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1 INTRODUCTION 

In the late ‘80s at CERN (Center for European Particle Physics) the new hypertext system for 
the Internet called World Wide Web was developed. Before that the information on the 
Internet was particularly difficult to access. The invention of hypertext system created links 
between related data sources, making information easier to access. The hypertext format got a 
name HTML (Hypertext Markup Language). Quite soon after that raised new idea of creating 
a virtual reality on the web. And finally in 1994 VRML (Virtual Reality Modeling Language) 
was announced in the World Wide Web conference in Geneva.  

The idea of navigating in 3D virtual reality means that the user uses provided controls to 
change the viewing conditions. In desktop 3D programs that means calculating the 3D 
projection of the scene on 2D display surface. This might work as well in the WWW-
environment. Although the data rate to be sent through the network would be extremely big. 
Especially when using the network through the telephone lines would take time and change 
the meaning of acronym WWW to “World Wide Wait”. That is why instead of sending a 
projection of the scene we could send an instruction to create the 3D-scene through the 
network and let your computer and VRML-browser do the actual work.  

The VRML-format is originally based on the format of Open Inventor by Silicon Graphics. It 
is object oriented. It has a lot of conversion programs and it is a simple ASCII file format.  
VRML has the most common aspects of Open Inventor. Namely:  

• Basic Shapes  
• Basic material properties  
• Basic transformations 
• Basic camera views 
• Basic texture-mapping  
• Basic lightning 

 
In this article we will concentrate on dealing with 3D modeling aspects: Geometry, color, 
shading and texture of object surface.  

1.1 VRML-FILE FORMAT 
 
As mentioned the VRML-code is an ASCII type code. It is highly object-oriented, meaning 
entities called objects includes properties connected with the object, events and 
transformations changing the state of the object. Also VRML is a hierarchical language. 

A VRML file consists of the following major functional components: the header, the scene 
graph, the prototypes and event routing. A VRML file always starts with the header. It can be 
in a following form:     

#VRML V2.0 <encoding type> [optional comment] <line terminator> 
 



Character # denotes usually a comment line and all characters after that will be ignored by 
the VRML-browser.  The “encoding type” for example “utf8” indicates how the internal 
characters in your VRML models are interpreted.  

After the header your VRML-model have to be presented as a “scene graph”, which contains 
nodes. Nodes describe objects and their properties. They are hierarchically grouped and they 
consist of visual presentation of an object as well as audio-properties which object might 
have. Also nodes keep inside the event generation mechanism. 

Prototypes allow the set of VRML node types to be extended by the user. Prototype 
definitions can be included in the file in which they are used or defined externally. With 
prototypes you can define new node types in terms of already defined “built-in” node types or 
prototypes.  What is essential is that all node type names should be unique in each VRML 
file. In a prototype interface declaration by using a PROTO statement you can define the 
event interface as well as default values for prototype’s fields.   

Each prototype instance can be considered to be a complete copy of the prototype, with its 
own fields, events and copy of the prototype definition. A prototyped node type is 
instantiated using standard node syntax. For example, as a following way: 

PROTO Cube [ ] { Box { } } 
 
In this example prototype has an empty interface declaration and it can be instantiated in 
scene graph as follows: 

Shape { geometry Cube { } } 
 
With the event routing mechanism you can build the connection between node generating an 
event and node receiving an event. So it is an interface of a model to interact with a user. 
Event routing gives you a mechanism to separate event from the scene graph hierarchy. Once 
generated, events are sent to their routed destinations in time order and processed by the 
receiving node. This processing can change the state of the node, generate additional events, 
or change the structure of the scene graph. The standard event routing has following 
structure: 

ROUTE <name>.<field/eventName> TO <name>.<field/eventName> 
 
Script nodes allow author-defined event processing. An event received by a Script node 
causes the execution of a function within a script. This is a way to create the dynamically 
changing VRML-model. Within a script you can dynamically direct events for any node 
existing in your model. The Script node can be defined as a following way:   

 
Script { 
      url [ "http://foo.com/myScript.js", 
      "javascript: function foo( ) { ... }" ] 
    } 

 

In this article we will concentrate on basic built-in construction models in VRML rather than 
event driven interface of the model. 



2 GEOMETRY  

 
VRML defines the unit of measure of the world coordinate system to be in meters.  The 
angles will be measured in radians instead of degrees, time in seconds and colors in RGB-
values with values between 0.0 and 1.0. In VRML-models a Cartesian, right-handed, three-
dimensional coordinate system will be used. By default, the viewer is on the Z-axis looking 
toward the origin in opposite direction of Z-axis.  The positive direction of the X-axis will be 
to the right and positive Y-axis is to straight up.  

In the node structure Shape nodes include two parts, namely geometry and appearance node. 
In this section we will concentrate on geometry nodes, appearance node will be discussed in 
following sections. 

Shape { 
appearance NULL 
geometry   NULL 
} 

 
The Shape node and the Background node are the only two nodes, which can be rendered i.e. 
projected on screen respect to viewing conditions. 

2.1 GEOMETRY NODES 
 
The VRML 2.0 defines the following primitive shapes: Box, Cone, Cylinder, and Sphere.  
More advanced shapes are: Elevation Grid, Extrusion, IndexedFaceSet, IndexedLineSet 
and PointSet. The values or properties of several geometry nodes can contain property nodes 
such as Coordinate, Color, Normal and TextureCoordinate. The geometric property nodes 
are defined as individual nodes so that sharing is possible between different geometry nodes 
inside Scene graph.  

The Coordinate node presents a set of 3D point coordinate values. The single coordinate 
values are separated by space and points are separated by commas. The Coordinate node is 
used in  PointSet, IndexedLineSet and IndexedFaceSet geometry nodes. 

Coordinate { point [ 0 0 0, 1 1 1] } 

The structure of the Color node is similar. Single color values (0.0 - 1.0) are separated by 
space and indexed color sets are separated by commas. This node appears inside PointSet, 
IndexedLineSet, IndexedFaceSet and ElevationGrid. The Normal node appears in 
IndexedFaceSet and ElevationGrid and it presents the surface unit normal vectors in 
corresponding surface point. The syntax of the Normal node follows the previous formula. 

 

Color { color [ ] } 
Normal{ vector[ ] } 
 



The TextureCoordinate node instead presenting a property in a single surface point presents 
the correspondence between texture patch coordinates, IndexedFaceSet and ElevationGrid 
points. More detailed presentation of texture mapping will be shown in the following 
sections. 

2.2 PRIMITIVE SHAPES 
 
The whole idea with VRML is to provide the geometric data as compact form as possible. In 
these sense parametric primitives as: cubes, cylinders, cones and spheres are essential for that 
purpose. They provide all information to construct the object within few parameters. 

 
Image 2.1 Box { size 2.0 2.0 2.0 } 
 
 
 
 
 
 

 
Image 2.2 Sphere { radius 1.0 } 
 
 
 
 

 
Image 2.3 Cylinder { radius 1.0   
                           height 2.0   
                                   side TRUE   
                           bottom TRUE   
             top TRUE  
                          } 

 
Image 2.4 Cone { bottomRadius  1.0 
                              height 2.0 
                              side TRUE               

      bottom TRUE     } 

 

The additional parameters side and bottom with Cone and Cylinder nodes define if the 
created object is a solid model or just an object having an indefinitely thin surface. If both 
parameters are set TRUE, which is also default value, the object is considered as closed 
object. In an opposite case object is considered to be open depending the parameter which is 
set as FALSE. 



2.3 ADVANCED STRUCTURES 
 
More complicated surfaces need different type of data structures. Parametric surface 
structures, as splines would be appropriate to present uneven variation in an object shape. 
The NURBS (nonuniform rational B-splines) would store surface parameters in very compact 
way. The reason that these structures are not included in VRML, even they are widely used in 
CAD-based designing, is that VRML-models are supposed to be viewed with real-time 
speed. Rendering a NURBS based structures need a lot more computing than wireframe-type 
surface models. 

2.3.1 POINTSET 
 
Perhaps the simplest structure to apply for uneven spaced points is a PointSet, which only 
can present an unevenly spaced 3D point cloud. The structure does not provide any tools to 
present any topological information. Points can be visually separated from each other by 
color indexing. 

Shape{  appearance Appearance { material Material {emissiveColor 1 1 1 }} 
        geometry PointSet { 
                coord Coordinate {point [  
                                        1.0 1.0 1.0 
                                        -1.0 -1.0 -1.0 
                                        1.0 -1.0 1.0 
                        ] 
                } 
                color Color { color [ 
                                        1.0 1.0 1.0 
                                        1.0 1.0 1.0 
                                        1.0 1.0 1.0 
                        ] 
                } 
        } 
 

2.3.2 INDEXEDLINESET 
 
By using IndexedLineSet node structures you can create 3D polylines. The structure includes 
topology information in separate field so the point coordinates have to be defined only once. 
The point coordinates will be defined in a local coordinate system. 

 
Image 2.5 IndexedLineSet 

Shape{  
 appearance Appearance { 
          material Material {emissiveColor 1 1 1 }} 
 geometry IndexedLineSet { 
            coord Coordinate { 

point [ 0 0 0, 1 0 0, 1 1 0, 0 1 0 ] } 
            coordIndex [0 1 2 3 0 ] 
            color Color { color [1 0 0, 0 1 0, 0 0 ]} 
                colorIndex [0 1 2 0 1 ] 
                colorPerVertex TRUE 
        }   } 



  
The Coordinate field specifies the point coordinates on polyline and coordIndex field 
indicated in which order lines are connected. With such a structure you are able to create set 
of non-connecting line sets. To separate the sets of indexes from two adjacent polylines the 
marker -1 is used, i.e. an index of -1 indicates that the current polyline has ended and the next 
one begins. 

The field colorPerVertex is a Boolean value, which indicates if the color specified in color 
field will be applied to each vertex. If the value is set TRUE and the line is a polyline, in a 
case that succeeding vertexes have be assigned different colors, the color will be applied as a 
gradually changing from vertex to an other. In an opposite situation, color will be assigned to 
whole polyline indicated  by the first index value in colorIndex field.  

2.3.3 INDEXEDFACESET 
 
The IndexedFaceSet node has a similar type of structure as IndexedLineSet. The Coordinate 
field specifies a set of 3D points. The planar faces in the local coordinate system are then 
specified with in a coordIndex field. The list of coordinate indexes defines the faces to be 
drawn. To separate the indexes from a face the marker -1 is used, i.e. an index of -1 indicates 
that the current face has ended and the next one begins. Because the faces are always defined 
by closed polylines, you don't need to define the first point twice. 

Shape{   
    appearance Appearance { material Material { }} 
    geometry IndexedFaceSet { 
      coord Coordinate { point [-1 -1 -1, 1 -1 -1, 

      1 1 -1, -1 1 -1, 
        -1 -1  1, 1 -1  1, 

      1 1  1, -1 1  1 ] } 
         coordIndex  [3 2 1 0 -1, 4 5 6 7 –1, 

 0 1 5 4 -1, 5 1 2 6 -1, 
   7 6 2 3 -1, 0 4 7 3 ] 
         color Color { color [1 0 0, 0 1 0, 0 0 1]} 
        colorIndex [0 2 1 0 1 0] 
        colorPerVertex FALSE        
        creaseAngle 0 
        solid TRUE 
        ccw TRUE 
        convex TRUE 
        } 
} 
 
 

 
Image 2.6 IndexedFaceSet 

 
 

The color indexing follows the same approach as IndexedLineSet node with an exception 
that indexes denotes the face sets instead of lines. The creaseAngle denotes how the edges 
between adjacent faces are handled. If the angle between these two faces is smaller than 
given threshold, the edge will be visible. If the angle is wider than the junction between the 
adjacent faces, the edge will be drawn smoothly by the browser. 

The Boolean flag ccw indicates if the coordinates in coordIndex field are given in 
counterclockwise order and the solid flag tells if the both sides of the face should be visible 
or not. 



The Convex field denotes if the faces defined in the coordIndex field are convex or not. 
VRML can only handle convex faces. With concave faces the browser has to create small 
faces inside the defined face and this will hinder the processing. 

2.3.4 ELEVATIONGRID 
 
The ElevationGrid node can be used in a similar way as the previous IndexdFaceSet node. 
With the ElevationGrid node equally spaced data points are used instead of a coordinate list. 
This kind of approach decreases amount of the data to be transmitted.  

 
Shape {  appearance Appearance {material Material { 
}} 
            geometry ElevationGrid{ 
                       xDimension 4  
                       zDimension 4 
                       xSpacing 1 
                       zSpacing 1 
                       height [ 0 0 0 0, 0 1 1 0, 
                                    0 1 1 0, 0 0 0 0] 
                                ccw TRUE 
                              solid TRUE  
                            creaseAngle 0  }}  

Image 2.7 ElevationGrid 

 
The grid is determined on XZ-plane and xDimension and zDimension fields determine the 
number of points included in the grid. The xSpacing and zSpacing fields specify the real 
extent of the grid by determining the equal spaces between adjacent surface points. The 
height field presents the height values in each grid node from left to right and from top to 
bottom. 

As can be seen from the example of ElevationGrid, the symmetric object has not been 
constructed, as it should. VRML defines the form of the object and the browser has to 
construct and render it based on the code. Unfortunately the browser used here has not 
succeeded in this task as can be seen in the picture.  

Both IndexedFaceSet and ElevationGrid node support also TextureCoordinate and Normal 
node structures. The TextureCoordinate node handles how the texture elements are mapped 
on the surface. Normal node indicates the surface normal direction with unit normal vectors 
in surface points or in elevation grid nodes. 

2.3.5 EXTRUSION 
 
 The IndexedFaceSet is a fine tool for modeling complicated surfaces. The problem with 
such a structure is that you need to define a lot of points to present the surface precisely. The 
fascinating approach is to apply defined 2D-plane section and move it around the surface of 
the object. The nominal shape of the plane patch and route how the plane shape has been 
applied on the surface will be stored in this structure. 

The crossSection field defines the 2D-shape with 2D vectors forming a cross section of the 
shape. The cross section will be determined on the XZ-plane. In a case of cube the cross 
section shape is a square. 



 

Image 2.8 Moving a cross section along the spine. [Fernandes, 1998] 

 

The spine defines the path that the cross section will travel to create the shape and in 
orientation field you can determine the orientation of the shape in different parts of the path. 
Otherwise it will follow the tangent of the spine path. By default the orientation of the shape 
coincide with Y-axis. 

 
Shape {  appearance Appearance {material Material { 
}} 
               geometry Extrusion{ 
                    crossSection [ -1 -1, -1 1, 1 1, 1 -1, -1 -1] 
                     spine [0 -1 0, 0 1 0] 
                     orientation [0 0 1 0, 0 0 1 0] 
                      scale [1 1, .5 .5] 
                       beginCap FALSE 
                       endCap FALSE 
                        ccw TRUE 
                        convex TRUE 
                        solid FALSE 
                        creaseAngle 0 
                    } 
         } 

 

Image 2.9 Extrusion 

 
 



With scale values you can change the size of the shape in different parts of the spine. 
Boolean flags beginCap and endCap determine whether the shape on beginning and end of 
the spine will be visible. Also a solid field conjunction with beginCap and endCap will effect 
if the object constructed is a solid or a tube kind of object. 

The Extrusion type of object construction is similar kind of method as “sweeping”, which is 
widely used in CAD-based modeler. 

2.4 COMPLICATED MODELS 
 
Until now we have only talk about single objects in their local coordinate system.  How shall 
we tie up the objects to present the whole scene? The grouping is the key word. The group 
node lets you treat a set of nodes as a single entity. It is a kind of encapsulation, where you 
can tie up all those nodes together which you would like to have same properties: same 
material node or same transformation. 

Group {  
   children [  
     Shape { 
       appearance Appearance {material Material { }}  
        geometry Cylinder {  
                    height 5.0  
                    radius 0.5  
               }  
          }  
      Shape { 
        appearance Appearance {material Material { }}    
        geometry Sphere {}         }  
     ]  
}  

 

Image 2.10 Grouped objects  

 
The Group node field children contains all the nodes included in the group. The bboxCenter 
specifies the center of a box that encloses the nodes in the group. The value for this field is a 
3D point. The bboxSize specifies the size of a box that encloses the nodes in the group. By 
default this field has a value of -1 -1 -1, which implies that no box is defined. The values for 
this field must be greater than or equal to zero. If the children nodes do not fit inside the box 
defined the results are undefined. But the values of these two fields are optional and the 
browser can understand the structure without them. They only provide a tool for optimizing 
the performance of the browser. 

The Transform node is a group node. This node allows you to define a new local coordinate 
system for the nodes within the group. You can apply Scale, Rotation and Translation 
transformation to all the nodes inside a Transform group. The Transform group defines a 
transformation between a local coordinate system and an outer coordinate system. 

 The scale specifies a 3D scaling transformation and scaleOrientation field defines a rotation 
of the axes. The center field defines the center of the scaling transform. The rotation field 
defines a rotation on an arbitrary axis. A vector and an angle define a rotation uniquely. The 
3D vector specifies the axis of rotation, where the angle specifies the amount to rotate in a 
counterclockwise direction. The translation field defines the origin of the local coordinate 



system respect to the outer coordinate system. The syntax of the Transform node is 
following: 

Transform {   
                      scale 1 1 1   
                      scaleOrientation 0 0 1 0   
                      center 0 0 0  
                      rotation 0 0 1 0  
                      translation 0 0 0  
                      bboxCenter 0 0 0   
                      bboxSize -1 -1 -1  
                      children []  
                 } 
 

The result of transformation of a 3D object depends on which order transformations are 
made. In VRML the order is Scale => Rotation => Translation. 

VRML also allows you to define a set of nodes, or a node with particular field values, as a 
new node type. This is called instancing a node. This has clear advantages when, for instance, 
you would like to repeat the object in your scene multiple times. Defining the node once and 
using it multiple times you have to change only the node, which is being defined instead of 
changing all occurrences of the defined node. The mechanism for instancing uses DEF and 
USE structure.  

Shape { appearance   
     DEF common_appearance Appearance {   
          material Material {diffuseColor 1 0 0}      }   
     geometry Sphere { }   }   
Transform {  
     translation -2 0 0   
     children [  
          Shape {  
               appearance USE common_appearance   
               geometry Cone { }  
          }      ]    } 
 

In many cases the VRML models are actually build in some specialized 3D modeling 
software and then converted to VRML-code. The converters transform the model into VRML 
in predetermined way. Hardly any of those modelers can though add any interaction to the 
model, even though it is supported by VRML. Also geometrical conversion can apply in 
different ways by using different structures to present the model. 

The presented ideas in this section have been based on the following references: [Fernandes, 
1998; Carey et al. 1997; Fox, Shaddock, 1996].    



3 COLORS AND MATERIALS 

 
The VRML uses the RGB color model (Red, Green, and Blue). All values are between 0.0 
and 1.0. For instance (0 0 0) is black, (0 0 1) is blue, and (1 1 1) is white (Image 3.1). For a 
single geometric shape there is a Color node, where multiple colors can be defined for 
example for an indexed set of faces (IndexedFaceSet).  

Color {  
  exposedField MFColor color  []         # [0,1] 
} 
 
For example, if six colors are defined, the Color node looks like this: 

color Color {    # Six colors: (blue, green, cyan, red, magenta and yellow) 
        color [ 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0 ] 
      } 
 
Now if an IndexedFaceSet of 12 faces is defined, these colors can be added to every face 
with the color index: 

colorIndex [ 0, 1, 1, 0, 2, 3, 3, 2, 4, 5, 5, 4 ]  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image 3.1 The RGB color model, where R = red, G = green, B = blue, M = magenta, C = 
cyan, Y = yellow, Bk = black and W = white. [Hearn, Baker, 1986] 
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If only Color node is used to present an object, the result is not necessarily very realistic one. 
In VRML there is no possibility to chose material like “steel”, “rubber”, “wood” etc. Instead 
of those only colors, light reflections and transparency are used to simulate all the materials. 
For this VRML has a Material node that has six fields: diffuseColor, emissiveColor, 
ambientIntensity, shininess, specularColor, and transparency. All of them affect also to the 
color presentation.  



The ambientIntensity: This field specifies the amount of ambient light reflected by the 
object. There is more information about ambient light in section 4.1. Ambient color is 
calculated as ambientIntensity × diffuseColor.  

The diffuseColor: This field defines the color of the object. The idea is that when the light 
ray strikes the surface, some parts of the light’s color spectrum are absorbed. For example a 
blue surface absorbs all but the blue part of the color spectrum. This field is however ignored 
when using colored textures. The diffuseColor field reflects all VRML light sources. It 
depends on the angle of the surface with respect to the light source. The more directly the 
surface faces the light, the more diffuse light reflects. In section 4 there is more about 
lightning. 

 The specularColor: In this field the color of the shiny spots of the object can be defined. A 
brightly shining spot makes an object to look like a polished one. The specularColor is added 
when the angle from the light to the surface is close enough to the angle from the surface to 
the viewer.   

The shininess: Shininess is often associated with smooth surfaces. When shininess value is 
low, glow on the object is soft and covers bigger area. Bigger shininess values cause sharper 
and smaller highlights.  

The emissiveColor: With this field it is possible to model glowing objects. This possibility 
can be useful for example for displaying pre-lit models when the light energy of the room 
needs to be computed explicitly or for displaying scientific data [Carey et al.,1997]. 

The transparency: This field controls the transparency of the object. It has a fractional value 
between 0 and 1. A value of 0.0 sets the related object completely opaque and a value of 1.0 
makes the object completely transparent what means that the object is totally invisible. 
Transparency is calculated as a percentage mixture between the color of the object and the 
color of the background behind it.  

Syntax in the Material node is: 

      Material {   
         diffuseColor 0.8 0.8 0.8    # [0,1] 
            ambientIntensity 0.2    # [0,1] 
            emissiveColor 0.0 0.0 0.0    # [0,1] 
            specularColor 0.0 0.0 0.0   # [0,1] 
            shininess 0.2     # [0,1] 
            transparency 0.0    # [0,1]  
     } 
 
All the "Color" fields in the Material node have an RGB value associated that must be 
between 0.0 and 1.0.  

 

 
 
 



4 LIGHTING 

 
Lightning determines how much light strikes an object and partially how much should be 
reflected. Also the Material node, that was introduced in previous section, affects to 
reflections. In the VRML there are four different light sources: ambient light, spot lights, 
directional lights and point lights. Furthermore, it is possible to switch the lightning off. Then 
all objects are painted with RGB colors without any modulation by the lightning.  

A precise description of the VRML's lighting equations can be found from International 
Standard ISO/IEC 14772-1:1997 [Carey et al., 1997] in section 4.14. 

4.1 AMBIENT LIGHT 
 
An ambient light coats all objects in a scene with the same level of light. In the real world 
there are billions of light rays bounce randomly from one surface to another. That is still too 
much for computers to calculate quickly. Therefore light ray bouncing is simulated (and 
greatly simplified) with ambient light. The VRML allows defining ambient light separately 
for every object. 

The ambient light prevents areas of scene that are in shadow from rendering completely 
black. If ambient light level is too high, all the objects will be evenly lighted and they look 
flat and one-dimensional.  

4.2 POINT LIGHT 
 
Point lights radiate equally in all directions like the sun, lamps and matchsticks (Image 4.1). 
Light rays travel in straight lines until they meet a surface. In the VRML 2.0 there is also 
possibility to define attenuation for light rays and radius within the objects are illuminated. A 
3D location of a point light source is defined in the local coordinate system. Point lights are 
defined in the PointLight node.  

 

 
Image 4.1 Point Light. [Fernandes, 1998] 

 
 



Syntax for point light is:   
PointLight {   

        on TRUE     
             intensity 1    # [0,1] 
          ambientIntensity 0   # [0,1] 
           color 1 1 1    # [0,1] 
           location 0 0 0    # [- ∞ , ∞ ] 
          attenuation 1 0 0   # [0, ∞ ] 
           radius 100    # [0, ∞ ] 
    } 
 
 

4.3 SPOT LIGHT 
 
The SpotLight node defines a light source that emits light from a specific point and is pointed 
at a particular direction within a solid angle (Image 4.2, A). The cone of light is defined by 
two fields: the cutOffAngle that defines the angle of the cone in radians; and the beamWidth 
that defines the angle of an inner cone within the light intensity is full and constant (Image 
4.2, B). Between the inner cone and the outer cone the intensity of the light rays decrease. 
Precise equations for this can be found from International Standard ISO/IEC 14772-1:1997 
[Carey et al.,1997] in section 6.45. If the beamWidth is larger than the cutOffAngle then the 
light has a constant intensity within the cone. The radius node defines the maximum distance 
from location that may be illuminated by the light source. 

 

B) 

Image 

 

A)
 
4.2 A) Spot light and B) the cone of the light. [Fernandes, 1998; Carey et al.,1997] 



Syntax for spot light is:   

    SpotLight {   
           on TRUE   
           intensity 1    # [0,1] 
             ambientIntensity 0   # [0,1] 
           color 1 1 1    # [0,1] 
          location 0 0 0    # [- ∞ , ∞ ]  
          direction 0 0 0    # [- ∞ , ∞ ] 
           attenuation 1 0 0   # [0, ∞ ] 
            radius 100    # [0, ∞ ] 
          cutOffAngle 0.78   # [0,π /2] 
            beamWidth 1.57    # [0,π /2] 

} 
 

4.4 DIRECTIONAL LIGHT 
 
The DirectionalLight node defines a directional light. The light rays are emitted along 
parallel rays from an infinite distance away (Image 4.3). Unlike for point lights or spot lights 
there are no attenuation or radius available for directional light. This light illuminates only 
the nodes, which are defined within the same group. Objects placed outside the group are not 
lit. [Fernandes, 1998; Carey et al.,1997] 

 

 
Image 4.3 Directional light. [Fernandes, 1998] 

 
Syntax for directional light is:   
 
     DirectionalLight {  

ambientIntensity 0  # [0,1] 
           color 1 1 1    # [0,1] 
           direction 0 0 –1  # [- ∞ , ∞ ] 
           intensity 1  # [0,1] 
  on TRUE  
    } 
 

4.5 SCANLINE RENDERING 
 
The VRML browsers use scanline rendering. In scanline rendering the path of the light ray is 
traced from the light source to the object and back. So, there are no interactions between 
objects. That is why the VRML can not truly reproduce reflections, shadows or refraction. 
[Fox, Shaddock, 1996] 



5 SHADING 

Shading polygonal models provide increasing levels of realism. Shading determines how the 
colors are spread across the surface. Three main methods are flat shading, Gouraud shading 
and Phong shading. Phong-shaded models are the most photorealistic ones. Unfortunately 
calculation time increases when more detail are added. This is one reason why VRML worlds 
still look quite unrealistic. The type of shading is depended on the browser but if an object is 
going to be shaded by having lights shine on it, it must have a Material node defined as part 
of its appearance.       

5.1 FLAT SHADING 
 
Flat shading is the easiest way to assign color to the faces of polygons. However, because the 
entire face is given a single color, objects look entirely flat and so the result looks unrealistic. 
In flat shading, all the points on one face are oriented in the same direction. This direction of 
the face is called surface normal (Image 5.1). If light sources affect so that all differently 
oriented polygonal surfaces are shaded differently, the result is more realistic. On polygons 
that lie on flat surfaces, flat shading is very useable. Unfortunately there are rarely perfectly 
flat surfaces in nature and there can be even millions of surface normals in one surface.    
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Image 5.1 A) Surface normals on flat faces. B) Some surface normals on a curved surface.  

 

5.2 GOURAUD SHADING 
 
With the Gouraud shading it is possible to present more realistic curved surfaces compared to 
the flat shading. In the Gouraud shading intensity discontinuities between adjacent planes of 
a surface representation are removed. The idea, how to compute the normal at one vertex, is 
to average the normals at all the patches sharing this particular vertex (Image 5.2). The color 
of the faces is interpolated between the vertexes so the colors blend smoothly together. A 
more detailed description about this color interpolation can be found from book Computer 
Graphics by Hearn and Baker [Hearn, Baker, 1986] pages 289-291. The results are quite 
nice looking and computational time is relatively small. However, if compared to the flat 
shading, the Gouraud shading is more time consuming.   

 
 
 



 
 
 
 
 
 

P 

Image 5.2 In the Gouraud shading normal vector at the vertex point P is calculated as the 
average of the surface normals for each plane. [Hearn, Baker, 1986]  

 
The Gouraud shading has also some disadvantages. Especially highlights on the surface are 
sometimes distorted. Furthermore the linear intensity interpolation can cause bright or dark 
intensity streaks on the surfaces. These unpleasant effects can be reduced by using a greater 
number of polygon faces or by using completely other method. [Hearn, Baker, 1986] 

5.3 PHONG SHADING 
 
The Phong shading provides some improvements to the Gouraud shading. In Phong shading 
the colors are not interpolated but the normals. At each point on the scan line (Image 5.3) is 
the interpolated normal and the final color for a point is computed from it. This method 
produces great results but is very slow. [Hearn, Baker, 1986] 
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Image 5.3 A scan line is used for interpolating shading. [Hearn, Baker, 1986] 



6 TEXTURE MAPPING IN VRML 2.0 

 
Texture mapping in VRML is basically the same as texture mapping in all other areas of 3D 
graphics. It is all based on the same fundamental concepts. 
 
The Texture Nodes in VRML 2.0 are: 
 
ImageTexture: defines a still texture map using an image file.  

MovieTexture: defines a moving texture map using a movie file.  

PixelTexture: defines a still texture map made from explicit pixel values.  

TextureTransform: defines a 2D transformation applied to texture coordinates.  

Appearance: where the texture nodes live.  

Shape: where the Appearance node lives.  

TextureCoordinate: defines a set of 2D coordinates to be used to map textures to the vertices 
of subsequent geometry nodes like IndexedFaceSet or ElevationGrid. 

 
In the VRML 2.0 format, the Texture node exists as part of an Appearance node.  Material, 
texture, and texture transform are always related to one another. Also, the Appearance node 
exists inside of a Shape node. This associates a specific appearance with a specific 
geometrical object (in the example below, a cube). No other object in the file will have this 
appearance unless specified by the programmer. 

 
This example maps the given image file (somefile.jpg) onto a cube.  
 
#VRML V2.0 utf8 
Group { 
  children      Shape { 
    appearance  Appearance { 
      texture ImageTexture { 
        url     [ "somefile.jpg" ] 
      } 
    } 
    geometry Box { } 
  } 
} 
 
 
 
 
 



 

6.1 SIMPLE SHAPES 
 
Here a sphere, a cone, a cylinder and a box may be seen with applied image textures.  
 
The sphere looks like the map has been "shrink wrapped" around it. The cone and the 
cylinder stretch the map around their vertical sides and place cut-outs of the map on their flat 
ends. The cube gets a full copy of the map on each of its six faces.  

Image 6.1 This is texture mapping at the most basic level.  

 

6.2 TEXTURES APPLIED ALONG A MATERIAL 
 
Texture images may be one component (greyscale), two component (greyscale plus 
transparency), three component (full RGB color), or four-component (full RGB color plus 
transparency). An ideal VRML implementation will use the texture image to modify the 
diffuse color and transparency of an object's material (specified in a Material node), then 
perform any lighting calculations using the rest of the object's material properties with the 
modified diffuse color to produce the final image. The texture image modifies the diffuse 
color and transparency depending on how many components are in the image, as follows:  

1. Diffuse color is multiplied by the greyscale values in the texture image.  
2. Diffuse color is multiplied by the greyscale values in the texture image; material 

transparency is multiplied by transparency values in texture image.  
3. RGB colors in the texture image replace the material's diffuse color.  
4. RGB colors in the texture image replace the material's diffuse color; transparency values 

in the texture image replace the material's transparency.  
 

6.3 THE APPEARANCE NODE 
 
The Appearance node is called from the appearance field of a Shape node. This is where most 
of the nodes that effect the way an object looks are kept. It's not really a texture node, but 
since it's where our texture nodes live, we should discuss it briefly. Here is a small sample: 



 
Appearance { 
  exposedField SFNode material          NULL 
  exposedField SFNode texture           NULL 
  exposedField SFNode textureTransform  NULL 
} 
 
As you can see, it has three fields; material, texture, and textureTransform. These fields take 
a SFNode as a value. This means that instead of a numerical value, these fields take another 
node as a value. Also, these are exposedFields so they can be changed from a script.  

The material field is the home of the Material node. This node allows you to set color, 
transparency, shininess, etc. Our concern however, is with the other two fields. The syntax is 
a little confusing at first because the field names are very similar to the names of the nodes 
that go in them. For instance, to use a TextureTransform node, the syntax would look 
something like this...  

        Appearance { 
         ... 
          textureTransform TextureTransform { 
            ... 
          } 
        } 
 
The texture field is where ImageTexture, MovieTexture, and PixelTexture nodes go. You can 
use any of these nodes here, but you can only use one texture node per object. If you need 
part of an object textured with an image and another part textured with a movie file or 
another image, you'll have to break up your object into separate parts and map them 
individually.  

The textureTransform field takes the TextureTransform node as it's value. You can only have 
one set of transforms per texture map.  

6.4 THE THREE TEXTURE NODES 
 
In the VRML 2.0 - the ImageTexture node maps the still images and the PixelTexture node 
maps arrays of pixels. In addition to images and pixels, VRML 2.0 has a third node for 
mapping movie files onto objects - the MovieTexture node.  

6.5 COMMON GROUND 
 
There are two basic fields that the Texture nodes have in common: the URL field and the 
Repeat field.   
 

6.6 THE IMAGETEXTURE NODE 
 
The ImageTexture node defines a texture map by specifying an image file and general 
parameters for mapping to geometry. Texture maps are defined in a 2D coordinate system, (s, 



t), that ranges from 0.0 to 1.0 in both directions. The bottom edge of the image corresponds to 
the S-axis of the texture map, and left edge of the image corresponds to the T-axis of the 
texture map. The lower-left pixel of the image corresponds to s=0, t=0, and the top-right pixel 
of the image corresponds to s=1, t=1. 

 

Image 6.2 

 
The syntax is simple: 
 
ImageTexture { 
 
exposedField MFString url     [] 
   field        SFBool   repeatS TRUE 
   field        SFBool   repeatT TRUE 
} 
 
ImageTexture is made up completely of the two fields url and repeat. So the most basic use of 
ImageTexture would look something like this...  

        ImageTexture { 
          url "someimage.jpg" 
        } 
 

6.7 THE PIXELTEXTURE NODE 
 
The PixelTexture node defines a 2D image-based texture map as an explicit array of pixel 
values and parameters controlling tiling repetition of the texture onto geometry.  

Texture maps are defined in a 2D coordinate system, (s, t), that ranges from 0.0 to 1.0 in both 
directions. The bottom edge of the pixel image corresponds to the S-axis of the texture map, 
and left edge of the pixel image corresponds to the T-axis of the texture map. The lower-left 
pixel of the pixel image corresponds to s=0, t=0, and the top-right pixel of the image 
corresponds to s=1, t=1. 

It is same as ImageTexture node, the only difference is that you define the image in your 
code in a matrix form instead reading from a file.  

        PixelTexture { 



          exposedField SFImage  image      0 0 0 
          field        SFBool   repeatS    TRUE 
          field        SFBool   repeatT    TRUE 
        } 
 
Sometimes you may see PixelTextures referred to as "inline textures".  
 

6.8 THE MOVIETEXTURE NODE 
 
The MovieTexture node extends the texture mapping capabilities of VRML 2.0 by giving us 
the ability to make them move.  

MovieTexture { 
  exposedField SFBool   loop             FALSE 
  exposedField SFFloat  speed            1 
  exposedField SFTime   startTime        0 
  exposedField SFTime   stopTime         0 
  exposedField MFString url              [] 
  field        SFBool   repeatS          TRUE 
  field        SFBool   repeatT          TRUE 
  eventOut     SFFloat  duration_changed 
  eventOut     SFBool   isActive 
} 
 
The key field here is the url which is where the name of the movie file goes.  

6.9 THE TEXTURETRANSFORM NODE 
 
The TextureTransform node gives us the ability to position the texture map on the object with 
a great deal of precision. Here is the syntax:  

 
TextureTransform { 
  exposedField SFVec2f center      0 0 
  exposedField SFFloat rotation    0 
  exposedField SFVec2f scale       1 1 
  exposedField SFVec2f translation 0 0 
} 
 
In the interest of accuracy, the TextureTransform node performs its transformations on the 
texture coordinates rather than on the texture itself.  

The four fields that give us our texture transformations are center, rotation, scale, and 
transform. 

 

  



6.10  USING THE TEXTURECOORDINATE NODE TO MAP     
COMPLEX OBJECTS 

 
The VRML 2.0 browser should map polygonal objects using the object's bounding box (an 
imaginary box that completely contains the object within it). What we need is a way to 
explicitly define how the texture map will be placed on the object. Placing textures on 
complex polygonal objects is what the TextureCoordinate node is all about. Node looks like 
this: 

TextureCoordinate { 
  exposedField MFVec2f point  [] 
} 
 
The TextureCoordinate node gives us a way to "hang" a texture on an object by connecting 
each vertex in the object with a corresponding u,v value on the texture map.  

An example can be seen below.  

      Image 6.3 Textured Complex Shaped 

 

6.11  INSTANCING TEXTURES WITH DEF AND USE 
 
DEF and USE are the two declarations that allow us to instance things. Instancing allows us 
to define a chunk of VRML once (using DEF) and then reuse it (with USE) throughout the 
file. Instancing gives us a convenient way to duplicate things throughout theVRML file. It 
could result as a faster download and some memory savings.  

6.12  DISCUSSION 
 
Although, as it is said in the beginning of this chapter, the fundamentals of texture mapping 
in VRML is not different then in the computer graphics, the mapping science’s nature leads 
us to analyze the accuracy of images used for texture-mapping purposes. In this concept, the 
question is mostly before ‘importing’ the images to VRML file to make ‘photo-realistic’ 
looks. Current VRML browsers do not have many interactive utilities as in CAD systems -



such as view control, area, volume calculations. Their main function is to visualize, and at 
that point visual correctness of the images can be questioned.  

K. Temfli classifies the steps for Texture Mapping as (1998):  

. Enhance Images 

. Compute Image Polygons 

. Check and Edit 

. Cut and Geometrically Rectify 

. Retouch 

. Homogenize 

. Store 

. Paste (  VRML) 
 
Several concerns around this steps and possible solutions may be as follows: 
 
The size of the data used for texture mapping. Using more and more images to enrich your 
virtual world may result unpleasantly and your world may not be usable remotely because of 
the amount of the data would make the data transfer too slowly. 

The effect of the large data sizes on the speed of navigation, can be reduced to some extend 
by adjusting the views with different resolutions. Sensors can be used for defining certain 
viewpoints that tells to the browsers to choose the low resolution image since the user is close 
enough to the object. From a distance the user doesn’t likely need to see many details in the 
pictures. If a copy of the same texture-image is saved in a low resolution, and this is called 
first, when the viewpoint gets closer to the world, the better resolution of the particular 
object(s) can be called. This way the whole world would not be so ‘heavy’.  

The angle of view matters, because when one takes a picture, there is a certain angle that 
your camera sees the target and surrounding. If one uses this picture to texture i.e. a cube-
shaped box, when you move around you will notice that things don’t look like as they were 
supposed to be from this view.  

The angle of view problem is a known problem for photogrammetrists and other people who 
use images to make measurements from another aspect. Here we are concerned about 
visualization, but the answer goes slightly to the same area: correcting the images. In some of 
the CAD programs (e.g. TargetJr) it is possible to control the view. But within VRML 
environment we do not have this opportunity to control ‘imported texture-images’. The only 
answer seems to register (also used the term: rectify or correct) the image relatively to the 
model. This way you transform the texture to the model coordinate system. This gives the 
opportunity to “glue the wrapping paper” to your surface and walk away. It would still look 
ok. But this process has to be done within some other environments- or a script should be 
written to perform this task. 

Differing light effects is one of the common problems when you have to make a ‘mosaic’ of 
more than one image. If you think of a cube-shaped box, and for instance that you want to 
‘wrap’ it with its real texture, you will have to take several images of the cube. Simply 
because there’s no other way to see all the faces- but you do have all the faces (maybe 
excluding the bottom) and you’ll be able to move around the box. So, that means, you will 
use different images to extract the piece to texture for each face. When you have your final 



box textured, you may notice that it doesn’t look like the same box from different faces 
because the light is different in the image. There is nothing you can do about it in this 
environment. You can edit a light source somewhere, but it will not help the lights in the 
picture (image).  

The effect of differing lights is also a known problem from the earlier uses of images. The 
suggestion is to preprocess the images to get to somewhat in same lightning (enhancements 
such as normalization, equalization etc.) in an “image processing” environment first and then 
use them as textures.  

Storing the textures has also to be considered. The way you store the image files relates the 
‘speed’ of the client’s browsing.  

Storing the texture data may be also pretty tiresome. One can store those in one file, multiple 
files or in a database. A database for those images seems to be the best solution.  
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