based approaches. Specifications given in a specific format (e.g., as deci-
sion structures) suggest corresponding techniques. For example, functional test cases
for SDLS specifications of protocols are often derived with finite state machine-based
criteria.

Experience of test designers and organization The experience of testers and com-
pany procedures may drive the choice of the testing technique. For example, test de-
signers expert in category partition may prefer that technique over a catalog-based ap-
proach when both are applicable, while a company that works in a specific application
area may require the use of domain-specific catalogs.

Tools Some techniques may require the use of tools, whose availability and cost
should be taken into account when choosing a testing technique. For example, several
tools are available for deriving test cases from SDL specifications. The availability of
one of these tools may suggest the use of SDL for capturing a subset of the requirements
expressed in the specification.

Budget and quality constraints Different quality and budget constraints may lead
to different choices. For example, if the primary constraint is rapid, automated testing,
and reliability requirements are not stringent, random test case generation may be ap-
propriate. In contrast, thorough testing of a safety critical application may require the

®SDL (Specification Description Language) is a formal specification notation based on extended finite
state machines, widely used in telecommunication systems and standardized by the International Telecom-
munication Union.

Choosing a Suitable Approach

175

use of sophisticated methods for functional test case generation. When choosing an
approach, it is important to evaluate all relevant costs. For example, generating a large
number of random test cases may necessitate design and construction of sophisticated
test oracles, or the cost of training to use a new tool may exceed the advantages of
adopting a new approach.

Scaffolding costs Each test case specification must be converted to a concrete test
case, executed many times over the course of development, and checked each time for
correctness. If generic scaffolding code required to generate, execute, and judge the
outcome of a large number of test cases can be written just once, then a combinatorial
approach that generates a large number of test case specifications is likely to be afford-
able. If each test case must be realized in the form of scaffolding code written by hand
— or worse, if test execution requires human involvement — then it is necessary to
invest more care in selecting small suites of test case specifications.

Many engineering activities require careful analysis of trade-offs. Functional test-
ing is no exception: Successfully balancing the many aspects is a difficult and often
underestimated problem that requires skilled designers. Functional testing is not an
exercise of choosing the optimal approach, but a complex set of activities for finding a
suitable combination of models and techniques that yield a set of test cases to satisfy
cost and quality constraints. This balancing extends beyond test design to software de-
sign for test. Appropriate design not only improves the software development process,
but can greatly facilitate the job of test designers and lead to substantial savings.

Open Research Issues

Functional testing is by far the most common way of deriving test cases in industry, but
neither industrial practice nor research has established general and satisfactory method-
ologies. Research in functional testing is increasingly active and progressing in many
directions.

Deriving test cases from formal models is an active research area. In the past three
decades, formal methods have been studied mainly as a means of proving software
properties. Recently, attention has moved toward using formal methods for deriving
test cases. There are three main open research topics in this area:

e Definition of techniques for automatically deriving test cases from particular
formal models. Formal methods present new challenges and opportunities for
deriving test cases. We can both adapt existing techniques borrowed from other
disciplines or research areas and define new techniques for test case generation.
Formal notations can support automatic generation of test cases, thus opening
additional problems and research challenges.

e Adaptation of formal methods to be more suitable for test case generation. As
illustrated in this chapter, test cases can be derived in two broad ways, either by
identifying representative values or by deriving a model of the unit under test. A
variety of formal models could be used in testing. The research challenge lies in

176 Functional Testing

identifying a trade-off between costs of creating formal models and savings in
automatically generating test cases.

e Development of a general framework for deriving test cases from a range of
formal specifications. Currently research addresses techniques for generating
test cases from individual formal methods. Generalization of techniques will
allow more combinations of formal methods and testing.

Another important research area is fed by interest in different specification and
design paradigms (e.g., software architectures, software design patterns, and service-
oriented applications). Often these approaches employ new graphical or textual nota-
tions. Research is active in investigating different approaches to automatically or semi-
automatically deriving test cases from these artifacts and studying the effectiveness of
existing test case generation techniques.

Increasing size and complexity of software systems is a challenge to testing. Exist-
ing functional testing techniques do not take advantage of test cases available for parts
of the artifact under test. Compositional approaches for deriving test cases for a given
system taking advantage of test cases available for its subsystems is an important open
research problem.

Further Reading

Functional testing techniques, sometimes called black-box testing or specification-
based testing, are presented and discussed by several authors. Ntafos [DN81] makes
the case for random rather than systematic testing; Frankl, Hamlet, Littlewood, and
Strigini [FHLS98] is a good starting point to the more recent literature considering the
relative merits of systematic and statistical approaches.

Related topics

Readers interested in practical technique for deriving functional test specifications from
informal specifications and models may continue with the next two chapters, which de-
scribe several functional testing techniques. Readers interested in the complementari-
ties between functional and structural testing may continue with Chapters 12 and 13,
which describe structural and data flow testing.

Choosing a Suitable Approach

177

Exercises

10.1. In the Extreme Programming (XP) methodology (see the sidebar on page 381), a
written description of a desired feature may be a single sentence, and the first step
to designing the implementation of that feature is designing and implementing a
set of test cases. Does this aspect of the XP methodology contradict our assertion
that test cases are a formalization of specifications?

10.2. (a) Compute the probability of selecting a test case that reveals the fault in line
19 of program Root of Figure 10.1 by randomly sampling the input domain,
assuming that type double has range —23' ... 231 — 1.

(b) Compute the probability of randomly selecting a test case that reveals a
fault if lines 13 and 19 were both missing the condition a # 0.

10.3. Identify independently testable units in the following specification.

Desk calculator Desk calculator performs the following algebraic operations:
sum, subtraction, product, division, and percentage on integers and real num-
bers. Operands must be of the same type, except for percentage, which allows
the first operator to be either integer or real, but requires the second to be an
integer that indicates the percentage to be computed. Operations on integers pro-
duce integer results. Program Calculator can be used with a textual interface
that provides the following commands:

Mx=N, where Mx is a memory location, that is, MO...M9, and N is a number.
Integers are given as nonempty sequences of digits, with or without sign.
Real numbers are given as nonempty sequences of digits that include a dot
“”, with or without sign. Real numbers can be terminated with an optional
exponent, that is, character “E” followed by an integer. The command

displays the stored number.

Mx=display, where Mx is a memory location and display indicates the value
shown on the last line.

operandl operation operand2, where operandl and operand?2 are numbers or
memory locations or display and operation is one of the following symbols:
S e R 9P 4%, where each symbol indicates a particular operation.
Operands must follow the type conventions. The command displays the
result or the string Error.

or with a graphical interface that provides a display with 12 characters and the
following keys:

@’ ’ ’ ’ ’ s @, , , IE] , the 10 digits
) =3) , , the operations

[=] to display the result of a sequence of operations

178

Functional Testing

, to clear display

,] M+ ‘, \ MS \,] MR \, \ MC \ Whereis pressed before a digit to indicate

the target memory, 0...9, keys[M+]| [MS]| [MR] [MC]pressed after
and a digit indicate the operation to be performed on the target memory:
add display to memory, store display in memory, retrieve memory; that
is, move the value in memory to the display and clear memory.

Evanple: o] = =] prns

65 (the value 15 is stored in memory cell 3 and then retrieved to compute
80— 15).

Chapter 11

Combinatorial Testing

Requirements specifications typically begin in the form of natural language statements.
The flexibility and expressiveness of natural language, which are so important for hu-
man communication, represent an obstacle to automatic analysis. Combinatorial ap-
proaches to functional testing consist of a manual step of structuring the specification
statement into a set of properties or attributes that can be systematically varied and an
automatizable step of producing combinations of choices.

Simple “brute force” synthesis of test cases by test designers squanders the intel-
ligence of expert staff on tasks that can be partly automated. Even the most expert of
test designers will perform suboptimally and unevenly when required to perform the
repetitive and tedious aspects of test design, and quality will vary widely and be dif-
ficult to monitor and control. In addition, estimation of the effort and number of test
cases required for a given functionality will be subjective.

Combinatorial approaches decompose the “brute force” work of the test designers
into steps, to attack the problem incrementally by separating analysis and synthesis
activities that can be quantified and monitored, and partially supported by tools. They
identify the variability of elements involved in the execution of a given functionality,
and select representative combinations of relevant values for test cases. Repetitive
activities such as the combination of different values can be easily automated, thus
allowing test designers to focus on more creative and difficult activities.

Required Background

e Chapter 10
Understanding the limits of random testing and the needs of a systematic ap-
proach motivates the study of combinatorial as well as model-based testing tech-
niques. The general functional testing process illustrated in Section 10.3 helps
position combinatorial techniques within the functional testing process.

179

180 Combinatorial Testing

A parameter
characteristic
A category

A classes of values

A choice

11.1 Overview

In this chapter, we introduce three main techniques that are successfully used in indus-
trial environments and represent modern approaches to systematically derive test cases
from natural language specifications: the category-partition approach to identifying at-
tributes, relevant values, and possible combinations; combinatorial sampling to test a
large number of potential interactions of attributes with a relatively small number of
inputs; and provision of catalogs to systematize the manual aspects of combinatorial
testing.

The category-partition approach separates identification of the values that charac-
terize the input space from the combination of different values into complete test cases.
It provides a means of estimating the number of test cases early, size a subset of cases
that meet cost constraints, and monitor testing progress.

Pairwise and n-way combination testing provide systematic ways to cover inter-
actions among particular attributes of the program input space with a relatively small
number of test cases. Like the category-partition method, it separates identification of
characteristic values from generation of combinations, but it provides greater control
over the number of combinations generated.

The manual step of identifying attributes and representative sets of values can be
made more systematic using catalogs that aggregate and synthesize the experience of
test designers in a particular organization or application domain. Some repetitive steps
can be automated, and the catalogs facilitate training for the inherently manual parts.

These techniques address different aspects and problems in designing a suite of test
cases from a functional specification. While one or another may be most suitable for a
specification with given characteristics, it is also possible to combine ideas from each.

11.2 Category-Partition Testing

Category-partition testing is a method for generating functional tests from informal
specifications. The following steps comprise the core part of the category-partition
method:

A. Decompose the specification into independently testable features: Test designers
identify features to be tested separately, and identify parameters and any other
elements of the execution environment the unit depends on. Environment de-
pendencies are treated identically to explicit parameters. For each parameter and
environment element, test designers identify the elementary parameter charac-
teristics, which in the category-partition method are usually called categories.

B. Identify Representative Values: Test designers select a set of representative clas-
ses of values for each parameter characteristic. Values are selected in isolation,
independent of other parameter characteristics. In the category-partition method,
classes of values are called choices, and this activity is called partitioning the
categories into choices.

Category-Partition Testing

181

C. Generate Test Case Specifications: Test designers impose semantic constraints on
values to indicate invalid combinations and restrict valid combinations (e.g., lim-
iting combinations involving exceptional and invalid values).

Categories, choices, and constraints can be provided to a tool to automatically gen-
erate a set of test case specifications. Automating trivial and repetitive activities such as
these makes better use of human resources and reduces errors due to distraction. Just as
important, it is possible to determine the number of test cases that will be generated (by
calculation, or by actually generating them) before investing human effort in test exe-
cution. If the number of derivable test cases exceeds the budget for test execution and
evaluation, test designers can reduce the number of test cases by imposing additional
semantic constraints. Controlling the number of test cases before test execution begins
is preferable to ad hoc approaches in which one may at first create very thorough test
suites and then test less and less thoroughly as deadlines approach.

We illustrate the category-partition method using a specification of a feature from
the direct sales Web site of Chipmunk Computers. Customers are allowed to select
and price custom configurations of Chipmunk Computers. A configuration is a set of
selected options for a particular model of computer. Some combinations of model and
options are not valid (e.g., digital LCD monitor with analog video card), so config-
urations are tested for validity before they are priced. The check configuration func-
tion (Figure 11.1) is given a model number and a set of components, and returns the
Boolean value True if the configuration is valid or False otherwise. This function has
been selected by the test designers as an independently testable feature.

A. Identify Independently Testable Features and Parameter Characteristics We
assume that step A starts by selecting the Check configuration feature to be tested inde-
pendently of other features. This entails choosing to separate testing of the configura-
tion check per se from its presentation through a user interface (e.g., a Web form), and
depends on the architectural design of the software system.

Step A requires the test designer to identify the parameter characteristics, that is,
the elementary characteristics of the parameters and environment elements that affect
the unit’s execution. A single parameter may have multiple elementary characteristics.
A quick scan of the functional specification would indicate model and components as
the parameters of check configuration. More careful consideration reveals that what is
“valid” must be determined by reference to additional information. In fact, the func-
tional specification assumes the existence of a database of models and components.
The database is an environment element that, though not explicitly mentioned in the
functional specification, is required for executing and thus testing the feature, and partly
determines its behavior. Note that our goal is not to test a particular configuration of
the system with a fixed database, but to test the generic system that may be configured
through different database contents.

Having identified model, components, and product database as the parameters and
environment elements required to test the check configuration functionality, the test
designer would next identify the parameter characteristics of each.

Model may be represented as an integer, but we know that it is not to be used arith-
metically, but rather serves as a key to the database and other tables. The specification

182

Combinatorial Testing

Check Configuration: Check the validity of a computer configuration. The pa-
rameters of check configuration are:

Model: A model identifies a specific product and determines a set of constraints

on available components. Models are characterized by logical slots for com-
ponents, which may or may not be implemented by physical slots on a bus.
Slots may be required or optional. Required slots must be assigned a suit-
able component to obtain a legal configuration, while optional slots may be
left empty or filled depending on the customer’s needs.

Example: The required “slots” of the Chipmunk C20 laptop computer include
a screen, a processor, a hard disk, memory, and an operating system. (Of
these, only the hard disk and memory are implemented using actual hard-
ware slots on a bus.) The optional slots include external storage devices
such as a CD/DVD writer.

Set of Components: A set of (slot,component) pairs, which must correspond

to the required and optional slots associated with the model. A component
is a choice that can be varied within a model and that is not designed to be
replaced by the end user. Available components and a default for each slot
is determined by the model. The special value “empty” is allowed (and may
be the default selection) for optional slots.

In addition to being compatible or incompatible with a particular model and
slot, individual components may be compatible or incompatible with each
other.

Example: The default configuration of the Chipmunk C20 includes 20 giga-
bytes of hard disk; 30 and 40 gigabyte disks are also available. (Since the
hard disk is a required slot, “empty” is not an allowed choice.) The default
operating system is RodentOS 3.2, personal edition, but RodentOS 3.2 mo-
bile server edition may also be selected. The mobile server edition requires
at least 30 gigabytes of of hard disk.

Figure 11.1: Functional specification of the feature Check configuration of the Web
site of a computer manufacturer.

Category-Partition Testing

183

mentions that a model is characterized by a set of slots for required components and
a set of slots for optional components. We may identify model number, number of
required slots, and number of optional slots as characteristics of parameter model.

Parameter components is a collection of (slot, selection) pairs. The size of a collec-
tion is always an important characteristic, and since components are further categorized
as required or optional, the test designer may identify number of required components
with nonempty selection and number of optional components with nonempty selection
as characteristics. The matching between the tuple passed to check configuration and
the one actually required by the selected model is important and may be identified as
category correspondence of selection with model slots. The actual selections are also
significant, but for now the test designer simply identifies required component selection
and optional component selection, postponing selection of relevant values to the next
stage in test design.

The environment element product database is also a collection, so number of mod-
els in the database and number of components in the database are parameter charac-
teristics. Actual values of database entries are deferred to the next step in test design.

There are no hard-and-fast rules for choosing categories, and it is not a trivial task.
Categories reflect the test designer’s judgment regarding which classes of values may
be treated differently by an implementation, in addition to classes of values that are ex-
plicitly identified in the specification. Test designers must also use their experience and
knowledge of the application domain and product architecture to look under the surface
of the specification and identify hidden characteristics. For example, the specification
fragment in Figure 11.1 makes no distinction between configurations of models with
several required slots and models with none, but the experienced test designer has seen
enough failures on “degenerate” inputs to test empty collections wherever a collection
is allowed.

The number of options that can (or must) be configured for a particular model of
computer may vary from model to model. However, the category-partition method
makes no direct provision for structured data, such as sets of (slot,selection) pairs.
A typical approach is to “flatten” collections and describe characteristics of the whole
collection as parameter characteristics. Typically the size of the collection (the length
of a string, for example, or in this case the number of required or optional slots) is one
characteristic, and descriptions of possible combinations of elements (occurrence of
special characters in a string, for example, or in this case the selection of required and
optional components) are separate parameter characteristics.

Suppose the only significant variation among (slot,selection) pairs was between
pairs that are compatible and pairs that are incompatible. If we treated each pair as
a separate characteristic, and assumed » slots, the category-partition method would
generate all 2" combinations of compatible and incompatible slots. Thus we might have
a test case in which the first selected option is compatible, the second is compatible,
and the third incompatible, and a different test case in which the first is compatible
but the second and third are incompatible, and so on. Each of these combinations
could be combined in several ways with other parameter characteristics. The number
of combinations quickly explode. Moreover, since the number of slots is not actually
fixed, we cannot even place an upper bound on the number of combinations that must
be considered. We will therefore choose the flattening approach and select possible

184 Combinatorial Testing

Identifying and Bounding Variation

It may seem that drawing a boundary between a fixed program and a variable set of
parameters would be the simplest of tasks for the test designer. It is not always so.

Consider a program that produces HTML output. Perhaps the HTML is based on a
template, which might be encoded in constants in C or Java code, or might be provided
through an external data file, or perhaps both: it could be encoded in a C or source
code file that is generated at compile time from a data file. If the HTML template
is identified in one case as a parameter to varied in testing, it seems it should be so
identified in all three of these variations, or even if the HTML template is embedded
directly in print statements of the program, or in an XSLT transformation script.

The underlying principle for identifying parameters to be varied in testing is an-
ticipation of variation in use. Anticipating variation is likewise a key part of archi-
tectural and detailed design of software. In a well-designed software system, module
boundaries reflect “design secrets,” permitting one part of a system to be modified
(and retested) with minimum impact on other parts. The most frequent changes are
facilitated by making them input or configurable options. The best software designers
identify and document not only what is likely to change, but how often and by whom.
For example, a configuration or template file that may be modified by a user will be
clearly distinguished from one that is considered a fixed part of the system.

Ideally the scope of anticipated change is both clearly documented and consonant
with the program design. For example, we expect to see client-customizable aspects of
HTML output clearly isolated and documented in a configuration file, not embedded
in an XSLT script file and certainly not scattered about in print statements in the code.
Thus, the choice to encode something as “data” rather than “program” should at least
be a good hint that it may be a parameter for testing, although further consideration
of the scope of variation may be necessary. Conversely, defining the parameters for
variation in test design can be part of the architectural design process of setting the
scope of variation anticipated for a given product or release.

Category-Partition Testing

185

patterns for the collection as a whole.

Should the representative values of the flattened collection of pairs be one compat-
ible selection, one incompatible selection, all compatible selections, all incompatible
selections, or should we also include mix of 2 or more compatible and 2 or more incom-
patible selections? Certainly the latter is more thorough, but whether there is sufficient
value to justify the cost of this thoroughness is a matter of judgment by the test designer.

We have oversimplified by considering only whether a selection is compatible with
a slot. It might also happen that the selection does not appear in the database. More-
over, the selection might be incompatible with the model, or with a selected component
of another slot, in addition to the possibility that it is incompatible with the slot for
which it has been selected. If we treat each such possibility as a separate parameter
characteristic, we will generate many combinations, and we will need semantic con-
straints to rule out combinations like there are three options, at least two of which are
compatible with the model and two of which are not, and none of which appears in the
database. On the other hand, if we simply enumerate the combinations that do make
sense and are worth testing, then it becomes more difficult to be sure that no important
combinations have been omitted. Like all design decisions, the way in which collec-
tions and complex data are broken into parameter characteristics requires judgment
based on a combination of analysis and experience.

B. Identify Representative Values This step consists of identifying a list of repre-
sentative values (more precisely, a list of classes of values) for each of the parameter
characteristics identified during step A. Representative values should be identified for
each category independently, ignoring possible interactions among values for different
categories, which are considered in the next step.

Representative values may be identified by manually applying a set of rules known
as boundary value testing or erroneous condition testing. The boundary value testing
rule suggests selection of extreme values within a class (e.g., maximum and minimum
values of the legal range), values outside but as close as possible to the class, and
“interior” (non-extreme) values of the class. Values near the boundary of a class are
often useful in detecting “off by one” errors in programs. The erroneous condition
rule suggests selecting values that are outside the normal domain of the program, since
experience suggests that proper handling of error cases is often overlooked.

Table 11.1 summarizes the parameter characteristics and the corresponding value
choices identified for feature Check configuration.! For numeric characteristics whose
legal values have a lower bound of 1, i.e., number of models in database and number
of components in database, we identify 0, the erroneous value, 1, the boundary value,
and many, the class of values greater than 1, as the relevant value classes. For numeric
characteristics whose lower bound is zero, i.e., number of required slots for selected
model and number of optional slots for selected model, we identify O as a boundary
value, 1 and many as other relevant classes of values. Negative values are impossible
here, so we do not add a negative error choice. For numeric characteristics whose legal
values have definite lower and upper-bounds, i.e., number of optional components with

1At this point, readers may ignore the items in square brackets, which indicate constraints identified in
step C of the category-partition method.

186

Combinatorial Testing

non-empty selection and number of optional components with non-empty selection,
we identify boundary and (when possible) erroneous conditions corresponding to both
lower and upper bounds.

Identifying relevant values is an important but tedious task. Test designers may
improve manual selection of relevant values by using the catalog approach described
in Section 11.4, which captures the informal approaches used in this section with a
systematic application of catalog entries.

C. Generate Test Case Specifications A test case specification for a feature is given
as a combination of value classes, one for each identified parameter characteristic.
Unfortunately, the simple combination of all possible value classes for each parameter
characteristic results in an unmanageable number of test cases (many of which are
impossible) even for simple specifications. For example, in the Table 11.1 we find 7
categories with 3 value classes, 2 categories with 6 value classes, and one with four
value classes, potentially resulting in 37 x 6% x 4 = 314,928 test cases, which would
be acceptable only if the cost of executing and checking each individual test case were
very small. However, not all combinations of value classes correspond to reasonable
test case specifications. For example, it is not possible to create a test case from a test
case specification requiring a valid model (a model appearing in the database) where
the database contains zero models.

The category-partition method allows one to omit some combinations by indicating
value classes that need not be combined with all other values. The label [error] indi-
cates a value class that need be tried only once, in combination with non-error values
of other parameters. When [error] constraints are considered in the category-partition
specification of Table 11.1, the number of combinations to be considered is reduced to
Ix3x3x1x1x3x5x5x2x2+11=2711. Note that we have treated “component
not in database” as an error case, but have treated “incompatible with slot” as a normal
case of an invalid configuration; once again, some judgment is required.

Although the reduction from 314,928 to 2,711 is impressive, the number of derived
test cases may still exceed the budget for testing such a simple feature. Moreover,
some values are not erroneous per se, but may only be useful or even valid in particular
combinations. For example, the number of optional components with non-empty se-
lection is relevant to choosing useful test cases only when the number of optional slots
is greater than 1. A number of non-empty choices of required component greater than
zero does not make sense if the number of required components is zero.

Erroneous combinations of valid values can be ruled out with the property and
if-property constraints. The property constraint groups values of a single parameter
characteristic to identify subsets of values with common properties. The property con-
straint is indicated with label property PropertyName, where PropertyName identi-
fies the property for later reference. For example, property RSNE (required slots non-
empty) in Table 11.1 groups values that correspond to non-empty sets of required slots
for the parameter characteristic Number of Required Slots for Selected Model (#SMRS),
i.e., values / and many. Similarly, property OSNE (optional slots non-empty) groups
non-empty values for the parameter characteristic Number of Optional Slots for Se-
lected Model (#SMOS).

Category-Partition Testing 187

Parameter: Model

Model number

malformed [error]
not in database [error]
valid

Number of required slots for selected model (#SMRS)
0 [single]
1 [property RSNE] [single]
many [property RSNE], [property RSMANY]

Number of optional slots
for selected model (#SMOS)
0 [single]
1 [property OSNE] [single]
many [property OSNE][property OSMANY]

Parameter: Components

Correspondence of selection with model slots

omitted slots [error]
extra slots [error]
mismatched slots [error]

complete correspondence

Number of required components with non-empty
selection
0 [if RSNE] [error]
< number of required slots [if RSNE] [error]
= number of required slots [if RSMANY]

Required component selection
some default [single]
all valid
> 1 incompatible with slot
> 1 incompatible with another selection
> 1 incompatible with model
> 1 not in database [error]

Number of optional components with non-empty
selection
0
< number of optional slots
= number of optional slots

[if OSNE]
[if OSMANY]

Optional component selection
some default [single]
all valid
> 1 incompatible with slot
> 1 incompatible with

another selection
> 1 incompatible with model

> 1 not in database [error]

Environment element: Product database

Number of models in database (¥DBM)

0 [error]
1 [single]
many

Number of components in database (#DBC)

0 [error]
1 [single]
many

Table 11.1: Categories and value classes derived with the category-partition method

from the specification of Figure 11.1

188

Combinatorial Testing

The if-property constraint bounds the choices of values for a parameter characteris-
tic that can be combined with a particular value selected for a different parameter char-
acteristic. The if-property constraint is indicated with label if PropertyName, where
PropertyName identifies a property defined with the property constraint. For example,
the constraint if RSNE attached to value 0 of parameter characteristic Number of re-
quired components with non-empty selection limits the combination of this value with
values / and many of the parameter characteristics Number of Required Slots for Se-
lected Model (#SMRS). In this way, we rule out illegal combinations like Number of
required components with non-empty selection = 0 with Number of Required Slots for
Selected Model (#SMRS) = 0.

The property and if-property constraints introduced in Table 11.1 further reduce the
number of combinations to be considered to I X 3 x I x I x (3+2+1)x5x5x2x
24+11=1811.

The number of combinations can be further reduced by iteratively adding property
and if-property constraints and by introducing the new single constraint, which is in-
dicated with label single and acts like the error constraint, i.e., it limits the number of
occurrences of a given value in the selected combinations to /.

Test designers can introduce new property, if-property, and single constraints to
reduce the total number of combinations when needed to meet budget and schedule
limits. Placement of these constraints reflects the test designer’s judgment regarding
combinations that are least likely to require thorough coverage.

The single constraints introduced in Table 11.1 reduces the number of combinations
tobe considered to I x 1 x 1 x1x1x3x4x4x1x1419=67, which may be a rea-
sonable balance between cost and quality for the considered functionality. The number
of combinations can also be reduced by applying the pairwise and n-way combination
testing techniques, as explained in the next section.

The set of combinations of value classes for the parameter characteristics can be
turned into test case specifications by simply instantiating the identified combinations.
Table 11.2 shows an excerpt of test case specifications. The error tag in the last column
indicates test case specifications corresponding to the error constraint. Corresponding
test cases should produce an error indication. A dash indicates no constraints on the
choice of values for the parameter or environment element.

Choosing meaningful names for parameter characteristics and value classes allows
(semi)automatic generation of test case specifications.

11.3 Pairwise Combination Testing

However one obtains sets of value classes for each parameter characteristic, the next
step in producing test case specifications is selecting combinations of classes for test-
ing. A simple approach is to exhaustively enumerate all possible combinations of
classes, but the number of possible combinations rapidly explodes.

Some methods, such as the category-partition method described in the previous
section, take exhaustive enumeration as a base approach to generating combinations,
but allow the test designer to add constraints that limit growth in the number of combi-
nations. This can be a reasonable approach when the constraints on test case generation

189

Pairwise Combination Testing

['[] 2]qD Ul uaa13 Sassp]o aNIpa Y3 WOLf paaLIap SUoDIY12ads asvo 151 Jo 1d1adxa uy 7' [2190

108fey
108fey
108ley
108ley
108fey

1daooy

=
L

b

ynsas dx3 o

gaaul
sjusuodwon)

Auew
Auew
Auew
Auew
Auew

Auew
Auew
Auew
Auew
Auew

pouw-ul
Jlayjo-ul

10/s-Ul
pifeA e
pouw-ul

pleA e
pleA jle
PlleA e

uolos|es
sjusuodwod

[euondo

pow-ul
pow-ul
pouw-ul
pow-ul
Jayjo-ul

pleA e
pleA e
pleA je

uonoa|es
sjusuodw oo
paiinbay

(OIOE!
003
003
003
003

sjusuodw oo

[eUONdO # © © o

H03
403
SIOE|
H03
HO3

d0
O

[an
L

sjusuodwod

L

paJinbal #

awes
swes
awes
awes
awes

S10|S [9pOW

10 /m Jedwodul | <
10JS Jayjoue /m jedwodul | <
[9pow /m yedwodul | <

Auew
Auew
Auew
Auew
Auew

[euondo #

10[s 1do # =
10Is bas # =

Auew
Auew
Auew
Auew
Auew

> >
cC C
c ©
E Eo

slo|s
paJinbai #

10[S-Ul
1ay10-ul
pow-ul
o043
403

puaba

pieA
pleA
pieA
plEeA
plEeA

pleA

gq utloN
pawJojew

#19PON

190 Combinatorial Testing

Display Mode Languag.e Fonts
. English -
full-graphics Minimal
French
text-only Spanish Standard
limited-bandwidth P Document-loaded
Portuguese

Color .

Monochrome Screen size
Hand-held

Color-map

. Laptop

16-bit .
Full-size

True-color

Table 11.3: Parameters and values controlling Chipmunk Web site display

reflect real constraints in the application domain, and eliminate many redundant com-
binations (for example, the “error” entries in category-partition testing). It is less sat-
isfactory when, lacking real constraints from the application domain, the test designer
is forced to add arbitrary constraints (e.g., “single” entries in the category-partition
method) whose sole purpose is to reduce the number of combinations.

Consider the parameters that control the Chipmunk Web site display, shown in Ta-
ble 11.3. Exhaustive enumeration produces 432 combinations, which is too many if the
test results (e.g., judging readability) involve human judgment. While the test designer
might hypothesize some constraints, such as observing that monochrome displays are
limited mostly to hand-held devices, radical reductions require adding several “single”
and “property” constraints without any particular rationale.

Exhaustive enumeration of all n-way combinations of value classes for n param-
eters, on the one hand, and coverage of individual classes, on the other, are only the
extreme ends of a spectrum of strategies for generating combinations of classes. Be-
tween them lie strategies that generate all pairs of classes for different parameters,
all triples, and so on. When it is reasonable to expect some potential interaction be-
tween parameters (so coverage of individual value classes is deemed insufficient), but
covering all combinations is impractical, an attractive alternative is to generate k-way
combinations for k < n, typically pairs or triples.

How much does generating possible pairs of classes save, compared to generating
all combinations? We have already observed that the number of all combinations is
the product of the number of classes for each parameter, and that this product grows
exponentially with the number of parameters. It turns out that the number of combina-
tions needed to cover all possible pairs of values grows only logarithmically with the
number of parameters — an enormous saving.

A simple example may suffice to gain some intuition about the efficiency of gener-
ating tuples that cover pairs of classes, rather than all combinations. Suppose we have
just the three parameters display mode, screen size, and fonts from Table 11.3. If we
consider only the first two, display mode and screen size, the set of all pairs and the set

Pairwise Combination Testing

191

Display mode x Screen size Fonts
Full-graphics Hand-held | Minimal
Full-graphics Laptop Standard
Full-graphics Full-size Document-loaded
Text-only Hand-held | Standard
Text-only Laptop Document-loaded
Text-only Full-size Minimal
Limited-bandwidth Hand-held | Document-loaded
Limited-bandwidth Laptop Minimal
Limited-bandwidth Full-size Standard

Table 11.4: Covering all pairs of value classes for three parameters by extending the
cross-product of two parameters

of all combinations are identical, and contain 3 x 3 = 9 pairs of classes. When we add
the third parameter, fonts, generating all combinations requires combining each value
class from fonts with every pair of display mode x screen size, a total of 27 tuples; ex-
tending from n to n+ 1 parameters is multiplicative. However, if we are generating
pairs of values from display mode, screen size, and fonts, we can add value classes
of fonts to existing elements of display mode x screen size in a way that covers all the
pairs of fonts X screen size and all the pairs of fonts x display mode without increasing
the number of combinations at all (see Table 11.4). The key is that each tuple of three
elements contains three pairs, and by careful selecting value classes of the tuples we
can make each tuple cover up to three different pairs.

Table 11.3 shows 17 tuples that cover all pairwise combinations of value classes
of the five parameters. The entries not specified in the table (“—) correspond to open
choices. Each of them can be replaced by any legal value for the corresponding param-

eter. Leaving them open gives more freedom for selecting test cases.

Generating combinations that efficiently cover all pairs of classes (or triples, or
...) is nearly impossible to perform manually for many parameters with many value
classes (which is, of course, exactly when one really needs to use the approach). For-
tunately, efficient heuristic algorithms exist for this task, and they are simple enough to
incorporate in tools.

The tuples in Table 11.3 cover all pairwise combinations of value choices for
the five parameters of the example. In many cases not all choices may be allowed.
For example, the specification of the Chipmunk Web site display may indicate that
monochrome displays are limited to hand-held devices. In this case, the tuples cov-
ering the pairs (Monochrome, Laptop) and (Monochrome, Full-size), i.e., the fifth and
ninth tuples of Table 11.3, would not correspond to legal inputs. We can restrict the
set of legal combinations of value classes by adding suitable constraints. Constraints
can be expressed as tuples with wild-cards that match any possible value class. The
patterns describe combinations that should be omitted from the sets of tuples.

192

Combinatorial Testing

Language Color Display Mode Fonts Screen Size
English Monochrome Full-graphics Minimal Hand-held
English Color-map Text-only Standard Full-size
English 16-bit Limited-bandwidth — Full-size
English True-color Text-only Document-loaded Laptop
French Monochrome Limited-bandwidth Standard Laptop
French Color-map Full-graphics Document-loaded Full-size
French 16-bit Text-only Minimal -

French True-color - - Hand-held
Spanish Monochrome — Document-loaded Full-size
Spanish Color-map Limited-bandwidth ~ Minimal Hand-held
Spanish 16-bit Full-graphics Standard Laptop
Spanish True-color Text-only - Hand-held
Portuguese Monochrome Text-only - -
Portuguese Color-map - Minimal Laptop
Portuguese 16-bit Limited-bandwidth Document-loaded Hand-held
Portuguese True-color Full-graphics Minimal Full-size
Portuguese True-color Limited-bandwidth Standard Hand-held

Table 11.5: Covering all pairs of value classes for the five parameters

For example, the constraints

OMIT (x, %, %, Monochrome, Laptop)

OMIT (x,*, %, Monochrome, Full-size)

indicate that tuples containing the pair (Monochrome, Hand-held) as values for the

fourth and fifth parameter are not allowed in the relation of Table 11.3.
Tuples that cover all pairwise combinations of value classes without violating the

constraints can be generated by simply removing the illegal tuples and adding legal
tuples that cover the removed pairwise combinations. Open choices must be bound
consistently in the remaining tuples, e.g., tuple

(Portuguese, Monochrome, Text-only, -, -
must become
(Portuguese, Monochrome, Text-only, -, Hand-held)

Constraints can also be expressed with sets of tables to indicate only the legal com-
binations, as illustrated in Table 11.6, where the first table indicates that the value class
Hand-held for parameter Screen can be combined with any value class of parameter
Color, including Monochrome, while the second table indicates that the value classes
Laptop and Full-size for parameter Screen size can be combined with all values classes
except Monochrome for parameter Color.

Pairwise Combination Testing

Hand-held devices

Display Mode Languag'e Fonts
; English -
full-graphics Minimal
French
text-only Spanish Standard
limited-bandwidth P Document-loaded
Portuguese

Color
Color-map Screen size
16-bit Hand-held
True-color
Laptop and Full-size devices
Display Mode Languag.e Fonts
; English -
full-graphics Minimal
French
text-only Spanish Standard
limited-bandwidth P Document-loaded
Portuguese

Color
Monochrome Screen size
Color-map Laptop
16-bit Full size
True-color

Table 11.6: Pairs of tables that indicate valid value classes for the Chipmunk Web site
display

If constraints are expressed as a set of tables that give only legal combinations,
tuples can be generated without changing the heuristic. Although the two approaches
express the same constraints, the number of generated tuples can be different, since
different tables may indicate overlapping pairs and thus result in a larger set of tuples.
Other ways of expressing constraints may be chosen according to the characteristics of
the specification and the preferences of the test designer.

So far we have illustrated the combinatorial approach with pairwise coverage. As
previously mentioned, the same approach can be applied for triples or larger combina-
tions. Pairwise combinations may be sufficient for some subset of the parameters, but
not enough to uncover potential interactions among other parameters. For example, in
the Chipmunk display example, the fit of text fields to screen areas depends on the com-
bination of language, fonts, and screen size. Thus, we may prefer exhaustive coverage
of combinations of these three parameters, but be satisfied with pairwise coverage of

194

Combinatorial Testing

other parameters. In this case, we first generate tuples of classes from the parameters to
be most thoroughly covered, and then extend these with the parameters which require
less coverage.

11.4 Catalog-Based Testing

The test design techniques described above require judgment in deriving value classes.
Over time, an organization can build experience in making these judgments well. Gath-
ering this experience in a systematic collection can speed up the process and routinize
many decisions, reducing human error and better focusing human effort. Catalogs
capture the experience of test designers by listing all cases to be considered for each
possible type of variable that represents logical inputs, outputs, and status of the com-
putation. For example, if the computation uses a variable whose value must belong to a
range of integer values, a catalog might indicate the following cases, each correspond-
ing to a relevant test case:

. The element immediately preceding the lower bound of the interval
. The lower bound of the interval

. A non-boundary element within the interval

. The upper bound of the interval

hn AW N =

. The element immediately following the upper bound

The catalog would in this way cover the intuitive cases of erroneous conditions
(cases 1 and 5), boundary conditions (cases 2 and 4), and normal conditions (case 3).

The catalog-based approach consists in unfolding the specification, i.e., decompos-
ing the specification into elementary items, deriving an initial set of test case specifica-
tions from pre-conditions, post-conditions, and definitions, and completing the set of
test case specifications using a suitable test catalog.

STEP 1: identify elementary items of the specification The initial specification is
transformed into a set of elementary items. Elementary items belong to a small set of
basic types:

Preconditions represent the conditions on the inputs that must be satisfied before in-
vocation of the unit under test. Preconditions may be checked either by the unit
under test (validated preconditions) or by the caller (assumed preconditions).

Postconditions describe the result of executing the unit under test.

Variables indicate the values on which the unit under test operates. They can be input,
output, or intermediate values.

Operations indicate the main operations performed on input or intermediate variables
by the unit under test

Definitions are shorthand used in the specification

Catalog-Based Testing

195

cgi_decode: Function cgi_decode translates a cgi-encoded string to a plain ASCII
string, reversing the encoding applied by the common gateway interface (CGl)
of most Web servers.

CGl translates spaces to ‘+', and translates most other non-alphanumeric charac-
ters to hexadecimal escape sequences. cgi-decode maps ‘+'to ‘', “Y%xy” (where x
and y are hexadecimal digits) to to the corresponding ASCII character, and other
alphanumeric characters to themselves.

INPUT: encoded A string of characters, representing the input CGl sequence. It can
contain:
e alphanumeric characters
e the character ‘+’

e the substring “%xy”, where x and y are hexadecimal digits.
encoded is terminated by a null character.

OUTPUT: decoded A string containing the plain ASCII characters corresponding to
the input CGI sequence.

e Alphanumeric characters are copied into the output in the corresponding
position

e A blank is substituted for each ‘+’ character in the input.

o Asingle ASCII character with hexadecimal value xy;¢ is substituted for each
substring “%xy” in the input.

OUTPUT: return value cgi_decode returns

e 0 for success

e 1 if the input is malformed

Figure 11.2: An informal (and imperfect) specification of C function cgi_decode

As in other approaches that begin with an informal description, it is not possible to
give a precise recipe for extracting the significant elements. The result will depend on
the capability and experience of the test designer.

Consider the informal specification of a function for converting URL-encoded form
data into the original data entered through an html form. An informal specification is
given in Figure 11.2.2

The informal description of cgi_decode uses the concept of hexadecimal digit, hex-

adecimal escape sequence, and element of a cgi encoded sequence. This leads to the
identification of the following three definitions:

2The informal specification is ambiguous and inconsistent, i.e., it is the kind of spec one is most likely to
encounter in practice.

196

Combinatorial Testing

DEF 1 hexadecimal digits are: ‘0’, ‘1°, 2°,‘3’, ‘4’5, ‘6°, “T", ‘8", ‘9°, ‘A’, ‘B’, ‘C’,
LD?, 6E7’ LF,, Ea’, Cb,, ‘C’, €d,’ Ee’, €f?

DEF 2 a CGI-hexadecimal is a sequence of three characters: “%$xy”, where x and y
are hexadecimal digits

DEF 3 a CGI item is either an alphanumeric character, or character ‘+°, or a CGI-
hexadecimal

In general, every concept introduced in the description to define the problem can
be represented as a definition.

The description of cgi_decode mentions some elements that are inputs and outputs
of the computation. These are identified as the following variables:

VAR 1 Encoded: string of ASCII characters
VAR 2 Decoded: string of ASCII characters

VAR 3 return value: Boolean

Note the distinction between a variable and a definition. Encoded and decoded are
actually used or computed, while hexadecimal digits, CGI-hexadecimal, and CGI item
are used to describe the elements but are not objects in their own right. Although not
strictly necessary for the problem specification, explicit identification of definitions can
help in deriving a richer set of test cases.

The description of cgi_decode indicates some conditions that must be satisfied upon
invocation, represented by the following preconditions:

PRE 1 (Assumed) the input string Encoded is a null-terminated string of characters.

PRE 2 (Validated) the input string Encoded is a sequence of CGI items.

In general, preconditions represent all the conditions that should be true for the
intended functioning of a module. A condition is labeled as validated if it is checked
by the module (in which case a violation has a specified effect, e.g., raising an exception
or returning an error code). Assumed preconditions must be guaranteed by the caller,
and the module does not guarantee a particular behavior in case they are violated.

The description of cgi_decode indicates several possible results. These can be rep-
resented as a set of postconditions:

POST 1 if the input string Encoded contains alphanumeric characters, they are copied
to the corresponding position in the output string.

POST 2 if the input string Encoded contains ‘+’ characters, they are replaced by
ASCII space characters in the corresponding positions in the output string.

POST 3 if the input string Encoded contains CGI-hexadecimals, they are replaced by
the corresponding ASCII characters.

POST 4 if the input string Encoded is a valid sequence, cgi_decode returns 0.

Catalog-Based Testing

197

POST 5 if the input string Encoded contains a malformed CGI-hexadecimal, i.e., a
substring “%xy”, where either x or y is absent or are not hexadecimal digits,
cgi_decode returns 1

POST 6 if the input string Encoded contains any illegal character, cgi_decode returns
1.

The postconditions should, together, capture all the expected outcomes of the mod-
ule under test. When there are several possible outcomes, it is possible to capture all of
them in one complex postcondition or in several simple postconditions; here we have
chosen a set of simple contingent postconditions, each of which captures one case. The
informal specification does not distinguish among cases of malformed input strings,
but the test designer may make further distinctions while refining the specification.

Although the description of cgi_decode does not mention explicitly how the results
are obtained, we can easily deduce that it will be necessary to scan the input sequence.
This is made explicit in the following operation:

OP 1 Scan the input string Encoded.

In general, a description may refer either explicitly or implicitly to elementary oper-
ations which help to clearly describe the overall behavior, like definitions help to clearly
describe variables. As with variables, they are not strictly necessary for describing the
relation between pre- and postconditions, but they serve as additional information for
deriving test cases.

The result of step 1 for cgi_decode is summarized in Figure 11.3.

STEP 2 Derive a first set of test case specifications from preconditions, postcon-
ditions and definitions The aim of this step is to explicitly describe the partition of
the input domain:

Validated Preconditions: A simple precondition, i.e., a precondition that is expressed
as a simple Boolean expression without and or or, identifies two classes of input:
values that satisfy the precondition and values that do not. We thus derive two
test case specifications.

A compound precondition, given as a Boolean expression with and or or, iden-
tifies several classes of inputs. Although in general one could derive a different
test case specification for each possible combination of truth values of the ele-
mentary conditions, usually we derive only a subset of test case specifications
using the modified condition decision coverage (MC/DC) approach, which is
illustrated in Section 14.3 and in Chapter 12. In short, we derive a set of com-
binations of elementary conditions such that each elementary condition can be
shown to independently affect the outcome of each decision. For each elemen-
tary condition C, there are two test case specifications in which the truth values
of all conditions except C are the same, and the compound condition as a whole
evaluates to True for one of those test cases and False for the other.

198

Combinatorial Testing

PRE 1

PRE 2
POST 1

POST 2
POST 3
POST 4
POST 5
POST 6
VAR 1
VAR 2
VAR 3
DEF 1

DEF 2

DEF 3
OP1

(Assumed) the input string Encoded is a null-terminated string of charac-
ters

(Validated) the input string Encoded is a sequence of CGI items

if the input string Encoded contains alphanumeric characters, they are
copied to the output string in the corresponding positions.

if the input string Encoded contains ‘+’ characters, they are replaced in the
output string by ASCII space characters in the corresponding positions

if the input string Encoded contains CGI-hexadecimals, they are replaced
by the corresponding ASCII characters.

if the input string Encoded is well-formed, cgi_decode returns 0

if the input string Encoded contains a malformed CGI hexadecimal, i.e.,
a substring “%xy”, where either x or y are absent or are not hexadecimal
digits, cgi_decode returns 1

if the input string Encoded contains any illegal character, cgi_-decode re-
turns 1

Encoded: a string of ASCII characters

Decoded: a string of ASCII characters

Return value: a Boolean

hexadecimal digits are ASCII characters in range [0’ .. ‘9’, ‘A’ .. ‘F’, ‘@’
T

CGl-hexadecimals are sequences “%xy”, where x and y are hexadecimal
digits

A CGl item is an alphanumeric character, or ‘+’, or a CGI-hexadecimal
Scan Encoded

Figure 11.3: Elementary items of specification cgi_decode

Catalog-Based Testing

199

Assumed Preconditions: We do not derive test case specifications for cases that vio-
late assumed preconditions, since there is no defined behavior and thus no way
to judge the success of such a test case. We also do not derive test cases when
the whole input domain satisfies the condition, since test cases for these would
be redundant. We generate test cases from assumed preconditions only when
the MC/DC criterion generates more than one class of valid combinations (i.e.,
when the condition is a logical disjunction of more elementary conditions).

Postconditions: In all cases in which postconditions are given in a conditional form,
the condition is treated like a validated precondition, i.e., we generate a test case
specification for cases that satisfy and cases that do not satisfy the condition.

Definition: Definitions that refer to input or output values and are given in conditional
form are treated like validated preconditions. We generate a set of test case
specification for cases that satisfy and cases that do not satisfy the specification.
The test cases are generated for each variable that refers to the definition.

The elementary items of the specification identified in step 1 are scanned sequen-
tially and a set of test cases is derived applying these rules. While scanning the speci-
fications, we generate test case specifications incrementally. When new test case spec-
ifications introduce a refinement of an existing case, or vice versa, the more general
case becomes redundant and can be eliminated. For example, if an existing test case
specification requires a non-empty set, and we have to add two test case specifications
that require a size that is a power of two and one which is not, the existing test case
specification can be deleted because the new test cases must include a non-empty set.

Scanning the elementary items of the cgi_decode specification given in Figure 11.3,
we proceed as follows:

PRE 1: The first precondition is a simple assumed precondition. We do not generate
any test case specification. The only condition would be “encoded: a null termi-
nated string of characters,” but this matches every test case and thus it does not
identify a useful test case specification.

PRE 2: The second precondition is a simple validated precondition. We generate two
test case specifications, one that satisfies the condition and one that does not:

TC-PRE2-1 Encoded: a sequence of CGI items
TC-PRE2-2 Encoded: not a sequence of CGI items

All postconditions in the cgi_decode specification are given in a conditional form with
a simple condition. Thus, we generate two test case specifications for each of them.
The generated test case specifications correspond to a case that satisfies the condition
and a case that violates it.

POST 1:

TC-POST1-1 Encoded: contains one or more alphanumeric characters

TC-POST1-2 Encoded: does not contain any alphanumeric characters

200 Combinatorial Testing

POST 2:

TC-POST2-1 Encoded: contains one or more character ‘+’
TC-POST2-2 Encoded: does not any contain character ‘+’

POST 3:

TC-POST3-1 Encoded: contains one or more CGI-hexadecimals
TC-POST3-2 Encoded: does not contain any CGI-hexadecimal

POST 4: We do not generate any new useful test case specifications, because the two
specifications are already covered by the specifications generated from PRE 2.

POST 5: We generate only the test case specification that satisfies the condition. The
test case specification that violates the specification is redundant with respect to
the test case specifications generated from POST 3

TC-POSTS5-1 : Encoded contains one or more malformed CGI-hexadecimals

POST 6: As for POST 5, we generate only the test case specification that satisfies the
condition. The test case specification that violates the specification is redundant
with respect to several of the test case specifications generated so far.

TC-POST6-1 Encoded: contains one or more illegal characters

None of the definitions in the specification of cgi_decode is given in conditional terms,
and thus no test case specifications are generated at this step.

The test case specifications generated from postconditions refine test case specifi-
cation TC-PRE2-1, which can thus be eliminated from the checklist. The result of step
2 for cgi_decode is summarized in Figure 11.4.

STEP 3 Complete the test case specifications using catalogs The aim of this step
is to generate additional test case specifications from variables and operations used or
defined in the computation. The catalog is scanned sequentially. For each entry of the
catalog we examine the elementary components of the specification and add cases to
cover all values in the catalog. As when scanning the test case specifications during
step 2, redundant test case specifications are eliminated.

Table 11.7 shows a simple catalog that we will use for the cgi_decode example. A
catalog is structured as a list of kinds of elements that can occur in a specification. Each
catalog entry is associated with a list of generic test case specifications appropriate for
that kind of element. We scan the specification for elements whose type is compatible
with the catalog entry, then generate the test cases defined in the catalog for that entry.
For example, the catalog of Table 11.7 contains an entry for Boolean variables. When
we find a Boolean variable in the specification, we instantiate the catalog entry by
generating two test case specifications, one that requires a True value and one that
requires a False value.

Each generic test case in the catalog is labeled in, out, or in/out, meaning that a
test case specification is appropriate if applied to an input variable, or to an output

Catalog-Based Testing

PRE 2
[TC-PRE2-2]

POST 1

[TC-POST1-1]
[TC-POST1-2]

POST 2

[TC-POST2-1]
[TC-POST2-2]

POST 3

[TC-POST3-1]
[TC-POST3-2]

POST 4

POST 5

[TC-POST5-1]
POST 6
[TC-POST6-1]
VAR 1
VAR 2
VAR 3
DEF 1

DEF 2

DEF 3

OP 1

Validated) the input string Encoded is a sequence of CGl items
Encoded: not a sequence of CGI items

if the input string Encoded contains alphanumeric characters, they are copied
to the output string in the corresponding positions

Encoded: contains alphanumeric characters

Encoded: does not contain alphanumeric characters

if the input string Encoded contains ‘+’ characters, they are replaced in the
output string by * " in the corresponding positions

Encoded: contains ‘+’

Encoded: does not contain ‘+’

if the input string Encoded contains CGl-hexadecimals, they are replaced by
the corresponding ASCII characters.

Encoded: contains CGI-hexadecimals

Encoded: does not contain a CGI-hexadecimal

if the input string Encoded is well-formed, cgi_decode returns 0

if the input string Encoded contains a malformed CGl-hexadecimal, i.e., a
substring “%xy”, where either x or y are absent or non hexadecimal digits,
cgi-decode returns 1
Encoded: contains malformed CGI-hexadecimals

if the input string Encoded contains any illegal character, cgi_decode returns
a positive value
Encoded: contains illegal characters

Encoded: a string of ASCII characters

Decoded: a string of ASCII characters

Return value: a Boolean

hexadecimal digits are inrange ['0" .. ‘9, ‘A’ .. ‘F’, ‘a’ .. ']

CGl-hexadecimals are sequences ‘%xy’, where x and y are hexadecimal dig-
its

CGl items are either alphanumeric characters, or ‘+’, or CGl-hexadecimals

Scan Encoded

Figure 11.4: Test case specifications for cgi_-decode generated after step 2

202

Combinatorial Testing

Boolean
[in/out]
[in/out]

Enumeration

[in/out]
[in]

Range L...U

[in]
[in/out]
[in/out]
[in/out]
[in]

True
False

Each enumerated value
Some value outside the enumerated set

L — 1 (the element immediately preceding the lower bound)
L (the lower bound)

A value between L and U

U (the upper bound)

U + 1 (the element immediately following the upper bound)

Numeric Constant C

[in/out]
[in]
[in]
[in]

C (the constant value)

C — 1 (the element immediately preceding the constant value)
C + 1 (the element immediately following the constant value)
Any other constant compatible with C

Non-Numeric Constant C

[in/out]
[in]
[in]

Sequence
[in/out]
[in/out]
[in/out]
[in/out]
[in]
[in]

C (the constant value)
Any other constant compatible with C
Some other compatible value

Empty

A single element

More than one element

Maximum length (if bounded) or very long
Longer than maximum length (if bounded)
Incorrectly terminated

Scan with action on elements P

[in]
[in]
[in]
[in]
[in]
[in]
[in]

P occurs at beginning of sequence

P occurs in interior of sequence

P occurs at end of sequence

PP occurs contiguously

P does not occur in sequence

pP where p is a proper prefix of P
Proper prefix p occurs at end of sequence

Table 11.7: Part of a simple test catalog.

Catalog-Based Testing

203

variable, or in both cases. In general, erroneous values should be used when testing
the behavior of the system with respect to input variables, but are usually impossible
to produce when testing the behavior of the system with respect to output variables.
For example, when the value of an input variable can be chosen from a set of values,
it is important to test the behavior of the system for all enumerated values and some
values outside the enumerated set, as required by entry ENUMERATION of the catalog.
However, when the value of an output variable belongs to a finite set of values, we
should derive a test case for each possible outcome, but we cannot derive a test case
for an impossible outcome, so entry ENUMERATION of the catalog specifies that the
choice of values outside the enumerated set is limited to input variables. Intermediate
variables, if present, are treated like output variables.

Entry Boolean of the catalog applies to Return value (VAR 3). The catalog re-
quires a test case that produces the value True and one that produces the value False.
Both cases are already covered by test cases TC-PRE2-1 and TC-PRE?2-2 generated for
precondition PRE 2, so no test case specification is actually added.

Entry Enumeration of the catalog applies to any variable whose values are chosen
from an explicitly enumerated set of values. In the example, the values of CGl item
(DEF 3) and of improper CGl hexadecimals in POST 5 are defined by enumeration.
Thus, we can derive new test case specifications by applying entry enumeration to
POST 5 and to any variable that can contain CGl items.

The catalog requires creation of a test case specification for each enumerated value
and for some excluded values. For encoded, which should consist of CGI-items as de-
fined in DEF 3, we generate a test case specification where a CGI-item is an alphanu-
meric character, one where it is the character ‘+’, one where it is a CGI-hexadecimal,
and one where it is an illegal value. We can easily ascertain that all the required cases
are already covered by test case specifications for TC-POSTI-1, TC-POSTI-2, TC-
POST2-1, TC-POST2-2, TC-POST3-1, and TC-POST3-2, so any additional test case
specifications would be redundant.

From the enumeration of malformed CGI-hexadecimals in POST 5, we derive the
following test cases: %y, %X, %Ky, %xk, %xy (where x and y are hexadecimal digits
and k is not). Note that the first two cases, %x (the second hexadecimal digit is missing)
and %y (the first hexadecimal digit is missing) are identical, and %x is distinct from
9%xk only if %x are the last two characters in the string. A test case specification
requiring a correct pair of hexadecimal digits (%xy) is a value out of the range of the
enumerated set, as required by the catalog.

The added test case specifications are:

TC-POSTS5-2 encoded: terminated with %x, where x is a hexadecimal digit

TC-POSTS5-3 encoded: contains %ky, where k is not a hexadecimal digit and y is a
hexadecimal digit.

TC-POSTS5-4 encoded: contains %xk, where x is a hexadecimal digit and k is not.

The test case specification corresponding to the correct pair of hexadecimal digits is
redundant, having already been covered by TC-POST3-1. The test case TC-POST5-1

204

Combinatorial Testing

can now be eliminated because it is more general than the combination of TC-POSTS5-
2, TC-POST5-3, and TC-POST5-4.

Entry Range applies to any variable whose values are chosen from a finite range. In
the example, ranges appear three times in the definition of hexadecimal digit. Ranges
also appear implicitly in the reference to alphanumeric characters (the alphabetic and
numeric ranges from the ASCII character set) in DEF 3. For hexadecimal digits we will
try the special values ‘/” and :” (the characters that appear before ‘0’ and after ‘9’ in the
ASCII encoding), the values ‘0’ and 9’ (upper and lower bounds of the first interval),
some value between 0’ and ‘9’; similarly ‘@’, ‘G’, ‘A’, ‘F’, and some value between
A’ and ‘F’ for the second interval; and ‘’, ‘g’, ‘a’, ‘f’, and some value between ‘a’
and ‘f” for the third interval.

These values will be instantiated for variable encoded, and result in 30 additional
test case specifications (5 values for each subrange, giving 15 values for each hexadec-
imal digit and thus 30 for the two digits of CGI-hexadecimal). The full set of test case
specifications is shown in Table 11.8. These test case specifications are more specific
than (and therefore replace) test case specifications TC-POST3-1, TC-POST5-3, and
TC-POST5-4.

For alphanumeric characters we will similarly derive boundary, interior and ex-
cluded values, which result in 15 additional test case specifications, also given in Ta-
ble 11.8. These test cases are more specific than (and therefore replace) TC-POST1-1,
TC-POST1-2, and TC-POST6-1.

Entry Numeric Constant does not apply to any element of this specification.

Entry Non-Numeric Constant applies to ‘+” and ‘%’, occurring in DEF 3 and DEF
2 respectively. Six test case specifications result, but all are redundant.

Entry Sequence applies to encoded (VAR 1), decoded (VAR 2), and cgi-item (DEF
2). Six test case specifications result for each, of which only five are mutually non-
redundant and not already in the list. From VAR 1 (encoded) we generate test case
specifications requiring an empty sequence, a sequence containing a single element,
and a very long sequence. The catalog entry requiring more than one element generates
a redundant test case specification, which is discarded. We cannot produce reasonable
test cases for incorrectly terminated strings (the behavior would vary depending on the
contents of memory outside the string), so we omit that test case specification.

All test case specifications that would be derived for decoded (VAR 2) would be
redundant with respect to test case specifications derived for encoded (VAR 1).

From CGl-hexadecimal (DEF 2) we generate two additional test case specifications
for variable encoded: a sequence that terminates with ‘%’ (the only way to produce
a one-character subsequence beginning with ‘%’) and a sequence containing ‘%xyz’,
where X, y, and z are hexadecimal digits.

Entry Scan applies to Scan Encoded (OP 1) and generates 17 test case specifica-
tions. Three test case specifications (alphanumeric, ‘+’, and CGl item) are generated
for each of the first 5 items of the catalog entry. One test case specification is generated
for each of the last two items of the catalog entry when Scan is applied to CGI item.
The last two items of the catalog entry do not apply to alphanumeric characters and
‘+’, since they have no non-trivial prefixes. Seven of the 17 are redundant. The ten
generated test case specifications are summarized in Table 11.8.

Catalog-Based Testing

205

TC-POST2-1
TC-POST2-2

TC-POST3-2
TC-POST5-2
TC-VARI-1
TC-VARI-2

TC-VARI-3

Encoded contains character ‘+’
Encoded does not contain char-
acter ‘+

Encoded does not contain a
CGI-hexadecimal

Encoded terminates with %x
Encoded is the empty sequence
Encoded is a sequence consist-
ing of a single character
Encoded is a very long
sequence

Encoded contains . ..

TC-DEF2-1
TC-DEF2-2
TC-DEF2-3
TC-DEF2-4
TC-DEF2-5
TC-DEF2-6
TC-DEF2-7
TC-DEF2-8
TC-DEF2-9
TC-DEF2-10
TC-DEF2-11
TC-DEF2-12
TC-DEF2-13
TC-DEF2-14
TC-DEF2-15
TC-DEF2-16
TC-DEF2-17
TC-DEF2-18
TC-DEF2-19
TC-DEF2-20
TC-DEF2-21
TC-DEF2-22
TC-DEF2-23

e %ly
. %0y’
eoo Yoxy’, withxin [‘1°..
e D9y’
e %y
D@y
.o DAY
... “xy’, with x in [‘B’..'E’]
... ‘%Fy’
. %Gy
%y
.. ‘Yay’
.. “Yoxy’, with x in [‘b’..
.. “%fy’
oo gy’
o oxI’
.. 9x(’
coo Poxy’, withyin [‘1°..
. “%xy
e Pox’
cor 9x@’
eor PxA
. “%xy’, withyin [‘B’..°E’]

8]

[P

e’]

8]

TC-DEF2-24
TC-DEF2-25
TC-DEF2-26
TC-DEF2-27
TC-DEF2-28
TC-DEF2-29
TC-DEF2-30
TC-DEF2-31
TC-DEF2-32
TC-DEF3-1
TC-DEF3-2
TC-DEF3-3
TC-DEF3-4
TC-DEF3-5
TC-DEF3-6
TC-DEF3-7
TC-DEF3-8
TC-DEF3-9
TC-DEF3-10
TC-DEF3-11
TC-DEF3-12
TC-DEF3-13
TC-DEF3-14
TC-DEF3-15
TC-OP1-1
TC-OP1-2
TC-OP1-3
TC-OP1-4
TC-OP1-5
TC-OP1-6
TC-OP1-7
TC-OP1-8
TC-OP1-9
TC-OP1-10

L
wor YoxyTPozw’
. “%x%yz’

... ‘%xF
.. ‘%xG’
. “x”
.. ‘Poxa’
... “Yxy’, withyin [‘D’..°¢’]
.. “Yoxf’
eor Pxg’
DY
oo “Yoxyz
L
o
...c,withcin[‘1’..8"]
Lo

[

@
N
...a,withain[‘B’..Y’]
A

T

%}

)

. ‘a
.a,withain [‘D’..y’]

()

. Z

-

[P}

a

Il

+

eoo " 9xy’
AN
R

. “%xy$’

3 il

.oaa

3)

Where w, x,y, z are hexadecimal digits, a is an alphanumeric character, "~ represents the beginning of the
string, and $ represents the end of the string.

Table 11.8: Summary table: Test case specifications for cgi_decode generated with a catalog.

206

Combinatorial Testing

Test catalogs, like other check lists used in test and analysis (e.g., inspection check
lists), are an organizational asset that can be maintained and enhanced over time. A
good test catalog will be written precisely and suitably annotated to resolve ambiguity.
Catalogs should also be specialized to an organization and application domain, typi-
cally using a process such as defect causal analysis or root cause analysis (Chapters
20 and 18). Entries are added to detect particular classes of faults that have been en-
countered frequently or have been particularly costly to remedy in previous projects.
Refining check lists is a typical activity carried out as part of process improvement.
When a test reveals a program fault, it is useful to make a note of which catalog entries
the test case originated from, as an aid to measuring the effectiveness of catalog entries.
Catalog entries that are not effective should be removed.

Open research issues

In the last decades, structured languages replaced natural language in software specifi-
cations, and today unstructured specifications written in natural language are becoming
less common. Unstructured natural language specifications are still commonly used in
informal development environments that lack expertise and tools, and often do not
adopt rigorous development methodologies. Deriving structure from natural language
is not a main focus of the research community, which pays more attention to exploiting
formal and semi-formal models that may be produced in the course of a project.

Combinatorial methods per se is a niche research area that attracts relatively little
attention from the research community. One issue that has received too little atten-
tion to date is adapting combinatorial test techniques to cope with constantly changing
specifications.

Further Reading

Category partition testing is described by Ostrand and Balcer [OB88]. The combina-
torial approach described in this chapter is due to Cohen, Dalal, Fredman, and Patton
[CDFP97]; the algorithm described by Cohen et al. is patented by Bellcore. Catalog-
based testing of subsystems is described in Marick’s The Craft of Software Testing
[Mar97].

Related topics

Readers interested in learning additional functional testing techniques may continue
with the next Chapter that describes model-based testing techniques. Readers inter-
ested in the complementarities between functional and structural testing as well as
readers interested in testing the decision structures and control and data flow graphs
may continue with the following chapters that describe structural and data flow testing.
Readers interested in the quality of specifications may proceed to Chapter 18, which
describes inspection techniques.

Catalog-Based Testing

207

Exercises

11.1.

11.2.

11.3.

When designing a test suite with the category partition method, sometimes it is
useful to determine the number of test case specifications that would be generated
from a set of parameter characteristics (categories) and value classes (choices)
without actually generating or enumerating them. Describe how to quickly de-
termine the number of test cases in these cases:

(a) Parameter characteristics and value classes are given, but no constraints
(error, single, property, or if-property) are used.

(b) Only the constraints error and single are used (without property and if-
property).

When the property and if-property are also used, they can interact in ways that
make a quick closed-form calculation of the number of test cases difficult or
impossible.

(c) Sketch an algorithm for counting the number of test cases that would be
generated when if and if-property are used. Your algorithm should be sim-
ple, and may not be more efficient than actually generating each test case
specification.

Suppose we have a tool to generate combinatorial tests with pairwise coverage
from a specification of the same form as category partition specifications, and
it interprets property constraints and single and error cases in the same way.
Also assume the tool for pairwise testing never generates two identical test case
specifications. Given the same specification of parameter values and constraints,
can a suite of test case specifications generated by the pairwise tool ever be larger
than the set of test case specifications generated by the tool for category partition
testing?

Suppose we are constructing a tool for combinatorial testing. Our tool will read a
specification in exactly the same form as the input of a tool for the category parti-
tion method, except that it will achieve pairwise coverage rather than exhaustive
coverage of values. However, we notice that it is sometimes not possible to cover
all pairs of choices. For example, we might encounter the following specifica-
tion:

C1
V1 [property P1]
V2 [property P2]

C2
V3 [property P3]
V4 [property P4]

208 Combinatorial Testing

C3
V5 [ifPl]
V6 [ifP4]

Our tool prints a warning that it is unable to create any complete test case speci-
fication that pairs value V2 with V3.
(a) Explain why the values V2 and V3 cannot be paired in a test case specifica-
tion.

(b) Suppose the parameter characteristic V3 were instead described as follows:

C3
V5 [ifP1]
V6 [ifP4]
V7 [error]

Would it be satisfactory to cover the test obligation (C1 = V2,C2 = V3)
with the complete test case specification (C1 =V2,C2 =V3,C3=V7)? In
general, should values marked error be used to cover pairs of parameter
characteristics?

(c) Suppose, instead, the otherwise unconstrained value V7 is marked single,
like this:

C3

V5 [ifP1]

V6 [ifP4]

V7 [single]
Would it be a good idea to use V7 to complete a test case specification
matching V2 with V3? Does your answer depend on whether the single
constraint has been used just to reduce the total number of test cases or
to identify situations that are really treated as special cases in the program
specification and code?

11.4. Derive parameter characteristics, representative values, and semantic constraints
from the following specification of an Airport connection check function, suit-
able for generating a set of test case specifications using the category partition
method.

Airport connection check: The airport connection check is part of an
(imaginary) travel reservation system. It is intended to check the validity
of a single connection between two flights in an itinerary. It is described
here at a fairly abstract level, as it might be described in a preliminary
design before concrete interfaces have been worked out.

Specification Signature: Valid_Connection (Arriving_Flight: flight, De-
parting_Flight: flight) returns Validity_Code
Validity_Code 0 (OK) is returned if Arriving_Flight and Departing_Flight
make a valid connection (the arriving airport of the first is the depart-
ing airport of the second) and there is sufficient time between arrival

Catalog-Based Testing

209

and departure according to the information in the airport database de-
scribed below.

Otherwise, a validity code other than O is returned, indicating why the
connection is not valid.

Data types

Flight: A "flight” is a structure consisting of

e A unique identifying flight code, three alphabetic characters fol-
lowed by up to four digits. (The flight code is not used by the valid
connection function.)

The originating airport code (3 characters, alphabetic)

The scheduled departure time of the flight (in universal time)

The destination airport code (3 characters, alphabetic)

The scheduled arrival time at the destination airport.

Validity Code: The validity code is one of a set of integer values with
the following interpretations

0: The connection is valid.

10: Invalid airport code (airport code not found in database)

15: Invalid connection, too short: There is insufficient time between
arrival of first flight and departure of second flight.

16: Invalid connection, flights do not connect. The destination air-
port of Arriving_Flight is not the same as the originating airport of
Departing_Flight.

20: Another error has been recognized (e.g., the input arguments may
be invalid, or an unanticipated error was encountered).

Airport Database

The Valid_Connection function uses an internal, in-memory table of

airports which is read from a configuration file at system initialization.

Each record in the table contains the following information:

e Three-letter airport code. This is the key of the table and can be
used for lookups.

e Airport zone. In most cases the airport zone is a two-letter coun-
try code, e.g., "us” for the United States. However, where passage
from one country to another is possible without a passport, the
airport zone represents the complete zone in which passport-free
travel is allowed. For example, the code “eu” represents the Euro-
pean countries which are treated as if they were a single country
for purposes of travel.

e Domestic connect time. This is an integer representing the mini-
mum number of minutes that must be allowed for a domestic con-
nection at the airport. A connection is “domestic” if the originat-
ing and destination airports of both flights are in the same airport
zone.

e International connect time. This is an integer representing the
minimum number of minutes that must be allowed for an inter-

210 Combinatorial Testing

national connection at the airport. The number -1 indicates that
international connections are not permitted at the airport. A con-
nection is “international” if any of the originating or destination
airports are in different zones.

11.5. Derive a set of test cases for the Airport Connection Check example of Exercise
11.4 using the catalog based approach.
Extend the catalog of Table 11.7 as needed to deal with specification constructs.

Chapter 12

Structural Testing

The structure of the software itself is a valuable source of information for selecting test
cases and determining whether a set of test cases has been sufficiently thorough. We
can ask whether a test suite has “covered” a control flow graph or other model of the
program.! It is simplest to consider structural coverage criteria as addressing the test
adequacy question: “Have we tested enough.” In practice we will be interested not so
much in asking whether we are done, but in asking what the unmet obligations with
respect to the adequacy criteria suggest about additional test cases that may be needed;
that is, we will often treat the adequacy criterion as a heuristic for test case selection
or generation. For example, if one statement remains unexecuted despite execution
of all the test cases in a test suite, we may devise additional test cases that exercise
that statement. Structural information should not be used as the primary answer to the
question, “How shall I choose tests,” but it is useful in combination with other test
selection criteria (particularly functional testing) to help answer the question “What
additional test cases are needed to reveal faults that may not become apparent through
black-box testing alone.”

Required Background

e Chapter 5

The material on control flow graphs and related models of program structure is
required to understand this chapter.

e Chapter 9

The introduction to test case adequacy and test case selection in general sets the
context for this chapter. It is not strictly required for understanding this chapter,
but is helpful for understanding how the techniques described in this chapter
should be applied.

!In this chapter we use the term program generically for the artifact under test, whether that artifact is a
complete application or an individual unit together with a test harness. This is consistent with usage in the
testing research literature.

211

212

Structural Testing

12.1 Overview

Testing can reveal a fault only when execution of the faulty element causes a failure.
For example, if there were a fault in the statement at line 31 of the program in Figure
12.1, it could be revealed only with test cases in which the input string contains the
character % followed by two hexadecimal digits, since only these cases would cause
this statement to be executed. Based on this simple observation, a program has not been
adequately tested if some of its elements have not been executed.> Control flow testing
criteria are defined for particular classes of elements by requiring the execution of all
such elements of the program. Control flow elements include statements, branches,
conditions, and paths.

Unfortunately, a set of correct program executions in which all control flow ele-
ments are exercised does not guarantee the absence of faults. Execution of a faulty
statement may not always result in a failure. The state may not be corrupted when
the statement is executed with some data values, or a corrupt state may not propagate
through execution to eventually lead to failure. Let us assume, for example, to have
erroneously typed 6 instead of 16 in the statement at line 31 of the program in Figure
12.1. Test cases that execute the faulty statement with value O for variable digit-high
would not corrupt the state, thus leaving the fault unrevealed despite having executed
the faulty statement.

The statement at line 26 of the program in Figure 12.1 contains a fault, since vari-
able eptr used to index the input string is incremented twice without checking the size
of the string. If the input string contains a character % in one of the last two positions,
eptr* will point beyond the end of the string when it is later used to index the string.
Execution of the program with a test case where string encoded terminates with char-
acter % followed by at most one character causes the faulty statement to be executed.
However, due to the memory management of C programs, execution of this faulty state-
ment may not cause a failure, since the program will read the next character available
in memory, ignoring the end of the string. Thus, this fault may remain hidden during
testing despite having produced an incorrect intermediate state. Such a fault could be
revealed using a dynamic memory checking tool that identifies memory violations.

Control flow testing complements functional testing by including cases that may
not be identified from specifications alone. A typical case is implementation of a single
item of the specification by multiple parts of the program. For example, a good speci-
fication of a table would leave data structure implementation decisions to the program-
mer. If the programmer chooses a hash table implementation, then different portions of
the insertion code will be executed depending on whether there is a hash collision. Se-
lection of test cases from the specification would not ensure that both the collision case
and the noncollision case are tested. Even the simplest control flow testing criterion
would require that both of these cases are tested.

On the other hand, test suites satisfying control flow adequacy criteria could fail in
revealing faults that can be caught with functional criteria. The most notable example
is the class of so-called missing path faults. Such faults result from the missing im-

2This is an oversimplification, since some of the elements may not be executed by any possible input.
The issue of infeasible elements is discussed in Section 12.8

Overview

213

*

*

*

*

0 N o o b~ WD =

*

*

©

*

x * ot * >* * * ot D S >* Xt
W oW oW W W W wWwWwWNNNDNDNNNNNIWNS =+ = =2 22
® N O R WON 2O © 0N BRWON-=O0 © o NO O NN = O

39

42 }

*/
int cgi_decode(char *encoded, char *decoded) {

#include "hex_values.h"
/**
* @title cgi_decode

@desc

Translate a string from the CGl encoding to plain ascii text
'+” becomes space, %xx becomes byte with hex value xx,
other alphanumeric characters map to themselves

returns 0 for success, positive for erroneous input
1 = bad hexadecimal digit

char *eptr = encoded;
char *dptr = decoded;
int ok=0;

while (*eptr) {

}

char c;
C = "eptr;
/* Case 1: '+"maps to blank */
if(c=="+"){
*dptr="";
telseif (c=="%"){
/* Case 2: "%xx’is hex for character xx */
int digit_high = Hex_Values[*(++eptr)];
int digitlow = Hex_Values[*(++eptr)];
/* Hex_Values maps illegal digits to -1 */
if (digit_high == -1 || digit_low == -1 {
/* *dptr="?"; %/
ok=1; /* Bad return code */
} else {
*dptr = 16™ digit_high + digit_low;
}
/* Case 3: All other characters map to themselves */
} else {
*dptr = *eptr;
}
++dptr;
++eptr;

dptr="\0"; / Null terminator for string */
return ok;

Figure 12.1: The C function cgi_decode, which translates a cgi-encoded string to a
plain ASCII string (reversing the encoding applied by the common gateway interface
of most Web servers).

214 Structural Testing

4{ int cgi_decode(char *encoded, char *decoded) i

v
{char *eptr = encoded; A
char *dptr = decoded;
int ok = 0;
v

(while (*eptr) { B«

ﬁFalse—kTru

eriensn
elseif (¢ =="'%") {

FFalse—MTrueﬁ

else F) [int digit_high = Hex_Values[*(++eptr)]; G
*dptr = *eptr;
}

int digit_low = Hex_Values[*(++eptr)];

if (digit_high == -1 || digit_low == -1) {
ﬁFaIse—LTrueﬁv

else {

*dptr = 16 * digit_high +

digit_low;

True

A 4
*dptr ="\0';
return ok;

}

Figure 12.2: Control flow graph of function cgi_decode from Figure 12.1

Statement Testing

215

o = {“” “test’, “test+case%1Dadequacy” }
T { “adequate+test¥%0Dexecution%7U" }

T2 = { “%3D”’ “O/OA”’ “a+b”, “test” }
T = {"", “+%0D+%4J" }
T, = {“first+test%IKtest%K9” }

Table 12.1: Sample test suites for C function cgi-decode from Figure 12.1

plementation of some items in the specification. For example, the program in Figure
12.1 transforms all hexadecimal ASCII codes to the corresponding characters. Thus, it
is not a correct implementation of a specification that requires control characters to be
identified and skipped. A test suite designed only to adequately cover the control struc-
ture of the program will not explicitly include test cases to test for such faults, since no
elements of the structure of the program correspond to this feature of the specification.

In practice, control flow testing criteria are used to evaluate the thoroughness of test
suites derived from functional testing criteria by identifying elements of the programs
not adequately exercised. Unexecuted elements may be due to natural differences be-
tween specification and implementation, or they may reveal flaws of the software or its
development process: inadequacy of the specifications that do not include cases present
in the implementation; coding practice that radically diverges from the specification;
or inadequate functional test suites.

Control flow adequacy can be easily measured with automatic tools. The degree of
control flow coverage achieved during testing is often used as an indicator of progress
and can be used as a criterion of completion of the testing activity.>

12.2 Statement Testing

The most intuitive control flow elements to be exercised are statements, that is, nodes
of the control flow graph. The statement coverage criterion requires each statement
to be executed at least once, reflecting the idea that a fault in a statement cannot be
revealed without executing the faulty statement.

Let T be a test suite for a program P. T satisfies the statement adequacy criterion
for P, iff, for each statement S of P, there exists at least one test case in 7T that causes
the execution of S.

This is equivalent to stating that every node in the control flow graph model of
program P is visited by some execution path exercised by a test case in 7.

The statement coverage Csygremens Of T for P is the fraction of statements of program
P executed by at least one test case in 7.

number of executed statements

CSt itement —
¢ number of statements

3 Application of test adequacy criteria within the testing process is discussed in Chapter 20.

A statement
adequacy
criterion

A statement
coverage

216 Structural Testing

A basic block
coverage

T satisfies the statement adequacy criterion if Csygemens = 1. The ratio of visited
control flow graph nodes to total nodes may differ from the ratio of executed statements
to all statements, depending on the granularity of the control flow graph representation.
Nodes in a control flow graph often represent basic blocks rather than individual state-
ments, and so some standards (notably DOD-178B) refer to basic block coverage, thus
indicating node coverage for a particular granularity of control flow graph. For the
standard control flow graph models discussed in Chapter 5, the relation between cov-
erage of statements and coverage of nodes is monotonic: If the statement coverage
achieved by test suite 77 is greater than the statement coverage achieved by test suite
T, then the node coverage is also greater. In the limit, statement coverage is 1 exactly
when node coverage is 1.

Let us consider, for example, the program of Figure 12.1. The program contains 18
statements. A test suite 7y

To = {“”, “test”, “test+case%1Dadequacy”}

does not satisfy the statement adequacy criterion because it does not execute statement
ok =1 at line 29. The test suite 7j results in statement coverage of .94 (17/18), or
node coverage of .91 (10/11) relative to the control flow graph of Figure 12.2. On the
other hand, a test suite with only test case

Ti = {“adequate+test%0Dexecution%7U"}

causes all statements to be executed and thus satisfies the statement adequacy criterion,
reaching a coverage of 1.

Coverage is not monotone with respect to the size of test suites; test suites that
contain fewer test cases may achieve a higher coverage than test suites that contain
more test cases. 77 contains only one test case, while Ty contains three test cases, but
Ty achieves a higher coverage than Ty. (Test suites used in this chapter are summarized
in Table 12.1.)

Criteria can be satisfied by many test suites of different sizes. A test suite Both 7}
and Both T; and

T, = {“%3D”",“%A", “a+b”, “test”}

cause all statements to be executed and thus satisfy the statement adequacy criterion for
program cgi_decode, although one consists of a single test case and the other consists
of four test cases.

Notice that while we typically wish to limit the size of test suites, in some cases we
may prefer a larger test suite over a smaller suite that achieves the same coverage. A
test suite with fewer test cases may be more difficult to generate or may be less helpful
in debugging. Let us suppose, for example, that we omitted the 1 in the statement at
line 31 of the program in Figure 12.1. Both test suites 77 and 7> would reveal the fault,
resulting in a failure, but 7> would provide better information for localizing the fault,
since the program fails only for test case “%1D”, the only test case of 7, that exercises
the statement at line 31.

Branch Testing

217

On the other hand, a test suite obtained by adding test cases to 7, would satisfy the
statement adequacy criterion, but would not have any particular advantage over 7, with
respect to the total effort required to reveal and localize faults. Designing complex
test cases that exercise many different elements of a unit is seldom a good way to
optimize a test suite, although it may occasionally be justifiable when there is large
and unavoidable fixed cost (e.g., setting up equipment) for each test case regardless of
complexity.

Control flow coverage may be measured incrementally while executing a test suite.
In this case, the contribution of a single test case to the overall coverage that has been
achieved depends on the order of execution of test cases. For example, in test suite
T, execution of test case “%1D” exercises 16 of the 18 statements of the program
cgi-decode, but it exercises only 1 new statement if executed after “%A.” The incre-
ment of coverage due to the execution of a specific test case does not measure the
absolute efficacy of the test case. Measures independent from the order of execution
may be obtained by identifying independent statements. However, in practice we are
only interested in the coverage of the whole test suite, and not in the contribution of
individual test cases.

12.3 Branch Testing

A test suite can achieve complete statement coverage without executing all the possible
branches in a program. Consider, for example, a faulty program cgi_decode’ obtained
from program cgi_decode by removing line 34. The control flow graph of program
cgi_decode’ is shown in Figure 12.3. In the new program there are no statements fol-
lowing the false branch exiting node D. Thus, a test suite that tests only translation
of specially treated characters but not treatment of strings containing other characters
that are copied without change satisfies the statement adequacy criterion, but would not
reveal the missing code in program cgi_decode’. For example, a test suite 73

T3 = {7, “+%0D+%4J"}

satisfies the statement adequacy criterion for program cgi_decode’ but does not exercise
the false branch from node D in the control flow graph model of the program.

The branch adequacy criterion requires each branch of the program to be executed
by at least one test case.

Let T be a test suite for a program P. T satisfies the branch adequacy criterion
for P, iff, for each branch B of P, there exists at least one test case in 7' that causes
execution of B.

This is equivalent to stating that every edge in the control flow graph model of
program P belongs to some execution path exercised by a test case in 7.

The branch coverage Cg 4o of T for P is the fraction of branches of program P
executed by at least one test case in 7.

number of executed branches

CBranch =
ranc number of branches

A branch
adequacy
criterion

A branch
coverage

218 Structural Testing

—| int cgi_decode(char *encoded, char *decoded) i

{char *eptr = encoded; A
char *dptr = decoded;

int ok = 0;

(while (eptr) { (B)«
True

char c;
c = *eptr;
if (c=="+"){

¢ ralse True
False—)% }

True—}

Fals
ﬁ

else { int digit_high = Hex_Values[*(++eptr)]; G
*dptr = *eptr; int digit_low = Hex_Values[*(++eptr)];
} if (digit_high == -1 || digit_low == -1) {

ﬁFalse—kTrue\v

else { H
*dptr = 16 * digit_high +
digit_low;

A

A
*dptr ="\0;

return ok;

}

Figure 12.3: The control flow graph of C function cgi_decode’ which is obtained from
the program of Figure 12.1 after removing node F.

Condition Testing 219

T satisfies the branch adequacy criterion if Cp,gpcpn = 1.

Test suite 73 achieves branch coverage of .88 since it executes 7 of the 8 branches of
program cgi_decode’. Test suite 75 satisfies the branch adequacy criterion, and would
reveal the fault. Intuitively, since traversing all edges of a graph causes all nodes to
be visited, test suites that satisfy the branch adequacy criterion for a program P also
satisfy the statement adequacy criterion for the same program.* The contrary is not
true, as illustrated by test suite 73 for the program cgi_decode’ presented earlier.

12.4 Condition Testing

Branch coverage is useful for exercising faults in the way a computation has been de-
composed into cases. Condition coverage considers this decomposition in more detail,
forcing exploration not only of both possible results of a Boolean expression control-
ling a branch, but also of different combinations of the individual conditions in a com-
pound Boolean expression.

Assume, for example, that we have forgotten the first operator ‘—’ in the conditional
statement at line 27 resulting in the faulty expression

(digit_high == 1 || digit_low == -1).

As trivial as this fault seems, it can easily be overlooked if only the outcomes of com-
plete Boolean expressions are explored. The branch adequacy criterion can be satis-
fied, and both branches exercised, with test suites in which the first comparison eval-
uates always to False and only the second is varied. Such tests do not systematically
exercise the first comparison and will not reveal the fault in that comparison. Condi-
tion adequacy criteria overcome this problem by requiring different basic conditions of
the decisions to be separately exercised. The basic conditions, sometimes also called
elementary conditions, are comparisons, references to Boolean variables, and other
Boolean-valued expressions whose component subexpressions are not Boolean values.

The simplest condition adequacy criterion, called basic condition coverage requires
each basic condition to be covered. Each basic condition must have a True and a False
outcome at least once during the execution of the test suite.

A test suite T for a program P covers all basic conditions of P, that is, it satisfies
the basic condition adequacy criterion, iff each basic condition in P has a true outcome
in at least one test case in 7" and a false outcome in at least one test case in 7'.

The basic condition coverage Cpgusic_condition Of T for P is the fraction of the to-
tal number of truth values assumed by the basic conditions of program P during the
execution of all test cases in T'.

total number of truth values assumed by all basic conditions

CBasic_Condition = - —
T 2 x number of basic conditions

4We can consider entry and exit from the control flow graph as branches, so that branch adequacy will
imply statement adequacy even for units with no other control flow.

A basic condition
adequacy
criterion

A basic condition
coverage

220 Structural Testing

A branch and
condition adequacy

A compound
condition adequacy

T satisfies the basic condition adequacy criterion if Cpggic_conditions = 1. Notice
that the total number of truth values that the basic conditions can take is twice the
number of basic conditions, since each basic condition can assume value true or false.
For example, the program in Figure 12.1 contains five basic conditions, which in sum
may take ten possible truth values. Three basic conditions correspond to the simple
decisions at lines 18, 22, and 24 — decisions that each contain only one basic condition.
Thus they are covered by any test suite that covers all branches. The remaining two
conditions occur in the compound decision at line 27. In this case, test suites 77 and
T3 cover the decisions without covering the basic conditions. Test suite 77 covers the
decision since it has an outcome True for the substring %0D and an outcome False for
the substring %7U of test case “adequate+test%0Dexecution%7U.” However test suite
T does not cover the first condition, since it has only outcome True. To satisfy the
basic condition adequacy criterion, we need to add an additional test case that produces
outcome false for the first condition (e.g., test case “basic%K7”).

The basic condition adequacy criterion can be satisfied without satisfying branch
coverage. For example, the test suite

Ty = {“first+test%9Ktest%K9"}

satisfies the basic condition adequacy criterion, but not the branch condition adequacy
criterion, since the outcome of the decision at line 27 is always False. Thus branch and
basic condition adequacy criteria are not directly comparable.

An obvious extension that includes both the basic condition and the branch ade-
quacy criteria is called branch and condition adequacy criterion, with the obvious def-
inition: A test suite satisfies the branch and condition adequacy criterion if it satisfies
both the branch adequacy criterion and the condition adequacy criterion.

A more complete extension that includes both the basic condition and the branch
adequacy criteria is the compound condition adequacy criterion,” which requires a test
for each possible evaluation of compound conditions. It is most natural to visualize
compound condition adequacy as covering paths to leaves of the evaluation tree for the
expression. For example, the compound condition at line 27 would require covering
the three paths in the following tree:

digit_high == -
true false
'e
digit_low == FALSE
true false
K M
TRUE FALSE

Notice that due to the left-to-right evaluation order and short-circuit evaluation of
logical OR expressions in the C language, the value True for the first condition does

3>Compound condition adequacy is also known as multiple condition coverage.

Condition Testing 221

not need to be combined with both values False and True for the second condition. The
number of test cases required for compound condition adequacy can, in principle, grow
exponentially with the number of basic conditions in a decision (all 2¥ combinations
of N basic conditions), which would make compound condition coverage impractical
for programs with very complex conditions. Short-circuit evaluation is often effective
in reducing this to a more manageable number, but not in every case. The number of
test cases required to achieve compound condition coverage even for expressions built
from N basic conditions combined only with short-circuit Boolean operators like the
&& and | | of C and Java can still be exponential in the worst case.

Consider the number of cases required for compound condition coverage of the
following two Boolean expressions, each with five basic conditions. For the expression
a && b && c && d && e, compound condition coverage requires:

Test Case a b c d e
(1) | True | True | True | True | True
(2) | True | True | True | True | False
(3) | True | True | True | False -
(4) | True | True | False - -
(5) | True | False - - -
(6) | False -

For the expression (((a || b) && c) || d) && e, however, compound
condition adequacy requires many more combinations:

Test Case a b c d e
(1) | True - True - True
(2) | False | True | True - True
(3) | True - False | True | True
(4) | False | True | False | True | True
(5) | False | False - True | True
(6) | True - True - False
(7) | False | True | True - False
(8) | True - False | True | False
(9) | False | True | False | True | False

(10) | False | False - True | False
(11) | True - False | False -
(12) | False | True | False | False -
(13) | False | False - False -

An alternative approach that can be satisfied with the same number of test cases
for Boolean expressions of a given length regardless of short-circuit evaluation is the
modified condition/decision coverage or MC/DC, also known as the modified condi-
tion adequacy criterion. The modified condition/decision criterion requires that each
basic condition be shown to independently affect the outcome of each decision. That
is, for each basic condition C, there are two test cases in which the truth values of all
evaluated conditions except C are the same, and the compound condition as a whole
evaluates to True for one of those test cases and False for the other. The modified
condition adequacy criterion can be satisfied with N 4 1 test cases, making it an attrac-

A modified condi-
tion/decision
coverage
(MC/DC)

222 Structural Testing

A path adequacy
criterion

A path coverage

tive compromise between number of required test cases and thoroughness of the test.
It is required by important quality standards in aviation, including RTCA/DO-178B,
“Software Considerations in Airborne Systems and Equipment Certification,” and its
European equivalent EUROCAE ED-12B.

Recall the expression (((a || b) && c) || d) && e, which required 13
different combinations of condition values for compound condition adequacy. For
modified condition/decision adequacy, only 6 combinations are required. Here they
have been numbered for easy comparison with the previous table:

a b c d e Decision
(1) | True - True - True True
(2) | False | True | True - True True
(3) | True - False | True | True True
(6) | True - True - False False
(11) | True - False | False - False
(13) | False | False - False - False

The values underlined in the table independently affect the outcome of the decision.
Note that the same test case can cover the values of several basic conditions. For
example, test case (1) covers value True for the basic conditions a, ¢ and e. Note also
that this is not the only possible set of test cases to satisfy the criterion; a different
selection of Boolean combinations could be equally effective.

12.5 Path Testing

Decision and condition adequacy criteria force consideration of individual program de-
cisions. Sometimes, though, a fault is revealed only through exercise of some sequence
of decisions (i.e., a particular path through the program). It is simple (but impractical,
as we will see) to define a coverage criterion based on complete paths rather than indi-
vidual program decisions

A test suite T for a program P satisfies the path adequacy criterion iff, for each path
p of P, there exists at least one test case in T that causes the execution of p.

This is equivalent to stating that every path in the control flow graph model of
program P is exercised by a test case in 7.

The path coverage Cp,j, of T for P is the fraction of paths of program P executed
by at least one test case in 7.

number of executed paths

C =
Path number of paths

Unfortunately, the number of paths in a program with loops is unbounded, so this
criterion cannot be satisfied for any but the most trivial programs. For a program with
loops, the denominator in the computation of the path coverage becomes infinite, and
thus path coverage is zero no matter how many test cases are executed.

Path Testing

223

0] (it)

Figure 12.4: Deriving a tree from a control flow graph to derive subpaths for bound-
ary/interior testing. Part (i) is the control flow graph of the C function cgi_decode,
identical to Figure 12.1 but showing only node identifiers without source code. Part
(ii) is a tree derived from part (i) by following each path in the control flow graph up
to the first repeated node. The set of paths from the root of the tree to each leaf is the
required set of subpaths for boundary/interior coverage.

To obtain a practical criterion, it is necessary to partition the infinite set of paths
into a finite number of classes and require only that representatives from each class be
explored. Useful criteria can be obtained by limiting the number of paths to be covered.
Relevant subsets of paths to be covered can be identified by limiting the number of
traversals of loops, the length of the paths to be traversed, or the dependencies among
selected paths.

The boundary interior criterion groups together paths that differ only in the subpath
they follow when repeating the body of a loop.

Figure 12.4 illustrates how the classes of subpaths distinguished by the boundary
interior coverage criterion can be represented as paths in a tree derived by “unfolding”
the control flow graph of function cgi_decode.

Figures 12.5—12.7 illustrate a fault that may not be uncovered using statement or
decision testing, but will assuredly be detected if the boundary interior path criterion is
satisfied. The program fails if the loop body is executed exactly once — that is, if the
search key occurs in the second position in the list.

Although the boundary/interior coverage criterion bounds the number of paths that
must be explored, that number can grow quickly enough to be impractical. The number

A boundary
interior criterion

224

Structural Testing

1 typedef struct cell {

2 itemtype itemval;

3 struct cell *link;

4 }list;

5 #define NIL ((struct cell *) 0)
6

7

8

9

itemtype search(list *I, keytype k)
{
struct cell *p = *I;
10 struct cell *back = NIL;

12 /* Case 1: List is empty */
13 if (p ==NIL) {

14 return NULLVALUE;

15 }

16

17 /* Case 2: Key is at front of list */
18 if (k == p->itemval) {

19 return p->itemval;

20 }

21

22 /* Default: Simple (but buggy) sequential search */
23 p=p->link;
24 while (1) {

25 if (0 ==NIL) {

26 return NULLVALUE;
27 }

28 if (k==p->itemval) { /* Move to front */
29 back->link = p->link;
30 p->link = *I;

31 * = p;

32 return p->itemval;
33 }

34 back=p; p=p->link;

35 }

%6}

Figure 12.5: A C function for searching and dynamically rearranging a linked list,
excerpted from a symbol table package. Initialization of the back pointer is missing,
causing a failure only if the search key is found in the second position in the list.

Path Testing

225

itemtype search(list *I, keytype k)

{ struct cell *p = *I; A

True

struct cell *back = NIL; ‘
if (p == NIL) {
I

False

[return NULLVALUE; (B
}

N

v
(_if (k == p->itemval) { (C) True \
T
False [return p->itemval; @
v
back =p; }

5
g

p = p->link;

/—{while (MA
l

{ struct cell *p = *I;
struct cell *back = NIL;
if (p == NIL) {

S

vy

return NULLVALUE: @

False }
(_if (k == p->itemval) { (1
\

i

False
h 4
back = p; K
p = p->link;

back->link = p->link; (J
p->link = *[;

*I = p;

return p->itemval;

Figure 12.6: The control flow graph of C function search with move-to-front feature.

226 Structural Testing

& @

Figure 12.7: The boundary/interior subpaths for C function search.

of subpaths that must be covered can grow exponentially in the number of statements
and control flow graph nodes, even without any loops at all. Consider, for example, the
following pseudocode:

if (a) {
S1;

The subpaths through this control flow can include or exclude each of the state-
ments S;, so that in total N branches result in 2V paths that must be traversed. Moreover,
choosing input data to force execution of one particular path may be very difficult, or
even impossible if the conditions are not independent.®

Since coverage of non-looping paths is expensive, we can consider a variant of

%Section 12.8 discusses infeasible paths.

Path Testing 227

the boundary/interior criterion that treats loop boundaries similarly but is less stringent
with respect to other differences among paths.

A test suite T for a program P satisfies the loop boundary adequacy criterion iff,
for each loop / in P,

e In at least one execution, control reaches the loop, and then the loop control
condition evaluates to False the first time it is evaluated.’

e In at least one execution, control reaches the loop, and then the body of the loop
is executed exactly once before control leaves the loop.

o In at least one execution, the body of the loop is repeated more than once.

One can define several small variations on the loop boundary criterion. For ex-
ample, we might excuse from consideration loops that are always executed a definite
number of times (e.g., multiplication of fixed-size transformation matrices in a graphics
application). In practice we would like the last part of the criterion to be “many times
through the loop” or “as many times as possible,” but it is hard to make that precise
(how many is “many?”).

It is easy enough to define such a coverage criterion for loops, but how can we
justify it? Why should we believe that these three cases — zero times through, once
through, and several times through — will be more effective in revealing faults than,
say, requiring an even and an odd number of iterations? The intuition is that the loop
boundary coverage criteria reflect a deeper structure in the design of a program. This
can be seen by their relation to the reasoning we would apply if we were trying to
formally verify the correctness of the loop. The basis case of the proof would show
that the loop is executed zero times only when its postcondition (what should be true
immediately following the loop) is already true. We would also show that an invariant
condition is established on entry to the loop, that each iteration of the loop maintains
this invariant condition, and that the invariant together with the negation of the loop
test (i.e., the condition on exit) implies the postcondition. The loop boundary criterion
does not require us to explicitly state the precondition, invariant, and postcondition, but
it forces us to exercise essentially the same cases that we would analyze in a proof.

There are additional path-oriented coverage criteria that do not explicitly consider
loops. Among these are criteria that consider paths up to a fixed length. The most
common such criteria are based on Linear Code Sequence and Jump (LCSAJ). An
LCSAJ is defined as a body of code through which the flow of control may proceed
sequentially, terminated by a jump in the control flow. Coverage of LCSAJ sequences
of length 1 is almost, but not quite, equivalent to branch coverage. Stronger criteria can
be defined by requiring N consecutive LCSAIJs to be covered. The resulting criteria
are also referred to as TERy;, where N is the number of consecutive LCSAJs to be
covered. Conventionally, TER| and TER, refer to statement and branch coverage,
respectively.

The number of paths to be exercised can also be limited by identifying a subset
that can be combined (in a manner to be described shortly) to form all the others.

7For a while or for loop, this is equivalent to saying that the loop body is executed zero times.

A loop boundary
adequacy
criterion

A linear code
sequence and
jump (LCSAJ)

228 Structural Testing

A cyclomatic testing

Such a set of paths is called a basis set, and from graph theory we know that every
connected graph with n nodes, e edges, and ¢ connected components has a basis set of
only e —n -+ ¢ independent subpaths. Producing a single connected component from a
program flow graph by adding a “virtual edge” from the exit to the entry, the formula
becomes e —n+ 2, which is called the cyclomatic complexity of the control flow graph.
Cyclomatic testing consists of attempting to exercise any set of execution paths that is
a basis set for the control flow graph.

To be more precise, the sense in which a basis set of paths can be combined to form
other paths is to consider each path as a vector of counts indicating how many times
each edge in the control flow graph was traversed. For example, the third element of
the vector might be the number of times a particular branch is taken. The basis set
is combined by adding or subtracting these vectors (and not, as one might intuitively
expect, by concatenating paths). Consider again the pseudocode

While the number of distinct paths through this code is exponential in the number
of if statements, the number of basis paths is small: only n+ 1 if there are n if state-
ments. We can represent one basis set (of many possible) for a sequence of four such if
statements by indicating whether each predicate evaluates to True or False:

False False False False
True False False False
False True False False
False False True False
False False False True

[N R

The path represented as (True, False, True, False) is formed from these by adding
paths 2 and 4 and then subtracting path 1.

Cyclomatic testing does not require that any particular basis set is covered. Rather,
it counts the number of independent paths that have actually been covered (i.e., count-
ing a new execution path as progress toward the coverage goal only if it is independent
of all the paths previously exercised), and the coverage criterion is satisfied when this
count reaches the cyclomatic complexity of the code under test.

Procedure Call Testing

229

12.6 Procedure Call Testing

The criteria considered to this point measure coverage of control flow within individual
procedures. They are not well suited to integration testing or system testing. It is
difficult to steer fine-grained control flow decisions of a unit when it is one small part
of a larger system, and the cost of achieving fine-grained coverage for a system or
major component is seldom justifiable. Usually it is more appropriate to choose a
coverage granularity commensurate with the granularity of testing. Moreover, if unit
testing has been effective, then faults that remain to be found in integration testing will
be primarily interface faults, and testing effort should focus on interfaces between units
rather than their internal details.

In some programming languages (FORTRAN, for example), a single procedure
may have multiple entry points, and one would want to test invocation through each of
the entry points. More common are procedures with multiple exit points. For example,
the code of Figure 12.5 has four different return statements. One might want to check
that each of the four returns is exercised in the actual context in which the procedure is
used. Each of these would have been exercised already if even the simplest statement
coverage criterion were satisfied during unit testing, but perhaps only in the context of
a simple test driver; testing in the real context could reveal interface faults that were
previously undetected.

Exercising all the entry points of a procedure is not the same as exercising all the
calls. For example, procedure A may call procedure C from two distinct points, and
procedure B may also call procedure C. In this case, coverage of calls of C means
exercising calls at all three points. If the component under test has been constructed
in a bottom-up manner, as is common, then unit testing of A and B may already have
exercised calls of C. In that case, even statement coverage of A and B would ensure
coverage of the calls relation (although not in the context of the entire component).

The search function in Figure 12.5 was originally part of a symbol table package in
a small compiler. It was called at only one point, from one other C function in the same
unit.® That C function, in turn, was called from tens of different points in a scanner and
a parser. Coverage of calls requires exercising each statement in which the parser and
scanner access the symbol table, but this would almost certainly be satisfied by a set of
test cases exercising each production in the grammar accepted by the parser.

When procedures maintain internal state (local variables that persist from call to
call), or when they modify global state, then properties of interfaces may only be re-
vealed by sequences of several calls. In object-oriented programming, local state is
manipulated by procedures called methods, and systematic testing necessarily concerns
sequences of method calls on the same object. Even simple coverage of the “calls” re-
lation becomes more challenging in this environment, since a single call point may be
dynamically bound to more than one possible procedure (method). While these com-
plications may arise even in conventional procedural programs (e.g., using function
pointers in C), they are most prevalent in object-oriented programming. Not surpris-
ingly, then, approaches to systematically exercising sequences of procedure calls are

8The “unit” in this case is the C source file, which provided a single data abstraction through several
related C functions, much as a C++ or Java class would provide a single abstraction through several methods.
The search function was analogous in this case to a private (internal) method of a class.

A procedure
entry and exit
testing

A call coverage

230

Structural Testing

beginning to emerge mainly in the field of object-oriented testing, and we therefore
cover them in Chapter 15.

12.7 Comparing Structural Testing Criteria

The power and cost of the structural test adequacy criteria described in this chapter
can be formally compared using the subsumes relation introduced in Chapter 9. The
relations among these criteria are illustrated in Figure 12.8. They are divided into two
broad categories: practical criteria that can always be satisfied by test sets whose size
is at most a linear function of program size; and criteria that are of mainly theoretical
interest because they may require impractically large numbers of test cases or even (in
the case of path coverage) an infinite number of test cases.

The hierarchy can be roughly divided into a part that relates requirements for cov-
ering program paths and another part that relates requirements for covering combina-
tions of conditions in branch decisions. The two parts come together at branch cov-
erage. Above branch coverage, path-oriented criteria and condition-oriented criteria
are generally separate, because there is considerable cost and little apparent benefit in
combining them. Statement coverage is at the bottom of the subsumes hierarchy for
systematic coverage of control flow. Applying any of the structural coverage criteria,
therefore, implies at least executing all the program statements.

Procedure call coverage criteria are not included in the figure, since they do not
concern internal control flow of procedures and are thus incomparable with the control
flow coverage criteria.

12.8 The Infeasibility Problem

Sometimes no set of test cases is capable of satisfying some test coverage criterion for
a particular program, because the criterion requires execution of a program element
that can never be executed. This is true even for the statement coverage criterion, weak
as it is. Unreachable statements can occur as a result of defensive programming (e.g.,
checking for error conditions that never occur) and code reuse (reusing code that is
more general than strictly required for the application). Large amounts of “fossil” code
may accumulate when a legacy application becomes unmanageable. In that case, they
may indicate serious maintainability problems, but some unreachable code is common
even in well-designed, well-maintained systems, and must be accommodated in testing
processes that otherwise require satisfaction of coverage criteria.

Stronger coverage criteria tend to call for coverage of more elements that may be
infeasible. For example, in discussing multiple condition coverage, we implicitly as-
sumed that basic conditions were independent and could therefore occur in any combi-
nation. In reality, basic conditions may be comparisons or other relational expressions
and may be interdependent in ways that make certain combinations infeasible. For
example, in the expression (a > 0 && a < 10), it is not possible for both basic condi-
tions to be False. Fortunately, short-circuit evaluation rules ensure that the combination

The Infeasibility Problem 231

THEORETICAL CRITERIA

C Cyclomatic testing >

PRACTICAL CRITERIA

C

Path Testing

D

C

Boundary interior testing >

C

LCSAJ

testing

D

C

Branch

testing

D

< Loop boundary testing > < Statement testing >

Figure 12.8: The subsumption relation among structural test adequacy criteria de-

scribed in this chapter.

@ompound condition testinD

C MC/DC testing >
@ranch and condition testin@

C Basic condition testing >

232

Structural Testing

(False, False) is not required for multiple condition coverage of this particular expres-
sion in a C or Java program.

The infeasibility problem is most acute for path-based structural coverage criteria,
such as the boundary/interior coverage criterion. Consider, for example, the following
simple code sequence:

if (@< 0){
a=0;
}

if (a > 10) {
a=10;
}

It is not possible to traverse the subpath on which the True branch is taken for both if
statements. In the trivial case where these if statements occur together, the problem is
both easy to understand and to avoid (by placing the second if within an else clause),
but essentially the same interdependence can occur when the decisions are separated
by other code.

An easy but rather unsatisfactory solution to the infeasibility problem is to make
allowances for it by setting a coverage goal less than 100%. For example, we could
require 90% coverage of basic blocks, on the grounds that no more than 10% of the
blocks in a program should be infeasible. A 10% allowance for infeasible blocks may
be insufficient for some units and too generous for others.

The other main option is requiring justification of each element left uncovered.
This is the approach taken in some quality standards, notably RTCA/DO-178B and
EUROCAE ED-12B for modified condition/decision coverage (MC/DC). Explaining
why each element is uncovered has the salutary effect of distinguishing between defen-
sive coding and sloppy coding or maintenance, and may also motivate simpler coding
styles. However, it is more expensive (because it requires manual inspection and under-
standing of each element left uncovered) and is unlikely to be cost-effective for criteria
that impose test obligations for large numbers of infeasible paths. This problem, even
more than the large number of test cases that may be required, leads us to conclude that
stringent path-oriented coverage criteria are seldom cost-effective.

Open Research Issues

Devising and comparing structural criteria was a hot topic in the 1980s. It is no longer
an active research area for imperative programming, but new programming paradigms
or design techniques present new challenges. Polymorphism, dynamic binding, and
object-oriented and distributed code open new problems and require new techniques, as
discussed in other chapters. Applicability of structural criteria to architectural design
descriptions is still under investigation. Usefulness of structural criteria for implicit
control flow has been addressed only recently.

Early testing research, including research on structural coverage criteria, was con-
cerned largely with improving the fault-detection effectiveness of testing. Today, the
most pressing issues are cost and schedule. Better automated techniques for identifying
infeasible paths will be necessary before more stringent structural coverage criteria can

The Infeasibility Problem

233

be seriously considered in any but the most critical of domains. Alternatively, for many
applications it may be more appropriate to gather evidence of feasibility from actual
product use; this is called residual test coverage monitoring and is a topic of current
research.

Further Reading

The main structural adequacy criteria are presented in Myers’ The Art of Software Test-
ing [Mye79], which has been a preeminent source of information for more than two
decades. It is a classic despite its age, which is evident from the limited set of tech-
niques addressed and the programming language used in the examples. The excellent
survey by Adrion et al. [ABC82] remains the best overall survey of testing techniques,
despite similar age. Frankl and Weyuker [FW93] provide a modern treatment of the
subsumption hierarchy among structural coverage criteria.

Boundary/interior testing is presented by Howden [How75]. Woodward et al. [WHHS80]

present LCSAJ testing. Cyclomatic testing is described by McCabe [McC83]. Residual
test coverage measurement is described by Pavlopoulou and Young [PY99].

Related Topics

Readers with a strong interest in coverage criteria should continue with the next chap-
ter, which presents data flow testing criteria. Others may wish to proceed to Chapter 15,
which addresses testing object-oriented programs. Readers wishing a more compre-
hensive view of unit testing may continue with Chapters 17 on test scaffolding and test
data generation. Tool support for structural testing is discussed in Chapter 23.

Exercises

12.1. Let us consider the following loop, which appears in C lexical analyzers gener-
ated by the tool flex:’

1 for (n=0;

2 n < max_size && (c = getc(yyin)) = EOF && c != "\n’;
3 ++N)

4 buf[n] = (char) c;

Devise a set of test cases that satisfy the compound condition adequacy criterion
and a set of test cases that satisfy the modified condition adequacy criterion with
respect to this loop.

9Flex is a widely used generator of lexical analyzers. Flex was written by Vern Paxson and is compatible
with the original AT&T lex written by M.E. Lesk. This excerpt is from version 2.5.4 of flex, distributed with
the Linux operating system.

234 Structural Testing

12.2. The following if statement appears in the Java source code of Grappa,'® a graph
layout engine distributed by AT&T Laboratories:

1 if(pos < parseArray.length

2 && (parseArray[pos] == " {’

3 || parseArray[pos] ==’ }’

4 || parseArray[pos] == " |")) {
5 continue;

6 }

(a) Derive a set of test case specifications and show that it satisfies the MC/DC
criterion for this statement. For brevity, abbreviate each of the basic condi-
tions as follows:

Room for pos < parseArray.length
Open for parseArray[pos] == ’ {’
Close for parseArray[pos] ==’ }’
Bar for parseArray[pos] == |’
(b) Do the requirements for compound condition coverage and modified condi-
tion/decision coverage differ in this case? Aside from increasing the num-

ber of test cases, what difference would it make if we attempted to exhaus-
tively cover all combinations of truth values for the basic conditions?

12.3. Prove that the number of test cases required to satisfy the modified condition
adequacy criterion for a predicate with N basic conditions is N + 1.

12.4. The number of basis paths (cyclomatic complexity) does not depend on whether
nodes of the control flow graph are individual statements or basic blocks that
may contain several statements. Why?

12.5. Derive the subsumption hierarchy for the call graph coverage criteria described
in this chapter, and justify each of the relationships.

12.6. If the modified condition/decision adequacy criterion requires a test case that is
not feasible because of interdependent basic conditions, should this always be
taken as an indication of a defect in design or coding? Why or why not?

10The statement appears in file Table java. This source code is copyright 1996, 1997, 1998 by AT&T
Corporation. Grappa is distributed as open source software, available at the time of this writing from http:
//www.graphviz.org. Formatting of the line has been altered for readability in this printed form.

Chapter 13

Data Flow Testing

Exercising every statement or branch with test cases is a practical goal, but exercising
every path is impossible. Even the number of simple (that is, loop-free) paths can be
exponential in the size of the program. Path-oriented selection and adequacy criteria
must therefore select a tiny fraction of control flow paths. Some control flow adequacy
criteria, notably the loop boundary interior condition, do so heuristically. Data flow
test adequacy criteria improve over pure control flow criteria by selecting paths based
on how one syntactic element can affect the computation of another.

Required Background

e Chapter 6

At least the basic data flow models presented in Chapter 6, Section 6.1, are re-
quired to understand this chapter, although algorithmic details of data flow anal-
ysis can be deferred. Section 6.5 of that chapter is important background for
Section 13.4 of the current chapter. The remainder of Chapter 6 is useful back-
ground but not strictly necessary to understand and apply data flow testing.

o Chapter 9

The introduction to test case adequacy and test case selection in general sets the
context for this chapter. It is not strictly required for understanding this chapter,
but is helpful for understanding how the techniques described in this chapter
should be applied.

e Chapter 12

The data flow adequacy criteria presented in this chapter complement control
flow adequacy criteria. Knowledge about control flow adequacy criteria is desir-
able but not strictly required for understanding this chapter.

235

236

Data Flow Testing

13.1 Overview

We have seen in Chapter 12 that structural testing criteria are practical for single ele-
ments of the program, from simple statements to complex combinations of conditions,
but become impractical when extended to paths. Even the simplest path testing criteria
require covering large numbers of paths that tend to quickly grow far beyond test suites
of acceptable size for nontrivial programs.

Close examination of paths that need to be traversed to satisfy a path selection
criterion often reveals that, among a large set of paths, only a few are likely to uncover
faults that could have escaped discovery using condition testing coverage. Criteria that
select paths based on control structure alone (e.g., boundary interior testing) may not be
effective in identifying these few significant paths because their significance depends
not only on control flow but on data interactions.

Data flow testing is based on the observation that computing the wrong value leads
to a failure only when that value is subsequently used. Focus is therefore moved from
control flow to data flow. Data flow testing criteria pair variable definitions with uses,
ensuring that each computed value is actually used, and thus selecting from among
many execution paths a set that is more likely to propagate the result of erroneous
computation to the point of an observable failure.

Consider, for example, the C function cgi-decode of Figure 13.1, which decodes a
string that has been transmitted through the Web’s Common Gateway Interface. Data
flow testing criteria would require one to execute paths that first define (change the
value of) variable eptr (e.g., by incrementing it at line 37) and then use the new value
of variable eptr (e.g., using variable eptr to update the array indexed by dptr at line 34).
Since a value defined in one iteration of the loop is used on a subsequent iteration, we
are obliged to execute more than one iteration of the loop to observe the propagation
of information from one iteration to the next.

13.2 Definition-Use Associations

Data flow testing criteria are based on data flow information — variable definitions and
uses. Table 13.1 shows definitions and uses for the program cgi_decode of Figure 13.1.
Recall that when a variable occurs on both sides of an assignment, it is first used and
then defined, since the value of the variable before the assignment is used for comput-
ing the value of the variable after the assignment. For example, the ++eptr increment
operation in C is equivalent to the assignment eptr = eptr + 1, and thus first uses and
then defines variable eptr.

We will initially consider treatment of arrays and pointers in the current example
in a somewhat ad hoc fashion and defer discussion of the general problem to Sec-
tion 13.4. Variables eptr and dptr are used for indexing the input and output strings.
In program cgi_decode, we consider the variables as both indexes (eptr and dptr) and
strings (*eptr and *dptr). The assignment *dptr = *eptr is treated as a definition of the
string *dptr as well as a use of the index dptr, the index eptr, and the string *eptr, since
the result depends on both indexes as well as the contents of the source string. A
change to an index is treated as a definition of both the index and the string, since a

Definition-Use Associations

237

1
2 /* External file hex_values.h defines Hex_Values[128]
3 *with value 0 to 15 for the legal hex digits (case-insensitive)
4 *andvalue -1 for each illegal digit including special characters
5 7
6
7 #include "hex_values.h"
8 /** Translate a string from the CGl encoding to plain ascii text.
9 - '+’ becomes space, %xx becomes byte with hex value xx,
10 other alphanumeric characters map to themselves.
11 * Returns 0 for success, positive for erroneous input
12 1 = bad hexadecimal digit
13 Y
14 int cgi-decode(char *encoded, char *decoded) {
15 char *eptr = encoded;
16 char *dptr = decoded;
17 int ok=0;
18 while (*eptr) {
19 char c;
20 C = *eptr;
21
22 if(c=="+"){ /*Case 1: '+' maps to blank */
23 dptr="";
24 Yelseif (c=="%") { /* Case 2: "%xx’is hex for character xx */
25 int digit_high = Hex_Values[*(++eptr)];
26 int digitlow = Hex_Values[*(++eptr)];
27 if (digit_high == -1 || digit_low == -1) {
28 /* *dptr="?"; %/
29 ok=1; /* Bad return code */
30 } else {
31 *dptr = 16* digit_high + digit_low;
32 }
33 } else { /* Case 3: All other characters map to themselves */
34 *dptr = *eptr;
35 }
36 ++dptr;
37 ++eptr;
38 }
39 *dptr =" \0"; /* Null terminator for string */
40 return ok;
41}

Figure 13.1: The C function cgi_decode, which translates a cgi-encoded string to a
plain ASCII string (reversing the encoding applied by the common gateway interface
of most Web servers). This program is also used in Chapter 12 and also presented in
Figure 12.1 of Chapter 12.

238 Data Flow Testing

Variable Definitions Uses

encoded 14 15

decoded 14 16

*eptr 15, 25, 26, 37 18, 20, 25, 26, 34
eptr 15, 25, 26, 37 15, 18, 20, 25, 26, 34, 37
*dptr 16, 23, 31, 34, 36,39 40

dptr 16 36 16, 23, 31, 34, 36, 39
ok 17,29 40

C 20 22,24

digit_high 25 217,31

digit_low 26 27, 31

Hex_Values — 25,26

Table 13.1: Definitions and uses for C function cgi_decode. *eptr and *dptr indicate the
strings, while eptr and dptr indicate the indexes.

change of the index changes the value accessed by it. For example, in the statement at
line 36 (++dptr), we have a use of variable dptr followed by a definition of variables dptr
and *dptr.

It is somewhat counterintuitive that we have definitions of the string *eptr, since
it is easy to see that the program is scanning the encoded string without changing
it. For the purposes of data flow testing, though, we are interested in interactions
between computation at different points in the program. Incrementing the index eptr is
a “definition” of *eptr in the sense that it can affect the value that is next observed by a
use of *eptr.

Pairing definitions and uses of the same variable v identifies potential data inter-

A DU pair actions through v — definition-use pairs (DU pairs). Table 13.2 shows the DU pairs
in program cgi_decode of Figure 13.1. Some pairs of definitions and uses from Ta-
ble 13.1 do not occur in Table 13.2, since there is no definition-clear path between
the two statements. For example, the use of variable eptr at line 15 cannot be reached
from the increment at line 37, so there is no DU pair (37, 15). The definitions of vari-
ables *eptr and eptr at line 25, are paired only with the respective uses at line 26, since
successive definitions of the two variables at line 26 kill the definition at line 25 and
eliminate definition-clear paths to any other use.

A DU pair requires the existence of at least one definition-clear path from definition
to use, but there may be several. Additional uses on a path do not interfere with the

A DU path pair. We sometimes use the term DU path to indicate a particular definition-clear path
between a definition and a use. For example, let us consider the definition of *eptr at
line 37 and the use at line 34. There are infinitely many paths that go from line 37 to
the use at line 34. There is one DU path that does not traverse the loop while going
from 37 to 34. There are infinitely many paths from 37 back to 37, but only two DU
paths, because the definition at 37 kills the previous definition at the same point.

Data flow testing, like other structural criteria, is based on information obtained
through static analysis of the program. We discard definitions and uses that cannot
be statically paired, but we may select pairs even if none of the statically identifiable

Data Flow Testing Criteria

239

Variable DU Pairs

*eptr (15,18),(15,20), (15,25, (15,34) (25,26), (26,37)
(37,18),(37,20), (37,25),(37,34)

eptr (15,15, (15,18), (15,20), (15,25), { 15,34), (15,37),
(25,26, (26,37) (37,18),(37,20), (37,25), (37,34), (37,37)

*dptr (39,40)

dptr (16,16, (16,23), (16,31), (16,34), (16,36), { 16,39),
(36,23),(36,31),(36,34), (36,36), (36,39)

ok (17,40, (29,40)

c (20,22, (2024)

digit-high | (25,27),(25,31)

digit_low | (26,27), (26,31)

encoded | (14, 15)

decoded | (14, 16)

Table 13.2: DU pairs for C function cgi_decode. Variable Hex_Values does not appear
because it is not defined (modified) within the procedure.

definition-clear paths is actually executable. In the current example, we have made
use of information that would require a quite sophisticated static data flow analyzer, as
discussed in Section 13.4.

13.3 Data Flow Testing Criteria

Various data flow testing criteria can be defined by requiring coverage of DU pairs in
various ways.

The All DU pairs adequacy criterion requires each DU pair to be exercised in at
least one program execution, following the idea that an erroneous value produced by
one statement (the definition) might be revealed only by its use in another statement.

A test suite 7 for a program P satisfies the all DU pairs adequacy criterion iff, for
each DU pair du of P, at least one test case in T exercises du.

The corresponding coverage measure is the proportion of covered DU pairs:

The all DU pairs coverage Cpy pairs Of T for P is the fraction of DU pairs of program
P exercised by at least one test case in 7.

number of exercised DU pairs

C irs =
PUpairs number of DU pairs

The all DU pairs adequacy criterion assures a finer grain coverage than statement
and branch adequacy criteria. If we consider, for example, function cgi-decode, we can
easily see that statement and branch coverage can be obtained by traversing the while
loop no more than once, for example, with the test suite Tp,qpcn =
while several DU pairs cannot be covered without executing the while loop at least

{u+n’ 5:0/03 D”’ “O/OFG”7 utu}

A all DU pairs
adequacy
criterion

A all DU pairs
coverage

240 Data Flow Testing

A all DU paths
adequacy criterion

A all DU paths
coverage

A all definitions
adequacy criterion

twice. The pairs that may remain uncovered after statement and branch coverage cor-
respond to occurrences of different characters within the source string, and not only at
the beginning of the string. For example, the DU pair (37, 25) for variable *eptr can be
covered with a test case T Cpy pairstest%3D” where the hexadecimal escape sequence
occurs inside the input string, but not with “%3D.” The test suite Tpy pairs Obtained by
adding the test case T Cpy pairs to the test suite Tp,q4,¢, satisfies the all DU pairs ade-
quacy criterion, since it adds both the cases of a hexadecimal escape sequence and an
ASCII character occurring inside the input string.

One DU pair might belong to many different execution paths. The All DU paths
adequacy criterion extends the all DU pairs criterion by requiring each simple (non
looping) DU path to be traversed at least once, thus including the different ways of
pairing definitions and uses. This can reveal a fault by exercising a path on which a
definition of a variable should have appeared but was omitted.

A test suite T for a program P satisfies the all DU paths adequacy criterion iff, for
each simple DU path dp of P, there exists at least one test case in T that exercises a
path that includes dp.

The corresponding coverage measure is the fraction of covered simple DU paths:
The all DU pair coverage Cpy parns of T for P is the fraction of simple DU paths of

program P executed by at least one test case in 7.

number of exercised simple DU paths

C aths — .
DU path: number of simple DU paths

The test suite Tpy pairs does not satisfy the all DU paths adequacy criterion, since
both DU pairs (37,37) for variable eptr and (36,23) for variable dptr correspond each
to two simple DU paths, and in both cases one of the two paths is not covered by test
cases in Tpy pairs- The uncovered paths correspond to a test case that includes character
'+’ occurring within the input string (e.g., test case TCpy parns = “test+case”).

Although the number of simple DU paths is often quite reasonable, in the worst
case it can be exponential in the size of the program unit. This can occur when the code
between the definition and use of a particular variable is essentially irrelevant to that
variable, but contains many control paths, as illustrated by the example in Figure 13.2:
The code between the definition of ch in line 2 and its use in line 12 does not modify
ch, but the all DU paths coverage criterion would require that each of the 256 paths be
exercised.

We normally consider both All DU paths and All DU pairs adequacy criteria as
relatively powerful and yet practical test adequacy criteria, as depicted in Figure 12.8
on page 231. However, in some cases, even the all DU pairs criterion may be too costly.
In these cases, we can refer to a coarser grain data flow criterion, the All definitions
adequacy criterion, which requires pairing each definition with at least one use.

A test suite T for a program P satisfies the all definitions adequacy criterion for P
iff, for each definition def of P, there exists at least one test case in 7 that exercises a
DU pair that includes def.

Data Flow Coverage with Complex Structures

241

void countBits(char ch) {
int count = 0;
if (ch & 1) ++count;
if (ch & 2) ++count;
if (ch & 4) ++count;
if (ch & 8) ++count;
if (
if (
if (

0 N o o b~ 0N =

ch & 16) ++count;
ch & 32) ++count;
ch & 64) ++count;
if (ch & 128) ++count;
printf("’ $c’ (0X%02x) has %d bits set to 1\n",
ch, ch, count);

_ A a4
w N = O ©

_.
N
-

Figure 13.2: A C procedure with a large number of DU paths. The number of DU
paths for variable ch is exponential in the number of if statements, because the use in
each increment and in the final print statement can be paired with any of the preceding
definitions. The number of DU paths for variable count is the same as the number of
DU pairs. For variable ch, there is only one DU pair, matching the procedure header
with the final print statement, but there are 256 definition-clear paths between those
statements — exponential in the number of intervening if statements.

The corresponding coverage measure is the proportion of covered definitions, where
we say a definition is covered only if the value is used before being killed:

The all definitions coverage Cp,r of T for P is the fraction of definitions of program
P covered by at least one test case in 7.

number of covered definitions

C = —
defs number of definitions

13.4 Data Flow Coverage with Complex Structures

Like all static analysis techniques, data flow analysis approximates the effects of pro-
gram executions. It suffers imprecision in modeling dynamic constructs, in particular
dynamic access to storage, such as indexed access to array elements or pointer access
to dynamically allocated storage. We have seen in Chapter 6 (page 94) that the proper
treatment of potential aliases involving indexes and pointers depends on the use to
which analysis results will be put. For the purpose of choosing test cases, some risk of
underestimating alias sets may be preferable to gross overestimation or very expensive
analysis.

The precision of data flow analysis depends on the precision of alias information
used in the analysis. Alias analysis requires a trade-off between precision and compu-

A all definitions
coverage

242

Data Flow Testing

1 void pointer_abuse() {

2 inti=5, j=10, k=20;

3 int *p, *q;

4 p=_&+1;

5 q = &k;

6 *p = 30;

7 *q="*q + 55;

8 printf("p=%d, g=%d\n", *p, *q);
5}

Figure 13.3: Pointers to objects in the program stack can create essentially arbitrary
definition-use associations, particularly when combined with pointer arithmetic as in
this example.

tational expense, with significant overestimation of alias sets for approaches that can be
practically applied to real programs. In the case of data flow testing, imprecision can
be mitigated by specializing the alias analysis to identification of definition-clear paths
between a potentially matched definition and use. We do not need to compute aliases
for all possible behaviors, but only along particular control flow paths. The risk of un-
derestimating alias sets in a local analysis is acceptable considering the application in
choosing good test cases rather than offering hard guarantees of a property.

In the cgi_decode example we have made use of information that would require
either extra guidance from the test designer or a sophisticated tool for data flow and
alias analysis. We may know, from a global analysis, that the parameters encoded and
decoded never refer to the same or overlapping memory regions, and we may infer that
initially eptr and dptr likewise refer to disjoint regions of memory, over the whole range
of values that the two pointers take. Lacking this information, a simple static data flow
analysis might consider *dptr a potential alias of *eptr and might therefore consider the
assignment *dptr = *eptr a potential definition of both *dptr and *eptr. These spurious
definitions would give rise to infeasible DU pairs, which produce test obligations that
can never be satisfied. A local analysis that instead assumes (without verification) that
*eptr and *dptr are distinct could fail to require an important test case if they can be
aliases. Such underestimation may be preferable to creating too many infeasible test
obligations.

A good alias analysis can greatly improve the applicability of data flow testing but
cannot eliminate all problems. Undisciplined use of dynamic access to storage can
make precise alias analysis extremely hard or impossible. For example, the use of
pointer arithmetic in the program fragment of Figure 13.3 results in aliases that depend
on the way the compiler arranges variables in memory.

The Infeasibility Problem

243

13.5 The Infeasibility Problem

Not all elements of a program are executable, as discussed in Section 12.8 of Chap-
ter 12. The path-oriented nature of data flow testing criteria aggravates the problem
since infeasibility creates test obligations not only for isolated unexecutable elements,
but also for infeasible combinations of feasible elements.

Complex data structures may amplify the infeasibility problem by adding infeasible
paths as a result of alias computation. For example, while we can determine that x[i]
is an alias of x[j] exactly when i = j, we may not be able to determine whether i can be
equal to j in any possible program execution.

Fortunately, the problem of infeasible paths is usually modest for the all definitions
and all DU pairs adequacy criteria, and one can typically achieve levels of coverage
comparable to those achievable with simpler criteria like statement and branch ade-
quacy during unit testing. The all DU paths adequacy criterion, on the other hand,
often requires much larger numbers of control flow paths. It presents a greater prob-
lem in distinguishing feasible from infeasible paths and should therefore be used with
discretion.

Open Research Issues

Data flow test adequacy criteria are close to the border between techniques that can be
applied at low cost with simple tools and techniques that offer more power but at much
higher cost. While in principle data flow test coverage can be applied at modest cost (at
least up to the all DU adequacy criterion), it demands more sophisticated tool support
than test coverage monitoring tools based on control flow alone.

Fortunately, data flow analysis and alias analysis have other important applications.
Improved support for data flow testing may come at least partly as a side benefit of re-
search in the programming languages and compilers community. In particular, finding
a good balance of cost and precision in data flow and alias analysis across procedure
boundaries (interprocedural or “whole program” analysis) is an active area of research.

The problems presented by pointers and complex data structures cannot be ignored.
In particular, modern object-oriented languages like Java use reference semantics —
an object reference is essentially a pointer — and so alias analysis (preferably inter-
procedural) is a prerequisite for applying data flow analysis to object-oriented pro-
grams.

Further Reading

The concept of test case selection using data flow information was apparently first sug-
gested in 1976 by Herman [Her76], but that original paper is not widely accessible. The
more widely known version of data flow test adequacy criteria was developed indepen-
dently by Rapps and Weyuker [RW85] and by Laski and Korel [LK83]. The variety of
data flow testing criteria is much broader than the handful of criteria described in this
chapter; Clarke et al. present a formal comparison of several criteria [CPRZ89]. Frankl

244

Data Flow Testing

and Weyuker consider the problem of infeasible paths and how they affect the relative
power of data flow and other structural test adequacy criteria [FW93].

Marx and Frankl consider the problem of aliases and application of alias analysis
on individual program paths [MF96]. A good example of modern empirical research on
costs and effectiveness of structural test adequacy criteria, and data flow test coverage
in particular, is Frankl and Iakounenko [FI98].

Related Topics

The next chapter discusses model-based testing. Section 14.4 shows how control and
data flow models can be used to derive test cases from specifications. Chapter 15 illus-
trates the use of data flow analysis for structural testing of object oriented programs.

Readers interested in the use of data flow for program analysis can proceed with
Chapter 19.

Exercises

13.1. Sometimes a distinction is made between uses of values in predicates (p-uses)
and other “computational” uses in statements (c-uses). New criteria can be de-
fined using that distinction, for example:

all p-use some c-use: for all definitions and uses, exercise all (def, p-use) pairs
and at least one (def, c-use) pair

all c-use some p-use: for all definitions and uses, exercise all (def, c-use) pairs
and at least one (def, p-use) pair

(a) provide a precise definition of these criteria.

(b) describe the differences in the test suites derived applying the different cri-
teria to function cgi_decode in Figure 13.1.

13.2. Demonstrate the subsume relation between all p-use some c-use, all c-use some
p-use, all DU pairs, all DU paths and all definitions.

13.3. How would you treat the buf array in the transduce procedure shown in Fig-
ure 16.1?

Chapter 14

Model-Based Testing

Models are often used to express requirements, and embed both structure and fault in-
formation that can help generate test case specifications. Control flow and data flow
testing are based on models extracted from program code. Models can also be ex-
tracted from specifications and design, allowing us to make use of additional informa-
tion about intended behavior. Model-based testing consists in using or deriving models
of expected behavior to produce test case specifications that can reveal discrepancies
between actual program behavior and the model.

Required Background

e Chapter 10
The rationale of systematic approaches to functional testing is a key motivation
for the techniques presented in this chapter.

e Chapters 12 and 13
The material on control and data flow graphs is required to understand Sec-
tion 14.4, but it is not necessary to comprehend the rest of the chapter.

14.1 Overview

Combinatorial approaches to specification-based testing (Chapter 11) primarily se-
lect combinations of orthogonal choices. They can accommodate constraints among
choices, but their strength is in systematically distributing combinations of (purport-
edly) independent choices. The human effort in applying those techniques is primarily
in characterizing the elements to be combined and constraints on their combination,
often starting from informal or semistructured specifications.

Specifications with more structure can be exploited to help test designers identify
input elements, constraints, and significant combinations. The structure may be explicit
and available in a specification, for example, in the form of a finite state machine or
grammar. It may be derivable from a semiformal model, such as class and object

245

246

Model-Based Testing

diagrams, with some guidance by the designer. Even if the specification is expressed
in natural language, it may be worthwhile for the test designer to manually derive
one or more models from it, to make the structure explicit and suitable for automatic
derivation of test case specifications.

Models can be expressed in many ways. Formal models (e.g., finite state machines
or grammars) provide enough information to allow one to automatically generate test
cases. Semiformal models (e.g, class and object diagrams) may require some human
judgment to generate test cases. This chapter discusses some of the most common
models used to express requirements specifications. Models used for object-oriented
design are discussed in Chapter 15.

Models can provide two kinds of help. They describe the structure of the input
space and thus allow test designers to take advantage of work done in software require-
ments analysis and design. Moreover, discrepancies from the model can be used as an
implicit fault model to help identify boundary and error cases.

The utility of models for generating test cases is an important factor in determining
the cost-effectiveness of producing formal or semiformal specifications. The return
on investment for model building should be evaluated not only in terms of reduced
specification errors and avoided misinterpretation, but also improved effectiveness and
reduced effort and cost in test design.

14.2 Deriving Test Cases from Finite State Machines

Finite state machines are often used to specify sequences of interactions between a
system and its environment. State machine specifications in one form or another are
common for control and reactive systems, such as embedded systems, communication
protocols, menu-driven applications, and threads of control in a system with multiple
threads or processes.

Specifications may be expressed directly as some form of finite state machine. For
example, embedded control systems are frequently specified with Statecharts, com-
munication protocols are commonly described with SDL diagrams, and menu driven
applications are sometimes modeled with simple diagrams representing states and tran-
sitions.

Sometimes the finite state essence of systems is left implicit in informal specifica-
tions. For instance, the informal specification of feature Maintenance of the Chipmunk
Web site given in Figure 14.1 describes a set of interactions between the maintenance
system and its environment that can be modeled as transitions through a finite set of
process states. The finite state nature of the interaction is made explicit by the finite
state machine shown in Figure 14.2. Note that some transitions appear to be labeled by
conditions rather than events, but they can be interpreted as shorthand for an event in
which the condition becomes true or is discovered (e.g., “lack component” is shorthand
for “discover that a required component is not in stock™).

Many control or interactive systems have a potentially infinite set of states. Fortu-
nately, the non-finite state parts of the specification are often simple enough that finite
state machines remain a useful model for testing as well as specification. For exam-
ple, communication protocols are frequently specified using finite state machines, often

Deriving Test Cases from Finite State Machines 247

Maintenance: The Maintenance function records the history of items undergoing
maintenance.

If the product is covered by warranty or maintenance contract, maintenance can
be requested either by calling the maintenance toll free number, or through the
Web site, or by bringing the item to a designated maintenance station.

If the maintenance is requested by phone or Web site and the customer is a US
or EU resident, the item is picked up at the customer site, otherwise, the customer
shall ship the item with an express courier.

If the maintenance contract number provided by the customer is not valid, the
item follows the procedure for items not covered by warranty.

If the product is not covered by warranty or maintenance contract, maintenance
can be requested only by bringing the item to a maintenance station. The mainte-
nance station informs the customer of the estimated costs for repair. Maintenance
starts only when the customer accepts the estimate. If the customer does not ac-
cept the estimate, the product is returned to the customer.

Small problems can be repaired directly at the maintenance station. If the main-
tenance station cannot solve the problem, the product is sent to the maintenance
regional headquarters (if in US or EU) or to the maintenance main headquarters
(otherwise).

If the maintenance regional headquarters cannot solve the problem, the product
is sent to the maintenance main headquarters.

Maintenance is suspended if some components are not available.

Once repaired, the product is returned to the customer.

Figure 14.1: Functional specification of feature Maintenance of the Chipmunk Web
site.

248 Model-Based Testing

NO
Maintenance

S b, s
p\o\k“ o N /(/SJ;”/)%Z"@S; return
G\ (\\‘J [(C ’5
e e s2c on’(’ec;(/reé‘ O’w%
538 MWy, Sty
S E S %

i i ‘(;; o n Cc .
Wait f_or Maintenance 3 2 8 = Wait for
returning (no warranty) gc Sa

e o =

4 Log

C, /}”e 3 '% Y 3

P 9 (o //O' g ==
(SR T £ 2, s S

% E 2 %6, C& VP
‘o =8 » 9\0\‘
Sy @

Wait for
acceptance

(maintenance
station)

repair completed—p» Repaired

A }
% &
% % \@Q
6\(/{) c_’)\\)
% S
component . o«
arrives (a) %é@’?‘ N
> N
&>
R
<
; S
Wait for : S
lack component (b (regional &
component @
headquarters) $
2

c
- 3
unable to repair o 28
(not US or EU resident) O/%o 20
component P °©

arrives (c) c

Repair
(main
headquarters)

Figure 14.2: A finite state machine corresponding to functionality Maintenance specified in Figure 14.1

Deriving Test Cases from Finite State Machines

249

T-Cover States numbers refer to
TC-1 0-2-4-1-0 Figure 14.2. For example,
TC2 0-5-2-4-5-6-0 TC-1 represents the path
TC-3 0-3-5-9-6-0 (0.2),(24), (4,1), (1,0).
TC-4 0-3-5-7-5-8-7-8-9-7-9-6-0

Table 14.1: A test suite satisfying the transition coverage criterion with respect to the
finite state machine of Figure 14.2

with some extensions that make them not truly finite state. Even a state machine that
simply receives a message on one port and then sends the same message on another
port is not really finite state unless the set of possible messages is finite, but is often
rendered as a finite state machine, ignoring the contents of the exchanged messages.

State-machine specifications can be used both to guide test selection and in con-
struction of an oracle that judges whether each observed behavior is correct. There
are many approaches for generating test cases from finite state machines, but most are
variations on a basic strategy of checking each state transition. One way to understand
this basic strategy is to consider that each transition is essentially a specification of a
precondition and postcondition, for example, a transition from state S to state 7 on
stimulus i means “if the system is in state S and receives stimulus i, then after reacting
it will be in state T.” For instance, the transition labeled accept estimate from state
Wait for acceptance to state Repair (maintenance station) of Figure 14.2 indicates that
if an item is on hold waiting for the customer to accept an estimate of repair costs, and
the customer accepts the estimate, then the item is designated as eligible for repair.

A faulty system could violate any of these precondition, postcondition pairs, so
each should be tested. For example, the state Repair (maintenance station) can be
arrived at through three different transitions, and each should be checked.

Details of the approach taken depend on several factors, including whether system
states are directly observable or must be inferred from stimulus/response sequences,
whether the state machine specification is complete as given or includes additional,
implicit transitions, and whether the size of the (possibly augmented) state machine is
modest or very large.

The transition coverage criterion requires each transition in a finite state model to
be traversed at least once. Test case specifications for transition coverage are often
given as state sequences or transition sequences. For example, the test suite 7-Cover
in Table 14.1 is a set of four paths, each beginning at the initial state, which together
cover all transitions of the finite state machine of Figure 14.2. T-Cover thus satisfies
the transition coverage criterion.

The transition coverage criterion depends on the assumption that the finite state
machine model is a sufficient representation of all the “important” state, for example,
that transitions out of a state do not depend on how one reached that state. Although it
can be considered a logical flaw, in practice one often finds state machines that exhibit
“history sensitivity,” (i.e., the transitions from a state depend on the path by which one
reached that state). For example, in Figure 14.2, the transition taken from state Wait
for component when the component becomes available depends on how the state was

A transition
coverage

250 Model-Based Testing

A single state path
coverage

A single transition
path coverage

A boundary interior
loop coverage

entered. This is a flaw in the model — there really should be three distinct Wait for
component states, each with a well-defined action when the component becomes avail-
able. However, sometimes it is more expedient to work with a flawed state machine
model than to repair it, and in that case test suites may be based on more than the
simple transition coverage criterion.

Coverage criteria designed to cope with history sensitivity include single state path
coverage, single transition path coverage, and boundary interior loop coverage. Each
of these criteria requires execution of paths that include certain subpaths in the FSM.
The single state path coverage criterion requires each subpath that traverses states at
most once to be included in a path that is exercised. The single transition path coverage
criterion requires each subpath that traverses transitions at most once to be included in
a path that is exercised. The boundary interior loop coverage criterion requires each
distinct loop of the state machine to be exercised the minimum, an intermediate, and the
maximum or a large number of times!. These criteria may be practical for very small
and simple finite state machine specifications, but since the number of even simple
paths (without repeating states) can grow exponentially with the number of states, they
are often impractical.

Specifications given as finite state machines are typically incomplete: They do not
include a transition for every possible (state, stimulus) pair. Often the missing transi-
tions are implicitly error cases. Depending on the system, the appropriate interpretation
may be that these are don’t care transitions (since no transition is specified, the system
may do anything or nothing), self transitions (since no transition is specified, the sys-
tem should remain in the same state), or (most commonly) error transitions that enter a
distinguished state and possibly trigger some error-handling procedure. In at least the
latter two cases, thorough testing includes the implicit as well as the explicit state tran-
sitions. No special techniques are required: The implicit transitions are simply added
to the representation before test cases are selected.

The presence of implicit transitions with a don’t care interpretation is typically
an implicit or explicit statement that those transitions are impossible (e.g., because of
physical constraints). For example, in the specification of the maintenance procedure
of Figure 14.2, the effect of event lack of component is specified only for the states that
represent repairs in progress because only in those states might we discover a needed
is missing.

Sometimes it is possible to test don’t care transitions even if they are believed to
be impossible in the fielded system, because the system does not prevent the triggering
event from occurring in a test configuration. If it is not possible to produce test cases for
the don’t care transitions, then it may be appropriate to pass them to other validation or
verification activities, for example, by including explicit assumptions in a requirements
or specification document that will undergo inspection.

!'The boundary interior path coverage was originally proposed for structural coverage of program control
flow, and is described in Chapter 12.

Testing Decision Structures

251

Terminology: Predicates and Conditions

A predicate is a function with a Boolean (True or False) value. When the input
argument of the predicate is clear, particularly when it describes some property of the
input of a program, we often leave it implicit. For example, the actual representation
of account types in an information system might be as three-letter codes, but in a spec-
ification we may not be concerned with that representation — we know only that there

is some predicate educational-account that is either True or False.

A basic condition is a single predicate that cannot be decomposed further.

A complex condition is made up of basic conditions, combined with Boolean con-

nectives.

The Boolean connectives include “and” (A), “or” (V), “not” (—), and several less

common derived connectives such as “implies” and “exclusive or.”

14.3 Testing Decision Structures

Specifications are often expressed as decision structures, such as sets of conditions on
input values and corresponding actions or results. A model of the decision structure
can be used to choose test cases that may reveal discrepancies between the decisions
actually made in the code and the intended decision structure.

The example specification of Figure 14.3 describes outputs that depend on type of
account (either educational, or business, or individual), amount of current and yearly
purchases, and availability of special prices. These can be considered as Boolean con-
ditions, for example, the condition educational account is either true or false (even
if the type of account is actually represented in some other manner). Outputs can be
described as Boolean expressions over the inputs, for example, the output no discount
can be associated with the Boolean expression

(individual account
A— current purchase > tier 1 individual threshold
A— special offer price < individual scheduled price)
Vo (business account

A— current purchase > tier 1 business threshold
A— current purchase > tier 1 business yearly threshold
A= special offer price < business scheduled price)

When functional specifications can be given as Boolean expressions, we can apply
any of the condition testing approaches described in Chapter 12, Section 12.4. A good
test suite should at least exercise all elementary conditions occurring in the expression.
For simple conditions we might derive test case specifications for all possible combina-
tions of truth values of the elementary conditions. For complex formulas, when testing
all 2" combinations of n elementary conditions is apt to be too expensive, the modified
decision/condition coverage criterion (page 12.4) derives a small set of test conditions
such that each elementary condition independently affects the outcome.

We can produce different models of the decision structure of a specification de-
pending on the original specification and on the technique we want to use for deriving

252

Model-Based Testing

Pricing: The pricing function determines the adjusted price of a configuration for a particular

customer. The scheduled price of a configuration is the sum of the scheduled price of
the model and the scheduled price of each component in the configuration. The adjusted
price is either the scheduled price, if no discounts are applicable, or the scheduled price
less any applicable discounts.
There are three price schedules and three corresponding discount schedules, Business,
Educational, and Individual. The Business price and discount schedules apply only if the
order is to be charged to a business account in good standing. The Educational price and
discount schedules apply to educational institutions. The Individual price and discount
schedules apply to all other customers. Account classes and rules for establishing business
and educational accounts are described furtherin [...].

A discount schedule includes up to three discount levels, in addition to the possibility of
“no discount.” Each discount level is characterized by two threshold values, a value for
the current purchase (configuration schedule price) and a cumulative value for purchases
over the preceding 12 months (sum of adjusted price).

Educational prices The adjusted price for a purchase charged to an educational account in good
standing is the scheduled price from the educational price schedule. No further discounts
apply.

Business account discounts Business discounts depend on the size of the current purchase as
well as business in the preceding 12 months. A tier 1 discount is applicable if the sched-
uled price of the current order exceeds the tier 1 current order threshold, or if total paid
invoices to the account over the preceding 12 months exceeds the tier 1 year cumulative
value threshold. A tier 2 discount is applicable if the current order exceeds the tier 2 cur-
rent order threshold, or if total paid invoices to the account over the preceding 12 months
exceeds the tier 2 cumulative value threshold. A tier 2 discount is also applicable if both
the current order and 12 month cumulative payments exceed the tier 1 thresholds.

Individual discounts Purchase by individuals and by others without an established account in
good standing is based on current value alone (not on cumulative purchases). A tier 1
individual discount is applicable if the scheduled price of the configuration in the current
order exceeds the tier 1 current order threshold. A tier 2 individual discount is applicable
if the scheduled price of the configuration exceeds the tier 2 current order threshold.

Special-price nondiscountable offers Sometimes a complete configuration is offered at a spe-
cial, non-discountable price. When a special, nondiscountable price is available for a
configuration, the adjusted price is the nondiscountable price or the regular price after
any applicable discounts, whichever is less.

Figure 14.3: The functional specification of feature Pricing of the Chipmunk Web site.

Testing Decision Structures 253

test cases. If the original specification is expressed informally as in Figure 14.3, we
can transform it into either a Boolean expression, a graph, or a tabular model before
applying a test case generation technique.

Techniques for deriving test case specifications from decision structures were orig-
inally developed for graph models, and in particular cause-effect graphs, which have
been used since the early 1970s. Cause-effect graphs are tedious to derive and do not
scale well to complex specifications. Tables, on the other hand, are easy to work with
and scale well.

The rows of a decision table represent basic conditions, and columns represent
combinations of basic conditions. The last row of the table indicates the expected
outputs for each combination. Cells of the table are labeled either True, False, or
don’t care (usually written —), to indicate the truth value of the basic condition. Thus,
each column is equivalent to a logical expression joining the required values (negated,
in the case of False entries) and omitting the basic conditions with don’t care values.”

Decision tables can be augmented with a set of constraints that limit the possible
combinations of basic conditions. A constraint language can be based on Boolean
logic. Often it is useful to add some shorthand notations for common combinations
such as at-most-one(Cl, ..., Cn) and exactly-one(Cl, ..., Cn), which are tedious to
express with the standard Boolean connectives.

Figure 14.4 shows the decision table for the functional specification of feature pric-
ing of the Chipmunk Web site presented in Figure 14.3.

The informal specification of Figure 14.3 identifies three customer profiles: ed-
ucational, business, and individual. Figure 14.4 has only rows Educational account
(EduAc) and Business account (BusAc). The choice individual corresponds to the
combination False, False for choices EduAc and BusAc, and is thus redundant. The
informal specification of Figure 14.3 indicates different discount policies depending
on the relation between the current purchase and two progressive thresholds for the
current purchase and the yearly cumulative purchase. These cases correspond to rows
3 through 6 of Figure 14.4. Conditions on thresholds that do not correspond to individ-
ual rows in the table can be defined by suitable combinations of values for these rows.
Finally, the informal specification of Figure 14.3 distinguishes the cases in which spe-
cial offer prices do not exceed either the scheduled or the tier 1 or tier 2 prices. Rows
7 through 9 of the table, suitably combined, capture all possible cases of special prices
without redundancy.

Constraints formalize the compatibility relations among different basic conditions
listed in the table. For example, a cuamulative purchase exceeding threshold tier 2 also
exceeds threshold tier 1.

The basic condition adequacy criterion requires generation of a test case specifi-
cation for each column in the table. Don’t care entries of the table can be filled out
arbitrarily, as long as constraints are not violated.

The compound condition adequacy criterion requires a test case specification for
each combination of truth values of basic conditions. The compound condition ade-

>The set of columns sharing a label is therefore equivalent to a logical expression in sum-of-products
form.

A basic condition
coverage

A compound
condition
coverage

254

Model-Based Testing

Education Individual
EduAc T T F F F F F F
BusAc - - F F F F F F
CP > CT1 | - - F F T T - -
YP>YT1 | - - - - - - - -
CP>CT2 | - - - - F F T T
YP>YT2 | - - - - - - - -
SP > Sc F T F T - - - -
SP > Tl - - - - F T - -
SP > T2 - - - - - - F T
Out Edu | SP | ND | SP | T1 | SP | T2 | SP
Business
EduAc - - - - - - - - - - - -
BusAc T T T T T T T T T T T T
CP>CT1 | F F T T | F F T T - - - -
YP>YTI | F F F F T T T T - - - -
CP>CT2 | - - F F - - - - T T - -
YP>YT2 | - - - - F F - - - - T T
SP > Sc T - - - - - - - -
SP>TIl - - T F T - - - - - -
SP > T2 - - - - - - F T F T |F T
Out ND |SP | T1 |SP|T1L |SP|T2|SP | T2 | SP | T2 | SP
Constraints
at-most-one(EduAc, BusAc) at-most-one(YP < YT1, YP > YT2)
YP>YT2=YP>YTI at-most-one(CP < CT1, CP > CT2)
CP > CT2 = CP > CTlI at-most-one(SP < T1, SP > T2)
SP>T2=SP>TI1
Abbreviations
EduAc Educational account Edu Educational price
BusAc Business account ND No discount
CP > CT1 Current purchase greater than threshold 1 T1 Tier 1
YP > YT1 Year cumulative purchase greater than threshold 1 || T2 Tier 2
CP > CT2 Current purchase greater than threshold 2 Sp Special Price
YP > YT2 Year cumulative purchase greater than threshold 2
SP > Sc Special Price better than scheduled price
SP>T1 Special Price better than tier 1
SP > T2 Special Price better than tier 2

Figure 14.4: A decision table for the functional specification of feature Pricing of the
Chipmunk Web site of Figure 14.3.

Testing Decision Structures 255

quacy criterion generates a number of cases exponential in the number of basic condi-
tions (2" combinations for n conditions) and can thus be applied only to small sets of
basic conditions.

For the modified condition/decision adequacy criterion (MC/DC), each column
in the table represents a test case specification. In addition, for each of the original
columns, MC/DC generates new columns by modifying each of the cells containing
True or False. If modifying a truth value in one column results in a test case specifi-
cation consistent with an existing column (agreeing in all places where neither is don’t
care), the two test cases are represented by one merged column, provided they can be
merged without violating constraints.

The MC/DC criterion formalizes the intuitive idea that a thorough test suite would
not only test positive combinations of values — combinations that lead to specified
outputs — but also negative combinations of values — combinations that differ from
the specified ones — thus, they should produce different outputs, in some cases among
the specified ones, in some other cases leading to error conditions.

Applying MC/DC to column 1 of Figure 14.4 generates two additional columns:
one for Educational Account = False and Special Price better than scheduled price
= False, and the other for Educational Account = True and Special Price better than
scheduled price = True. Both columns are already in the table (columns 3 and 2,
respectively) and thus need not be added.

Similarly, from column 2, we generate two additional columns corresponding to
Educational Account = False and Special Price better than scheduled price = True,
and Educational Account = True and Special Price better than scheduled price = False,
also already in the table.

Generation of a new column for each possible variation of the Boolean values in the
columns, varying exactly one value for each new column, produces 78 new columns,
21 of which can be merged with columns already in the table. Figure 14.5 shows a
table obtained by suitably joining the generated columns with the existing ones. Many
don’t care cells from the original table are assigned either True or False values, to
allow merging of different columns or to obey constraints. The few don’t-care entries
left can be set randomly to obtain a complete test case.

There are many ways of merging columns that generate different tables. The table
in Figure 14.5 may not be the optimal one — the one with the fewest columns. The
objective in test design is not to find an optimal test suite, but rather to produce a
cost effective test suite with an acceptable trade-off between the cost of generating and
executing test cases and the effectiveness of the tests.

The table in Figure 14.5 fixes the entries as required by the constraints, while the
initial table in Figure 14.4 does not. Keeping constraints separate from the table cor-
responding to the initial specification increases the number of don’t care entries in the
original table, which in turn increases the opportunity for merging columns when gen-
erating new cases with the MC/DC criterion. For example, if business account (BusAc)
= False, the constraint at-most-one(EduAc, BusAc) can be satisfied by assigning either
True or False to entry educational account. Fixing either choice prematurely may later
make merging with a newly generated column imp