
ISBN: 978-1-906434-74-8

SQL Server
Backup and Restore
Shawn McGehee

The Red Gate Guide

SQL Server Backup
and Restore

By Shawn McGehee

First published by Simple Talk Publishing April 2012

Copyright April 2012

ISBN 978-1-906434-85-4

The right of Shawn McGehee to be identified as the author of this work has been asserted by him in

accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval

system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the prior written consent of the publisher. Any person who does any unauthorized act in

relation to this publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent,

re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form other than

that in which it is published and without a similar condition including this condition being imposed on the

subsequent publisher.

Technical Review by Eric Wisdahl

Cover Image by Andy Martin

Edited by Tony Davis

Typeset & Designed by Peter Woodhouse & Gower Associates

Table of Contents

Introduction ___12

Software Requirements and Code Examples ________________________________ 18

Chapter 1: Basics of Backup and Restore ___________________19

Components of a SQL Server Database ___________________________________ 20
Data files __ 20
Filegroups ___22
Transaction log __24

SQL Server Backup Categories and Types __________________________________28
SQL Server database backups ___29
SQL Server transaction log backups ____________________________________ 32
File backups ___36

Recovery Models __39
Simple__ 41
Full __ 43
Bulk Logged __ 44

Restoring Databases ___ 46
Restoring system databases ___47
Restoring single pages from backup ____________________________________48

Summary ___ 49

Chapter 2: Planning, Storage and Documentation ___________50

Backup Storage __50
Local disk (DAS or SAN) ___ 52
Network device __58
Tape ___59

Backup Tools __ 60

Maintenance plan backups ___ 61
Custom backup scripts __62
Third-party tools ___63

Backup and Restore Planning ___ 64
Backup requirements ___65
Restore requirements __ 68
An SLA template __ 69
Example restore requirements and backup schemes _______________________ 71
Backup scheduling __ 73

Backup Verification and Test Restores _____________________________________ 75
Back up WITH CHECKSUM ___76
Verifying restores ___77
DBCC CHECKDB __77

Documenting Critical Backup Information _________________________________78

Summary __83

Chapter 3: Full Database Backups _______________________ 84

What is a Full Database Backup? ___ 84

Why Take Full Backups? __85

Full Backups in the Backup and Restore SLA _______________________________ 86

Preparing for Full Backups __87
Choosing the recovery model ___88
Database creation __88
Creating and populating the tables ____________________________________ 94

Taking Full Backups ___ 96
Native SSMS GUI method __97
Native T-SQL method __106

Native Backup Compression __ 111

Verifying Backups __ 113

Building a Reusable and Schedulable Backup Script _________________________ 114

Summary ___ 115

Chapter 4: Restoring From Full Backup ___________________ 116

Full Restores in the Backup and Restore SLA ______________________________ 116

Possible Issues with Full Database Restores ________________________________ 117
Large data volumes __ 118
Restoring databases containing sensitive data ___________________________ 118
Too much permission __ 120

Performing Full Restores ___ 122
Native SSMS GUI full backup restore __________________________________ 122
Native T-SQL full restore ___ 129

Forcing Restore Failures for Fun ___ 133

Considerations When Restoring to a Different Location _____________________ 136

Restoring System Databases __ 137
Restoring the msdb database __ 138
Restoring the master database _______________________________________140

Summary ___ 143

Chapter 5: Log Backups ________________________________144

A Brief Peek Inside a Transaction Log ____________________________________ 145

Three uses for transaction log backups ___________________________________ 148
Performing database restores __ 149
Large database migrations ___ 150
Log shipping ___ 151

Log Backups in the Backup and Restore SLA _______________________________ 152

Preparing for Log Backups ___ 153
Choosing the recovery model __ 154
Creating the database __ 155
Creating and populating tables _______________________________________ 157
Taking a base full database backup ____________________________________ 159

Taking Log Backups ___ 161
The GUI way: native SSMS log backups ________________________________ 161
T-SQL log backups ___ 166

Forcing Log Backup Failures for Fun _____________________________________170

Troubleshooting Log Issues __ 172
Failure to take log backups __ 173
Other factors preventing log truncation _______________________________ 174
Excessive logging activity ___ 175
Handling the 9002 Transaction Log Full error __________________________ 176
Log fragmentation ___ 177

Summary ___ 181

Chapter 6: Log Restores ________________________________182

Log Restores in the SLA __ 182

Possible Issues with Log Restores __ 183
Missing or corrupt log backup _______________________________________ 183
Missing or corrupt full backup _______________________________________ 184
Minimally logged operations___ 184

Performing Log Restores ___ 187
GUI-based log restore __ 188
T-SQL point-in-time restores __ 194
Possible difficulties with point-in-time restores __________________________ 198

Forcing Restore Failures for Fun __ 200

Summary __ 204

Chapter 7: Differential Backup and Restore ______________ 205

Differential Backups, Overview __ 206
Advantages of differential backups ____________________________________207
Differential backup strategies _______________________________________ 208
Possible issues with differential backups _______________________________ 212
Differentials in the backup and restore SLA _____________________________ 215

Preparing for Differential Backups _______________________________________ 216
Recovery model ___ 216
Sample database and tables plus initial data load _________________________ 217
Base backup __ 218

Taking Differential Backups __ 218
Native GUI differential backup _______________________________________ 219
Native T-SQL differential backup _____________________________________ 221
Compressed differential backups _____________________________________ 223

Performing Differential Backup Restores __________________________________ 225
Native GUI differential restore _______________________________________ 225
Native T-SQL differential restore _____________________________________ 227
Restoring compressed differential backups _____________________________230

Forcing Failures for Fun __ 231
Missing the base __ 231
Running to the wrong base __ 232
Recovered, already ___ 235

Summary ___ 237

Chapter 8: Database Backup and Restore with SQL Backup Pro 238

Preparing for Backups ___ 238

Full Backups ___ 241
SQL Backup Pro full backup GUI method ______________________________ 241
SQL Backup Pro full backup using T-SQL ______________________________ 253

Log Backups ___ 256
Preparing for log backups ___ 256
SQL Backup Pro log backups __ 258

Differential Backups __ 261

Building a reusable and schedulable backup script __________________________ 263

Restoring Database Backups with SQL Backup Pro _________________________267
Preparing for restore ___267
SQL Backup Pro GUI restore to the end of a log backup ___________________269
SQL Backup Pro T-SQL complete restore ______________________________ 277
SQL Backup Pro point-in-time restore to standby________________________279
Restore metrics: native vs. SQL Backup Pro _____________________________289

Verifying Backups __ 291

Backup Optimization ___292

Summary ___294

Chapter 9: File and Filegroup Backup and Restore _________ 295

Advantages of File Backup and Restore __________________________________ 296

Common Filegroup Architectures _______________________________________298

File Backup __ 303
Preparing for file backups ___306
SSMS native full file backups __309
Native T-SQL file differential backup __________________________________ 310
SQL Backup Pro file backups __ 314

File Restore __ 318
Performing a complete restore (native T-SQL) ___________________________ 321
Restoring to a point in time (native T-SQL) _____________________________ 326
Restoring after loss of a secondary data file _____________________________ 328
Quick recovery using online piecemeal restore __________________________ 335

Common Issues with File Backup and Restore _____________________________340

File Backup and Restore SLA __ 341

Forcing Failures for Fun __ 343

Summary ___346

Chapter 10: Partial Backup and Restore _________________ 348

Why Partial Backups? ___349

Performing Partial Database Backups _____________________________________ 350
Preparing for partial backups __ 351
Partial database backup using T-SQL __________________________________ 354
Differential partial backup using T-SQL ________________________________ 355

Performing Partial Database Restores ____________________________________ 357
Restoring a full partial backup _______________________________________ 357
Restoring a differential partial backup _________________________________ 359
Special case partial backup restore ____________________________________360

SQL Backup Pro Partial Backup and Restore _______________________________ 362

Possible Issues with Partial Backup and Restore ____________________________364

Partial Backups and Restores in the SLA __________________________________ 365

Forcing Failures for Fun __366

Summary ___ 367

Appendix A: SQL Backup Pro Installation and Configuration 368

SQL Backup Pro GUI Installation __368

SQL Backup Pro Services Installation ____________________________________370

SQL Backup Pro Configuration ___ 376
File management __ 376
Email settings ___ 378

xi

About the author

Shawn McGehee
Shawn is a DBA living in Orlando, FL. He has been working in IT since graduating high
school in 1997, in positions ranging from web developer, to help desk operative, to his
current position as a Senior DBA. He is heavily involved in the SQL Server community,
speaking at and organizing local users' groups in Florida since 2008, and is currently
President of the OPASS group in Lake Mary, FL. Shawn is also a contributing author on
the Apress book, Pro SQL Server Reporting Services 2012.

Acknowledgements
I would like to thank everyone who helped and supported me through the writing of this book.
I would especially like to thank my editor, Tony Davis, for sticking with me during what was
a long and occasionally daunting process, and helping me make my first single-author book a
reality. I also need to give a special thank you to all of my close friends and family for always
being there for me during all of life's adventures, good and bad.

– Shawn McGehee

About the technical reviewer

Eric Wisdahl
Eric is a development DBA working in the e-commerce industry. He spends what little
free time he has reading, playing games, or spending time with his wife and dogs. In a past
life he has worked as an ETL/BI Specialist in the insurance industry, a pizza boy, patent
examiner, Pro-IV code monkey and .NET punching bag.

12

Introduction

My first encounter with SQL Server, at least from an administrative perspective, came
while I was still at college, working in a small web development shop. We ran a single SQL
Server 6.5 instance, on Windows NT, and it hosted every database for every client that the
company serviced. There was no dedicated administration team; just a few developers
and the owner.

One day, I was watching and learning from a fellow developer while he made code
changes to one of our backend administrative functions. Suddenly, the boss stormed
into the room and demanded everyone's immediate attention. Whatever vital news he
had to impart is lost in the sands of time, but what I do remember is that when the boss
departed, my friend returned his attention to the modified query and hit Execute, an
action that was followed almost immediately by a string of expletives so loud they could
surely have been heard several blocks away. Before being distracted by the boss, he'd
written the DELETE portion of a SQL statement, but not the necessary WHERE clause and,
upon hitting Execute, he had wiped out all the data in a table.

Fortunately, at least, he was working on a test setup, with test data. An hour later we'd
replaced all the lost test data, no real harm was done and we were able to laugh about it.
As the laughter subsided, I asked him how we would have gotten that data back if it had
been a live production database for one of the clients or, come to think of it, what we
would do if the whole server went down, with all our client databases on board. He had
no real answer, beyond "Luckily it's never happened." There was no disaster recovery
plan; probably because there were no database backups that could be restored! It
occurred to me that if disaster ever did strike, we would be in a heap of trouble, to the
point where I wondered if the company as a whole could even survive such an event. It
was a sobering thought.

That evening I did some online research on database backups, and the very next day
performed a full database backup of every database on our server. A few days later, I had

13

Introduction

jobs scheduled to back up the databases on a regular basis, to one of the local hard drives
on that machine, which I then manually copied to another location. I told the boss what
I'd done, and so began my stint as the company's "accidental DBA."

Over the coming weeks and months, I researched various database restore strategies,
and documented a basic "crash recovery" plan for our databases. Even though I moved
on before we needed to use even one of those backup files, I felt a lot better knowing
that, with the plan that I'd put in place, I left the company in a situation where they
could recover from a server-related disaster, and continue to thrive as a business. This,
in essence, is the critical importance of database backup and restore: it can mean the
difference between life or death for a business, and for the career of a DBA.

The critical importance of database backup and
restore

The duties and responsibilities of a Database Administrator (DBA) make a long and
dynamically changing list, ranging from offering query tuning advice, to cutting stored
procedures, all the way through to system process design and implementation for high
availability. A DBA's tasks, from day to day, are rarely constant; with one exception: the
need to ensure each and every day that any database in their charge can be restored and
recovered, in the event of error or disaster. This means that if a database, for whatever
reason, gets corrupted, dropped, or otherwise becomes unusable, then it is the DBA's
responsibility to restore that database to the state it was in before the problem occurred,
or as close as is possible.

Of course, this doesn't mean that a DBA is required to restore a database each and every
day, just that, if disaster does strike, the DBA must be prepared to deal with it, regardless
of when or why it occurs. If a DBA isn't prepared, and significant data is lost or databases
become unavailable to end-users for long periods of time, then that DBA probably won't
be in their job for too long. This is why a good, and tested, SQL Server backup and restore
plan must be at the top of every administrative DBA's list of tasks.

14

Introduction

Such a plan needs to be developed for each and every user database in your care, as well
as supporting system databases, and it should be tailored to the specific requirements of
each database, based on the type of data being stored (financial, departmental, personal,
and so on), the maximum acceptable risk of potential data loss (day? hour? minute?), and
the maximum acceptable down-time in the event of a disaster.

Each of these factors will help decide the types of backup required, how often they need
to be taken, how many days' worth of backup files need to be stored locally, and so on. All
of this should be clearly documented so that all parties, both the DBAs and application/
database owners, understand the level of service that is expected for each database, and
what's required in the plan to achieve it.

At one end of the scale, for a non-frontline, infrequently-modified database, the backup
and recovery scheme may be simplicity itself, involving a nightly full database backup,
containing a complete copy of all data files, which can be restored if and when necessary.
At the opposite end of the scale, a financial database with more or less zero tolerance to
data loss will require a complex scheme consisting of regular (daily) full database backups,
probably interspersed with differential database backups, capturing all changes since
the last full database backup, as well as very regular transaction log backups, capturing
the contents added in the database log file, since the last log backup. For very large
databases (VLDBs), where it may not be possible to back up the entire database in one
go, the backup and restore scheme may become more complex still, involving backup of
individual data files, for filegroups, as well as transaction logs. All of these backups will
need to be carefully planned and scheduled, the files stored securely, and then restored
in the correct sequence, to allow the database to be restored to the exact state in which it
existed at any point in time in its history, such as the point just before a disaster occurred.

It sounds like a daunting task, and if you are not well prepared and well practiced, it will
be. However, with the tools, scripts, and techniques provided in this book, and with the
requisite planning and practice, you will be prepared to respond quickly and efficiently to
a disaster, whether it's caused by disk failure, malicious damage, database corruption or
the accidental deletion of data. This book will walk you step by step through the process
of capturing all types of backup, from basic full database backups, to transaction log

15

Introduction

backups, to file and even partial backups. It will demonstrate how to perform all of the
most common types of restore operation, from single backup file restores, to complex
point-in-time restores, to recovering a database by restoring just a subset of the files that
make up the database.

As well as allowing you to recover a database smoothly and efficiently in the face of one
of the various the "doomsday scenarios," your well-rounded backup and recovery plan,
developed with the help of this book, will also save you time and trouble in a lot of other
situations including, but not limited to those below.

•	 Refreshing development environments – periodically, developers will request
that their development environments be refreshed with current production data
and objects.

•	 Recovering from partial data loss – occasionally, a database has data "mysteriously
disappear from it."

•	 Migrating databases to different servers – you will eventually need to move databases
permanently to other servers, for a variety of reasons. The techniques in this book can
be used for this purpose, and we go over some ways that different backup types can cut
down on the down-time which this process may cause.

•	 Offloading reporting needs – reporting on data is becoming more and more of a high
priority in most IT shops. With techniques like log shipping, you can create cheap and
quick reporting solutions that can provide only slightly older reporting data than High
Availability solutions.

I learned a lot of what I know about backup and restore the hard way, digging through
innumerable articles on Books Online, and various community sites. I hope my book
will serve as a place for the newly-minted and accidental DBA to get a jump on backups
and restores. It can be a daunting task to start planning a Backup and Restore SLA from
scratch, even in a moderately-sized environment, and I hope this book helps you get a
good start.

16

Introduction

How the book is structured

In this book, you'll discover how to perform each of these backup and restore operations
using SQL Server Management Studio (SSMS), basic T-SQL scripts and Red Gate's SQL
Backup tool. Capturing backups using SSMS or simple scripts is perfectly fine for one-off
backup operations, but any backups that form part of the recovery strategy for any
given database must be automated and you'll also want to build in some checks that, for
example, alert the responsible DBA immediately if a problem arises. The tool of choice in
this book for backup automation is Red Gate SQL Backup. Building your own automated
solution will take a lot of work, but we do offer some advice on possible options, such as
PowerShell scripting, T-SQL scripts and SQL Server Agent jobs. Broadly, the book breaks
down into four sections.

Prerequisites – everything you need to know and consider before you start performing
backup and restore.

•	 Chapter 1 describes the data and log files that comprise a database, and all the basic
types of backup that are possible for these file, and explains the available database
recovery models and what they mean.

•	 Chapter 2 takes a detailed look at all of the major aspects of planning a backup
and recovery strategy, from choosing and configuring hardware, gathering and
documenting the requirements for each database, selecting the appropriate backup
tool, scheduling considerations, running backup verification checks, and more.

Basic backup and restore – how to capture and restore all of the basic backup types, using
SSMS and T-SQL.

•	 Chapters 3 and 4 cover how to take standard and compressed full database backups,
and restore them.

17

Introduction

•	 Chapters 5 and 6 cover how to take transaction log backups, and then use them in
conjunction with a full database backup to restore a database to a particular point in
time. They also cover common transaction log problems and how to resolve them.

•	 Chapter 7 covers standard and compressed differential database backup and restore.

Basic backup and restore with SQL Backup – how to capture and restore all basic backup
types using Red Gate SQL Backup.

•	 Chapter 8 – third-party tools such as Red Gate SQL backup aren't free, but they do
offer numerous advantages in terms of the ease with which all the basic backups can be
captured, automated, and then restored. Many organizations, including my own, rely
on such tools for their overall backup and restore strategy.

Advanced backup and restore – how to capture and restore file and filegroup backups, and
partial database backups.

•	 Chapter 9 – arguably the most advanced chapter in the book, explaining the filegroup
architectures that enable file-based backup and restore, and the complex process of
capturing the necessary file backups and transaction log backups, and using them in
various restore operations.

•	 Chapter 10 – a brief chapter on partial database backups, suitable for large databases
with a sizeable portion of read-only data.

•	 Finally, Appendix A provides a quick reference on how to download, install, and
configure the SQL Backup tool from Red Gate Software, so that you can work through
any examples in the book that use this tool.

18

Introduction

Who this book is for

This book is targeted toward the novice Database Administrator with less than a
year of experience, and toward what I call "accidental" or "inheritance" DBAs, who are
those who have inherited the duties of a DBA, by luck or chance, without any training
or prior experience.

If you have some experience, feel free to skip through some of the more basic topics and
head to the more advanced sections. If you are one of our newly-minted DBA brothers
and sisters, or someone who's had these duties thrust upon you unexpectedly, reading
these prerequisite and basic sections will be a very worthwhile task.

Software Requirements and Code Examples

Throughout this book are scripts demonstrating various ways to take and restore
backups, using either native T-SQL or SQL Backup scripts. All the code you need to try
out the examples in this book can be obtained from the following URL:

www.simple-talk.com/RedGateBooks/ShawnMcGehee/SQLServerBackupAndRe-
store_Code.zip.

Examples in this book were tested on SQL Server 2008 and SQL Server 2008 R2 Standard
Edition, with the exception of the online piecemeal restore in Chapter 9, which requires
Enterprise Edition. Red Gate SQL Backup v.6.4.056 was used in all SQL Backup examples,
in Chapters 8 and 9 of this book.

http://www.simple-talk.com/RedGateBooks/ShawnMcGehee/SQLServerBackupAndRestore_Code.zip
http://www.simple-talk.com/RedGateBooks/ShawnMcGehee/SQLServerBackupAndRestore_Code.zip

19

Chapter 1: Basics of Backup and
Restore

Before we dive into the mechanisms for taking and restoring backups, we need to start
with a good basic understanding of the files that make up a SQL Server database, what
they contain, how and when they can be backed up, and the implications this has with
regard to potential data loss in the event of a disaster in which a database is damaged, or
specific data accidentally lost, and needs to be restored.

Specifically, in this chapter, we will cover:

•	 components of a SQL Server database – primary and secondary files and
filegroups, plus log files

•	 how SQL Server uses the transaction log – and its significance in regard to
restore capabilities

•	 possible types of SQL Server backup – full and differential database backups,
transaction log backups and file backups

•	 SQL Server database recovery models – the available recovery models and
what they mean in terms of backups

•	 restoring databases – the various available types of database restore, plus
special restores, such as system database restores.

20

Chapter 1: Basics of Backup and Restore

Components of a SQL Server Database

Ultimately, a relational database is simply a set of files that store data. When we make
backups of these files, we capture the objects and data within those files and store them in
a backup file. So, put simply, a database backup is just a copy of the database as it existed
at the time the backup was taken.

Before we dive into the backup files themselves, however, we need to briefly review the
files that comprise a SQL Server database. At its simplest, a database is composed of two
files, both created automatically upon execution of a CREATE DATABASE command: a
data file and a log file. However, in larger, more complex databases, the data files may be
broken down into multiple filegroups, each one containing multiple files.

Let's discuss each of these components in a little more detail; we won't be delving too
deep right now, but we need at least to cover what each file contains and what roles it
plays in a day-to-day database backup and recovery strategy.

Data files

Data files in a SQL Server database refer to the individual data containers that are used to
store the system and user-defined data and objects. In other words, they contain the data,
tables, views, stored procedures, triggers and everything else that is accessed by you, and
your end-users and applications. These files also include most of the system information
about your database, including permission information, although not including anything
that is stored in the master system database.

Each database must have one, and only one, primary data file, typically denoted by the
.MDF extension, which will be stored in the PRIMARY filegroup. It may also have some
secondary data files, typically denoted by the .NDF extension. Note that use of the .MDF
and .NDF extensions are convention rather than necessity; if you enjoy confusing your
fellow DBAs, you can apply any extensions you wish to these files.

21

Chapter 1: Basics of Backup and Restore

The primary data file will contain:

•	 all system objects and data

•	 by default, all user-defined objects and data (assuming that only the MDF file exists in
the PRIMARY filegroup)

•	 the location of any secondary data files.

Many of the databases we'll create in this book will contain just a primary data file, in the
PRIMARY filegroup, although in later chapters we'll also create some secondary data files
to store user-defined objects and data.

Writes to data files occur in a random fashion, as data changes affect random pages stored
in the database. As such, there is a potential performance advantage to be had from being
able to write simultaneously to multiple data files. Any secondary data files are typically
denoted with the NDF extension, and can be created in the PRIMARY filegroup or in
separate user-defined filegroups (discussed in more detail in the next section). When
multiple data files exist within a single filegroup, SQL Server writes to these files using a
proportional fill algorithm, where the amount of data written to a file is proportionate to
the amount of free space in that file, compared to other files in the filegroup.

Collectively, the data files for a given database are the cornerstone of your backup and
recovery plan. If you have not backed up your live data files, and the database becomes
corrupted or inaccessible in the event of a disaster, you will almost certainly have lost
some or all of your data.

As a final point, it's important to remember that data files will need to grow, as more data
is added to the database. The manner in which this growth is managed is often a point of
contention among DBAs. You can either manage the growth of the files manually, adding
space as the data grows, or allow SQL Server to auto-grow the files, by a certain value
or percentage each time the data file needs more space. Personally, I advocate leaving
auto-growth enabled, but on the understanding that files are sized initially to cope with
current data and predicted data growth (over a year, say) without undergoing an excessive

22

Chapter 1: Basics of Backup and Restore

number of auto-growth events. We'll cover this topic more thoroughly in the Database
creation section of Chapter 3, but for the rest of the discussion here, we are going to
assume that the data and log files are using auto-growth.

Filegroups

A filegroup is simply a logical collection of one or more data files. Every filegroup
can contain one or more data files. When data is inserted into an object that is stored
in a given filegroup, SQL Server will distribute that data evenly across all data files in
that filegroup.

For example, let's consider the PRIMARY filegroup, which in many respects is a "special
case." The PRIMARY filegroup will always be created when you create a new database,
and it must always hold your primary data file, which will always contain the pages
allocated for your system objects, plus "pointers" to any secondary data files. By default,
the PRIMARY filegroup is the DEFAULT filegroup for the database and so will also store all
user objects and data, distributed evenly between the data files in that filegroup. However,
it is possible to store some or all of the user objects and data in a separate filegroup.

For example, one commonly cited best practice with regard to filegroup architecture is
to store system data separately from user data. In order to follow this practice, we might
create a database with both a PRIMARY and a secondary, or user-defined, filegroup,
holding one or more secondary data files. All system objects would automatically be
stored in the PRIMARY data file. We would then ALTER the database to set the secondary
filegroup as the DEFAULT filegroup for that database. Thereafter, any user objects will, by
default, be stored in that secondary filegroup, separately from the system objects.

There may also be occasions when we want to store just certain, specific user objects
separately, outside the PRIMARY filegroup. To store an object in a secondary, rather than
the PRIMARY, filegroup, we simply specify this during object creation, via the ON clause,
as in the example below.

23

Chapter 1: Basics of Backup and Restore

CREATE TABLE TableName
 (
 ColumnDefinitionList
)
ON [SecondaryFilegroupName]
GO

Any data files in the secondary filegroup can, and typically will, be stored on separate
physical storage from those in the PRIMARY filegroup. When a BACKUP DATABASE
command is issued it will, by default, back up all objects and data in all data files in all
filegroups. However, it's possible to specify that only certain filegroups, or specific files
within a filegroup are backed up, using file or filegroup backups (covered in more detail
later in this chapter, and in full detail in Chapter 9, File and Filegroup Backup and Restore).
It's also possible to perform a partial backup (Chapter 10, Partial Backup and Restore),
excluding any read-only filegroups. Given these facts, there's a potential for both perfor-
mance and administrative benefits, from separating your data across filegroups.

For example, if we have certain tables that are exclusively read-only then we can, by
storing this data in a separate filegroup, exclude this data from the normal backup
schedule. After all, performing repeated backups of data that is never going to change is
simply a waste of disk space.

If we have tables that store data that is very different in nature from the rest of the tables,
or that is subject to very different access patterns (e.g. heavily modified), then there can
be performance advantages to storing that data on separate physical disks, configured
optimally for storing and accessing that particular data. Nevertheless, it's my experience
that, in general, RAID (Redundant Array of Inexpensive Disks) technology and SAN
(Storage Area Network) devices (covered in Chapter 2) automatically do a much better job
of optimizing disk access performance than the DBA can achieve by manual placement of
data files.

Also, while carefully designed filegroup architecture can add considerable flexibility
to your backup and recovery scheme, it will also add administrative burden. There are
certainly valid reasons for using secondary files and filegroups, such as separating system
and user data, and there are certainly cases where they might be a necessity, for example,

24

Chapter 1: Basics of Backup and Restore

for databases that are simply too large to back up in a single operation. However, they are
not required on every database you manage. Unless you have experience with them, or
know definitively that you will gain significant performance with their use, then sticking
to a single data file database will work for you most of the time (with the data being
automatically striped across physical storage, via RAID).

Finally, before we move on, it's important to note that SQL Server transaction log files
are never members of a filegroup. Log files are always managed separately from the SQL
Server data files.

Transaction log

A transaction log file contains a historical account of all the actions that have been
performed on your database. All databases have a transaction log file, which is created
automatically, along with the data files, on creation of the database and is conventionally
denoted with the LDF extension. It is possible to have multiple log files per database
but only one is required. Unlike data files, where writes occur in a random fashion, SQL
Server always writes to the transaction log file sequentially, never in parallel. This means
that it will only ever write to one log file at a time, and having more than one file will
not boost write-throughput or speed. In fact, having more multiple files could result in
performance degradation, if each file is not correctly sized or differs in size and growth
settings from the others.

Some inexperienced DBAs don't fully appreciate the importance of the transaction log
file, both to their backup and recovery plan and to the general day-to-day operation of
SQL Server, so it's worth taking a little time out to understand how SQL Server uses the
transaction log (and it's a topic we'll revisit in more detail in Chapter 5, Log Backups).

Whenever a modification is made to a database object (via Data Definition Language,
DDL), or the data it contains (Data Manipulation Language, DML), the details of the
change are recorded as a log record in the transaction log. Each log record contains

25

Chapter 1: Basics of Backup and Restore

details of a specific action within the database (for example, starting a transaction, or
inserting a row, or modifying a row, and so on). Every log record will record the identity
of the transaction that performed the change, which pages were changed, and the data
changes that were made. Certain log records will record additional information. For
example, the log record recording the start of a new transaction (the LOP_BEGIN_XACT
log record) will contain the time the transaction started, and the LOP_COMMIT_XACT
(or LOP_ABORT_XACT) log records will record the time the transaction was committed
(or aborted).

From the point of view of SQL Server and the DBA looking after it, the transaction log
performs the following critical functions:

•	 ensures transactional durability and consistency

•	 enables, via log backups, point-in-time restore of databases.

Transactional durability and consistency

Via a Write Ahead Logging (WAL) mechanism that ensures that change descriptions are
written to the transaction log before the actual data changes are written to the data files,
SQL Server guarantees that all valid, committed data will be written to the data files and
that the effects of any partial, uncommitted transactions, in the data file, can be "undone,"
via transaction rollback.

As noted previously, the database's log file provides a record of all transactions performed
against that database. When a data modification is made, the relevant data pages are read
from the data cache, first being retrieved from disk if they are not already in the cache.
Data is modified in the data cache, and the log records describing the effects of the trans-
action are created in the log cache. Any page in the cache that has been modified since
being read from disk is called a "dirty" page. When a periodic CHECKPOINT operation
occurs, all dirty pages, regardless of whether they relate to committed or uncommitted
transactions, are flushed to disk. The WAL protocol dictates that, before a data page is

26

Chapter 1: Basics of Backup and Restore

modified in non-volatile storage (i.e. on disk), the description of the change must first be
"hardened" to stable storage. SQL Server or, more specifically, the buffer manager, makes
sure that the change descriptions (log records) are written to the physical transaction log
file before the data pages are written to the physical data files.

The Lazy Writer

Another process that scans the data cache, the Lazy Writer, may also write dirty data pages to disk,

outside of a checkpoint, if forced to do so by memory pressures.

By always writing changes to the log file first, SQL Server can guarantee that the effects of
all committed transactions will ultimately be reflected in the data files, and that any data
modifications on disk that originate from incomplete transactions, i.e. those for which
neither a COMMIT nor a ROLLBACK have been issued are ultimately not reflected in the
data files.

This process of reconciling the contents of the data and log files occurs during the
database recovery process (sometimes called Crash Recovery), which is initiated
automatically whenever SQL Server restarts, or as part of the RESTORE command.
Say, for example, a database crashes after a certain transaction (T1) is "hardened" to the
transaction log file, but before the actual data is written from memory to disk. When the
database restarts, a recovery process is initiated, which reconciles the data file and log file.
All of the operations that comprise transaction T1, recorded in the log file, will be "rolled
forward" (redone) so that they are reflected in the data files.

During this same recovery process, any data modifications on disk that originate from
incomplete transactions, i.e. those for which neither a COMMIT nor a ROLLBACK have
been issued, are "rolled back" (undone), by reading the relevant operations from the
log file, and performing the reverse physical operation on the data. More generally, this
rollback process occurs if a ROLLBACK command is issued for an explicit transaction,
or if an error occurs and XACT_ABORT is turned on, or if the database detects that
communication has been broken between the database and the client that instigated the

27

Chapter 1: Basics of Backup and Restore

transactions. In such circumstances, the log records pertaining to an interrupted trans-
action, or one for which the ROLLBACK command is explicitly issued, are read and the
changes rolled back.

In these ways, SQL Server ensures that, either all the actions associated with a transaction
succeed as a unit, or that they all fail, and so guarantees data consistency and integrity
during normal day-to-day operation.

Log backups and point-in-time restore

As we've discussed, each log record contains the details of a specific change that has been
made to the database, allowing that change to be performed again as a part of REDO, or
undone as a part of UNDO, during crash recovery. Once captured in a log backup file, the
log records can be subsequently applied to a full database backup in order to perform a
database restore, and so re-create the database as it existed at a previous point in time, for
example right before a failure. As such, regular backups of your log files are an essential
component of your database backup and restore strategy for any database that requires
point-in-time restore.

The other very important reason to back up the log is to control its size. Since your log
file has a record of all of the changes that have been made against it, it will obviously take
up space. The more transactions that have been run against your database, the larger
this log file will grow. If growth is left uncontrolled, the log file may even expand to the
point where it fills your hard drive and you receive the dreaded "9002 (transaction log
full)" error, and the database will become read-only, which we definitely do not want to
happen. We'll discuss this in more detail in Chapter 5.

28

Chapter 1: Basics of Backup and Restore

SQL Server Backup Categories and Types

The data files, filegroups, and log files that make up a SQL Server database can, and
generally should, be backed up as part of your database backup and recovery strategy.
This includes both user and system databases. There are three broad categories of backup
that a DBA can perform: database backups, file backups and transaction log backups, and
within these categories several different types of backup are available.

•	 Database backups – copy into a backup file the data and objects in the primary
data file and any secondary data files.

•	 Full database backup – backs up all the data and objects in the data file(s) for
a given database.

•	 Differential database backup – backs up any data and objects in data file(s) for
a given database that have changed since the last full backup.

•	 Transaction log backups – copy into a backup file all the log records inserted into the
transaction log LDF file since the last transaction log backup.

•	 File backups – copy into a backup file the data and objects in a data file or filegroup.

•	 Full file backup – backs up all the data and objects in the specified data files
or filegroup.

•	 Differential file backup – backs up the data and objects in the specified data files
or filegroup that have changed since the last full file backup.

•	 Partial backup – backs up the complete writable portion of the database, excluding
any read-only files/filegroups (unless specifically included).

•	 Differential partial backup – backs up the data and objects that have changed since
the last partial backup.

In my experience as a DBA, it is rare for a database to be subject to file backups, and
some DBAs never work with a database that requires them, so the majority of this book

29

Chapter 1: Basics of Backup and Restore

(Chapters 3 to 8) will focus on database backups (full and differential) and transaction log
backups. However, we do cover file backups in Chapters 9 and 10.

Note that the exact types of backup that can be performed, and to some extent the
restore options that are available, depend on the recovery model in which the database
is operating (SIMPLE, FULL or BULK_LOGGED). We'll be discussing this topic in more
detail shortly, in the Recovery Models section, but for the time being perhaps the most
notable point to remember is that it is not possible to perform transaction log backups
for a database operating in SIMPLE recovery model, and so log backups play no part of a
database RESTORE operation for these databases. Now we'll take a look at each of these
types of backup in a little more detail.

SQL Server database backups

The database backup, which is a backup of your primary data file plus any secondary
database files, is the cornerstone of any enterprise's backup and recovery plan.

Any database that is not using file backups will require a strategy for performing database
backups. Consider, for example, the situation in which a SQL Server database crashes,
perhaps due to a hardware failure, and the live data file is no longer accessible. If no
backups (copies) of this file exist elsewhere, then you will suffer 100% data loss; the
"meltdown" scenario that all DBAs must avoid at all costs.

Let's examine the two types of database backup, full and differential. Each of them
contains the same basic type of information: the system and user data and objects stored
in the database. However, viewed independently, the former contains a more complete
picture of the data than the latter.

30

Chapter 1: Basics of Backup and Restore

Full database backups

You can think of the full database backup file as a complete and total archive of your
database as it existed when you began the backup. Note though that, despite what the
term "full" might suggest, a full backup does not fully back up all database files, only the
data files; the transaction log must be backed up separately.

A full database backup will contain every detail of your database: tables, stored proce-
dures, functions, views, permission information, indexes and, of course, the data stored
within those tables. It will also contain just enough information from the transaction log
to guarantee that the database can be restored to a consistent state (for example, it needs
to back up enough of the log to be able to roll back any transactions that started before
the backup and had not committed by backup completion), and to get the database back
online in the case of failure during a restore operation.

Generally speaking, we can consider that restoring a full database backup will return
the database to the state it was in at the time the backup process started. However, it is
possible that the effects of a transaction that was in progress when the backup started will
still be included in the backup. Before SQL Server begins the actual data backup portion
of the backup operation, it reads the Log Sequence Number (LSN; see Chapter 5), then
reads all the allocated data extents, then reads the LSN again; as long as the transaction
commits before the second LSN read, the change will be reflected in the full backup.

Full database backups will most likely be your most commonly used backup type, but may
not be the only type of backup you need, depending on your data recovery requirements.
For example, let's say that you rely exclusively on full backups, performing one every day
at midnight, and the server experiences a fatal crash at 11 p.m. one night. In this case, you
would only be able to restore the full database backup taken at midnight the previous day,
and so you would have lost 23 hours' worth of data.

31

Chapter 1: Basics of Backup and Restore

If that size of potential loss is unacceptable, then you'll need to either take more
frequent full backups (often not logistically viable, especially for large databases) or
take transaction log backups and, optionally, some differential database backups, in order
to minimize the risk of data loss. A full database backup serves as the base for any subse-
quent differential database backup.

Copy-only full backups

There is a special type of full backup, known as a copy-only full backup, which exists independently of

the sequence of backup files required to restore a database, and cannot act as the base for differential

database backups. This topic is discussed in more detail in Chapter 3, Full Database Backups.

Differential database backups

The differential backup is very similar to the full backup, in that it contains a record of
the objects and data contained within the data file or files, but the differential backup file
will contain only the data that has been changed since the last full backup was taken.

This means that a full database backup must be taken before a differential database
backup can be performed, otherwise the system will not have a way of knowing what data
has been modified. This full backup is known as the base of the differential.

If you're interested to know how SQL Server knows which data has changed, it works
like this: for all of the data extents in the database the server will keep a bitmap page that
contains a bit for each separate extent (an extent is simply a collection of consecutive
pages stored in your database file; eight of them, to be exact). If the bit is set to 1, it means
that the data in one or more of the pages in the extent has been modified since the base
backup, and those eight pages will be included in the differential backup. If the bit for a
given extent is still 0, the system knows that it doesn't need to include that set of data in
the differential backup file.

32

Chapter 1: Basics of Backup and Restore

Some DBAs avoid taking differential backups where possible, due to the perceived admin-
istrative complexity they add to the backup and restore strategy; they prefer instead to
rely solely on a mix of full and regular transaction log backups. Personally, however, I find
them to be an invaluable component of the backup strategy for many of my databases.
Furthermore, for VLDBs, with a very large full backup footprint, differential backups
may become a necessity. Even so, it is still important, when using differential backups,
to update the base backup file at regular intervals. Otherwise, if the database is large and
the data changes frequently, our differential backup files will end up growing to a point
in size where they don't give us much value. We will discuss differential backups further
in Chapter 7, where we will dive much deeper into best practices for their use as part of a
backup and recovery strategy.

SQL Server transaction log backups

As a DBA, you will in many cases need to take regular backups of the transaction log
file for a given database, in addition to performing database backups. This is important
both for enabling point-in-time restore of your database, and for controlling the size of
the log file.

A full understanding of log backups, how they are affected by the database recovery
model, and how and when space inside the log is reused, requires some knowledge of the
architecture of the transaction log. We won't get to this till Chapter 5, so we'll keep things
as simple as possible here, and get into the details later.

Essentially, as discussed earlier, a transaction log file stores a series of log records that
provide a historical record of the modifications issued against that database. As long
as the database is operating in the FULL or BULK LOGGED recovery model then these
log records will remain in the live log file, and never be overwritten, until a log backup
operation is performed.

33

Chapter 1: Basics of Backup and Restore

Therefore, the full transaction "history" can be captured into a backup file by backing up
the transaction log. These log backups can then be used as part of a database RESTORE
operation, in order to roll the database forward to a point in time at, or very close to,
when some "disaster" occurred.

The log chain

For example, consider our previous scenario, where we were simply taking a full database
backup once every 24 hours, and so were exposed to up to 24 hours of data loss. It is
possible to perform differential backups in between the full backups, to reduce the risk of
data loss. However both full and differential backups are I/O intensive processes and are
likely to affect the performance of the database, so they should not be run during times
when users are accessing the database.

If a database holds business-critical data and you would prefer your exposure to data
loss to be measured in minutes rather than hours, then you can use a scheme whereby
you take a full database backup, followed by a series of frequent transaction log backups,
followed by another full backup, and so on. As part of a database restore operation, we
can then restore the most recent full backup (plus differentials, if taken), followed by the
chain of available log file backups, up to one covering the point in time to which we wish
to restore the database.

In order to restore a database to a point in time, either to the end of a particular log
backup or to a point in time within a particular log backup, there must exist a full,
unbroken chain of log records, from the first log backup taken after a full (or differential
backup), right up to the point to which you wish to recover. This is known as the log
chain. If the log chain is broken (for example, by switching a database to SIMPLE recovery
model, then it will only be possible to recover the database to some point in time before
the event occurred that broke the chain. The chain can be restarted by returning the
database to FULL (or BULK LOGGED) recovery model and taking a full backup (or differ-
ential backup, if a full backup was previously taken for that database). See Chapter 5, Log
Backups, for further details.

34

Chapter 1: Basics of Backup and Restore

Tail log backups

In the event of a failure affecting a database operating in FULL or BULK_LOGGED
recovery model, the first action after the failure should be to perform what is known as
a tail log backup of the live transaction log, which captures the remaining contents
of this file. In fact, a subsequent RESTORE operation may otherwise fail, unless the
command includes WITH REPLACE, indicating that the existing database should be
overwritten, or WITH STOPAT, indicating that there is a specific point at which we wish
to stop the restore operation.

If a database is corrupted in some way, but is still online and we wish to restore over that
database, then performing a tail log backup with BACKUP LOG…WITH NORECOVERY, will
capture the remaining contents of the live log file and put the database into a restoring
state, so that no further transactions against that database will succeed, and we can begin
the restore operation.

This sort of tail log backup, as well as normal log backups, require the database to be
online (I believe, so that information regarding the log backup can be stamped into the
database header). If the database is offline, and an attempt to bring it back online fails,
perhaps because a data file is unavailable, then a tail log backup WITH NORECOVERY, as
well as any normal log backups, will fail. However, it may still be possible to perform a
tail log backup, but using the NO_TRUNCATE option instead, BACKUP LOG…WITH NO_
TRUNCATE. This operation backs up the log file without truncating it and doesn't require
the database to be online.

Of course, any sort of tail log backup will only be possible if the log file is still accessible
and undamaged but, assuming this is the case, it should be possible to restore right up
to the time of the last transaction committed and written to the log file, before the
failure occurred.

Finally, there is a special case where a tail log backup may not succeed, and that is if
there are any minimally logged transactions, recorded while a database was operating in
BULK_LOGGED recovery model, in the live transaction log, and a data file is unavailable

35

Chapter 1: Basics of Backup and Restore

as a result of the disaster. A tail log backup using NO_TRUNCATE may "succeed" (although
with reported errors) in these circumstances but a subsequent attempt to restore that tail
log backup will fail. This is discussed in more detail in the Minimally logged operations
section of Chapter 6.

Log space reuse (a.k.a. log truncation)

When using any recovery model other than SIMPLE, it is vital to take regular log backups,
not only for recovery purposes, but also to control the growth of the log file. The reason
for this relates to how and when space in the log is made available for reuse; a process
known as log truncation.

We'll go into deeper detail in Chapter 5 but, briefly, any segment of the log that contains
only log records that are no longer required is deemed "inactive," and any inactive
segment can be truncated, i.e. the log records in that segment can be overwritten by log
records detailing new transactions. These "segments" of the log file are known as virtual
log files (VLFs).

If a VLF contains even just a single log record that relates to an open (uncommitted)
transaction, or that is still required by some other database process (such as replication), or
contains log records that are more recent than the log record relating to the oldest open
or still required transaction, it is deemed "active." Any active VLF can never be truncated.

Any inactive VLF can be truncated, although the point at which this truncation can
occur depends on the recovery model of the database. In the SIMPLE recovery model,
truncation can take place immediately upon occurrence of a CHECKPOINT operation.
Pages in the data cache are flushed to disk, having first "hardened" the changes to the
log file. The space in any VLFs that becomes inactive as a result, is made available for
reuse. Therefore, the space in inactive portions of the log is continually overwritten with
new log records, upon CHECKPOINT; in other words, a complete "log record history" is
not maintained.

36

Chapter 1: Basics of Backup and Restore

In the FULL (or BULK LOGGED) recovery model, once a full backup of the database
has been taken, the inactive portion of the log is no longer marked as reusable on
CHECKPOINT, so records in the inactive VLFs are retained alongside those in the
active VLFs. Thus we maintain a complete, unbroken series of log records, which
can be captured in log backups, for use in point-in-time restore operations. Each time
a BACKUP LOG operation occurs, it marks any VLFs that are no longer necessary as
inactive and hence reusable.

This explains why it's vital to back up the log of any database running in the FULL
(or BULK LOGGED) recovery model; it's the only operation that makes space in the log
available for reuse. In the absence of log backups, the log file will simply continue to grow
(and grow) in size, unchecked.

File backups

In addition to the database backups discussed previously, it's also possible to take file
backups. Whereas database backups back up all data files for a given database, with file
backups we can back up just a single, specific data file, or a specific group of data files (for
example, all the data files in a particular filegroup).

For a VLDB that has been "broken down" into multiple filegroups, file backups (see
Chapter 9) can decrease the time and disk space needed for the backup strategy and also,
in certain circumstances, make disaster recovery much quicker. For example, let's assume
that a database's architecture consists of three filegroups: a primary filegroup holding
only system data, a secondary filegroup holding recent business data and a third filegroup
holding archive data, which has been specifically designated as a READONLY filegroup.

If we were to perform database backups, then each full backup file would contain a lot
of data that we know will never be updated, which would simply be wasting disk space.
Instead, we can take frequent, scheduled file backups of just the system and business data.

37

Chapter 1: Basics of Backup and Restore

Furthermore, if a database suffers corruption that is limited to a single filegroup, we may
be able to restore just the filegroup that was damaged, rather than the entire database.

For instance, let's say we placed our read-only filegroup on a separate drive and that drive
died. Not only would we save time by only having to restore the read-only filegroup, but
also the database could remain online and just that read-only data would be unavailable
until after the restore. This latter advantage only holds true for user-defined filegroups; if
the primary filegroup goes down, the whole ship goes down as well. Likewise, if the disk
holding the file storing recent business data goes down then, again, we may be able to
restore just that filegroup; in this case, we would also have to restore any transaction log
files taken after the file backup to ensure that the database as a whole could be restored to
a consistent state.

Finally, if a catastrophe occurs that takes the database completely offline, and we're
using SQL Server Enterprise Edition, then we may be able to perform an online restore,
restoring the primary data file and bringing the database back online before we've
restored the other data files. We'll cover all this in a lot more detail, with examples, in
Chapter 9.

The downside of file backups is the significant complexity and administrative burden that
they can add to the backup strategy. Firstly, it means that a "full backup" will consist of
capturing several backup files, rather than just a single one. Secondly, in addition, we will
have to take transaction log backups to cover the time between file backups of different
file groups. We'll discuss this in fuller detail in Chapter 9 but, briefly, the reason for this is
that while the data is stored in separate physical files it will still be relationally connected;
changes made to data stored in one file will affect related data in other files, and since the
individual file backups are taken at different times, SQL Server needs any subsequent log
backup files to ensure that it can restore a self-consistent version of the database.

Keeping track of all of the different backup jobs and files can become a daunting task.
This is the primary reason why, despite the potential benefits, most people prefer to deal
with the longer backup times and larger file sizes that accompany full database backups.

38

Chapter 1: Basics of Backup and Restore

Full and differential file backups

As noted earlier, a full file backup differs from the full database backup in that it doesn't
back up the entire database, but just the contents of one or more files or filegroups.
Likewise, differential file backups capture all of the data changes made to the relevant files
or filegroups, since the last full file backup was taken.

In VLDBs, even single files or filegroups can grow large, necessitating the use of differ-
ential file backups. The same caveat exists as for differential database backups: the longer
the interval between refreshing the base file backup, the larger the differential backups
will get. Refresh the base full file backup at least once per week, if taking differential
file backups.

Partial and differential partial backups

Partial backups, and differential partial backups, are a relative innovation, introduced
in SQL Server 2005. They were specifically designed for use with databases that are
comprised of at least one read-only filegroup and their primary use case was for databases
operating within the SIMPLE recovery model (although they are valid for any of the
available recovery models).

By default, a partial backup will create a full backup of the primary filegroup plus any
additional read/write filegroups. It will not back up any read-only filegroups, unless
explicitly included in the partial backup.

A typical use case for partial backups would be for a very large database (VLDB) that
contains a significant portion of read-only data. In most cases, these read-only file
groups contain files of archived data, which are still needed by the front end application
for reference purposes. However, if this data is never going to be modified again, we
don't want to waste time, CPU, and disk space backing it up every time we run a full
database backup.

39

Chapter 1: Basics of Backup and Restore

So, a partial full backup is akin to a full database backup, but omits all READONLY
filegroups. Likewise, a partial differential backup is akin to a differential database
backup, in that it only backs up data that has been modified since the base partial
backup and, again, does not explicitly back up the READONLY filegroups within the
database. Differential partial backups use the last partial backup as the base for any
restore operations, so be sure to keep the base partial on hand.

It is recommended to take frequent base partial backups to keep the differential partial
backup file size small and manageable. Again, a good rule of thumb is to take a new base
partial backup at least once per week, although possibly more frequently than that if the
read/write filegroups are frequently modified.

Finally, note that we can only perform partial backups via T-SQL. Neither SQL
Server Management Studio nor the Maintenance Plan Wizard supports either type
of partial backup.

Recovery Models

A recovery model is a database configuration option, chosen when creating a new
database, which determines whether or not you need to (or even can) back up the trans-
action log, how transaction activity is logged, and whether or not you can perform more
granular restore types that are available, such as file and page restores. All SQL Server
database backup and restore operations occur within the context of one of three available
recovery models for that database.

•	 SIMPLE recovery model – certain operations can be minimally logged. Log backups are
not supported. Point-in-time restore and page restore are not supported. File restore
support is limited to secondary data files that are designated as READONLY.

40

Chapter 1: Basics of Backup and Restore

•	 FULL recovery model – all operations are fully logged. Log backups are supported.
All restore operations are supported, including point-in-time restore, page restore
and file restore.

•	 BULK_LOGGED recovery model – similar to FULL except that certain bulk operations
can be minimally logged. Support for restore operations is as for FULL, except that it's
not possible to restore to a specific point in time within a log backup that contains log
records relating to minimally logged operations.

Each model has its own set of requirements and caveats, so we need to choose the appro-
priate one for our needs, as it will dramatically affect the log file growth and level of
recoverability. In general operation, a database will be using either the SIMPLE or FULL
recovery model.

Can we restore just a single table?

Since we mentioned the granularity of page and file restores, the next logical question is whether we can

restore individual tables. This is not possible with native SQL Server tools; you would have to restore an

entire database in order to extract the required table or other object. However, certain third-party tools,

including Red Gate's SQL Compare, do support object-level restores of many different object types, from

native backups or from Red Gate SQL Backup files.

By default, any new database will inherit the recovery model of the model system
database. In the majority of SQL Server editions, the model database will operate with
the FULL recovery model, and so all new databases will also adopt use of this recovery
model. This may be appropriate for the database in question, for example if it must
support point-in-time restore. However, if this sort of support is not required, then it may
be more appropriate to switch the database to SIMPLE recovery model after creation.
This will remove the need to perform log maintenance in order to control the size of the
log. Let's take a look at each of the three recovery models in a little more detail.

41

Chapter 1: Basics of Backup and Restore

Simple

Of the three recovery models for a SQL Server database, SIMPLE recovery model
databases are the easiest to manage. In the SIMPLE recovery model, we can take full
database backups, differential backups and file backups. The one backup we cannot take,
however, is the transaction log backup.

As discussed earlier, in the Log space reuse section, whenever a CHECKPOINT operation
occurs, the space in any inactive portions of the log file belonging to any database
operating SIMPLE recovery model, becomes available for reuse. This space can be
overwritten by new log records. The log file does not and cannot maintain a complete,
unbroken series of log records since the last full (or differential) backup, which would be
a requirement for any log backup to be used in a point-in-time restore operation, so a log
backup would be essentially worthless and is a disallowed operation.

Truncation and the size of the transaction log

There is a misconception that truncating the log file means that log records are deleted and the file

reduces in size. It does not; truncation of a log file is merely the act of making space available for reuse.

This process of making log space available for reuse is known as truncation,
and databases using the SIMPLE recovery model are referred to as being in
auto-truncate mode.

In many respects, use of the SIMPLE recovery model greatly simplifies log file
management. The log file is truncated automatically, so we don't have to worry about
log file growth unless caused, for example, by some large and/or long-running batch
operation. If a huge number of operations are run as a single batch, then the log file can
grow in size rapidly, even for databases running in SIMPLE recovery (it's better to run a
series of smaller batches).

42

Chapter 1: Basics of Backup and Restore

We also avoid the administrative burden of scheduling and testing the log backups, and
the storage overhead required for all of the log backup files, as well as the CPU and disk
I/O burden placed on the server while performing the log backups.

The most obvious and significant limitation of working in SIMPLE model, however,
is that we lose the ability to perform point-in-time restores. As discussed earlier, if the
exposure to potential data loss in a given database needs to be measured in minutes
rather than hours, then transaction log backups are essential and the SIMPLE model
should be avoided for that database.

However, not every database in your environment needs this level of recoverability, and
in such cases the SIMPLE model can be a perfectly sensible choice. For example, a Quality
Assurance (QA) server is generally subject to a very strict change policy and if any changes
are lost for some reason, they can easily be recovered by redeploying the relevant data
and objects from a development server to the QA machine. As such, most QA servers can
afford to operate in SIMPLE model. Likewise, if a database that gets queried for infor-
mation millions of time per day, but only receives new information, in a batch, once per
night, then it probably makes sense to simply run in SIMPLE model and take a full backup
immediately after each batch update.

Ultimately, the choice of recovery model is a business decision, based on tolerable levels
of data loss, and one that needs to be made on a database-by-database basis. If the
business requires full point-in-time recovery for a given database, SIMPLE model is not
appropriate. However, neither is it appropriate to use FULL model for every database, and
so take transaction log backups, "just in case," as it represents a considerable resource and
administrative burden. If, for example, a database is read-heavy and a potential 12-hours'
loss of data is considered bearable, then it may make sense to run in SIMPLE model and
use midday differential backups to supplement nightly full backups.

43

Chapter 1: Basics of Backup and Restore

Full

In FULL recovery model, all operations are fully logged in the transaction log file. This
means all INSERT, UPDATE and DELETE operations, as well as the full details for all rows
inserted during a bulk data load or index creation operations. Furthermore, unlike in
SIMPLE model, the transaction log file is not auto-truncated during CHECKPOINT opera-
tions and so an unbroken series of log records can be captured in log backup files.

As such, FULL recovery model supports restoring a database to any point in time within
an available log backup and, assuming a tail log backup can be made, right up to the time
of the last committed transaction before the failure occurred. If someone accidentally
deletes some data at 2:30 p.m., and we have a full backup, plus valid log backups spanning
the entire time from the full backup completion until 3:00 p.m., then we can restore the
database to the point in time directly before that data was removed. We will be looking
at performing point-in-time restores in Chapter 6, Log Restores, where we will focus on
transaction log restoration.

The other important point to reiterate here is that inactive VLFs are not truncated during
a CHECKPOINT. The only action that can cause the log file to be truncated is to perform
a backup of that log file; it is only once a log backup is completed that the inactive log
records captured in that backup become eligible for truncation. This means that log
backups play a vital dual role: firstly in allowing point-in-time recovery, and secondly in
controlling the size of the transaction log file.

In the FULL model, the log file will hold a full and complete record of the transactions
performed against the database since the last time the transaction log was backed up.
The more transactions your database is logging, the faster it will fill up. If your log file is
not set to auto-grow (see Chapter 3 for further details), then this database will cease to
function correctly at the point when no further space is available in the log. If auto-grow
is enabled, the log file will grow and grow until either you take a transaction log backup
or the disk runs out of space; I would recommend the first of these two options.

44

Chapter 1: Basics of Backup and Restore

In short, when operating in FULL recovery model, you must be taking transaction log
backups to manage the growth of data in the transaction log; a full database backup does
not cause the log file to be truncated. Once you take a transaction log backup, space in
inactive VLFs will be made available for new transactions (except in rare cases where you
specify a copy-only log backup, or use the NO_TRUNCATE option, which will not truncate
the log).

Bulk Logged

The third, and least-frequently used, recovery model is BULK_LOGGED. It operates in a
very similar manner to FULL model, except in the extent to which bulk operations are
logged, and the implications this can have for point-in-time restores. All standard
operations (INSERT, UPDATE, DELETE, and so on) are fully logged, just as they would
be in the FULL recovery model, but many bulk operations, such as the following, will be
minimally logged:

•	 bulk imports using the BCP utility

•	 BULK INSERT

•	 INSERT … SELECT * FROM OPENROWSET(bulk…)

•	 SELECT INTO

•	 inserting or appending data using WRITETEXT or UPDATETEXT

•	 index rebuilds (ALTER INDEX REBUILD).

In FULL recovery model, every change is fully logged. For example, if we were to use
the BULK INSERT command to load several million records into a database operating in
FULL recovery model, each of the INSERTs would be individually and fully logged. This
puts a tremendous overhead onto the log file, using CPU and disk I/O to write each of
the transaction records into the log file, and would also cause the log file to grow at a
tremendous rate, slowing down the bulk load operation and possibly causing disk usage
issues that could halt your entire operation.

45

Chapter 1: Basics of Backup and Restore

In BULK_LOGGED model, SQL Server uses a bitmap image to capture only the extents
that have been modified by the minimally logged operations. This keeps the space
required to record these operations in the log to a minimum, while still (unlike in SIMPLE
model) allowing backup of the log file, and use of those logs to restore the database in
case of failure. Note, however, that the size of the log backup files will not be reduced,
since SQL Server must copy into the log backup file all the actual extents (i.e. the data)
that were modified by the bulk operation, as well as the transaction log records.

Tail log backups and minimally logged operations

If the data files are unavailable as a result of a database failure, and the tail of the log contains minimally

logged operations recorded while the database was operating in BULK_LOGGED recovery model, then it

will not be possible to do a tail log backup, as this would require access to the changed data extents in the

data file.

The main drawback of switching to BULK_LOGGED model to perform bulk operations,
and so ease the burden on the transaction log, is that it can affect your ability to perform
point-in-time restores. The series of log records is always maintained but, if a log file
contains details of minimally logged operations, it is not possible to restore to a specific
point in time represented within that log file. It is only possible to restore the database to
the point in time represented by the final transaction in that log file, or to a specific point
in time in a previous, or subsequent, log file that does not contain any minimally logged
transactions. We'll discuss this in a little more detail in Chapter 6, Log Restores.

There is a time and place for use of the BULK_LOGGED recovery model. It is not recom-
mended that this model be used for the day-to-day operation of any of your databases.
What is recommended is that you switch from FULL recovery model to BULK_LOGGED
recovery model only when you are using bulk operations. After you have completed these
operations, you can switch back to FULL recovery. You should make the switch in a way
that minimizes your exposure to data loss; this means taking an extra log backup immedi-
ately before you switch to BULK_LOGGED, and then another one immediately after you
switch the database back to FULL recovery.

46

Chapter 1: Basics of Backup and Restore

Restoring Databases

Of course, the ultimate goal of our entire SQL Server backup strategy is to prepare
ourselves for the, hopefully rare, cases where we need to respond quickly to an emergency
situation, for example restoring a database over one that has been damaged, or creating
a second copy of a database (see http://msdn.microsoft.com/en-us/library/ms190436.
aspx) in order to retrieve some data that was accidentally lost from that database. In
non-emergency scenarios, we may simply want to restore a copy of a database to a
development or test server.

For a user database operating in FULL recovery model, we have the widest range of
restore options available to us. As noted throughout the chapter, we can take transaction
log backups and use them, in conjunction with full and differential backups, to restore a
database to a specific point within a log file. In fact, the RESTORE LOG command supports
several different ways to do this. We can:

•	 recover to a specific point in time – we can stop the recovery at a specific point in time
within a log backup file, recovering the database to the point it was in when the last
transaction committed, before the specified STOPAT time

•	 recover to a marked transaction – if a log backup file contains a marked transaction
(defined using BEGIN TRAN TransactionName WITH MARK 'Description…')
then we can recover the database to the point that this transaction starts (STOPBE-
FOREMARK) or completes (STOPATMARK)

•	 recover to a Log Sequence Number – stop the recovery at a specific log record,
identified by its LSN (see Chapter 6, Log Restores).

We'll cover several examples of the first option (which is by far the most common) in this
book. In addition, we can perform more "granular" restores. For example, in certain cases,
we can recover a database by restoring only a single data file (plus transaction logs), rather
than the whole database. We'll cover these options in Chapters 9 and 10.

http://msdn.microsoft.com/en-us/library/ms190436.aspx
http://msdn.microsoft.com/en-us/library/ms190436.aspx

47

Chapter 1: Basics of Backup and Restore

For databases in BULK_LOGGED model, we have similar restore options, except that none
of the point-in-time restore options listed previously can be applied to a log file that
contains minimally logged transactions.

For SIMPLE recovery model databases, our restore options are more limited. In the main,
we'll be performing straightforward restores of the full and differential database backup
files. In many cases, certainly for a development database, for example, and possibly for
other "non-frontline" systems, this will be perfectly adequate, and will greatly simplify,
and reduce the time required for, the backup and restore strategies for these databases.

Finally, there are a couple of important "special restore" scenarios that we may run into
from time to time. Firstly, we may need to restore one of the system databases. Secondly,
if only a single data page is damaged, it may be possible to perform a page restore, rather
than restoring the whole database.

Restoring system databases

The majority of the discussion of backing up and restoring databases takes place in
the context of protecting an organization's business data. However, on any SQL Server
instance there will also be a set of system databases, which SQL Server maintains and that
are critical to its operation, and which also need to be backed up on a regular schedule.

The full list of these databases can be found in Books Online (http://msdn.microsoft.
com/en-us/library/ms190190.aspx), but there are three in particular that must be
included in your backup and recovery strategy.

The master database holds information on all of your other databases, logins and much
more. If you lose your master database you are in a bad spot unless you are taking
backups and so can restore it. A full backup of this database, which operates in SIMPLE
recovery model, should be part of your normal backup procedures for each SQL Server
instance, along with all the user databases on that instance. You should also back up

http://msdn.microsoft.com/en-us/library/ms190190.aspx
http://msdn.microsoft.com/en-us/library/ms190190.aspx

48

Chapter 1: Basics of Backup and Restore

master after a significant RDBMS update (such as a major Service Pack). If you find
yourself in a situation where your master database has to be rebuilt, as in the case
where you do not have a backup, you would also be rebuilding the msdb and model
databases, unless you had good backups of msdb and model, in which case you could
simply restore them.

The msdb database contains SQL Agent jobs, schedules and operators as well as historical
data regarding the backup and restore operations for databases on that instance. A full
backup of this database should be taken whenever the database is updated. That way, if a
SQL Server Agent Job is deleted by accident, and no other changes have been made, you
can simply restore the msdb database and regain that job information.

Finally, the model database is a "template" database for an instance; all user databases
created on that instance will inherit configuration settings, such as recovery model,
initial file sizes, file growth settings, collation settings and so on, from those stipulated
for the model database. By default, this database operates in the FULL recovery model. It
should rarely be modified, but will need a full backup whenever it is updated. Personally,
I like to back it up on a similar rotation to the other system databases, so that it doesn't
get overlooked. We'll walk through examples of how to restore the master and the msdb
databases in Chapter 4, Restoring From Full Backup.

Restoring single pages from backup

There is another restore type that can be performed on SQL Server databases that can
save you a huge amount of time and effort. When you see corruption in a database, it
doesn't have to be corruption of the entire database file. You might find that only certain
segments of data are missing or unusable. In this situation, you can restore single or
multiple pages from a database backup. With this method, you only have to take your
database down for a short period of time to restore the missing data, which is extremely
helpful when dealing with VLDBs. We won't cover an example in this book, but further
details can be found at http://msdn.microsoft.com/en-us/library/ms175168.aspx.

http://msdn.microsoft.com/en-us/library/ms175168.aspx

49

Chapter 1: Basics of Backup and Restore

Summary

In this chapter, we've covered a lot of necessary ground, discussing the files that comprise
a SQL Server database, the critical role played by each, why it's essential that they are
backed up, the types of backup that can be performed on each, and how this is impacted
by the recovery model chosen for the database.

We're now ready to start planning, verifying and documenting our whole backup strategy,
answering questions such as:

•	 Where will the backups be stored?

•	 What tools will be used to take the backups?

•	 How do I plan and implement an appropriate backup strategy for each database?

•	 How do I verify that the backups are "good?"

•	 What documentation do I need?

To find out the answers to these questions, and more, move on to Chapter 2.

50

Chapter 2: Planning, Storage and
Documentation

Having covered all of the basic backup types, what they mean, and why they are
necessary, we're now ready to start planning our overall backup and restore strategy for
each of the databases that are in our care.

We'll start our discussion at the hardware level, with consideration of the appropriate
storage for backup files, as well as the live data and log files, and then move on to discuss
the tools available to capture and schedule the backup operations.

Then, in the heart of the chapter, we'll describe the process of planning a backup and
restore strategy, and developing a Service Level Agreement that sets out this strategy. The
SLA is a vital document for setting appropriate expectations with regard to possible data
loss and database down-time, as well as the time and cost of implementing the backup
strategy, for both the DBA, and the application owners.

Finally, we'll consider how best to gather vital details regarding the file architecture and
backup details for each database into one place and document.

Backup Storage

Hopefully, the previous chapter impressed on you the need to take database backups for
all user and system databases, and transaction log backups for any user databases that are
not operating in SIMPLE recovery mode. One of our basic goals, as a DBA, is to create an
environment where these backups are stored safely and securely, and where the required
backup operations are going to run as smoothly and quickly as possible.

51

Chapter 2: Planning, Storage and Documentation

The single biggest factor in ensuring that this can be achieved (alongside such issues
as careful backup scheduling, which we'll discuss later in the chapter) is your backup
storage architecture. In the examples in this book, we back up our databases to the same
disk drive that stores the live data and log files; of course, this is purely a convenience,
designed to make the examples easy to practice on your laptop. In reality, we'd never back
up to the same local disk; after all if you simply store them on the same drive as the live
files, and that drive becomes corrupt, then not only have you lost the live files, but the
backup files too!

There are three basic options, which we'll discuss in turn: local disk storage, network
storage, and tape storage. Each of these media types has its pros and cons so, ultimately,
it is a matter of preference which you use and how. In many cases, a mixture of all three
may be the best solution for your environment. For example, you might adopt the
scheme below.

1. Back up the data and log files to local disk storage – either Direct Attached Storage
(DAS) or a Storage Area Network (SAN). In either case, the disks should be in a RAID
configuration. This will be quicker for the backup to complete, but you want to make
sure your backups are being moved immediately to a separate location, so that a
server crash won't affect your ability to restore those files.

2. Copy the backup files to a redundant network storage location – again, this space
should be driven by some sort of robust storage solution such as SAN, or a RAID
of local physical drives. This will take a bit longer than the local drive because of
network overhead, but you are certain that the backups are in a separate/secure
location in case of emergency.

3. Copy the files from the final location to a tape backup library for storage in an
offsite facility. I recommend keeping the files on disk for at least three days for daily
backups and a full seven days for weekly (or until the next weekly backup has been
taken). If you need files older than that, you can retrieve them from the tape library.

52

Chapter 2: Planning, Storage and Documentation

The reason I offer the option to write the backups to local storage initially, instead of
straight to network storage, is that it avoids the bottleneck of pushing data through the
network. Generally speaking, it's possible to get faster write speeds, and so faster backups,
to a local drive than to a drive mapped from another network device, or through a drive
space shared out through a distributed file system (DFS). However, with storage networks
becoming ever faster, it is becoming increasingly viable to skip Step 1, and back up the
data and log files directly to network storage.

Whether you write first to locally attached storage, or straight to a network share, you'll
want that disk storage to be as fast and efficient as possible, and this means that we want
to write, not to a single disk, but to a RAID unit, provided either as DAS, or by a SAN. We
also want, wherever possible, to use dedicated backup storage. For example, if a particular
drive on a file server, attached from the SAN, is designated as the destination for our SQL
Server backup files, we don't want any other process storing their data in that location,
competing with our backups for space and disk I/O.

Local disk (DAS or SAN)

Next on our list of backup media is the local disk drive. The main benefit of backing up
to disk, rather than tape is simply that the former will be much faster (depending on the
type and speed of the drive). Of course, any consideration of local disk storage for backup
files is just as relevant to the storage of the online data and log files, since it's likely that
the initial backup storage will just be a separate area in the same overall SQL Server
storage architecture.

Generally speaking, SQL Server storage tends to consist of multiple disk drives, each
set of disks forming, with a controller, a Redundant Array of Inexpensive Disks (RAID)
device, configured appropriately according the files that are being stored.

53

Chapter 2: Planning, Storage and Documentation

These RAID-configured disks are made available to SQL Server either as part of Directly
Attached Storage, where the disks (which could be SATA, SCSI or SAS) are built into
the server or housed in external expansion bays that are attached to the server using a
RAID controller, or as Storage Area Network – in layman's terms, a SAN is a big box of
hard drives, available via a dedicated, high performance network, with a controller that
instructs individual "volumes of data" known as Logical Unit Numbers (LUNs) to interact
with certain computers. These LUNs appear as local drives to the operating system and
SQL Server. Generally, the files for many databases will be stored on a single SAN.

RAID configuration

The RAID technology allows a collection of disks to perform as one. For our data and
log files RAID, depending on the exact RAID configuration, can offer some or all of the
advantages below.

•	 Redundancy – if one of the drives happens to go bad, we know that, depending on the
RAID configuration, either the data on that drive will have been mirrored to a second
drive, or it will be able to be reconstructed, and so will still be accessible, while the
damaged drive is replaced.

•	 Improved read and write I/O performance – reading from and writing to multiple
disk spindles in a RAID array can dramatically increase I/O performance, compared to
reading and writing from a single (larger) disk.

•	 Higher storage capacity – by combining multiple smaller disks in a RAID array, we
overcome the single-disk capacity limitations (while also improving I/O performance).

For our data files we would, broadly speaking, want a configuration optimized for
maximum read performance and, for our log file, maximum write performance. For
backup files, the simplest backup storage, if you're using DAS, may just be a separate,
single physical drive.

54

Chapter 2: Planning, Storage and Documentation

However, of course, if that drive were to become corrupted, we would lose the backup
files on that drive, and there isn't much to be done, beyond sending the drive to a recovery
company, which can be both time consuming and expensive, with no guarantee of
success. Therefore, for backup files it's just as important to take advantage of the redun-
dancy advantages offered by RAID storage.

Let's take just a brief look at the more popular of the available RAID configurations, as
each one provides different levels of protection and performance.

RAID 0 (striping)

This level of RAID is the simplest and provides only performance benefits. A RAID 0
configuration uses multiple disk drives and stripes the data across these disks. Striping is
simply a method of distributing data across multiple disks, whereby each block of data is
written to the next disk in the stripe set. This also means that I/O requests to read and
write data will be distributed across multiple disks, so improving performance.

There is, however, a major drawback in a RAID 0 configuration. There is no fault
tolerance in a RAID 0 setup. If one of the disks in the array is lost, for some reason, the
entire array will break and the data will become unusable.

RAID 1 (mirroring)

In a RAID 1 configuration we use multiple disks and write the same data to each disk in
the array. This is called mirroring. This configuration offers read performance benefits
(since the data could be read from multiple disks) but no write benefits, since the write
speed is still limited to the speed of a single disk.

However, since each disk in the array has a mirror image (containing the exact same data)
RAID 1 does provide redundancy and fault tolerance. One drive in the mirror set can be
lost without losing data, or that data becoming inaccessible. As long as one of the disks in
the mirror stays online, a RAID 1 system will remain in working order but will take a hit
in read performance while one of the disks is offline.

55

Chapter 2: Planning, Storage and Documentation

RAID 5 (striping with parity)

RAID 5 disk configurations use block striping to write data across multiple disks, and so
offer increased read and write performance, but also store parity data on every disk in the
array, which can be used to rebuild data from any failed drive. Let's say, for example, we
had a simple RAID 5 setup of three disks and were writing data to it. The first data block
would be written to Disk 1, the second to Disk 2, and the parity data on Disk 3. The next
data blocks would be written to Disks 1 and 3, with parity data stored on Disk 2. The next
data blocks would be written to Disks 2 and 3, with the parity being stored on Disk 1. The
cycle would then start over again.

This allows us to lose any one of those disks and still be able to recover the data, since
the parity data can be used in conjunction with the still active disk to calculate what was
stored on the failed drive. In most cases, we would also have a hot spare disk that would
immediately take the place of any failed disk, calculate lost data from the other drives
using the parity data and recalculate the parity data that was lost with the failure.

This parity does come at a small cost, in that the parity has to be calculated for each
write to disk. This can give a small hit on the write performance, when compared to a
similar RAID 10 array, but offers excellent read performance since data can be read from
all drives simultaneously.

RAID 10 (striped pairs of mirrors)

RAID 10 is a hybrid RAID solution. Simple RAID does not have designations that go above
9, so RAID 10 is actually RAID 1+0. In this configuration, each disk in the array has at least
one mirror, for redundancy, and the data is striped across all disks in the array. RAID 10
does not require parity data to be stored; recoverability is achieved from the mirroring of
data, not from the calculations made from the striped data.

56

Chapter 2: Planning, Storage and Documentation

RAID 10 gives us the performance benefits of data striping, allowing us to read and write
data faster than single drive applications. RAID 10 also gives us the added security that
losing a single drive will not bring our entire disk array down. In fact, with RAID 10, as
long as at least one of the mirrored drives from any set is still online, it's possible that
more than one disk can be lost while the array remains online with all data accessible.
However, loss of both drives from any one mirrored set will result in a hard failure.

With RAID 10 we get excellent write performance, since we have redundancy with the
need to deal with parity data. However, read performance will generally be lower that a
RAID 5 configuration with the same number of disks, since data can be read simultane-
ously from only half the disks in the array.

Choosing the right storage configuration

All SQL Server file storage, including storage for database backup files, should be RAID-
configured, both for redundancy and performance. For the backup files, what we're
mainly after is the "safety net" of storage redundancy, and so the simplest RAID configu-
ration for backup file storage would be RAID 1. However, in my experience, it's quite
common that backup files simply get stored on the slower disks of a SAN, in whatever
configuration is offered (RAID 5, in my case).

Various configurations of RAID-level drive failure protection are available from either
DAS or SAN storage. So, in cases where a choice exists, which one should we choose?

SAN vs. DAS

With the increasing capacity and decreasing cost of hard drives, along with the advent
of Solid State Drives, it's now possible to build simple but pretty powerful DAS systems.
Nevertheless, there is an obvious physical limit to how far we can expand a server by
attaching more hard drives. For VLDBs, this can be a problem and SAN-attached storage
is still very popular in today's IT infrastructure landscape, even in smaller businesses.

57

Chapter 2: Planning, Storage and Documentation

For the added cost and complexity of SAN storage, you have access to storage space far
in excess of what a traditional DAS system could offer. This space is easily expandable
(up to the SAN limit) simply by adding more disk array enclosures (DAEs), and doesn't
take up any room in the physical server. Multiple database servers can share a single SAN,
and most SANs offer many additional features (multiple RAID configurations, dynamic
snapshots, and so on).

SAN storage is typically provided over a fiber optic network that is separated from
your other network traffic in order to minimize any network performance or latency
issues; you don't have to worry about any other type of network activity interfering
with your disks.

RAID 5 vs. RAID 10

There is some debate over which of these two High Availability RAID configurations is
best for use when storing a relational database. The main point of contention concerns
the write penalty of recalculating the parity data after a write in a RAID 5 disk array.

This was a much larger deal for RAID disks a few years ago than it is in most of today's
implementations. The parity recalculation is no longer an inline operation and is done by
the controller. This means that, instead of the parity recalculation happening before you
can continue with I/O operations, the controller takes care of this work separately and no
longer holds up the I/O queue. You do still see some overhead when performing certain
types of write, but for the most part this drawback has been obfuscated by improved
hardware design.

Nevertheless, my general advice, where a choice has to be made, is to go for a RAID 10
configuration for a database that is expected to be subject to "heavy writes" and RAID 5
for read-heavy databases. However, in a lot of cases, the performance gain you will see
from choosing one of these RAID configurations over the other will be relatively small.

58

Chapter 2: Planning, Storage and Documentation

My experience suggests that advances in controller architecture along with increases in
disk speed and cache storage have "leveled the playing field." In other words, don't worry
overly if your read-heavy database is on RAID 10, or a reasonably write-heavy database is
on RAID 5; chances are it will still perform reliably, and well.

Network device

The last option for storing our backup files is the network device. Having each server
backing up to a separate folder on a network drive is a great way to organize all of the
backups in one convenient location, which also happens to be easily accessible when
dumping those files to tape media for offsite storage.

We don't really care what form this network storage takes, as long as it is as stable and
fault tolerant as possible, which basically means RAID storage. We can achieve this via
specialized Network Attached Storage (NAS), or simply a file server, backed by physical
disks or SAN-attached space.

However, as discussed earlier, backing up directly to a network storage device, across a
highly utilized network, can lead to latency and network outage problems. That's why
I generally still recommend to backup to direct storage (DAS or SAN) and then copy
the completed backup files to the network storage device. A good solution is to use a
scheduled job, schedulable utility or, in some cases, a third-party backup tool to back up
the databases to a local drive and then copy the results to a network share. This way, we
only have to worry about latency issues when copying the backup file, but at least at this
stage we don't put any additional load on the SQL Server service; if a file copy fails, we
just restart it. Plus, with utilities such as robocopy, we have the additional safety net of
the knowing the copy will automatically restart if any outage occurs.

59

Chapter 2: Planning, Storage and Documentation

Tape

Firstly, I will state that tape backups should be part of any SQL Server backup and
recovery plan and, secondly, that I have never in my career backed up a database or log file
directly to tape. The scheme to go for is to back up to disk, and then archive to tape.

There are several reasons to avoid backing up directly to tape, the primary one being that
writing to tape is slow, with the added complication that the tape is likely to be attached
via some sort of relatively high-latency network device. This is a big issue when dealing
with backup processes, especially for large databases. If we have a network issue after our
backup is 90% completed, we have wasted a lot of time and resources that are going to
have to be used again. Writing to a modern, single, physical disk, or to a RAID device, will
be much faster than writing to tape.

Some years ago, tape storage might still have had a cost advantage over disk but, since
disk space has become relatively cheap, the cost of LTO-4 tape media storage is about the
same as comparable disk storage.

Finally, when backing up directly to tape, we'll need to support a very large tape library in
order to handle the daily, weekly and monthly backups. Someone is going to have to swap
out, label and manage those tapes and that is a duty that most DBAs either do not have
time for, or are just not experienced enough to do. Losing, damaging, or overwriting a
tape by mistake could cost you your job.

Hopefully, I've convinced you not to take SQL Server backups directly to tape, and
instead to use some sort of physical disk for initial storage. However, and despite their
other shortcomings, tape backups certainly do have a role to play in most SQL Server
recovery plans. The major benefit to tape media is portability. Tapes are small, take up
relatively little space and so are ideal for offsite storage. Tape backup is the last and best
line of defense for you and your data. There will come a time when a restore operation
relies on a backup file that is many months old, and you will be glad you have a copy
stored on tape somewhere.

60

Chapter 2: Planning, Storage and Documentation

With tape backups stored offsite, we also have the security of knowing that we can
recover that data even in the event of a total loss of your onsite server infrastructure. In
locations where the threat of natural disasters is very real and very dangerous, offsite
storage is essential (I have direct experience of this, living in Florida). Without it, one
hurricane, flood, or tornado can wipe out all the hard work everyone put into backing
up your database files. Storing backup file archive on tape, in a secure and structurally
reinforced location, can mean the difference between being back online in a matter of
hours and not getting back online at all.

Most DBA teams let their server administration teams handle the task of copying backups
to tape; I know mine does. The server admins will probably already be copying other
important system backups to tape, so there is no reason they cannot also point a
backup-to-tape process at the disk location of your database and log backup files.

Finally, there is the prosaic matter of who handles all the arrangements for the physical
offsite storage of the tapes. Some smaller companies can handle this in-house, but I
recommend that you let a third-party company that specializes in data archiving handle
the long-term secure storage for you.

Backup Tools

Having discussed the storage options for our data, log, and backup files, the next step is to
configure and schedule the SQL Server backup jobs. There are several tools available to do
this, and we'll consider the following:

•	 maintenance plans – the simplest, but also the most limited solution, offering ease of
use but limited options, and lacking flexibility

•	 custom backup scripts – offers full control over how your backup jobs execute, but
requires considerable time to build, implement, and maintain

61

Chapter 2: Planning, Storage and Documentation

•	 third-party backup tools – many third-party vendors offer powerful, highly
configurable backup tools that offer backup compression and encryption, as well
as well-designed interfaces for ease of scheduling and monitoring.

All environments are different and the choice you make must be dictated by your specific
needs. The goal is to get your databases backed up, so whichever one you decide on and
use consistently is going to be the right choice.

Maintenance plan backups

The Maintenance Plan Wizard and Designer is a built-in SQL Server tool that allows
DBAs to automate the task of capturing full and differential database backups, and log
backups. It can also be used to define and schedule other essential database maintenance
tasks, such as index reorganization, consistency checks, statistics updates, and so on.

I list this tool first, not because it is the best way to automate these tasks, but because it is
a simple-to-use, built-in option, and because scheduling backup and other maintenance
tasks this way sure is better than not scheduling them at all!

In fact, however, from a SQL Server backup perspective, maintenance plans are the
weakest choice of the three we'll discuss, for the following reasons:

•	 backup options are limited – file or partial backups are not supported

•	 configurability is limited – we are offered a strict set of options in configuring the
backup task and we cannot make any other modifications to the process, although it's
possible (via the designer) to include some pre- and post-backup logic

•	 some important tasks are not supported – such as proper backup verification
(see later in the chapter).

62

Chapter 2: Planning, Storage and Documentation

Under the covers, maintenance plans are simply SSIS packages that define a number
of maintenance tasks, and are scheduled for execution via SQL Server Agent jobs. The
Maintenance Plan Wizard and Designer makes it easy to build these packages, while
removing a lot of the power and flexibility available when writing such packages directly
in SSIS.

For maintenance tasks of any reasonable complexity, it is better to use Business Intel-
ligence Design Studio to design the maintenance packages that suit your specific
environment and schedule them through SQL Server Agent. It may not be a traditional
maintenance plan in the same sense as one that the wizard would have built, but it is a
maintenance package none the less.

Custom backup scripts

Another option is to write a custom maintenance script, and run it in a scheduled job via
SQL Server Agent or some other scheduling tool. Traditionally, DBAs have chosen T-SQL
scripts or stored procedures for this task, but PowerShell scripting is gaining in popularity
due to its versatility (any .NET library can be used inside of a PowerShell script).

Custom scripting is popular because it offers the ultimate flexibility. Scripts can evolve to
add more and more features and functionality. In this book, we'll create custom scripts
that, as well as backing up our databases, will verify database status and alert users on
failure and success. However, this really only scratches the surface of the tasks we can
perform in our customized backup scripts.

The downside of all this is that "ultimate flexibility" tends to go hand in hand with
increasing complexity and diminishing consistency, and this problem gets exponentially
worse as the number of servers to be maintained grows. As the complexity of a script
increases, so it becomes more likely that you'll encounter bugs, especially the kind that
might not manifest themselves immediately as hard errors.

63

Chapter 2: Planning, Storage and Documentation

If a script runs on three servers, this is no big deal; just update the code on each server
and carry on. What if it must run on 40 servers? Now, every minor improvement to the
backup script, or bug fix, will entail a major effort to ensure that this is reflected consist-
ently on all servers.

In such cases, we need a way to centralize and distribute the code so that we have
consistency throughout the enterprise, and a quick and repeatable way to make updates
to each machine, as needed.

Many DBA teams maintain on each server a "DBA database" that holds the stored proce-
dures for all sorts of maintenance tasks, such as backups, index maintenance and more.
For example, my team maintains a "master" maintenance script, which will create this
database on a server, or update the objects within the database if the version on the server
is older than what exists in our code repository. Whenever the script is modified, we have
a custom .NET tool that will run the script on every machine, and automatically upgrade
all of the maintenance code.

Third-party tools

The final option available to the DBA is to create and schedule the backup jobs using
a third-party tool. Several major vendors supply backup tools but the one used in my
team, and in this book, is Red Gate SQL Backup (www.red-gate.com/products/dba/
sql-backup/). Details of how to install this tool can be found in Appendix A, and backup
examples can be found in Chapter 8.

With SQL Backup, we can create a backup job just as easily as we could with the mainte-
nance plan wizard, and with a lot more flexibility. We can create SQL Server Agent jobs
that take full, differential, transaction log or file and filegroup backups from a GUI wizard.
We can set up a custom schedule for the backups. We can configure numerous options for
the backup files, including location, retention, dynamic naming convention, compression,
encryption, network resilience, and more.

http://www.red-gate.com/products/dba/sql-backup/
http://www.red-gate.com/products/dba/sql-backup/

64

Chapter 2: Planning, Storage and Documentation

Be aware, though, that a tool that offers flexibility and ease of use can lead down the
road of complex backup jobs. Modifying individual steps within such jobs requires
T-SQL proficiency or, alternatively, you'll need to simply drop the job and build it again
from scratch (of course, a similar argument applies to custom scripts and maintenance
plan jobs).

Backup and Restore Planning

The most important point to remember is that, as DBAs, we do not devise plans to back
up databases successfully; we devise plans to restore databases successfully. In other
words, if a database owner expects that, in the event of an outage, his database and data
will be back online within two hours, with a maximum of one hour's data loss, then
we must devise a plan to support these requirements, assuming we believe them to be
reasonable. Of course, a major component of this plan will be the details of the types of
backup that will be taken, and when, but never forget that the ultimate goal is not just to
take backups, but to support specific restore requirements.

This backup and restore plan will be agreed and documented in a contract with the
database users, called a Service Level Agreement, or SLA, which will establish a
certain level of commitment regarding the availability and recoverability of their
database and data.

Planning an SLA is a delicate process, and as DBAs we have to consider not only our own
experiences maintaining various databases and servers, but also the points of view of the
application owners, managers, and end-users. This can be a tricky task, since most owners
and users typically feel that their platform is the most important in any enterprise and
that it should get the most attention to detail, and highest level of service. We have to be
careful not to put too much emphasis on any one system, but also to not let anything fall
through the cracks.

65

Chapter 2: Planning, Storage and Documentation

So how do we get started, when devising an appropriate backup and restore plan for
a new database? As DBAs, we'd ideally be intimately familiar with the inner and outer
workings of every database that is in our care. However, this is not always feasible.
Some DBAs administer too many servers to know exactly what is on each one, or even
what sort of data they contain. In such cases, a quick 15-minute discussion with the
application owner can provide a great deal of insight into the sort of database that we
are dealing with.

Over the coming sections, we'll take a look at factors that affect each side of the backup-
restore coin, and the sorts of questions we need to ask of our database owners and users.

Backup requirements

The overriding criterion in determining the types of backup we need to take, and how
frequently, is the maximum toleration to possible data loss, for a particular database.
However, there are a few other factors to consider as well.

On what level of server does this database reside?

For example, is it a development box, a production server or a QA machine? We may be
able to handle losing a week's worth of development changes, but losing a week's work of
production data changes could cost someone their job, especially if the database supports
a business-critical, front-line application

Do we need to back up this database at all?

Not all data loss is career-ending and, as a DBA, you will run into plenty of situations
where a database doesn't need to be backed up at all. For example, you may have a devel-
opment system that gets refreshed with production data on a set schedule. If you and
your development team are comfortable not taking backups of data that is refreshed
every few days anyway, then go for it. Unless there is a good reason to do so (perhaps the

66

Chapter 2: Planning, Storage and Documentation

data is heavily modified after each refresh) then you don't need to waste resources on
taking backups of databases that are just copies of data from another server, which does
have backups being taken.

How much data loss is acceptable?

Assuming this is a system that has limits on its toleration of data loss, then this question
will determine the need to take supplemental backups (transaction log, differential) in
addition to full database (or file) backups, and the frequency at which they need to be
taken. Now, the application owner needs to be reasonable here. If they state that they
cannot tolerate any down-time, and cannot lose any data at all, then this implies the need
for a very high availability solution for that database, and a very rigorous backup regime,
both of which are going to cost a lot of design, implementation and administrative effort,
as well as a lot of money. If they offer more reasonable numbers, such as one hour's
potential data loss, then this is something that can be supported as part of a normal
backup regime, taking hourly transaction log backups.

Do we need to take these hourly log backups all day, every day, though? Perhaps, yes, but
it really depends on the answer to next question.

At what times of the day is this database heavily used?

What we're trying to find out here is when, and how often, backups need to be taken.
Full backups of large databases should be carried out at times when the database is least
used, and supplemental backups need to be fitted in around our full backup schedule.
We'll need to start our log backup schedules well in advance of the normal database use
schedules, in order to capture the details of all data changes, and end them after the
traffic subsides. Alternatively, we may need to run these log file backups all day, which is
not a bad idea, since then we will never have large gaps in time between the transaction
log backup files.

67

Chapter 2: Planning, Storage and Documentation

What are the basic characteristics of the database?

Here, we're interested in other details that may impact backup logistics. We'll want to find
out, for example:

•	 How much data is stored – the size of the database will impact backup times, backup
scheduling (to avoid normal database operations being unduly affected by backups),
amount of storage space required, and so on.

•	 How quickly data is likely to grow – this may impact backup frequency and sched-
uling, since we'll want to control log file size, as well as support data loss requirements.
We will also want to plan for the future data growth to make sure our SQL Server
backup space doesn't get eaten up.

•	 The nature of the workload. Is it OLTP, with a high number of both reads and writes?
Or mainly read-only? Or mixed and, if so, are certain tables exclusively read-only?

Planning for backup and restore starts, ideally, right at the very beginning of a database's
life, when we are planning to create it, and define the data and log file properties and
architecture for the new database. Answers to questions such as these will not only help
define our backup requirements, but also the appropriate file architecture (number of
filegroups and data files) for the database, initial file sizes and growth characteristics, as
well as the required hardware capacity and configuration (e.g. RAID level).

Data and log file sizing and growth

We'll discuss this in more detail in Chapter 3, but it's worth noting that the initial size, and subsequent

auto-growth characteristics, of the data and log files will be inherited from the properties of the

model database for that instance, and there is a strong chance that these will not be appropriate for

your database.

68

Chapter 2: Planning, Storage and Documentation

Restore requirements

As well as ensuring we have the appropriate backups, we need a plan in place that will
allow us to perform "crash recovery." In other words, we need to be sure that we can
restore our backups in such a way that we meet the data loss requirements, and complete
the operation within an acceptable period of down-time.

An acceptable recovery time will vary from database to database depending on a number
of factors, including:

•	 the size of the database – much as we would like to, we cannot magically restore a
full backup of a 500 GB database, and have it back online with all data recovered in 15
minutes

•	 where the backup files are stored – if they are on site, we only need to account for the
time needed for the restore and recovery process; if the files are in offsite storage, we'll
need to plan extra time to retrieve them first

•	 the complexity of the restore process – if we just need to restore a full database
backup, this is fairly straightforward process; but if we need to perform a complex
point-in-time restore involving full, differential, and log files, this is more complex
and may require more time – or at least we'll need to practice this type of restore more
often, to ensure that all members of our team can complete it successfully and within
the required time.

With regard to backup file locations, an important, related question to ask your database
owners is something along the lines of: How quickly, in general, will problems be reported?

That may sound like a strange question, but its intent is to find out how long it's
necessary to retain database backup files on network storage before deleting them to
make room for more backup files (after, of course, transferring these files to tape for
offsite storage).

69

Chapter 2: Planning, Storage and Documentation

The location of the backup file will often affect how quickly a problem is solved. For
example, let's say the company policy is to keep backup files on site for three days, then
archive them to tape, in offsite storage. If a data loss occurs and the error is caught
quickly, the necessary files will be at hand. If, however, it's only spotted five days later,
the process of getting files back from the offsite tape backups will push the recovery time
out, and this extra time should be clearly accounted for in the SLA. This will save the
headache of having to politely explain to an angry manager why a database or missing
data is not yet back online.

An SLA template

Having asked all of these question, and more, it's time to draft the SLA for that database.
This document is a formal agreement regarding the backup regime that is appropriate for
that database, and also offers a form of insurance to both the owners and the DBA. You
do not, as a DBA, want to be in a position of having a database owner demanding to know
why you can't perform a log restore to get a database back how it was an hour before
it went down, when you know that they told you that only weekly full backups were
required for that database, but you have no documented proof.

Figure 2-1 offers a SLA template, which will hopefully provide a good starting point for
your Backup SLA contract. It might not have everything you need for your environment,
but you can download the template from the supplemental material and modify it, or just
create your own from scratch.

70

Chapter 2: Planning, Storage and Documentation

Server Name: MYCOMPANYDB1
Server Category: Production / Development / QA / Staging

Application Name: Sales-A-Tron
Application Owner: Sal Esman

Database Name : salesDB
Data Loss: 2 Hours
Recovery Time: 4 Hours

Full Backups: Daily / Weekly / Monthly
Diff Backups: Daily / Weekly
Log Backups: Daily @ _______ Hour Intervals
File Backups: Daily / Weekly / Monthly
File Differentials: Daily / Weekly

Database Name : salesArchives
Data Loss: 4 Hours
Recovery Time: 6 Hours

Full Backups: Daily / Weekly / Monthly
Diff Backups: Daily / Weekly
Log Backups: Daily @ _______ Hour Intervals
File Backups: Daily / Weekly / Monthly
File Differentials: Daily / Weekly

Database Name : resourceDB
Data Loss: 2 Hours
Recovery Time: 3 Hours

Full Backups: Daily / Weekly / Monthly
Diff Backups: Daily / Weekly
Log Backups: Daily @ _______ Hour Intervals
File Backups: Daily / Weekly / Monthly
File Differentials: Daily / Weekly

Database Administrator:
Application Owner:
Date of Agreement:

Figure 2-1: An example backup and restore SLA.

71

Chapter 2: Planning, Storage and Documentation

Example restore requirements and backup schemes

Based on all the information gathered for the SLA, we can start planning the detailed
backup strategy and restore for each database. By way of demonstrating the process, let's
walk through a few common scenarios and the recommended backup strategy. Of course,
examples are only intended as a jumping-off point for your own SQL Server backup and
restore plans. Each server in your infrastructure is different and may require completely
different backup schedules and structures.

Scenario 1: Development server, VLDB, simple file
architecture

Here, we have a development machine containing one VLDB. This database is not struc-
turally complex, containing only one data file and one log file. The developers are happy
to accept data loss of up to a day. All activity on this database takes place during the day,
with a very few transactions happening after business hours.

In this case, it might be appropriate to operate the user database in SIMPLE recovery
model, and implement a backup scheme such as the one below.

1. Perform full nightly database backups for the system databases.

2. Perform a full weekly database backup for the VLDB, for example on Sunday night.

3. Perform a differential database backup for the VLDB on the nights where you do not
take the full database backups. In this example, we would perform these backups on
Monday through Saturday night.

72

Chapter 2: Planning, Storage and Documentation

Scenario 2: Production server, 3 databases, simple file
architecture, 2 hours' data loss

In the second scenario, we have a production server containing three actively-used
databases. The application owner informs us that no more than two hours of data loss
can be tolerated, in the event of corruption or any other disaster. None of the databases
are complex structurally, each containing just one data file and one log file.

With each database operating in FULL recovery model, an appropriate backup scheme
might be as below.

1. Perform full nightly database backups for every database (plus the system databases).

2. Perform log backups on the user databases every 2 hours, on a schedule starting after
the full backups are complete and ending before the full backup jobs starts.

Scenario 3: Production server, 3 databases, complex file
architecture, 1 hour's data loss

In this final scenario, we have a production database system that contains three databases
with complex data structures. Each database comprises multiple data files split into two
filegroups, one read-only and one writable. The read-only file group is updated once per
week with newly archived records. The writable file groups have an acceptable data loss of
1 hour. Most database activity on this server will take place during the day.

With the database operating in FULL recovery model, the backup scheme below might
work well.

1. Perform nightly full database backups for all system databases.

2. Perform a weekly full file backup of the read-only filegroups on each user database,
after the archived data has been loaded.

73

Chapter 2: Planning, Storage and Documentation

3. Perform nightly full file backups of the writable file groups on each user database.

4. Perform hourly log backups for each user database; the log backup schedule should
start after the nightly full file backups are complete, and finish one hour before the
full file backup processes start again.

Backup scheduling

It can be a tricky process to organize the backup schedule such that all the backups that
are required to support the Backup and Restore SLA fit into the available maintenance
windows, don't overlap, and don't cause undue stress on the server.

Full database and file backups, especially of large databases, can be CPU- and Disk
I/0-intensive processes, and so have the propensity to cause disruption, if they are run
at times when the database is operating under its normal business workload. Ideally, we
need to schedule these backups to run at times when the database is not being accessed,
or at least is operating under greatly reduced load, since we don't want our backups
to suffer because they are fighting with other database processes or other loads on the
system (and vice versa). This is especially true when using compressed backups, since a lot
of the load that would be done on disk is moved to the CPU in the compression phase.

Midnight is usually a popular time to run large backup jobs, and if your shop consists
of just a few machines, by all means schedule all your full nightly backups to run at this
time. However, if you administer 20, 30, or more servers, then you may want to consider
staggering your backups throughout the night, to avoid any possible disk or network
contention issues. This is especially true when backing up directly to a network storage
device. These devices are very robust and can perform a lot of operations per second, but
there is a limit to how much traffic any device can handle. By staggering the backup jobs,
you can help alleviate any network congestion.

74

Chapter 2: Planning, Storage and Documentation

The scheduling of differential backups will vary widely, depending on their role in the
backup strategy. For a VLDB, we may be taking differential backups every night, except
for on the night of the weekly full backup. At other times, we may run differential
backups at random times during the day, for example as a way to safeguard data before
performing a large modification or update.

Transaction log backups are, in general, much less CPU- and I/O-intensive operations
and can be safely run during the day, alongside the normal database workload. In fact,
there isn't much point having a transactional backup of your database if no one is actually
performing any transactions! The scheduling of log backups may be entirely dictated by
the agreed SLA; if no more than five minutes of data can be lost, then take log backups
every five minutes! If there is some flexibility, then try to schedule consecutive backups
close enough so that the log file does not grow too much between backups, but far
enough apart that it does not put undue stress on the server and hardware.

As a general rule, don't take log backup much more frequently than is necessary to satisfy
the SLA. Remember, the more log backups you take, the more chance there is that one
will fail and possibly break your log chain. However, what happens when you have two
databases on a server that both require log backups to be taken, but at different intervals?
For example, Database A requires a 30-minute schedule, and Database B, a 60-minute
schedule. You have two choices:

1. create two separate log backup jobs, one for DB_A running every 30 minutes and one
for DB_B, every 60 minutes; this means multiple SQL Agent / scheduled jobs and
each job brings with it a little more maintenance and management workload

2. take log backups of both databases using a single job that runs every 30 minutes;
you'll have fewer jobs to schedule and run, but more log backup files to manage,
heightening the risk of a file being lost or corrupted.

My advice in this case would be to create one log backup job, taking log backups every
30 minutes; it satisfies the SLA for both databases and is simpler to manage. The slight
downside is that the time between log backups for databases other than the first one in

75

Chapter 2: Planning, Storage and Documentation

the list might be slightly longer than 30 minutes, since the log backup for a given database
in the queue can't start till the previous one finishes. However, since the backups are
frequent and so the backup times short, any discrepancy is likely to be very small.

Backup Verification and Test Restores

Whether there are 10 databases in our environment or 1,000, as DBAs, we must ensure
that all backups are valid and usable. Without good backups, we will be in a very bad
spot when the time comes to bring some data back from the dead. Backup verification
is easy to integrate into normal backup routines, so let's discuss a few tips on how to
achieve this.

The first, and most effective, way to make sure that the backups are ready for use is simply
to perform some test restores. This may seem obvious, but there are too many DBAs who
simply assume that their backups are good and let them sit on the shelf. We don't need to
restore every backup in the system to check its health, but doing random spot checks now
and again is an easy way to gain peace of mind regarding future restores.

Each week, choose a random database, and restore its last full backup. If that database
is subject to differential and log backups as well, choose a point-in-time test restore that
uses a full, differential and a few log backup files.

Since it's probably unrealistic to perform regular test restores on every single database,
there are a few other practices that a DBA can adopt to maximize the likelihood that
backup files are free of any corruption and can be smoothly restored.

76

Chapter 2: Planning, Storage and Documentation

Back up WITH CHECKSUM

We can use the WITH CHECKSUM option, as part of a backup operation, to instruct
SQL Server to test each page with its corresponding checksum to makes sure that no
corruption has happened in the I/O subsystem.

BACKUP DATABASE <DatabaseName>
TO DISK = '<Backup_location>'
 WITH CHECKSUM
GO

Listing 2-1: Backup WITH CHECKSUM syntax.

If it finds a page that fails this test, the backup will fail. If the backup succeeds then the
backup is valid…or maybe not.

In fact, this type of validation has gotten many DBAs into trouble. It does not guarantee
that a database backup is corruption free. The CHECKSUM only verifies that we are not
backing up a database that was already corrupt in some way; if the corruption occurs in
memory or somehow else during the backup operation, then it will not be detected.

As a final note, my experience and that of many others, suggests that, depending on the
size of the database that is being used, enabling checksums (and other checks such as
torn page detection) will bring with it a small CPU overhead and may slow down your
backups (often minimally). However, use of the WITH CHECKSUM option during backups
is a valuable safeguard and, if you can spare the few extra CPU cycles and the extra
time the backups will take, go ahead. These checks are especially valuable when used in
conjunction with restore verification.

77

Chapter 2: Planning, Storage and Documentation

Verifying restores

Since we cannot rely entirely on page checksums during backups, we should also be
performing some restore verifications to make sure our backups are valid and restorable.
As noted earlier, the surest way to do this is by performing test restores. However, a good
additional safety net is to use the RESTORE VERIFYONLY command.

This command will verify that the structure of a backup file is complete and readable.
It attempts to mimic an actual restore operation as closely as possible without actually
restoring the data. As such, this operation only verifies the backup header; it does not
verify that the data contained in the file is valid and not corrupt.

However, for databases where we've performed BACKUP…WITH CHECKSUM, we can then
re-verify these checksums as part of the restore verification process.

RESTORE VERIFYONLY
FROM DISK= '<Backup_location>'
WITH CHECKSUM

Listing 2-2: RESTORE VERIFYONLY WITH CHECKSUM syntax.

This will recalculate the checksum on the data pages contained in the backup file and
compare it against the checksum values generated during the backup. If they match, it's a
good indication that the data wasn't corrupted during the backup process.

DBCC CHECKDB

One of the best ways to ensure that databases remain free of corruption, so that this
corruption does not creep into backup files, making mincemeat of our backup and
restore planning, is to run DBCC CHECKDB on a regular basis, to check the logical and
physical integrity of all the objects in the specified database, and so catch corruption as
early as possible.

78

Chapter 2: Planning, Storage and Documentation

We will not discuss this topic in detail in this book, but check out the information in
Books Online (http://msdn.microsoft.com/en-us/library/ms176064.aspx) and if you
are not already performing these checks regularly, you should research and start a DBCC
CHECKDB regimen immediately.

Documenting Critical Backup Information

Properly documenting your backup and restore plan goes beyond the SLA which we have
previously discussed. There is a lot more information that you must know, and document,
for each of the databases in your care, and the backup scheme to which they are subject.

The following checklist summarizes just some of the items that should be documented.
For further coverage, Brad McGehee is currently writing a series of articles on
documenting SQL Server databases, covering the information listed below, and much
more. See, for example, www.simple-talk.com/sql/database-administration/
database-properties-health-check/.

Database File Information

•	 Physical File Name:

•	 MDF Location:

•	 NDF Location(s) (add more rows as needed):

•	 Filegroup(s) (add more rows as needed):

•	 Includes Partitioned Tables/Indexes:

•	 Database Size:

•	 Has Database File Layout Been Optimized:

http://msdn.microsoft.com/en-us/library/ms176064.aspx
http://www.simple-talk.com/sql/database-administration/database-properties-health-check/
http://www.simple-talk.com/sql/database-administration/database-properties-health-check/

79

Chapter 2: Planning, Storage and Documentation

Log File Information

•	 Physical File Name:

•	 LDF Location:

•	 Log Size:

•	 Number of Virtual Log Files:

Backup Information

•	 Types of Backups Performed (Full, Differential, Log):

•	 Last Full Database Backup:

•	 Last Differential Database Backup:

•	 Last Transaction Log Backup:

•	 How Often are Transaction Logs Backed Up:

•	 Average Database Full Backup Time:

•	 Database Full Backup Size:

•	 Average Transaction Log Backup Size:

•	 Number of Full Database Backup Copies Retained:

•	 Backups Encrypted:

•	 Backups Compressed:

•	 Backup To Location:

•	 Offsite Backup Location:

•	 Backup Software/Agent Used:

80

Chapter 2: Planning, Storage and Documentation

This information can be harvested in a number of different ways, but ideally will be
scripted and automated. Listing 2-3 shows two scripts that will capture just some of this
information; please feel free to adapt and amend as is suitable for your environment.

SELECT d.name ,
 MAX(d.recovery_model) ,
 is_Password_Protected , --Backups Encrypted:
 --Last Full Database Backup:
 MAX(CASE WHEN type = 'D' THEN backup_start_date
 ELSE NULL
 END) AS [Last Full Database Backup] ,
 --Last Transaction Log Backup:
 MAX(CASE WHEN type = 'L' THEN backup_start_date
 ELSE NULL
 END) AS [Last Transaction Log Backup] ,
 --Last Differential Log Backup:
 MAX(CASE WHEN type = 'I' THEN backup_start_date
 ELSE NULL
 END) AS [Last Differential Backup] ,
 --How Often are Transaction Logs Backed Up:
 DATEDIFF(Day, MIN(CASE WHEN type = 'L' THEN backup_start_date
 ELSE 0
 END),
 MAX(CASE WHEN type = 'L' THEN backup_start_date
 ELSE 0
 END)) / NULLIF(SUM(CASE WHEN type = 'I' THEN 1
 ELSE 0
 END), 0) [Logs BackUp count] ,
 --Average backup times:
 SUM(CASE WHEN type = 'D'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'D' THEN 1
 ELSE 0
 END), 0) AS [Average Database
 Full Backup Time] ,
 SUM(CASE WHEN type = 'I'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'I' THEN 1

81

Chapter 2: Planning, Storage and Documentation

 ELSE 0
 END), 0) AS [Average Differential
 Backup Time] ,
 SUM(CASE WHEN type = 'L'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'L' THEN 1
 ELSE 0
 END), 0) AS [Average Log Backup Time] ,
 SUM(CASE WHEN type = 'F'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'F' THEN 1
 ELSE 0
 END), 0) AS [Average file/Filegroup
 Backup Time] ,
 SUM(CASE WHEN type = 'G'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'G' THEN 1
 ELSE 0
 END), 0) AS [Average Differential
 file Backup Time] ,
 SUM(CASE WHEN type = 'P'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'P' THEN 1
 ELSE 0
 END), 0) AS [Average partial Backup Time] ,
 SUM(CASE WHEN type = 'Q'
 THEN DATEDIFF(second, backup_start_date,
 Backup_finish_date)
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'Q' THEN 1
 ELSE 0
 END), 0) AS [Average Differential
 partial Backup Time] ,
 MAX(CASE WHEN type = 'D' THEN backup_size
 ELSE 0
 END) AS [Database Full Backup Size] ,

82

Chapter 2: Planning, Storage and Documentation

 SUM(CASE WHEN type = 'L' THEN backup_size
 ELSE 0
 END) / NULLIF(SUM(CASE WHEN type = 'L' THEN 1
 ELSE 0
 END), 0) AS [Average Transaction Log Backup Size] ,
 --Backup compression?:
 CASE WHEN SUM(backup_size - compressed_backup_size) <> 0 THEN 'yes'
 ELSE 'no'
 END AS [Backups Compressed]
FROM master.sys.databases d
 LEFT OUTER JOIN msdb.dbo.backupset b ON d.name = b.database_name
WHERE d.database_id NOT IN (2, 3)
GROUP BY d.name ,
 is_Password_Protected
--HAVING MAX(b.backup_finish_date) <= DATEADD(dd, -7, GETDATE()) ;

-- database characteristics
SELECT d.name ,
 f.NAME ,
 LOWER(f.type_Desc) ,
 physical_Name AS [Physical File Name] ,
 [size] / 64 AS [Database Size (Mb)] ,
 CASE WHEN growth = 0 THEN 'fixed size'
 WHEN is_percent_growth = 0 THEN CONVERT(VARCHAR(10),
 growth / 64)
 ELSE CONVERT(VARCHAR(10), ([size] * growth / 100) / 64)
 END AS [Growth (Mb)] ,
 CASE WHEN max_size = 0 THEN 'No growth allowed'
 WHEN max_size = -1 THEN 'unlimited Growth'
 WHEN max_size = 268435456 THEN '2 TB'
 ELSE CONVERT(VARCHAR(10), max_size / 64) + 'Mb'
 END AS [Max Size] ,
 CASE WHEN growth = 0 THEN 'no autogrowth'
 WHEN is_percent_growth = 0 THEN 'fixed increment'
 ELSE 'percentage'
 END AS [Database Autogrowth Setting]
FROM master.sys.databases d
 INNER JOIN master.sys.master_files F
 ON f.database_ID = d.database_ID
ORDER BY f.name ,
 f.file_ID

Listing 2-3: Collecting database file and backup file information.

83

Chapter 2: Planning, Storage and Documentation

Summary

With the first two chapters complete, the foundation is laid; we've covered database
file architecture, the types of backup that are available, and how this, and the overall
backup strategy, is affected by the recovery model of the database. We've also considered
hardware storage requirements for our database and backup files, the tools available to
capture the backups, and how to develop an appropriate Service Level Agreement for
a given database, depending on factors such as toleration for data loss, database size,
workload, and so on.

We are now ready to move on to the real thing; actually taking and restoring different
types of backup. Over the coming chapters, we'll build some sample databases, and
demonstrate all the different types of backup and subsequent restore, using both native
scripting and a third-party tool (Red Gate SQL Backup).

84

Chapter 3: Full Database Backups

A full database backup is probably the most common type of backup in the SQL Server
world. It is essentially a backup of the data file(s) associated with a database. This chapter
will demonstrate how to perform these full database backups, using both GUI-driven and
T-SQL techniques.

We'll create and populate a sample database, then demonstrate how to capture a full
database backup using both the SQL Server Management Studio (SSMS) GUI, and T-SQL
scripts. We'll capture and store some metrics (backup time, size of backup file) for both
full backup techniques.

We'll then take a look at the native backup compression feature, which became part
of SQL Server Standard edition in SQL Server 2008, and we'll demonstrate how much
potential disk storage space (and backup time) can be saved using this feature. By the end
of Chapter 3, we'll be ready to restore a full backup file, and so return our sample database
to the exact state that it existed at the time the full database backup process was taken.

In Chapter 8, we'll see how to automate the whole process of taking full, as well as
differential and transaction log, backups using Red Gate SQL Backup.

What is a Full Database Backup?

As discussed in Chapter 1, a full database backup (herein referred to simply as a "full
backup") is essentially an "archive" of your database as it existed at the point in time of the
backup operation.

85

Chapter 3: Full Database Backups

It's useful to know exactly what is contained in this "archive" and a full backup contains:

•	 a copy of the database at the time of backup creation

•	 all user objects and data

•	 system information pertinent to the database

•	 user information

•	 permissions information

•	 system tables and views

•	 enough of the transaction log to be able to bring the database back online in a
consistent state, in the event of a failure.

Why Take Full Backups?

Full backups are the cornerstone of a disaster recovery strategy for any user database,
in the event of data corruption, or the loss of a single disk drive, or even a catastrophic
hardware failure, where all physical media for a server is lost or damaged. In such cases,
the availability of a full backup file, stored securely in a separate location, may be the
only route to getting an online business back up and running on a new server, with at
least most of its data intact. If there are also differential backups (Chapter 7) and log
backups (Chapter 5), then there is a strong chance that we can recover the database to a
state very close to that in which it existed shortly before the disaster. If a full backup for
a database has never been taken then, by definition, there also won't be any differential
or log backups (a full backup is a prerequisite for both), and there is very little chance of
recovering the data.

In the event of accidental data loss or data corruption, where the database is still opera-
tional, then, again, the availability of a full backup (in conjunction with other backup
types, if appropriate) means we can restore a secondary copy of the database to a previous

86

Chapter 3: Full Database Backups

point in time, where the data existed, and then transfer that data back into the live
database, using a tool such as SSIS or T-SQL (we cover this in detail in Chapter 6,
Log Restores).

It is important to stress that these methods, i.e. recovering from potential data loss by
restoring backup files, represent the only sure way to recover all, or very nearly all, of the
lost data. The alternatives, such as use of specialized log recovery tools, or attempting to
recover data from secondary or replica databases, offer relatively slim chances of success.

Aside from disaster recovery scenarios, there are also a few day-to-day operations where
full backups will be used. Any time that we want to replace an entire database or create a
new database containing the entire contents of the backup, we will perform a full backup
restore. For example:

•	 moving a development project database into production for the first time; we can
restore the full backup to the production server to create a brand new database,
complete with any data that is required.

•	 refreshing a development or quality assurance system with production data for use
in testing new processes or process changes on a different server; this is a common
occurrence in development infrastructures and regular full backup restores are often
performed on an automated schedule.

Full Backups in the Backup and Restore SLA

For many databases, an agreement regarding the frequency and scheduling of full
database backups will form only one component of a wider Backup and Restore SLA,
which also covers the need for other backup types (differential, log, and so on).

However, for certain databases, the SLA may well specify a need for only full backups.
These full backups will, in general, be taken either nightly or weekly. If a database is

87

Chapter 3: Full Database Backups

subject to a moderate level of data modification, but the flexibility of full point-in-time
restore, via log backups, is not required, then the Backup SLA can stipulate simply that
nightly full database backups should be taken.

The majority of the development and testing databases that I look after receive only a
nightly full database backup. In the event of corruption or data loss, I can get the devel-
opers and testers back to a good working state by restoring the previous night's full
backup. In theory, these databases are exposed to a maximum risk of losing just less than
24 hours of data changes. However, in reality, the risk is much lower since most devel-
opment happens during a much narrower daytime window. This risk is usually acceptable
in development environments, but don't just assume this to be the case; make sure you
get sign-off from the project owners.

For a database subject only to very infrequent changes, it may be acceptable to take only a
weekly full backup. Here the risk of loss is just under seven days, but if the database really
is only rarely modified then the overall risk is still quite low.

Remember that the whole point of a Backup SLA is to get everyone with a vested interest
to "sign off" on acceptable levels of data loss for a given database. Work with the database
owners to determine the backup strategy that works best for their databases and for you
as the DBA. You don't ever want to be caught in a situation where you assumed a certain
level of data loss was acceptable and it turned out you were wrong.

Preparing for Full Backups

We're going to run through examples of how to take full backups only, using both
SSMS and T-SQL scripts. Chapter 4 will show how to restore these backups, and then
Chapters 5 and 6 will show how to take and restore log backups, and Chapter 7 will cover
differential backup and restore. In Chapter 8, we'll show how to manage full, differential
and log backups, using a third-party tool (Red Gate SQL Backup) and demonstrate some
of the advantages that such tools offer.

88

Chapter 3: Full Database Backups

Before we get started taking full backups, however, we need to do a bit of preparatory
work, namely choosing an appropriate recovery model for our example database, and
then creating that database along with some populated sample tables.

Choosing the recovery model

For the example database in this chapter, we're going to assume that our Backup SLA
expresses a tolerance to potential data loss of 24 hours, as might be appropriate for a
typical development database. We can satisfy this requirement using just full database
backups, so differential and log backups will not form part of our backup strategy, at this
stage. Full database backups can be taken in any one of the three supported recovery
models; SIMPLE, FULL or BULK LOGGED (see Chapter 1 for details).

Given all this, it makes strategic and administrative sense to operate this database in the
SIMPLE recovery model. This will enable us to take the full backups we need, and will
also greatly simplify the overall management of this database, since in SIMPLE recovery
the transaction log is automatically truncated upon CHECKPOINT (see Chapter 1), and so
space in the log is regularly made available for reuse. If we operated the database in FULL
recovery, then we would end up taking log backups just to control the size of the log file,
even though we don't need those log backups for database recovery purposes. This would
generate a needless administrative burden, and waste system resources.

Database creation

The sample database for this chapter will be about as simple as it's possible to get. It
will consist of a single data (mdf) file contained in a single filegroup; there will be no
secondary data files or filegroups. This one data file will contain just a handful of tables
where we will store a million rows of data. Listing 3-1 shows our fairly simple database
creation script. Note that in a production database the data and log files would be placed
on separate drives.

89

Chapter 3: Full Database Backups

CREATE DATABASE [DatabaseForFullBackups] ON PRIMARY
 (NAME = N'DatabaseForFullBackups'
 , FILENAME = N'C:\SQLData\DatabaseForFullBackups.mdf'
 , SIZE = 512000KB
 , FILEGROWTH = 102400KB
)
 LOG ON
 (NAME = N'DatabaseForFullBackups_log'
 , FILENAME = N'C:\SQLData\DatabaseForFullBackups_log.ldf'
 , SIZE = 102400KB
 , FILEGROWTH = 10240KB
)
GO

Listing 3-1: Creating the DatabaseForFullBackups sample database.

This is a relatively simple CREATE DATABASE statement, though even it is not quite as
minimal as it could be; CREATE DATABASE [DatabaseForFullBackups] would work,
since all the arguments are optional in the sense that, if we don't provide explicit values
for them, they will take their default values from whatever is specified in the model
database. Nevertheless, it's instructive, and usually advisable, to explicitly supply values
for at least those parameters shown here.

We have named the database DatabaseForFullBackups, which is a clear statement of
the purpose of this database. Secondly, via the NAME argument, we assign logical names
to the physical files. We are adopting the default naming convention for SQL Server 2008,
which is to use the database name for logical name of the data file, and append _log to
the database name for the logical name of the log file.

File size and growth characteristics

The FILENAME argument specifies the path and file name used by the operating system.
Again, we are using the default storage path, storing the files in the default data directory,
and the default file name convention, which is to simply append .MDF and .LDF to the
logical file names.

90

Chapter 3: Full Database Backups

The optional SIZE and FILEGROWTH arguments are the only cases where we use
some non-default settings. The default initial SIZE settings for the data and log files,
inherited from the model database properties, are too small (typically, 3 MB and 1 MB
respectively) for most databases. Likewise the default FILEGROWTH settings (typically
1 MB increments for the data files and 10% increments for the log file) are also inappro-
priate. In busy databases, they can lead to fragmentation issues, as the data and log files
grow in many small increments.

The first problem is physical file fragmentation, which occurs when a file's data is written
to non-contiguous sectors of the physical hard disk (SQL Server has no knowledge of
this). This physical fragmentation is greatly exacerbated if the data and log files are
allowed to grow in lots of small auto-growth increments, and it can have a big impact on
the performance of the database, especially for sequential write operations.

As a best practice it's wise, when creating a new database, to defragment the disk drive (if
necessary) and then create the data and log files pre-sized so that they can accommodate,
without further growth in file size, the current data plus estimated data growth over
a reasonable period. In a production database, we may want to size the files to accom-
modate, say, a year's worth of data growth.

There are other reasons to avoid allowing your database files to grow in multiple small
increments. Each growth event will incur a CPU penalty. This penalty can be mitigated
for data files by instant file initialization (enabled by granting the perform volume
maintenance tasks right to the SQL Server service account). However, the same optimi-
zation does not apply to log files.

Furthermore, growing the log file in many small increments can cause log fragmen-
tation, which is essentially the creation of a very large number of small VLFs, which can
deteriorate the performance of crash recovery, restores, and log backups (in other words,
operations that read the log file). We'll discuss this in more detail in Chapter 5.

91

Chapter 3: Full Database Backups

In any event, in our case, we're just setting the SIZE and FILEGROWTH settings such that
SQL Server doesn't have to grow the files while we pump in our test data. We've used an
initial data files size of 500 MB, growing in 100 MB increments, and an initial size for the
log file of 100 MB, growing in 10 MB increments.

When you're ready, execute the script in Listing 3-1, and the database will be created.
Alternatively, if you prefer to create the database via the SSMS GUI, rather than using a
script, simply right-click on the Databases node in SSMS, select New Database…, and fill
out the General tab so it looks like that shown in Figure 3-1.

Figure 3-1: Creating a database via SSMS.

Setting database properties

If, via SSMS, we generate a CREATE script for an existing database, it will contain the
expected CREATE DATABASE section, specifying the values for the NAME, FILENAME,
SIZE, MAXSIZE and FILEGROWTH arguments. However, this will be followed by a swathe
of ALTER DATABASE commands that set various other database options. To see them
all, simply browse the various Properties pages for any database. All of these options
are, under the covers, assigned default values according to those specified by the model
system database; hence the name model, since it is used as a model from which to create
all user databases. Listing 3-2 shows a script to set six of the more important options.

92

Chapter 3: Full Database Backups

ALTER DATABASE [DatabaseForFullBackups] SET COMPATIBILITY_LEVEL = 100
GO
ALTER DATABASE [DatabaseForFullBackups] SET AUTO_SHRINK OFF
GO
ALTER DATABASE [DatabaseForFullBackups] SET AUTO_UPDATE_STATISTICS ON
GO
ALTER DATABASE [DatabaseForFullBackups] SET READ_WRITE
GO
ALTER DATABASE [DatabaseForFullBackups] SET RECOVERY SIMPLE
GO
ALTER DATABASE [DatabaseForFullBackups] SET MULTI_USER
GO

Listing 3-2: Various options of the ALTER DATABASE command.

The meaning of each of these options is as follows:

•	 COMPATIBILITY_LEVEL
This lets SQL Server know with which version of SQL Server to make the
database compatible. In all of our examples, we will be using 100, which signifies
SQL Server 2008.

•	 AUTO_SHRINK
This option either turns on or off the feature that will automatically shrink your
database files when free space is available. In almost all cases, this should be set to OFF.

•	 AUTO_UPDATE_STATISTICS
When turned ON, as it should be in most cases, the optimizer will automatically keep
statistics updated, in response to data modications.

•	 READ_WRITE
This is the default option and the one to use if you want users to be able to update the
database. We could also set the database to READ_ONLY to prevent any users making
updates to the database.

•	 RECOVERY SIMPLE
This tells SQL Server to set the recovery model of the database to SIMPLE. Other
options are FULL (the usual default) and BULK_LOGGED.

93

Chapter 3: Full Database Backups

•	 MULTI_USER
For the database to allow connections for multiple users, we need to set this option.
Our other choice is SINGLE_USER, which allows only one connection to the database
at a time.

The only case where we are changing the usual default value is the command to set
the recovery model to SIMPLE; in most cases, the model database will, by default, be
operating in the FULL recovery model and so this is the recovery model that will be
conferred on all user databases. If the default recovery model for the model database is
already set to SIMPLE, for your instance, then you won't need to execute this portion of
the ALTER script.

If you do need to change the recovery model, just make sure you are in the correct
database before running this command, to avoid changing another database's recovery
model. Alternatively, simpy pull up the Properties for our newly created database and
change the recovery model manually, on the Options page, as shown in Figure 3-2.

Figure 3-2: The Options page for a database, in SSMS.

94

Chapter 3: Full Database Backups

Creating and populating the tables

Now that we have a brand new database created on our instance, we need to create a few
sample tables. Listing 3-3 shows the script to create two message tables, each with the
same simple structure.

USE [DatabaseForFullBackups]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TABLE [dbo].[MessageTable1]
 (
 [MessageData] [nvarchar](200) NOT NULL ,
 [MessageDate] [datetime2] NOT NULL
)
ON [PRIMARY]
GO

CREATE TABLE [dbo].[MessageTable2]
 (
 [MessageData] [nvarchar](200) NOT NULL ,
 [MessageDate] [datetime2] NOT NULL
)
ON [PRIMARY]
GO

Listing 3-3: Table creation script.

MessageTable1 and MessageTable2 are both very simple tables, comprised of only
two columns each. The MessageData column will contain a static character string,
mainly to fill up data space, and the MessageDate will hold the date and time that the
message was inserted.

95

Chapter 3: Full Database Backups

Now that we have our tables set up, we need to populate them with data. We want to
pack in a few hundred thousand rows so that the database will have a substantial size.
However, we won't make it so large that it will risk filling up your desktop/laptop drive.
Normally, a DBA tasked with pumping several hundred thousand rows of data into a table
would reach for the BCP tool and a flat file, which would be the fastest way to achieve
this goal. However, since coverage of BCP is out of scope for this chapter, we'll settle for a
simpler, but much slower, T-SQL method, as shown in Listing 3-4.

USE [DatabaseForFullBackups]
GO

DECLARE @messageData NVARCHAR(200)

SET @messageData = 'This is the message we are going to use to fill
 up the first table for now. We want to get this
 as close to 200 characters as we can to fill up
 the database as close to our initial size as we can!!'

INSERT INTO dbo.MessageTable1 VALUES (@messageData, GETDATE())
GO 1000000

Listing 3-4: Populating MessageTable1.

The code uses a neat GO trick that allows us to INSERT the same data into the Messa-
geTable1 table multiple times, without using a looping mechanism. The GO statement
is normally used as a batch separator, but in this case we pass it a parameter defining the
number of times to run the code in the batch.

So, our database is now at a decent size, somewhere around 500 MB. This is not a large
database by any stretch of the imagination, but it is large enough that it will take more
than a few seconds to back up.

96

Chapter 3: Full Database Backups

Generating testing data

Getting a decent amount of testing data into a database can be a daunting task, especially when the

database becomes much more complex than our example. Red Gate offers a product, SQL Data Genera-

tor, which will scan your database and table structure to give you a very robust set of options for auto-

matically generating test data. You can also write custom data generators for even the most specific of

projects. See www.red-gate.com/products/SQL_Data_Generator/.

Taking Full Backups

We are now set to go and we're going to discuss taking full backups the "GUI way," in
SSMS, and by using native T-SQL Backup commands.

As you work through the backup examples in this chapter, and throughout the book, for
learning purposes, you may occasionally want to start again from scratch, that is, to drop
the example database, re-create it, and retake the backups. The best way to do this is to
delete the existing backup files for that database, and then drop the database in a way that
also clears out the backup history for that database, which is stored in the msdb database.
This will prevent SQL Server from referencing any old backup information. Listing 3-5
shows how to do this.

EXEC msdb.dbo.sp_delete_database_backuphistory
 @database_name = N'DatabaseName'
GO
USE [master]
GO
DROP DATABASE [DatabaseName]
GO

Listing 3-5: Dropping a database and deleting backup history.

http://www.red-gate.com/products/SQL_Data_Generator/

97

Chapter 3: Full Database Backups

Alternatively, using the SSMS GUI, simply right-click on the database, and select Delete;
by default, the option to Delete backup and restore history information for databases
will be checked and this will clear out the msdb historical information.

Native SSMS GUI method

Taking full backups using the SSMS GUI is a fairly straightforward process. I use this
technique mainly to perform a one-time backup, perhaps before implementing some
heavy data changes on the database. This provides an easy way to revert the database to
the state it was in before the change process began, should something go wrong.

We're going to store the backup files on local disk, in a dedicated folder. So go ahead now
and create a new folder on the root of the C:\ drive of the SQL Server instance, called
SQLBackups and then create a subfolder called Chapter3 where we'll store all the full
backup files in this chapter. Again, we use the same drive as the one used to store the
online data and log files purely as a convenience; in a production scenario, we'd stored the
backups on a separate drive!

The Backup Database wizard

We are now ready to start the full backup process. Open SQL Server Management
Studio, connect to your server, expand the Databases node and then right-click on
the DatabaseForFullBackups database, and navigate Tasks | Backup…, as shown
in Figure 3-3.

98

Chapter 3: Full Database Backups

Figure 3-3: Back Up Database menu option.

This will start the backup wizard and bring up a dialog box titled Back Up Database –
DatabaseForFullBackups, shown in Figure 3-4, with several configuration options that
are available to the T-SQL BACKUP DATABASE command. Don't forget that all we're really
doing here is using a graphical interface to build and run a T-SQL command.

99

Chapter 3: Full Database Backups

Figure 3-4: Back Up Database wizard.

The General page comprises three major sections: Source, Backup set and Destination.
In the Source section, we specify the database to be backed up and what type of backup
to perform. The Backup type drop-down list shows the types of backup that are available
to your database. In our example we are only presented with two options, Full and
Differential, since our database is in SIMPLE recovery model.

100

Chapter 3: Full Database Backups

You will also notice a check box with the label Copy-only backup. A copy-only full backup
is one that does not affect the normal backup operations of a database and is used when
a full backup is needed outside of a normal scheduled backup plan. When a normal
full database backup is taken, SQL Server modifies some internal archive points in the
database, to indicate that a new base file has been created, for use when restoring subse-
quent differential backups. Copy-only full backups preserve these internal archive points
and so cannot be used as a differential base. We're not concerned with copy-only backups
at this point.

The Backup component section is where we specify either a database or file/filegroup
backup. The latter option is only available for databases with more than one filegroup, so
it is deactivated in this case. We will, however, talk more about this option when we get to
Chapter 9, on file and filegroup backups.

In the Backup set section, there are name and description fields used to identify the
backup set, which is simply the set of data that was chosen to be backed up. The infor-
mation provided here will be used to tag the backup set created, and record its creation in
the MSDB backup history tables.

There is also an option to set an expiration date on our backup set. When taking SQL
Server backups, it is entirely possible to store multiple copies of a database backup in the
same file or media. SQL Server will just append the next backup to the end of the backup
file. This expiration date lets SQL Server know how long it should keep this backup set
in that file before overwriting it. Most DBAs do not use this "multiple backups per file"
feature. There are only a few benefits, primarily a smaller number of files to manage, and
many more drawbacks: larger backup files and single points of failure, to name only two.
For simplicity and manageability, throughout this book, we will only deal with backups
that house a single backup per file.

The Destination section is where we specify the backup media and, in the case of disk,
the location of the file on this disk. The Tape option button will be disabled unless a tape
drive device is attached to the server.

101

Chapter 3: Full Database Backups

As discussed in Chapter 1, even if you still use tape media, as many do, you will almost
never back up directly to tape; instead you'll back up to disk and then transfer older
backups to tape.

When using disk media to store backups, we are offered three buttons to the right of
the file listing window, for adding and removing disk destinations, as well as looking
at the different backup sets that are already stored in a particular file. The box will
be pre-populated with a default file name and destination for the default SQL Server
backup folder. We are not going to be using that folder (simply because we'll be storing
our backups in separate folders, according to chapter) so go ahead and use the Remove
button on that file to take it out of the list. Now, use the only available button, the Add…
button to bring up the Select Backup Destination window. Make sure you have the File
name option selected, click the browse (…) button to bring up the Locate Database Files
window. Locate the SQLBackups\Chapter3 directory that you created earlier, on the
machine and then enter a name for the file, DatabaseForFullBackups_Full_Native_1.bak
as shown in Figure 3-5.

Figure 3-5: Backup file configuration.

102

Chapter 3: Full Database Backups

Once this has been configured, click OK to finalize the new file configuration and click
OK again on the Select Backup Destination dialog box to bring you back to the Back Up
Database page. Now that we are done with the General page of this wizard, let's take a
look at the Options Page, shown in Figure 3-6.

 Figure 3-6: Configuration options for backups.

103

Chapter 3: Full Database Backups

The Overwrite media section is used in cases where a single file stores multiple backups
and backup sets. We can set the new backup to append to the existing backup set or
to overwrite the specifically named set that already exists in the file. We can also use
this section to overwrite an existing backup set and start afresh. We'll use the option of
Overwrite all existing backup sets since we are only storing one backup per file. This will
make sure that, if we were to run the same command again in the event of an issue, we
would wind up with just one backup set in the file.

The Reliability section provides various options that can be used to validate the backup,
as follows:

•	 Verify backup when finished
Validates that the backup set is complete, after the backup operation has completed. It
will make sure that each backup in the set is readable and ready for use.

•	 Perform checksum before writing to media
SQL Server performs a checksum operation on the backup data before writing it to
the storage media. As discussed in Chapter 2, a checksum is a special function used
to make sure that the data being written to the disk/tape matches what was pulled
from the database or log file. This option makes sure your backup data is being written
correctly, but might also slow down your backup operation.

•	 Continue on error
Instructs SQL Server to continue with all backup operations even after an error has
been raised during the backup operation.

The Transaction log section offers two important configuration options for transaction
log backups, and will be covered in Chapter 5.

The Tape Drive section of the configuration is only applicable if you are writing your
backups directly to tape media. We have previously discussed why this is not the best way
for backups to be taken in most circumstances, so we will not be using these options (and
they aren't available here anyway, since we've already elected to back up to disk).

104

Chapter 3: Full Database Backups

The final Compression configuration section deals with SQL Server native backup
compression, which is an option that we'll ignore for now, but come back to later in
the chapter.

Having reviewed all of the configuration options, go ahead and click OK at the bottom
of the page to begin taking a full database backup of the DatabaseForFullBackups
database. You will notice the progress section begin counting up in percentage. Once
this reaches 100%, you should receive a dialog box notifying you that your backup has
completed. Click OK on this notification and that should close both the dialog box and
the Back Up Database wizard.

Gathering backup metrics, Part 1

That wasn't so bad! We took a full backup of our database that has one million rows of
data in it. On a reasonably laptop or desktop machine, the backup probably would have
taken 30–60 seconds. On a decent server, it will have been much quicker. However, it's
useful to have slightly more accurate timings so that we can compare the performance
of the various methods of taking full backups. We also need to check out the size of the
backup file, so we can see how much storage space it requires and, later, compare this to
the space required for compressed backup files.

To find out the size of the backup file, simple navigate to the SQLBackups\Chapter2
folder in Windows Explorer and check out the size of the DatabaseForFullBackups_
Full_Native_1.bak file.

You should find that it's roughly the same size as the data (mdf) file, i.e. about 500 MB, or
half of a gigabyte. This doesn't seem bad now, but given that some databases are over 1 TB
in size, you can begin to appreciate the attraction of backup compression.

Checking the exact execution time for the backup process is a little trickier. If we don't
want to use a stopwatch to measure the start and stop of the full backup, we can use the
backupset system table in MSDB to give us a more accurate backup time. Take a look

105

Chapter 3: Full Database Backups

at Listing 3-6 for an example of how to pull this information from your system. I'm only
returning a very small subset of the available columns, so examine the table more closely,
to find more information that you might find useful.

USE msdb
GO

SELECT
 database_name
 , DATEDIFF(SS, backup_start_date, backup_finish_date) AS [RunTImeSec]
 , database_creation_date
FROM
 dbo.backupset
ORDER BY
 database_creation_date DESC

Listing 3-6: Historical backup runtime query.

Figure 3-7 shows some sample output.

Figure 3-7: Historical backup runtime results.

On my machine the backup takes 49 seconds. That seems fairly good, but we have to
consider the size of the test database. It is only 500 MB, which is not a typical size for
most production databases.

In the next section, we'll pump more data into the database and take another full backup
(this time using T-SQL directly), and we'll get to see how the backup execution time varies
with database size.

106

Chapter 3: Full Database Backups

Native T-SQL method

Every DBA needs to know how to write a backup script in T-SQL. Scripting is our route
to backup automation and, in cases where we don't have access to a GUI, it may be the
only option available; we can simply execute our backups scripts via the osql or sqlcmd
command line utilities. Here, however, for general readability, we'll execute the scripts via
SSMS. Remember that the commands in this section are essentially the same ones that
the GUI is generating and executing against the server when we use the Backup wizard.

Before we move on to take another full backup of our DatabaseForFullBackups
database, this time using T-SQL, we're first going add a bit more data. Let's put a new
message into our second table with a different date and time stamp.

We are going to use the same method to fill the second table as we did for the first. The
only thing that is going to change is the text that we are entering. Take a look at Listing
3-7 and use this to push another million rows into the database.

USE [DatabaseForFullBackups]
GO

DECLARE @messageData NVARCHAR(200)

SET @messageData = 'This is a different message we are going to
 use to fill up the second table. We want to get
 this as close to 200 characters as we can to
 fill up the database as close to our initial
 size as we can.'

INSERT INTO dbo.MessageTable2
VALUES (@messageData, GETDATE())
GO 1000000

Listing 3-7: Populating the MessageTable2 table.

107

Chapter 3: Full Database Backups

This script should take about a few minutes to fill the secondary table. Once it is
populated with another million rows of the same size and structure as the first, our
database file should be hovering somewhere around 1 GB in size, most likely just slightly
under. Now that we have some more data to work with, let's move on to taking native
SQL Server backups using T-SQL only.

A simple T-SQL script for full backups

Take a look at Listing 3-8, which shows a script that can be used to take a full backup of
the newly populated DatabaseForFullBackups database.

USE master
GO
BACKUP DATABASE [DatabaseForFullBackups] TO
DISK = N'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_2.bak'
WITH FORMAT, INIT, NAME = N'DatabaseForFullBackups-Full Database Backup',
SKIP, NOREWIND, NOUNLOAD, STATS = 10
GO

Listing 3-8: Native full backup T-SQL script.

This script may look like it has some extra parameters, compared to the native GUI
backup that we did earlier, but this is the scripted output of that same backup, with only
the output file name modified, and a few other very minor tweaks. So what do each of
these parameters mean?

The meaning of the first line should be fairly obvious; it is instructing SQL Server to
perform a full backup of the DatabaseForFullBackups database. This leads into the
second line where we have chosen to back up to disk, and given a complete file path to
the resulting backup file. The remainder of the parameters are new, so let's go through
each one.

108

Chapter 3: Full Database Backups

•	 FORMAT
This option tells SQL Server whether or not to overwrite the media header infor-
mation. The FORMAT option will erase any information in a backup set that already
exists when the backup is initialized (NOFORMAT will preserve it).

•	 INIT
By default, when scripting a backup generated by the Backup wizard, this parameter
will be set to NOINIT, which lets SQL Server know not to initialize a media set when
taking the backup and instead append any new backup data to the existing backup set.
However, since we adopt the rule of one backup per backup set, it's useful to use INIT
instead, to make sure that, if a command gets run twice, we overwrite the existing set
and still end up with only one backup in the set.

•	 NAME
The NAME parameter is simply used to identify the backup set. If it is not supplied, the
set will not record a name.

•	 SKIP
Using the SKIP parameter will cause SQL Server to skip the expiration check that it
normally does on the backup set. It doesn't care if any backups existing in the backup
set have been marked for availability to be overwritten.

•	 NOREWIND
This parameter will cause SQL Server to keep a tape device open and ready for use
when the backup operation is complete. This is a performance boost to users of tape
drives since the tape is already at the next writing point instead of having to search for
the correct position. This is obviously a tape-only option.

•	 NOUNLOAD
When backing up to a tape drive, this parameter instructs SQL Server not to unload
the tape from the drive when the backup operation is completed.

109

Chapter 3: Full Database Backups

•	 STATS
This option may prove useful to you when performing query-based backups. The
STATS parameter defines the time intervals on which SQL Server should update
the "backup progress" messages. For example, using stats=10 will cause SQL
Server to send a status message to the query output for each 10 percent of the
backup completion.

As noted, if we wished to overwrite an existing backup set, we'd want to specify the INIT
parameter but, beyond that, none of these secondary parameters, including the backup
set NAME descriptor, are required. As such, we can actually use a much simplified BACKUP
command, as shown in Listing 3-9.

BACKUP DATABASE [DatabaseForFullBackups] TO
DISK = N'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_2.bak'
GO

Listing 3-9: Slimmed-down native T-SQL backup code.

Go ahead and start Management Studio and connect to your test server. Once you have
connected, open a new query window and use either Listing 3-8 or 3-9 to perform this
backup in SSMS. Once it is done executing, do not close the query, as the query output
contains some metrics that we want to record.

Gathering backup metrics, Part 2

Now that the backup has completed, let's take a look at the query output window to see
if we can gather any information about the procedure. Unlike the native GUI backup, we
are presented with a good bit of status data in the messages tab of the query window. The
post-backup message window should look as shown in Figure 3-8 (if you ran Listing 3-8, it
will also contain ten "percent processed" messages, which are not shown here).

110

Chapter 3: Full Database Backups

Figure 3-8: Native T-SQL backup script message output.

This status output shows how many database pages the backup processed as well as
how quickly the backup was completed. On my machine, the backup operation
completed in just under 80 seconds. Notice here that that the backup processes all the
pages in the data file, plus two pages in the log file; the latter is required because a full
backup needs to include enough of the log that the backup can produce a consistent
database, upon restore.

When we ran our first full backup, we had 500 MB in our database and the backup
process took 49 seconds to complete. Why didn't it take twice as long this time, now
that we just about doubled the amount of data? The fact is that the central process of
writing data to the backup file probably did take roughly twice as long, but there are other
"overhead processes" associated with the backup task that take roughly the same amount
of time regardless of how much data is being backed up. As such, the time to take backups
will not increase linearly with increasing database size.

But does the size of the resulting backup file increase linearly? Navigating to our SQL
Server backup files directory, we can see clearly that the size is nearly double that of the
first backup file (see Figure 3-9). The file size of your native SQL Server backups will grow
at nearly the same rate as the database data files grow.

111

Chapter 3: Full Database Backups

Figure 3-9: Comparing native SQL Server backup file sizes.

We will compare these metrics against the file sizes and speeds we get from backing up
the same files using Red Gate's SQL Backup in Chapter 8.

Native Backup Compression

In SQL Server 2008 and earlier versions, backup compression was a feature only available
in the Enterprise Edition (or Developer Edition) of SQL Server. However, starting with
SQL Server 2008 R2, backup compression has been made available in all editions, so let's
take a quick look at what savings it can offer over non-compressed backups, in terms of
backup file size and the speed of the backup operation. Generally speaking, third-party
backup tools still offer a better compression ratio, better speed and more options (such as
compressed and encrypted backups) than native backup compression. However, we'll put
that to the test in Chapter 8.

All we're going to do is perform a compressed backup of the DatabaseForFull-
Backups, using the script shown in Listing 3-10.

USE [master]
GO

BACKUP DATABASE [DatabaseForFullBackups]
TO DISK = N'C:\SQLBackups\Chapter3\SQLNativeCompressionTest.bak'
WITH COMPRESSION, STATS = 10
GO

Listing 3-10: SQL native compression backup test.

112

Chapter 3: Full Database Backups

The only difference between this and our backup script in Listing 3-9, is the use here of
the COMPRESSION keyword, which instructs SQL Server to make sure this database is
compressed when written to disk. If you prefer to run the compressed backup using the
GUI method, simply locate the Compression section, on the Options page of the Backup
Wizard, and change the setting from Use the default server setting to Compress backup.
Note that, if desired, we can use the sp_configure stored procedure to make backup
compression the default behavior for a SQL Server instance.

On completion of the backup operation, the query output window will display output
similar to that shown in Figure 3-10.

Figure 3-10: Compressed backup results.

If you recall, a non-compressed backup of the same database took close to 80 seconds and
resulted in a backup file size of just over 1 GB. Here, we can see that use of compression
has reduced the backup time to about 32 seconds, and it results in a backup file size,
shown in Figure 3-11, of only 13 KB!

Figure 3-11: Compressed backup file size.

113

Chapter 3: Full Database Backups

These results represent a considerable saving, in both storage space and processing time,
over non-compressed backups.

If you're wondering whether or not the compression rates should be roughly consistent
across all your databases, then the short answer is no. Character data, such as that stored
in our DatabaseForFullBackups database compresses very well. However, some
databases may contain data that doesn't compress as readily such as FILESTREAM and
image data, and so space savings will be less.

Verifying Backups

Having discussed the basic concepts of backup verification in Chapter 2,
Listing 3-11 shows a simple script to perform a checksum during a backup of our
DatabaseForFullBackups database, followed by a RESTORE VERIFYONLY,
recalculating the checksum.

BACKUP DATABASE [DatabaseForFullBackups]
TO DISK = N'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_Checksum.bak'
 WITH CHECKSUM
GO

RESTORE VERIFYONLY
FROM DISK = N'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_Checksum.bak'
WITH CHECKSUM

Listing 3-11: Backup verification examples.

Hopefully you'll get output to the effect that the backup is valid!

114

Chapter 3: Full Database Backups

Building a Reusable and Schedulable Backup
Script

Ad hoc database and transaction log backups can be performed via simple T-SQL scripts
or the GUI, in SQL Server Management Studio. However, for production systems,
the DBA will need a way to automate these backups, verify that the backups are valid,
schedule and monitor them, and so on. Some of the options for automating backups are
listed below.

•	 SSMS Maintenance Plans Wizard and Designer – two tools, built into SSMS, which
allow you to configure and schedule a range of core database maintenance tasks,
including full database backups and transaction log backups. The DBA can also
run DBCC integrity checks, schedule jobs to remove old backup files, and so on.
An excellent description of these tools, and their limitations, can be found in Brad
McGehee's book, Brad's Sure Guide to SQL Server Maintenance Plans.

•	 T-SQL scripts – you can write custom T-SQL scripts to automate your backup
tasks. A well established and respected set of maintenance scripts is provided by Ola
Hallengren (http://ola.hallengren.com/). His scripts create a variety of stored
procedures, each performing a specific database maintenance task, including backups,
and automated using SQL Agent jobs.

•	 PowerShell / SMO scripting – more powerful and versatile than T-SQL scripting, but
with a steeper learning curve for many DBAs, PowerShell can be used to script and
automate almost any maintenance task. There are many available books and resources
for learning PowerShell. See, for example, www.sqlservercentral.com/articles/
powershell/64316/.

•	 Third-party backup tools – several third-party tools exist that can automate backups,
as well as verify and monitor them. Most offer backup compression and encryption
as well as additional features to ease backup management, verify backups, and so on.
Examples include Red Gate's SQL Backup, and Quest's LiteSpeed.

http://www.amazon.com/Brads-Guide-Server-Maintenance-Handbooks/dp/1906434344
http://ola.hallengren.com/
http://www.sqlservercentral.com/articles/powershell/64316/
http://www.sqlservercentral.com/articles/powershell/64316/

115

Chapter 3: Full Database Backups

In my role as a DBA, I use a third-party backup tool, namely SQL Backup, to manage and
schedule all of my backups. Chapter 8 will show how to use this tool to build a script that
can be used in a SQL Agent job to take scheduled backups of databases.

Summary

This chapter explained in detail how to capture full database backups using either
SSMS Backup Wizard or T-SQL scripts. We are now ready to move on to the
restoration piece of the backup and restore jigsaw. Do not to remove any of the
backup files we have captured; we are going to use each of these in the next chapter
to restore our DatabaseForFullBackups database.

116

Chapter 4: Restoring From Full Backup

In the previous chapter, we took two full backups of our DatabaseForFullBackups
database, one taken when the database was about 500 MB in size and the second when
it was around 1 GB. In this chapter, we're going to restore those full backup files, to
re-create the databases as they existed at the point in time that the respective backup
processes were taken. In both of our examples we will be restoring over existing databases
in order to demonstrate some of the issues that may arise in that situation. In Chapter 6,
we'll look at some examples that restore a new copy of a database.

Full database restores are the cornerstone of our disaster recovery strategy, but will also
be required as part of our regular production and development routines, for example,
when restoring to development and test instances. However, for large databases, they
can be a time- and disk space-consuming task, as well as causing the DBA a few strategic
headaches, which we'll discuss as we progress through the chapter.

Full Restores in the Backup and Restore SLA

For a database that requires only full backups, the restore process is relatively straight-
forward, requiring only the relevant full backup file, usually the most recent backup.
However, as discussed in Chapter 2, we still need to take into consideration the size
of the database being restored, and the location of the backup files, when agreeing an
appropriate maximum amount of time that the crash recovery process should take.

For example, let's say someone accidentally deleted some records from a table and they
need to be recovered. However, by the time the application owner has been notified of
the issue, and in turn notified you, five days have passed since the unfortunate event.
If local backup files are retained for only three days, then recovering the lost data will
involve retrieving data from tape, which will add time to the recovery process. The SLA

117

Chapter 4: Restoring From Full Backup

needs to stipulate file retention for as long as is reasonably necessary for such data loss
or data integrity issues to be discovered. Just don't go overboard; there is no need to keep
backup files for 2 weeks on local disk, when 3–5 days will do the trick 99.9% of the time.

Possible Issues with Full Database Restores

When we restore a database from a full backup file, it's worth remembering that this
backup file includes all the objects, data and information that were present in the
database at that time, including:

•	 all user-defined objects, including stored procedures, functions, views tables, triggers,
database diagrams and the rest

•	 all data contained in each user-defined table

•	 system objects that are needed for regular database use and maintenance

•	 all data contained in the system tables

•	 user permissions for all objects on the database, including not only default and custom
database roles, but also extended object permissions for all explicit permissions that
have been set up for any user

•	 log file information that is needed to get the database back online, including size,
location, and some internal information that is required.

In other word, the backup file contains everything needed to re-create an exact copy of
the database, as it existed when the backup was taken. However, there may be times when
we might not want all of this data and information to be present in the restored database.
Let's look at a few examples.

118

Chapter 4: Restoring From Full Backup

Large data volumes

As noted previously, full database restores can be a time-consuming process for large
databases, and can quickly eat away at disk space, or even fill up a disk completely. In
disaster recovery situations where only a small subset of data has been lost, it often feels
frustrating to have to go through a long, full restore process in order to extract what
might be only a few rows of data. However, when using only native SQL Server tools,
there is no real alternative.

If you have licenses for third-party backup and/or data comparison tools, it's worth
investigating the possibility of performing what is termed object-level restore. In the case
of Red Gate tools, the ones with which I am familiar, their backup products (both SQL
Backup and Hyperbac), and SQL Data Compare, offer this functionality. With them, you
can compare a backup file directly to a live database, and then restore only the missing
object and data, rather than the whole database.

Furthermore, Red Gate also offers a different kind of tool to accommodate these large
database restore situations, namely SQL Virtual Restore. This tool allows you to mount
compressed backups as databases without going through the entire restore process. Since
I've yet to use this tool in a production scenario, I won't be including any examples in this
book. However, to learn more, check out Brad McGehee's article on Simple Talk, at
www.simple-talk.com/sql/sql-tools/brads-sure-guide-to-sql-virtual-restore-/.

Restoring databases containing sensitive data

If we simply go ahead and perform a full database restore of a production database onto
one of our development or testing instances, we could inadvertently be breaking a lot of
rules. It's possible that the production instance stores sensitive data and we do not want
every developer in the company accessing social security numbers and bank account
information, which would be encrypted in production, on their development machines!

http://www.simple-talk.com/sql/sql-tools/brads-sure-guide-to-sql-virtual-restore-/

119

Chapter 4: Restoring From Full Backup

It would only take one rogue employee to steal a list of all clients and their sensitive
information to sell to a competitor or, worse, a black market party.

If you work at a financial institution, you may be dealing on a daily basis with account
numbers, passwords and financial transaction, as well as sensitive user information
such as social security numbers and addresses. Not only will this data be subject to strict
security measures in order to keep customers' information safe, it will also be the target of
government agencies and their compliance audits.

More generally, while the production servers receive the full focus of attempts to
deter and foil hackers, security can be a little lacking in non-production environments.
This is why development and QA servers are a favorite target of malicious users, and
why having complete customer records on such servers can cause big problems, if a
compromise occurs.

So, what's the solution? Obviously, for development purposes, we need the database
schemas in our development and test servers to be initially identical to the schema that
exists in production, so it's common practice, in such situations, to copy the schema but
not the data. There are several ways to do this.

•	 Restore the full database backup, but immediately truncate all tables, purging all
sensitive data. You may then need to shrink the development copy of your database;
you don't want to have a 100 GB database shell if that space is never going to be
needed. Note that, after a database shrink, you should always rebuild your indexes, as
they will get fragmented as a result of such an operation.

•	 Use a schema comparison tool, to synch only the objects of the production and
development databases.

•	 Wipe the database of all user tables and use SSIS to perform a database object transfer
of all required user objects. This can be set up to transfer objects only and to ignore any
data included in the production system.

120

Chapter 4: Restoring From Full Backup

Of course, in each case, we will still need a complete, or at least partial, set of data in the
development database, so we'll need to write some scripts, or use a data generation tool,
such as SQL Data Generator, to establish a set of test data that is realistic but doesn't flout
regulations for the protection of sensitive data.

Too much permission

Imagine now a situation where we are ready to push a brand new database into
production, to be exposed to the real world. We take a backup of the development
database, restore it on the production machine, turn on the services and website, and let
our end-users go wild.

A few weeks later, a frantic manager bursts through the door, screaming that the database
is missing some critical data. It was there yesterday, but is missing this morning!

Some detective work reveals that one of the developers accidentally dropped a table,
after work hours the night before. How did this happen? At most, the developer should
have had read-only access (via the db_datareader role) for the production machine!
Upon investigation of the permissions assigned to that user for the production database,
it is revealed that the developer is actually a member of the db_owner database role.
How did the user get such elevated permissions? Well, the full database backup includes
the complete permission set for the database. Each user's permissions are stored in the
database and are associated to the login that they use on that server. When we restore the
database from development to production, all database internal permissions are restored
as well.

If the developer login was assigned db_owner on the development machine, then this
permission level will exist on production too, assuming the login was also valid for the
production SQL Server. Similarly, if the developer login had db_owner in development
but only db_datareader in production, then restoring the development database over
the existing production database will effectively elevate the developer to db_owner in

121

Chapter 4: Restoring From Full Backup

production. Even if a user doesn't have a login on the production database server, the
restored database still holds the permissions. If that user is eventually given access to
the production machine, he or she will automatically have that level of access, even if it
wasn't explicitly given by the DBA team.

The only case when this may not happen is when the user is using SQL Server authenti-
cation and the internal SID, a unique identifying value, doesn't match on the original and
target server. If two SQL logins with the same name are created on different machines,
the underlying SIDs will be different. So, when we move a database from Server A to
Server B, a SQL login that has permission to access Server A will also be moved to Server
B, but the underlying SID will be invalid and the database user will be "orphaned." This
database user will need to be "de-orphaned" (see below) before the permissions will be
valid. This will never happen for matching Active Directory accounts since the SID is
always the same across a domain.

In order to prevent this from happening in our environments, every time we restore a
database from one environment to another we should:

•	 audit each and every login – never assume that if a user has certain permissions in one
environment they need the same in another; fix any internal user mappings for logins
that exist on both servers, to ensure no one gets elevated permissions

•	 perform orphaned user maintenance – remove permissions for any users that do not
have a login on the server to which we are moving the database; the sp_change_
users_login stored procedure can help with this process, reporting all orphans,
linking a user to its correct login, or creating a new login to which to link:

•	 EXEC sp_change_users_login 'Report'

•	 EXEC sp_change_users_login 'Auto_Fix', 'user'

•	 EXEC sp_change_users_login 'Auto_Fix', 'user', 'login',
'password'

122

Chapter 4: Restoring From Full Backup

Don't let these issues dissuade you from performing full restores as and when necessary.
Diligence is a great trait in a DBA, especially in regard to security. If you apply this
diligence, keeping a keen eye out when restoring databases between mismatched environ-
ments, or when dealing with highly sensitive data of any kind, then you'll be fine.

Performing Full Restores

We are now ready to jump in and start restoring databases! This chapter will mimic the
structure of Chapter 3, in that we'll first perform a full restore the "GUI way," in SSMS,
and then by using native T-SQL RESTORE commands. In Chapter 8, we'll perform full
restores using the Red Gate SQL Backup tool.

Native SSMS GUI full backup restore

Using the SSMS GUI, we're going to restore the first of the two full backups (Database-
ForFullBackups_Full_Native_1.bak) that we took in Chapter 3, which was taken
when the database contained about 500 MB of data. First, however, we need to decide
whether we are going to restore this file over the current "live" version of the Database-
ForFullBackups database, or simply create a new database. In this case, we are going
to restore over the existing database, which is a common requirement when, for example,
providing a weekly refresh of a development database.

But wait, you might be thinking, the current version of DatabaseForFullBackups
contains about 1 GB of data. If we do this, aren't we going to lose half that data? Indeed
we are, but rest assured that all of those precious rows of data are safe in our second full
database backup file, and we'll be bringing that data backup to life later in this chapter.

So, go ahead and start SSMS, connect to your test instance, and then expand the
databases tree menu as shown in Figure 4-1.

123

Chapter 4: Restoring From Full Backup

Figure 4-1: Getting SSMS prepared for restoration.

To start the restore process, right-click on the database in question, DatabaseForFull-
Backups, and navigate Tasks | Restore | Database..., as shown in Figure 4-2. This will
initiate the Restore wizard.

Figure 4-2: Starting the database restore wizard.

124

Chapter 4: Restoring From Full Backup

The Restore Database window appears, with some options auto-populated. For example,
the name of the database we're restoring to is auto-filled to be the same as the source
database that was backed up. Perhaps more surprisingly, the backup set to restore is
also auto-populated, as shown in Figure 4-3. What's happened is that SQL Server has
inspected some of the system tables in the msdb database and located the backups that
have already been taken for this database. Depending on how long ago you completed the
backups in Chapter 3, the window will be populated with the backup sets taken in that
chapter, letting us choose which set to restore.

Figure 4-3: The Restore Database screen.

125

Chapter 4: Restoring From Full Backup

We are not going to be using this pre-populated form, but will instead configure the
restore process by hand, so that we restore our first full backup file. In the Source for
restore section, choose the From device option and then click the ellipsis button (…). In
the Specify Backup window, make sure that the media type shows File, and click the Add
button. In the Locate Backup File window, navigate to the C:\SQLBackups\Chapter3
folder and click on the DatabaseForFullBackups_Full_Native_1.bak backup file.
Click OK twice to get back to the Restore Database window. We will now be able to see
which backups are contained in the selected backup set. Since we only ever stored one
backup per file, we only see one backup. Tick the box under the Restore column to select
that backup file as the basis for the restore process, as shown in Figure 4-4.

Figure 4-4: General configurations for full native restore.

Next, click to the Options page on the left side of the restore configuration window. This
will bring us to a whole new section of options to modify and validate (see Figure 4-5).

126

Chapter 4: Restoring From Full Backup

Figure 4-5: The options page configurations for a full database restore.

The top of the screen shows four Restore options as shown below.

•	 Overwrite the existing database – the generated T-SQL command will include the
REPLACE option, instructing SQL Server to overwrite the currently existing database
information. Since we are overwriting an existing database, in this example we want
to check this box. Note that it is advised to use the REPLACE option with care, due to
the potential for overwriting a database with a backup of a different database.
See http://msdn.microsoft.com/en-us/library/ms191315.aspx.

http://msdn.microsoft.com/en-us/library/ms191315.aspx

127

Chapter 4: Restoring From Full Backup

•	 Preserve the replication settings – only for use in a replication-enabled environment.
Basically allows you to re-initialize replication, after a restore, without having to recon-
figure all the replication settings.

•	 Prompt before restoring each backup – receive a prompt before each of the backup
files is processed. We only have one backup file here, so leave this unchecked.

•	 Restrict access to the restored database – restricts access to the restored database to
only members of the database role db_owner and the two server roles sysadmin and
dbcreator. Again, don't select this option here.

The next portion of the Options page is the Restore the database files as: section, where
we specify the location for the data (mdf) and log (ldf) files for the restored database. This
will be auto-populated with the location of the original files, on which the backup was
based. We have the option to move them to a new location on our drives but, for now,
let's leave them in their original location, although it's wise to double-check that this
location is correct for your system.

Finally, we have the Recovery state section, where we specify the state in which the
database should be left once the current backup file has been restored. If there are no
further files to restore, and we wish to return the database to a useable state, we pick the
first option, RESTORE WITH RECOVERY. When the restore process is run, the backup
file will be restored and then the final step of the restore process, database recovery (see
Chapter 1), will be carried out. This is the option to choose here, since we're restoring just
a single full database backup. We'll cover the other two options later in the book, so we
won't consider them further here.

Our restore is configured and ready to go, so click OK and wait for the progress section
of the restore window to notify us that the operation has successfully completed. If the
restore operating doesn't show any progress, the probable reason is that there is another
active connection to the database, which will prevent the restore operation from starting.
Stop the restore, close any other connections and try again. A convenience of scripting, as
we'll see a little later, is that we can check for, and close, any other connections before we
attempt the restore operation.

128

Chapter 4: Restoring From Full Backup

How do we know it worked?

Let's run a few quick queries, shown in Listing 4-1, against our newly restored
DatabaseForFullBackups database to verify that the data that we expect to be here is
actually here.

USE [DatabaseForFullBackups]
GO

SELECT MessageData ,
 COUNT(MessageData) AS MessageCount
FROM MessageTable1
GROUP BY MessageData

SELECT MessageData ,
 COUNT(MessageData) AS MessageCount
FROM MessageTable2
GROUP BY MessageData

Listing 4-1: Checking our restored data.

The first query should return a million rows, each containing the same message. The
second query, if everything worked in the way we intended, should return no rows.

Collecting restore metrics

Having run the full backup, in Chapter 3, we were able to interrogate msdb to gather
some metrics on how long the backup process took. Unfortunately, when we run a restore
process using SSMS, there is no record of the length of the operation, not even in the SQL
Server log files.

The only way to capture the time is to script out the RESTORE command and run the
T-SQL. I won't show this script here, as we're going to run a T-SQL RESTORE command
very shortly, but if you want to see the stats for yourself, right now, you'll need to

129

Chapter 4: Restoring From Full Backup

re-create the Restore Database pages as we had them configured in Figures 4.3–4.5, and
then click the Script drop-down button, and select Script Action to New Query Window.
This will generate the T-SQL RESTORE command that will be the exact equivalent of
what would be generated under the covers when running the process through the GUI.

When I ran this T-SQL command on my test system, the restore took just under 29
seconds and processed 62,689 pages of data, as shown in Figure 4-6.

Figure 4-6: Full native restore output.

Native T-SQL full restore

We are now going to perform a second full database restore, this time using a T-SQL
script, and the second full backup file from Chapter 3 (DatabaseForFullBackups_
Full_Native_2.bak), which was taken after we pushed another 500 MB of data into
the database, bringing the total size of the database to just under 1 GB. You may recall
from Chapter 3 that doubling the size of the database did increase the backup time, but it
was not a linear increase. We'll see if we get similar behavior when performing restores.

Once again, we are going to overwrite the existing DatabaseForFullBackups
database. This means that we want to kill all connections that are open before we begin
our RESTORE operation, which we can do in one of two ways. The first involves going
through the list of processes in master.sys.sysprocesses and killing each SPID
associated with the database in question. However, this doesn't always do the trick, since
it won't kill connections that run on a different database, but access tables in the database
we wish to restore. We need a global way to stop any user process that accesses the
database in question.

130

Chapter 4: Restoring From Full Backup

For this reason, the second and most common way is to place the database into OFFLINE
mode for a short period. This will drop all connections and terminate any queries
currently processing against the database, which can then immediately be switched back
to ONLINE mode, for the restore process to begin. Just be sure not to kill any connec-
tions that are processing important data. Even in development, we need to let users know
before we just go wiping out currently running queries.

Here, we'll be employing the second technique and so, in Listing 4-2, you'll see that we
set the database to OFFLINE mode and use option, WITH ROLLBACK IMMEDIATE, which
instructs SQL Server to roll those processes back immediately, without waiting for them
to COMMIT. Alternatively, we could have specified WITH ROLLBACK AFTER XX SECONDS,
where XX is the number of seconds SQL Server will wait before it will automatically
start rollback procedures. We can then return the database to ONLINE mode, free of
connections and ready to start the restore process.

USE [master]
GO

ALTER DATABASE [DatabaseForFullBackups]
SET OFFLINE WITH ROLLBACK IMMEDIATE
GO

ALTER DATABASE [DatabaseForFullBackups]
SET ONLINE
GO

Listing 4-2: Dropping all user connections before a restore.

Go ahead and give this a try. Open two query windows in SSMS; in one of them, start the
long-running query shown in Listing 4-3 then, in the second window, run Listing 4-2.

USE [DatabaseForFullBackups]
GO

WAITFOR DELAY '00:10:00'
GO

Listing 4-3: A long-running query.

131

Chapter 4: Restoring From Full Backup

You'll see that the session with the long-running query was terminated, reporting a severe
error and advising that any results returned be discarded. In the absence of a third-party
tool, which will automatically take care of existing sessions before performing a restore,
this is a handy script. You can include it in any backup scripts you use or, perhaps, convert
it into a stored procedure which is always a good idea for reusable code.

Now that we no longer have to worry about pesky user connections interfering with our
restore process, we can go ahead and run the T-SQL RESTORE command in Listing 4-4.

USE [master]
GO

RESTORE DATABASE [DatabaseForFullBackups] FROM
DISK = N'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_2.bak'
WITH FILE = 1, STATS = 25
GO

Listing 4-4: Native SQL Server full backup restore.

The RESTORE DATABASE command denotes that we wish to restore a full backup file
for the DatabaseForFullBackups database. The next portion of the script configures
the name and location of the backup file to be restored. If you chose a different name
or location for this file, you'll need to amend this line accordingly. Finally, we specify a
number of WITH options. The FILE argument identifies the backup set to be restored,
within our backup file. As discussed in Chapter 2, backup files can hold more than one
backup set, in which case we need to explicitly identify the number of the backup set
within the file. Our policy in this book is "one backup set per file," so we'll always set FILE
to a value of 1. The STATS argument is also one we've seen before, and specifies the time
intervals at which SQL Server should update the "backup progress" messages. Here, we
specify a message at 25% completion intervals.

Notice that even though we are overwriting an existing database without starting with a
tail log backup, we do not specify the REPLACE option here, since DatabaseForFull-
Backups is a SIMPLE recovery model database, so the tail log backup is not possible. SQL

132

Chapter 4: Restoring From Full Backup

Server will still overwrite any existing database on the server called DatabaseForFull-
Backups, using the same logical file names for the data and log files that are recorded
within the backup file.

In such cases, we don't need to specify any of the file names or paths for the data or log
files. Note, though, that this only works if the file structure is the same! The backup file
contains the data and log file information, including the location to which to restore
the data and log files so, if we are restoring a database to a different machine from the
original, and the drive letters, for instance, don't match up, we will need to use the WITH
MOVE argument to point SQL Server to a new location for the data and log files. This will
also be a necessity if we need to restore the database on the same server with a different
name. Of course, SQL Server won't be able to overwrite any data or log files if they are
still in use by the original database. We'll cover this topic in more detail later in this
chapter, and again in Chapter 6.

Go ahead and run the RESTORE command. Once it is done executing, do not close the
query session, as the query output contains some metrics that we want to record.

We can verify that the restore process worked, at this point, by simply opening a new
query window and executing the code from Listing 4-1. This time the first query should
return a million rows containing the same message, and the second query should also
return a million rows containing the same, slightly different, message.

Collecting restore metrics, Part 2

Let's take a look at the Message window, where SQL Server directs non-dataset output,
to view some metrics for our native T-SQL restore process, as shown in Figure 4-7. The
first full restore of the 500 MB database processed 62,689 pages and took almost 29
seconds, on my test server. This restore, of the 1 GB database, processed roughly double
the number of pages (125,201) and took roughly twice as long (almost 67 seconds). So,
our database restore timings seem to exhibit more linear behavior than was observed for
backup time.

133

Chapter 4: Restoring From Full Backup

Figure 4-7: Results from the second native full backup restore.

Before we move on, you may be wondering whether any special options or commands are
necessary if restoring a native SQL Server backup file that is compressed. The answer is
"No;" it is exactly the same process as restoring a normal backup file.

Forcing Restore Failures for Fun

The slight problem with the friendly demos found in most technical books is that the
reader is set up for success, and often ends up bewildered when errors start occurring. As
such, through this book, we'll be looking at common sources of error when backing up
and restoring databases, and how you can expect SQL Server to respond. Hopefully this
will better arm you to deal with such unexpected errors, as and when they occur in the
real world.

Here, we're going to start with a pretty blatant mistake, but nevertheless one that I've
seen novices make. The intent of the code in Listing 4-5 is, we will assume, to create a
copy of DatabaseForFullBackups as it existed when the referenced backup file was
taken, and name the new copy DatabaseForFullBackups2.

134

Chapter 4: Restoring From Full Backup

RESTORE DATABASE [DatabaseForFullBackups2]
FROM DISK = N'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_2.bak'
WITH RECOVERY
GO

Listing 4-5 A RESTORE command that will fail.

Assuming you have not deleted the DatabaseForFullBackups database, attempting to
run Listing 4-5 will result in the following error message (truncated for brevity; basically
the same messages are repeated for the log file):

Msg 1834, Level 16, State 1, Line 2

The file 'C:\SQLData\DatabaseForFullBackups.mdf' cannot be overwritten. It is being used by

database 'DatabaseForFullBackups'.

Msg 3156, Level 16, State 4, Line 2

File 'DatabaseForFullBackups' cannot be restored to ' C:\SQLData\DatabaseForFullBackups.mdf'.

Use WITH MOVE to identify a valid location for the file.

…

The problem we have here, and even the solution, is clearly stated by the error messages.
In Listing 4-5, SQL Server attempts to use, for the DatabaseForFullBackups2
database being restored, the same file names and paths for the data and log files as
are being used for the existing DatabaseForFullBackups database, which was the
source of the backup file. In other words, it's trying to create data and log files for the
DatabaseForFullBackups2 database, by overwriting data and log files that are being
used by the DatabaseForFullBackups database. We obviously can't do that without
causing the DatabaseForFullBackups database to fail.

We will have to either drop the first database to free those file names or, more likely, and
as the second part of the error massage suggests, identify a valid location for the log and
data files for the new, using WITH MOVE, as shown in Listing 4-6.

135

Chapter 4: Restoring From Full Backup

RESTORE DATABASE [DatabaseForFullBackups2]
FROM DISK = 'C:\SQLBackups\Chapter3\DatabaseForFullBackups_Full_Native_2.bak'
WITH RECOVERY,
MOVE 'DatabaseForFullBackups'

TO 'C:\SQLData\DatabaseForFullBackups2.mdf',
MOVE 'DatabaseForFullBackups_log'

TO 'C:\SQLData\DatabaseForFullBackups2_log.ldf'
GO

Listing 4-6: A RESTORE command that renames the data and log files for the new database.

We had two choices to fix the script; we could either rename the files and keep them in
the same directory or keep the file names the same but put them in a different directory.
It can get very confusing if we have a database with the same physical file name as
another database, so renaming the files to match the database name seems like the
best solution.

Let's take a look at a somewhat subtler error. For this example, imagine that we wish
to replace an existing copy of the DatabaseForFullBackups2 test database with a
production backup of DatabaseForFullBackups. At the same time, we wish to move
the data and log files for the DatabaseForFullBackups2 test database over to a new
drive, with more space.

USE master
go
RESTORE DATABASE [DatabaseForFullBackups2]
FROM DISK = 'C:\SQLBackups\DatabaseForFileBackups_Full_Native_1.bak'
WITH RECOVERY, REPLACE,
MOVE 'DatabaseForFileBackups'
TO 'D:\SQLData\DatabaseForFileBackups2.mdf',
MOVE 'DatabaseForFileBackups_log'
TO 'D:\SQLData\DatabaseForFileBackups2_log.ldf'
GO

Listing 4-7: An "error" while restoring over an existing database.

136

Chapter 4: Restoring From Full Backup

In fact, no error message at all will result from running this code; it will succeed. Never-
theless, a serious mistake has occurred here: we have inadvertently chosen a backup file
for the wrong database, DatabaseForFileBackups instead of DatabaseForFull-
Backups, and used it to overwrite our existing DatabaseForFullBackups2 database!
This highlights the potential issue with misuse of the REPLACE option. We can presume a
DBA has used it here because the existing database is being replaced, without performing
a tail log backup (see Chapter 6 for more details). However, there are two problems with
this, in this case. Firstly, DatabaseForFullBackups2 is a SIMPLE recovery model
database and so REPLACE is not required from the point of view of bypassing a tail log
backup, since log backups are not possible. Secondly, use of REPLACE has bypassed the
normal safety check that SQL Server would perform to ensure the database in the backup
matches the database over which we are restoring. If we had run the exact same code as
shown in Listing 4-7, but without the REPLACE option, we'd have received the following,
very useful error message:

Msg 3154, Level 16, State 4, Line 1

The backup set holds a backup of a database other than the existing 'DatabaseForFullBackups2'

database.

Msg 3013, Level 16, State 1, Line 1

RESTORE DATABASE is terminating abnormally.

Note that we don't have any further use for the DatabaseForFullBackups2 database,
so once you've completed the example, you can go ahead and delete it.

Considerations When Restoring to a Different
Location

When restoring a database to a different server or even a different instance on the same
server, there are quite a few things to consider, both before starting and after completing
the restore operation.

137

Chapter 4: Restoring From Full Backup

•	 Version/edition of SQL Server used in the source and destination
You may receive a request to restore a SQL Server 2008 R2 database backup to a SQL
Server 2005 server, which is not a possibility. Likewise, it is not possible to restore a
backup of a database that is using enterprise-only options (CDC, transparent data
encryption, data compression, partitioning) to a SQL Server Standard Edition instance.

•	 What SQL Server agent jobs or DTS/DTSX packages might be affected?
If you are moving the database permanently to a new server, you need to find which
jobs and packages that use this database will be affected and adjust them accordingly.
Also, depending on how you configure your database maintenance jobs, you may need
to add the new database to the list of databases to be maintained.

•	 What orphaned users will need to be fixed? What permissions should be removed?
There may be SQL Logins with differing SIDs that we need to fix. There may be SQL
logins and Active Directory users that don't need access to the new server. You need to
be sure to comb the permissions and security of the new location before signing off the
restore as complete.

Restoring System Databases

As discussed briefly in Chapter 2, there are occasions when we may need to restore one of
the system databases, such as master, model or msdb, either due to the loss of one of
these databases or, less tragically, the loss of a SQL agent job, for example.

Restoring system databases in advance of user databases can also be a time saver. Imagine
that we need to migrate an entire SQL Server instance to new hardware. We could restore
the master, model and msdb databases and already have our permissions, logins, jobs
and a lot of other configuration taken care of in advance. In the case of an emergency, of
course, knowledge of how to perform system database restores is essential.

138

Chapter 4: Restoring From Full Backup

In this section, we'll look at how to perform a restore of both the master and the msdb
system databases, so the first thing we need to do is make sure we have valid backups of
these databases, as shown in Listing 4-8.

USE [master]
GO

BACKUP DATABASE [master]
TO DISK = N'C:\SQLBackups\Chapter4\master_full.bak' WITH INIT
GO

BACKUP DATABASE [msdb]
TO DISK = N'C:\SQLBackups\Chapter4\msdb_full.bak' WITH INIT
GO

BACKUP DATABASE [model]
TO DISK = N'C:\SQLBackups\Chapter4\model_full.bak' WITH INIT
GO

Listing 4-8: Taking backups of our system databases.

Restoring the msdb database

We can restore the msdb or model database without making any special modifications
to the SQL Server engine or the way it is running, which makes it a relatively straight-
forward process (compared to restoring the master database). We will work with the
msdb database for the examples in this section.

In order to restore the msdb database, SQL Server needs to be able to take an exclusive
lock on it, which means that we must be sure to turn off any applications that might be
using it; specifically SQL Server Agent. There are several ways to do this, and you can
choose the one with which you are most comfortable. For example, we can stop it directly
from SSMS, use the NET STOP command in a command prompt, use a command script,
or stop it from the services snap-in tool.

139

Chapter 4: Restoring From Full Backup

We'll choose the latter option, since we can use the services snap-in tool to view and
control all of the services running on our test machine. To start up this tool, simply pull
up the Run prompt and type in services.msc while connected locally or through RDP to
the test SQL Server machine. This will bring up the services snap-in within the Microsoft
Management Console (MMC). Scroll down until you locate any services labeled SQL
Server Agent (instance); the instance portion will either contain the unique instance
name, or contain MSSQLSERVER, if it is the default instance. Highlight the agent
service, right-click and select Stop from the control menu to bring the SQL Server Agent
to a halt, as shown in Figure 4-8.

Figure 4-8: Stopping SQL Server Agent with the services snap-in

With the service stopped (the status column should now be blank), the agent is offline
and we can proceed with the full database backup restore, as shown in Listing 4-9.

140

Chapter 4: Restoring From Full Backup

USE [master]
GO

RESTORE DATABASE [msdb] FROM
DISK = N'C:\SQLBackups\Chapter4\msdb_full.bak'
GO

Listing 4-9: Restoring the msdb database.

With the backup complete, restart the SQL Server Agent service from the services MMC
snap-in tool and you'll find that all jobs, schedules, operators, and everything else stored
in the msdb database, are all back and ready for use.

This is a very simple task, with only the small change being that we need to shut down a
service before performing the restore. Don't close the services tool yet, though, as we will
need it to restore the master database.

Restoring the master database

The master database is the control database for a SQL Server instance, and restoring
it is a slightly trickier task; we can't just restore master while SQL Server is running in
standard configuration.

The first thing we need to do is turn the SQL Server engine service off! Go back to the
services management tool, find the service named SQL Server (instance) and stop it, as
described previously. You may be prompted with warnings that other services will have to
be stopped as well; go ahead and let them shut down.

Once SQL Server is offline, we need to start it again, but using a special startup
parameter. In this case, we want to use the –m switch to start SQL Server in single-user
mode. This brings SQL Server back online but allows only one user (an administrator) to
connect, which is enough to allow the restore of the master database.

141

Chapter 4: Restoring From Full Backup

To start SQL Server in single-user mode, open a command prompt and browse to the
SQL Server installation folder, which contains the sqlservr.exe file. Here are the default
locations for both SQL Server 2008 and 2008 R2:

•	 <Installation Path>\MSSQL10.MSSQLSERVER\MSSQL\Binn

•	 <Installation Path>\MSSQL10_50.MSSQLSERVER\MSSQL\Binn

From that location, issue the command sqlservr.exe –m. SQL Server will begin the
startup process, and you'll see a number of messages to this effect, culminating (hopefully)
in a Recovery is complete message, as shown in Figure 4-9.

Figure 4-9: Recovery is complete and SQL Server is ready for admin connection.

Once SQL Server is ready for a connection, open a second command prompt and
connect to your test SQL Server with sqlcmd. Two examples of how to do this are
given below, the first when using a trusted connection and the second for a SQL Login
authenticated connection.

142

Chapter 4: Restoring From Full Backup

•	 sqlcmd -SYOURSERVER –E

•	 sqlcmd –SYOURSERVER –UloginName –Ppassword

At the sqlcmd prompt, we'll perform a standard restore to the default location for the
master database, as shown in Listing 4-10 (if required, we could have used the MOVE
option to change the master database location or physical file).

RESTORE DATABASE [master] FROM
DISK = 'C:\SQLBackups\Chapter4\master_full.bak'
GO

Listing 4-10: Restoring the master database.

In the first sqlcmd prompt, you should see a standard restore output message noting the
number of pages processed, notification of the success of the operation, and a message
stating that SQL Server is being shut down, as shown in Figure 4-10.

Figure 4-10: Output from restore of master database.

143

Chapter 4: Restoring From Full Backup

Since we just restored the master database, we need the server to start normally to pick
up and process all of the internal changes, so we can now start the SQL Server in normal
mode to verify that everything is back online and working fine. You have now successfully
restored the master database!

Summary

Full database backups are the cornerstone of a DBA's backup and recovery strategy.
However, these backups are only useful if they can be used successfully to restore a
database to the required state in the event of data loss, hardware failure, or some
other disaster.

Hopefully, as a DBA, the need to restore a database to recover from disaster will be a rare
event, but when it happens, you need to be 100% sure that it's going to work; your organi-
zation, and your career as a DBA, my depend on it. Practice test restores for your critical
databases on a regular schedule!

Of course, many restore processes won't be as simple as restoring the latest full backup.
Log backups will likely be involved, for restoring a database to a specific point in time, and
this is where things get more interesting.

144

Chapter 5: Log Backups

When determining a backup strategy and schedule for a given database, one of the
major considerations is the extent to which potential data loss can be tolerated in the
event of an errant process, or software or hardware failure. If toleration of data loss is,
say, 24 hours, then we need do nothing more than take a nightly full backup. However,
if exposure to the risk of data loss is much lower than this for a given database, then it's
likely that we'll need to operate that database in FULL recovery model, and supplement
those nightly full backups with transaction log backups (and possibly differential database
backups – see Chapter 7).

With a log backup, we capture the details of all the transactions that have been recorded
for that database since the last log backup (or since the last full backup,if this is the first-
ever log backup). In this chapter, we'll demonstrate how to capture these log backups
using either the SSMS GUI or T-SQL scripts. However, we'll start by taking a look at how
space is allocated and used within a log file; this is of more than academic interest, since
it helps a DBA understand and troubleshoot certain common issues relating to the trans-
action log, such as explosive log growth, or internal log fragmentation.

Capturing an unbroken sequence of log backups means that we will then, in Chapter 6,
be able restore a full backup, then apply this series of log backups to "roll forward" the
database to the state in which it existed at various, successive points in time. This adds
a great deal of flexibility to our restore operations. When capturing only full (and differ-
ential) database backups, all we can do is restore one of those backups, in its entirety.
With log backups, we can restore a database to the state in which it existed when a given
log backup completed, or to the state in which it existed at some point represented within
that log backup.

145

Chapter 5: Log Backups

A Brief Peek Inside a Transaction Log

A DBA, going about his or her daily chores, ought not to be overly concerned with the
internal structure of the transaction log. Nevertheless, some discussion on this topic is
very helpful in understanding the appropriate log maintenance techniques, and especially
in understanding the possible root cause of problems such as log file fragmentation,
or a log file that is continuing to grow and grow in size, despite frequent log backups.
However, we will keep this "internals" discussion as brief as possible.

As discussed in Chapter 1, a transaction log stores a record of the operations that have
been performed on the database with which it is associated. Each log record contains the
details of a specific change, relating to object creation/modification (DDL) operations,
as well any data modification (DML) operations. When SQL Server undergoes database
recovery (for example, upon start up, or during a RESTORE operation), it, will roll back
(undo) or roll forward (redo) the actions described in these log records, as necessary, in
order to reconcile the data and log files, and return the database to a consistent state.

Transaction log files are sequential files; in other words SQL Server writes to the trans-
action log sequentially (unlike data files, which tend to be written in a random fashion,
as data is modified in random data pages). Each log record inserted into the log file is
stamped with a Log Sequence Number (LSN). When a database and its associated log
file are first created, the first log record marks the start of the logical file, which at this
stage will coincide with the start of the physical file. The LSNs are then ever-increasing;
the most recently added log record will always have the highest LSN, and marks the
end of the logical file (discussed in more detail shortly). All log records associated with a
given transaction are linked in an LSN chain with forward and backward pointers to the
operation in the transaction that succeeded and preceded the current operation.

Internally, SQL Server divides a transaction log file into a number of sections called
virtual log files (VLFs). Figure 5-1 depicts a transaction log composed of eight VLFs, and
marks the active portion of the log, known as the active log.

146

Chapter 5: Log Backups

Figure 5-1: A transaction log with 8 VLFs.

The concept of the active log is an important one. A VLF can either be "active," if it
contains any part of what is termed the active log, or "inactive," if it doesn't. Any log
record relating to an open transaction is required for possible rollback and so must
be part of the active log. In addition, there are various other activities in the database,
including replication, mirroring and CDC (Change Data Capture) that use the transaction
log and need transaction log records to remain in the log until they have been processed.
These records will also be part of the active log.

The log record with the MinLSN, shown in Figure 5-1, is defined as the "oldest log record
that is required for a successful database-wide rollback or by another activity or operation in
the database." This record marks the start of the active log and is sometimes referred to as
the "head" of the log. Any more recent log record, regardless of whether it is still open or
required, is also part of the active log; this is an important point as it explains why it's a
misconception to think of the active portion of the log as containing only records relating
to uncommitted transactions. The log record with the highest LSN (i.e. the most recent
record added) marks the end of the active log.

147

Chapter 5: Log Backups

Therefore, we can see that a log record is no longer part of the active log only when each
of the following three conditions below is met.

1. It relates to a transaction that is committed and so is no longer required for rollback.

2. It is no longer required by any other database process, including a transaction log
backup when using FULL or BULK LOGGED recovery models.

3. It is older (i.e. has a lower LSN) than the MinLSN record.

Any VLF that contains any part of the active log is considered active and can never be
truncated. For example, VLF3, in Figure 5-1, is an active VLF, even though most of the log
records it contains are not part of the active log; it cannot be truncated until the head of
the logs moves forward into VLF4.

The operations that will cause the head of the log to move forward vary depending on the
recovery model of the database. For databases in the SIMPLE recovery model, the head
of the log can move forward upon CHECKPOINT, when pages are flushed from cache to
disk, after first being written to the transaction log. As a result of this operation, many log
records would now satisfy the first requirement listed above, for no longer being part of
the active log. We can imagine that if, as a result, the MinLSN record in Figure 5-1, and
all subsequent records in VLF3, satisfied both the first and second criteria, then the head
would move forward and VLF3 could now be truncated. Therefore, generally, space inside
the log is made available for reuse at regular intervals.

Truncation does not reduce the size of the log file

It's worth reiterating that truncation does not affect the physical size of the log; it will still take up the

same physical space on the drive. Truncation is merely the act of marking VLFs in the log file as available

for reuse, in the recording of subsequent transactions.

148

Chapter 5: Log Backups

For databases using FULL or BULK LOGGED recovery, the head can only move forward
as a result of a log backup. Any log record that has not been previously backed up is
considered to be still "required" by a log backup operation, and so will never satisfy the
second requirement above, and will remain part of the active log. If we imagine that the
MinLSN record in Figure 5-1 is the first record added to the log after the previous log
backup, then the head will remain in that position till the next log backup, at which point
it can move forward (assuming the first requirement is also satisfied).

I've stressed this many times, but I'll say it once more for good measure: this is the other
reason, in addition to enabling point-in-time restore, why it's so important to back up
the log for any database operating in FULL (or BULK_LOGGED) recovery; if you don't,
the head of the log is essentially "pinned," space will not be reused, and the log will simply
grow and grow in size.

The final question to consider is what happens when the active log reaches the end
of VLF8. Simplistically, it is easiest to think of space in the log file as being reused in a
circular fashion. Once the logical end of the log reaches the end of a VLF, SQL Server will
start to reuse the next sequential VLF that is inactive, or the next, so far unused, VLF.
In Figure 5-1, this could be VLF8, followed by VLFs 1 and 2, and so on. If no further VLFs
were available at all, the log would need to auto-grow and add more VLFs. If this is not
possible, due to auto-growth being disabled or the disk housing the log file being full,
then the logical end of the active log will meet the physical end of the log file, the trans-
action log is full, and the 9002 error will be issued.

Three uses for transaction log backups

The primary reason to take log backups is in order to be able to restore them; in other
words, during a RESTORE operation, we can restore a full (plus differential) backup,
followed by a complete chain of log backup files. As we restore the series of log backups
files, we will essentially "replay" the operations described within in order to re-create the
database as it existed at a previous point in time.

149

Chapter 5: Log Backups

However, the log backups, and subsequent restores, can also be very useful in reducing
the time required for database migrations, and for offloading reporting from the
Production environment, via log shipping.

Performing database restores

By performing a series of log backup operations, we can progressively capture the
contents of the live log file in a series of log backup files. Once captured in log backup
files, the series of log records within these files can, assuming the chain of log records is
unbroken, be subsequently applied to full (and differential) database backups as part of a
database restore operation. We can restore to the end of one of these backup files, or even
to some point in time in the middle of the file, to re-create the database as it existed at a
previous point in time, for example, right before a failure.

When operating in SIMPLE recovery model, we can only take full and differential backups
i.e. we can only back up the data files and not the transaction log. Let's say, for example,
we rely solely on full database backups, taken every day at 2 a.m. If a database failure
occurs at 1 a.m. one night, all we can do is restore the database as it existed at 2 a.m. the
previous day and have lost 23 hours' worth of data. We may be able to reduce the risk of
data loss by taking differential backups, in between the nightly full backups. However,
both full and differential backups are resource-intensive operations and if you need your
risk of data loss to be measured in minutes rather than hours, the only viable option is to
operate the database in FULL recovery model and take transaction log backups alongside
any full and differential backups.

If we operate the database in FULL recovery, and take transaction log backups, say, every
30 minutes then, in the event of our 2 a.m. disaster, we can restore the previous 2 a.m.
full backup, followed by a series of 48 log backup files, in order to restore the database
as it existed at 1.30 a.m., losing 30 minutes' worth of data. If the live transaction log were
still available we could also perform a tail log backup and restore the database to a time
directly before the disaster occurred.

150

Chapter 5: Log Backups

The frequency with which log backups are taken will depend on the tolerable exposure to
data loss, as expressed in your Backup and Restore SLA (discussed shortly).

Large database migrations

It is occasionally necessary to move a database from one server to another, and you may
only have a short window of time in which to complete the migration. For example, let's
say a server has become overloaded, or the server hardware has reached the end of its life,
and a fresh system needs to be put in place. Just before we migrate the database to the
new server, we need to disconnect all users (so that no data is committed after your final
backup is taken), and our SLA dictates a maximum of an hour down-time, so we've got
only one hour to get them all connected again on the new server!

Given such constraints, we won't have the time within that window to take a full backup
of the database, transfer it across our network, and then restore it on the target server.
Fortunately, however, we can take advantage of the small file footprint of the transaction
log backup in order to reduce the time required to perform the task.

For example, prior to the migration window, we can transfer, to the target server, a
full database backup from the night before. We can restore that file to the new server
using the WITH NORECOVERY option (discussed in Chapter 6), to put the database into a
restoring state and allow transaction log backups to be applied to the database at a later
time.

After this, we can take small transaction log backups of the migrating database over the
period of time until the migration is scheduled. These log backup files are copied over to
the target server and applied to our restoring target database (stipulating NORECOVERY as
each log backup is applied, to keep the database in a restoring state, so more log backups
can be accepted).

151

Chapter 5: Log Backups

At the point the migration window opens, we can disconnect all users from the original
database, take a final log backup, transfer that final file to the target server, and apply it
to the restoring database, specifying WITH RECOVERY so that the new database is
recovered, and comes online in the same state it was in when you disconnected users
from the original.

We still need to bear in mind potential complicating factors related to moving databases
to different locations, as discussed in Chapter 4. Orphaned users, elevated permissions
and connectivity issues would still need to be addressed after the final log was applied to
the new database location.

Log shipping

Almost every DBA has to make provision for business reporting. Often, the reports
produced have to be as close to real time as possible, i.e. they must reflect as closely as
possible the data as it currently exists in the production databases. However, running
reports on a production machine is never a best practice, and the use of High Availability
solutions (real-time replication, CDC solutions, log reading solutions, and so on) to get
that data to a reporting instance can be expensive and time consuming.

Log shipping is an easy and cheap way to get near real-time data to a reporting server.
The essence of log shipping is to restore a full database to the reporting server using
the WITH STANDBY option, then regularly ship log backup files from the production to
the reporting server and apply them to the standby database to update its contents. The
STANDBY option will keep the database in a state where more log files can be applied, but
will put the database in a read-only state, so that it always reflects the data in the source
database at the point when the last applied log backup was taken.

152

Chapter 5: Log Backups

This means that the reporting database will generally lag behind the production database
by 15–30 minutes or more. This sort of lag is usually not a big problem and, in many cases,
log shipping is an easy way to satisfy, not only the production users, but the reporting
users as well.

Practical log shipping

It is out of scope to get into the full details of log shipping here, but the following article offers

a practical guide to the process: www.simple-talk.com/sql/backup-and-recovery/

pop-rivetts-sql-server-faq-no.4-pop-does-log-shipping/.

Log Backups in the Backup and Restore SLA

As discussed in detail in Chapter 2, determining whether or not log backups are required
for a database and, if so, how frequently, will require some conversations with the
database owners.

The first rule is not to include log backups in the SLA for a given database, unless they
are really required. Log backups bring with them considerable extra administrative
overhead, with more files to manage, more space required to store them, more jobs to
schedule, and so on. While we need to make sure that these operations are performed for
every database that needs them, we definitely don't want to take them on all databases,
regardless of need.

If it's a development database, we most likely won't need to take transaction log backups,
and the database can be operated in SIMPLE recovery model. If it's a production database,
then talk to the project manager and developers; ask them questions about the change
load on the data; find out how often data is inserted or modified, how much data is
modified, at what times of the day these modifications take place, and the nature of the
data load/modification processes (well defined or ad hoc).

http://www.simple-talk.com/sql/backup-and-recovery/pop-rivetts-sql-server-faq-no.4-pop-does-log-shipping/
http://www.simple-talk.com/sql/backup-and-recovery/pop-rivetts-sql-server-faq-no.4-pop-does-log-shipping/

153

Chapter 5: Log Backups

If it's a database that's rarely, if ever, modified by end-users, but is subject to daily, well-
defined data loads, then it's also unlikely that we'll need to perform log backups, so we can
operate the database in SIMPLE recovery model. We can take a full database backup after
each data load, or simply take a nightly full backup and then, if necessary, restore it, then
replay any data load processes that occurred subsequently.

If a database is modified frequently by ad hoc end-user processes, and toleration of data
loss is low, then it's very likely that transaction log backups will be required. Again, talk
with the project team and find out the acceptable level of data loss. You will find that, in
most cases, taking log backups once per hour will be sufficient, meaning that the database
could lose up to 60 minutes of transactional data. For some databases, an exposure to the
risk of data loss of more than 30 or 15 minutes might be unacceptable. The only difference
here is that we will have to take, store, and manage many more log backups, and more
backup files means more chance of something going wrong; losing a file or having a
backup file become corrupted. Refer back to the Backup scheduling section of Chapter 2
for considerations when attempting to schedule all the required backup jobs for a given
SQL Server instance.

Whichever route is the best for you, the most important thing is that you are taking
transaction log backups for databases that require them, and only for those that
required them.

Preparing for Log Backups

In this chapter, we'll run through examples of how to take log backups using both SSMS
and T-SQL scripts. In Chapter 8, we'll show how to manage your log and other backups,
using a third-party tool (Red Gate SQL Backup) and demonstrate some of the advantages
that such tools offer.

154

Chapter 5: Log Backups

Before we get started taking log backups, however, we need to do a bit of prep work,
namely choosing an appropriate recovery model for our example database, and then
creating that database along with some populated sample tables.

Choosing the recovery model

We're going to assume that the Service Level Agreement for our example database
expresses a tolerance to potential data loss of no more than 60 minutes. This immedi-
ately dictates a need to take log backups at this interval (or shorter), in order that we can
restore a database to a state no more than 60 minutes prior to the occurrence of data
being lost, or the database going offline.

This rules out SIMPLE as a potential recovery model for our database since, as discussed,
in this model a database operates in "auto-truncate" mode and any inactive VLFs are
made available for reuse whenever a database CHECKPOINT operation occurs. With the
inactive VLFs being continuously overwritten, we cannot capture a continuous chain of
log records into our log backups, and so can't use these log backups as part of a database
RESTORE operation. In fact, it isn't even possible to take log backups for a database that is
operating in SIMPLE recovery.

This leaves us with a choice of two recovery models: FULL or BULK LOGGED. All databases
where log backups are required should be operating in the FULL recovery model, and
that's the model we're going to use. However, a database operating in FULL recovery may
be switched temporarily to the BULK LOGGED model in order to maximize performance,
and minimize the growth of the transaction log, during bulk operations, such as bulk data
loads or certain index maintenance operations. When a database is operating in BULK
LOGGED model, such operations are only minimally logged, and so require less space in
the log file. This can save a DBA the headache of having log files growing out of control,
and can save a good deal of time when bulk loading data into your database.

155

Chapter 5: Log Backups

However, use of BULK LOGGED has implications that make it unsuitable for long-term use
in a database where point-in-time restore is required, since it is not possible to restore a
database to a point in time within a log file that contains minimally logged operations.

We'll discuss this in more detail in the next chapter, along with the best approach
to minimizing risk when a database does need to be temporarily switched to BULK
LOGGED model. For now, however, we're going to choose the FULL recovery model
for our database.

Creating the database

Now that we know that FULL recovery is the model to use, let's go ahead and get our
new database created so we can begin taking some log backups. We are going to stick
with the naming convention established in previous chapters, and call this new database
DatabaseForLogBackups. We can either create the database via the SSMS GUI or use
the script shown in Listing 5-1.

USE [master]
GO

CREATE DATABASE [DatabaseForLogBackups] ON PRIMARY
(NAME = N'DatabaseForLogBackups'
 , FILENAME = N'C:\SQLData\DatabaseForLogBackups.mdf'
 , SIZE = 512000KB
 , FILEGROWTH = 51200KB) LOG ON
(NAME = N'DatabaseForLogBackups_log'
 , FILENAME = N'C:\SQLData\DatabaseForLogBackups_log.ldf'
 , SIZE = 51200KB
 , FILEGROWTH = 51200KB)
GO
ALTER DATABASE [DatabaseForLogBackups] SET RECOVERY FULL
GO

Listing 5-1: Creating our new DatabaseForLogBackups database.

156

Chapter 5: Log Backups

This script will create for us a new DatabaseForLogBackups database, with the data
and log files for this database stored in the C:\SQLData directory. Note that, if we didn't
specify the FILENAME option, then the files would be auto-named and placed in the
default directory for that version of SQL Server (for example, in SQL Server 2008, this is
\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA).

We have assigned some appropriate values for the initial sizes of these files and their file
growth characteristics. As discussed in Chapter 3, it's generally not appropriate to accept
the default file size and growth settings for a database, and we'll take a deeper look at the
specific problem that can arise with a log file that grows frequently in small increments,
later in this chapter. For each database, we should size the data and log files as appro-
priate for their current data requirements, plus predicted growth over a set period.

In the case of our simple example database, I know how exactly much data I plan to load
into our tables (you'll find out shortly!), so I have chosen an initial data file size that makes
sense for that purpose, 500 MB. We don't want the file to grow too much but if it does,
we want it to grow in reasonably sized chunks, so I've chosen a growth step of 50 MB.
Each time the data file needs to grow, it will grow by 50 MB, which provides enough space
for extra data, but not so much that we will have a crazy amount of free space after each
growth. For the log file, I've chosen an initial size of 50 MB, and I am allowing it to grow
by an additional 50 MB whenever it needs more room to store transactions.

Immediately after creating the database, we run an ALTER DATABASE command to
ensure that our database is set up to use our chosen recovery mode, namely FULL. This
is very important, especially if the model database on the SQL Server instance is set to a
different recovery model, since all users' databases will inherit that setting.

Now that we have a new database, set to use the FULL recovery model, we can go ahead
and start creating and populating the tables we need for our log backup tests.

157

Chapter 5: Log Backups

Creating and populating tables

We are going to use several simple tables that we will populate with a small initial data
load. Subsequently, we'll take a full database backup and then perform another data
load. This will make it possible to track our progress as we restore our log backups, in
the next chapter.

USE [DatabaseForLogBackups]
GO

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
CREATE TABLE [dbo].[MessageTable1]
 (
 [Message] [nvarchar](100) NOT NULL ,
 [DateTimeStamp] [datetime2] NOT NULL
)
ON [PRIMARY]
GO
CREATE TABLE [dbo].[MessageTable2]
 (
 [Message] [nvarchar](100) NOT NULL ,
 [DateTimeStamp] [datetime2] NOT NULL
)
ON [PRIMARY]
GO
CREATE TABLE [dbo].[MessageTable3]
 (
 [Message] [nvarchar](100) NOT NULL ,
 [DateTimeStamp] [datetime2] NOT NULL
)
ON [PRIMARY]
GO

Listing 5-2: Creating the tables.

158

Chapter 5: Log Backups

Listing 5-2 creates three simple message tables, each of which will store simple text
messages and a time stamp so that we can see exactly when each message was inserted
into the table.

Having created our three tables, we can now pump a bit of data into them. We'll use the
same technique as in Chapter 3, i.e. a series of INSERT commands, each with the GO X
batch separator, to insert ten rows into each of the three tables, as shown in Listing 5-3.

USE [DatabaseForLogBackups]

INSERT INTO dbo.MessageTable1
 VALUES ('This is the initial data for MessageTable1', GETDATE())
GO 10

INSERT INTO dbo.MessageTable2
 VALUES ('This is the initial data for MessageTable2', GETDATE())
GO 10

INSERT INTO dbo.MessageTable3
 VALUES ('This is the initial data for MessageTable3', GETDATE())
GO 10

Listing 5-3: Initial population of tables.

We'll be performing a subsequent data load shortly, but for now we have a good base of
data from which to work, and we have a very important step to perform before we can
even think about taking log backups. Even though we set the recovery model to FULL, we
won't be able to take log backups (in other words, the database is still effectively in auto-
truncate mode) until we've first performed a full backup.

Before we do that, however, let's take a quick look at the current size of our log file, and
its space utilization, using the DBCC SQLPERF (LOGSPACE); command. This will return
results for all databases on the instance, but for the DatabaseForLogBackups we
should see results similar to those shown in Figure 5-2.

159

Chapter 5: Log Backups

Backup Stage Log Size Space Used

Before full
backup

50 MB 0.65 %

Figure 5-2: DBCC SQLPERF (LOGSPACE) output before full backup.

This shows us that we have a 50 MB log file and that it is only using a little more than one
half of one percent of that space.

Taking a base full database backup

Before we can even take log backups for our DatabaseForLogBackups database, we
need to take a base full backup of the data file. We've covered all the details of taking
full backups in Chapter 3, so simply run Listing 5-4 to take a full backup of the database,
placing the backups in a central folder location, in this case C:\SQLBackups\Chapter5
so they are readily available for restores. You've probably noticed that, for our simple
example, the backup files are being stored on the same drive as the data and log files. In
the real world, you'd store the data, log, and backup files on three separate disk drives.

USE [master]
GO

BACKUP DATABASE [DatabaseForLogBackups]
TO DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Full.bak'
WITH NAME = N'DatabaseForLogBackups-Full Database Backup', STATS = 10, INIT
GO

Listing 5-4: Taking a native full backup.

160

Chapter 5: Log Backups

So, at this stage, we've captured a full backup of our new database, containing three
tables, each with ten rows of data. We're ready to start taking log backups now, but
let's run the DBCC SQLPERF(LOGSPACE) command again, and see what happened to
our log space.

Backup Stage Log Size Space Used

Before full backup 50 MB 0.65 %

After full backup 50 MB 0.73%

Figure 5-3: DBCC SQLPERF (LOGSPACE) output after full backup.

What's actually happened here isn't immediately apparent from these figures, so it needs a
little explanation. We've discussed earlier how, for a FULL recovery model database, only
a log backup can free up log space for reuse. This is true, but the point to remember is
that such a database is actually operating in auto-truncate mode until the first full backup
of that database completes. The log is truncated as a result of this first-ever full backup
and, from that point on, the database is truly in FULL recovery, and a full backup will
never cause log truncation. So, hidden in our figures is the fact that the log was truncated
as a result of our first full backup, and the any space taken up by the rows we added was
made available for reuse. Some space in the log would have been required to record the
fact that a full backup took place, but overall the space used shows very little change.

Later in the chapter, when taking log backups with T-SQL, we'll track what happens to
these log space statistics as we load a large amount of data into our tables, and then take a
subsequent log backup.

161

Chapter 5: Log Backups

Taking Log Backups

We're going to discuss taking log backups the "GUI way," in SSMS, and by using native
T-SQL Backup commands. However, before taking that elusive first log backup, let's
quickly insert ten new rows of data into each of our three tables, as shown in Listing
5-5. Having done so, we'll have ten rows of data for each table that is captured in a full
database backup, and another ten rows for each table that is not in the full database
backup, but where the details of the modifications are recorded in the live transaction
log file.

USE [DatabaseForLogBackups]
GO
INSERT INTO MessageTable1
 VALUES ('Second set of data for MessageTable1', GETDATE())
GO 10
INSERT INTO MessageTable2
 VALUES ('Second set of data for MessageTable2', GETDATE())
GO 10
INSERT INTO MessageTable3
 VALUES ('Second set of data for MessageTable3', GETDATE())
GO 10

Listing 5-5: A second data load.

The GUI way: native SSMS log backups

Open SSMS, connect to your test server, locate the DatabaseForLogBackups database,
right-click on it and select the Tasks | Back Up… option. Select the Back Up… menu item
to bring up the General page of the Back Up Database window, with which you should
be familiar from Chapter 3, when we performed full database backups. The first set of
configurable options is shown in Figure 5-4.

162

Chapter 5: Log Backups

Figure 5-4: The Source section configuration for log backup.

Notice that we've selected the DatabaseForLogBackups database and, this time, we've
changed the Backup type option to Transaction Log, since we want to take log backups.
Once again, we leave the Copy-only backup option unchecked.

COPY_ONLY backups of the log file

When this option is used, when taking a transaction log backup, the log archiving point is not affected

and does not affect the rest of our sequential log backup files. The transactions contained within the log

file are backed up, but the log file is not truncated. This means that the special COPY_ONLY log backup

can be used independently of conventional, scheduled log backups, and would not be needed when

performing a restore that included the time span where this log backup was taken.

The Backup component portion of the configuration is used to specify full database
backup versus file or filegroup backup; we're backing up the transaction log here, not the
data files, so these options are disabled.

The second set of configurable options for our log backup, shown in Figure 5-5, is titled
Backup set and deals with descriptions and expiration dates. The name field is auto-filled
and the description will be left blank. The backup set expiration date can also be left with

163

Chapter 5: Log Backups

the default values. As discussed in Chapter 3, since we are only storing one log backup set
per file, we do not need to worry about making sure backup sets expire at a given time.
Storing multiple log backups would reduce the number of backup files that we need to
manage, but it would cause that single file to grow considerably larger with each backup
stored in it. We would also run the risk of losing more than just one backup if the file
were to become corrupted or was lost.

Figure 5-5: The Backup set section configuration for log backups.

The final section of the configuration options is titled Destination, where we
specify where to store the log backup file and what it will be called. If there is a file
already selected for use, click the Remove button because we want to choose a fresh
file and location.

Now, click the Add button to bring up the backup destination selection window. Click
the browse (…) button and navigate to our chosen backup file location (C:\SQLBackups\
Chapter5) and enter the file name DatabaseForLogBackups_Native_Log_1.trn at the
bottom, as shown in Figure 5-6.

164

Chapter 5: Log Backups

Figure 5-6: Selecting the path and filename for your log backup file.

Note that, while a full database backup file is identified conventionally by the .BAK
extension, most DBAs identify log backup files with the .TRN extension. You can use
whatever extension you like, but this is the standard extension for native log backups
and it makes things much less confusing if everyone sticks to a familiar convention.

When you're done, click the OK buttons on both the Locate Database Files and Select
Backup Destination windows to bring you back to the main backup configuration
window. Once here, select the Options menu on the upper left-hand side of the window
to bring up the second page of backup options. We are going to focus here on just the
Transaction log section of this Options page, shown in Figure 5-7, as all the other options
on this page were covered in detail in Chapter 3.

165

Chapter 5: Log Backups

Figure 5-7: Configuration options for transaction log backup.

The Transaction log section offers two important configuration option configurations.
For all routine, daily log backups, the default option of Truncate the transaction log
is the one you want; on completion of the log backup the log file will be truncated, if
possible (i.e. space inside the file will be made available for reuse). The second option,
Back up the tail of the log…, is used exclusively in response to a disaster scenario; you've
lost data, or the database has become corrupt in some way, and you need to restore it to
a previous point in time. Your last action before attempting a RESTORE operation should
be to back up the tail of the log, i.e. capture a backup of the remaining contents (those
records added since the last log backup) of the live transaction log file, assuming it is still
available. This will put the database into a restoring state, and assumes that the next
action you wish to perform is a RESTORE. This is a vital option in database recovery,
and we'll demonstrate it in Chapter 6, but it won't be a regular maintenance task that
is performed.

Having reviewed all of the configuration options, go ahead and click OK, and the log
backup will begin. A progress meter will appear in the lower left-hand side of the window
but since we don't have many transactions to back up, the operation will probably
complete very quickly and you'll see a notification that your backup has completed and
was successful. If, instead, you receive an error message, you'll need to check your config-
uration settings and to attempt to find what went wrong.

We have successfully taken a transaction log backup! As discussed in Chapter 3, various
metrics are available regarding these log backups, such as the time it took to complete,
and the size of the log backup file. In my test, the backup time was negligible in this
case (measured in milliseconds). However, for busy databases, handling hundreds or
thousands of transactions per second, the speed of these log backups can be a very

166

Chapter 5: Log Backups

important consideration and, as was demonstrated for full backups in Chapter 3, use of
backup compression can be beneficial. In Chapter 8, we'll compare the backup speeds
and compression ratios obtained for native log backups, versus log backups with native
compression, versus log backups with SQL Backup compression.

Right now, though, we'll just look at the log backup size. Browse to the C:\SQLBackups\
Chapter5\ folder, or wherever it is that you stored the log backup file and simply note the
size of the file. In my case, it was 85 KB.

T-SQL log backups

Now that we have taken a log backup using the GUI method, we'll insert some new rows
into our DatabaseForLogBackups table and then take a second log backup, this time
using a T-SQL script. Rerun DBCC SQLPERF(LOGSPACE)before we start. Since we've only
added a small amount of data, and have performed a log backup, the live log file is still 50
MB in size, and less than 1% full.

Listing 5-6 shows the script to insert our new data; this time we're inserting considerably
more rows into each of the three tables (1,000 into the first table, 10,000 into the second
and 100,000 into the third) and so our subsequent transaction log backup should also be
much larger, as a result.

Notice that we print the date and time after inserting the rows into MessageTable2,
and then use the WAITFOR DELAY command before proceeding with the final INSERT
command; both are to help us when we come to perform some point-in-time restores, in
Chapter 6.

167

Chapter 5: Log Backups

USE [DatabaseForLogBackups]
GO
INSERT INTO dbo.MessageTable1
VALUES ('Third set of data for MessageTable1', GETDATE())
GO 1000
INSERT INTO dbo.MessageTable2
VALUES ('Third set of data for MessageTable2', GETDATE())
GO 10000

-- Note this date down as we'll need it in the next chapter
PRINT GETDATE()
GO
WAITFOR DELAY '00:02:00'
GO

INSERT INTO dbo.MessageTable3
VALUES ('Third set of data for MessageTable3', GETDATE())
GO 100000

Listing 5-6: Third data insert for DatabaseForLogBackups (with 2-minute delay).

Go ahead and run this script in SSMS (it will take several minutes). Before we perform a
T-SQL log backup, let's check once again on the size of the log file and space usage for our
DatabaseForLogBackups database.

Backup Stage Log Size Space Used

Initial stats 50 MB 0.8 %

After third data
data load

100 MB 55.4%

Figure 5-8: DBCC SQLPERF (LOGSPACE) output after big data load.

168

Chapter 5: Log Backups

We now see a more significant portion of our log being used. The log actually needed to
grow above its initial size of 50 MB in order to accommodate this data load, so it jumped
in size by 50 MB, which is the growth rate we set when we created the database. 55% of
that space is currently in use.

When we used the SSMS GUI to build our first transaction log backup, a T-SQL
BACKUP LOG command was constructed and executed under the covers. Listing 5-7
simply creates directly in T-SQL a simplified version of the backup command that the
GUI would have generated.

USE [master]
GO

BACKUP LOG [DatabaseForLogBackups]
TO DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_2.trn'
WITH NAME = N'DatabaseForLogBackups-Transaction Log Backup', STATS = 10
GO

Listing 5-7: Native T-SQL transaction log backup code.

The major difference between this script, and the one we saw for a full database
backup in Chapter 3, is that the BACKUP DATABASE command is replaced by the
BACKUP LOG command, since we want SQL Server to back up the transaction log
instead of the data files.

We use the TO DISK parameter to specify the backup location and name of the file. We
specify our central SQLBackups folder and, once again, apply the convention of using
.TRN to identify our log backup. The WITH NAME option allows us to give the backup set
an appropriate set name. This is informational only, especially since we are only taking
one backup per file/set. Finally, we see the familiar STATS option, which dictates how
often the console messages will be updated during the operation. With the value set
to 10, a console message should display when the backup is (roughly) 10%, 20%, 30%
complete, and so on, as shown in Figure 5-9, along with the rest of the statistics from
the successful backup.

169

Chapter 5: Log Backups

Figure 5-9: Successful transaction log backup message.

Notice that this log backup took about 3.5 seconds to complete; still not long, but much
longer than our first backup took. Also, Figure 5-10 shows that the size of our second log
backup file weighs in at 56 MB. This is even larger than our full backup, which is to be
expected since we just pumped in 3,700 times more records into the database than were
there during the full backup.

The log backup file size is also broadly consistent with what we would have predicted,
given the stats we got from DBCC SQLPERF (LOGSPACE), which indicated a 100 MB log
which was about 55% full.

Figure 5-10: Second log backup size check.

170

Chapter 5: Log Backups

Let's check the log utilization one last time with the
DBCC SQLPERF (LOGSPACE) command.

Backup Stage Log Size Space Used

Initial stats 50 MB 0.8 %

After third data
data load

100 MB 55.4%

After T-SQL log
backup

100 MB 5.55%

Figure 5-11: DBCC SQLPERF (LOGSPACE) output after big data load.

This is exactly the behavior we expect; as a result of the backup operation, the log has
been truncated, and space in inactive VLFs made available for reuse, so only about 5% of
the space is now in use. As discussed earlier, truncation does not affect the physical size of
the log, so it remains at 100 MB.

Forcing Log Backup Failures for Fun

Having practiced these log backups a few times, it's rare for anything to go wrong with
the actual backup process itself. However, it's still possible to stumble into the odd
gotcha. Go ahead and run Listing 5-8 in an SSMS query window; try to work out what the
error is going to be before you run it.

171

Chapter 5: Log Backups

CREATE DATABASE [ForceFailure]
-- Using the NO_WAIT option so no rollbacks
-- of current transactions are attempted
ALTER DATABASE [ForceFailure] SET RECOVERY SIMPLE WITH NO_WAIT
GO

BACKUP DATABASE [ForceFailure] TO DISK = 'C:\SQLBackups\Chapter5\ForceFailure_Full.bak'
GO

BACKUP LOG [ForceFailure] TO DISK = 'C:\SQLBackups\Chapter5\ForceFailure_Log.trn'
GO

--Tidy up once we're done as we no longer need this database
DROP DATABASE ForceFailure
GO

Listing 5-8: Forcing a backup failure.

You should see the message output shown in Figure 5-12.

Figure 5-12: Running a log backup on a SIMPLE model database.

We can see that the database was successfully created, the BACKUP DATABASE operation
was fine, but then we hit a snag with the log backup operation:

Msg 4208, Level 16, State 1, Line 1

The statement BACKUP LOG is not allowed while the recovery model is SIMPLE. Use BACKUP

DATABASE or change the recovery model using ALTER DATABASE.

172

Chapter 5: Log Backups

The problem is very clear: we are trying to perform a log backup on a database that is
operating in the SIMPLE recovery model, which is not allowed.

The exact course of action, on seeing an error like this, depends on the reason why you
were trying to perform the log backup. If you simply did not realize that log backups were
not possible in this case, then lesson learned. If log backups are required in the SLA for
this database, then the fact that the database is in SIMPLE recovery is a serious problem.
First, you should switch it to FULL recovery model immediately, and take another full
database backup, to restart the log chain. Second, you should find out when and why the
database got switched to SIMPLE, and report what the implications are for point-in-time
recovery over that period.

An interesting case where a DBA might see this error is upon spotting that a log file for
a certain database is growing very large, and assuming that the cause is the lack of a
log backup. Upon running the BACKUP LOG command, the DBA is surprised to see the
database is in fact in SIMPLE recovery. So, why would the log file be growing so large?
Isn't log space supposed to be reused after each CHECKPOINT, in this case? We'll discuss
possible reasons why you still might see log growth problems, even for databases in
SIMPLE recovery, in the next section.

Troubleshooting Log Issues

The most common problem that DBAs experience with regard to log management is
rapid, uncontrolled (or even uncontrollable) growth in the size of the log. In the worst
case, a transaction log can grow until there is no further available space on its drive and
so it can grow no more. At this point, you'll encounter Error 9002, the "transaction log
full" error, and the database will become read-only. If you are experiencing uncontrolled
growth of the transaction log, it is due, either to a very high rate of log activity, or to
factors that are preventing space in the log file from being reused, or both.

173

Chapter 5: Log Backups

As a log file grows and grows, a related problem is that the log can become "internally
fragmented," if the growth occurs in lots of small increments. This can affect the perfor-
mance of any operation that needs to read the transaction log (such as database restores).

Failure to take log backups

Still the most common cause of a rapidly growing log, sadly, is simple mismanagement;
in other words failure to take log backups for a database operating in FULL recovery.
Since log backups are the only operation that truncates the log, if they aren't performed
regularly then your log file may grow rapidly and eat up most or all of the space on your
drive. I rest more peacefully at night in the knowledge that, having read this chapter, this
is a trap that won't catch you out.

If you're asked to troubleshoot a "runaway" transaction log for a FULL recovery model
database, then a useful first step is to interrogate the value of the log_reuse_wait_
desc column in sys.databases, as shown in Listing 5-9.

USE master
GO
SELECT name ,
 recovery_model_desc ,
 log_reuse_wait_desc
FROM sys.databases
WHERE name = 'MyDatabase'

Listing 5-9: Finding possible causes of log growth.

If the value returned for the log_reuse_wait_desc column is LOG BACKUP, then the
reason for the log growth is the lack of a log backup. If this database requires log backups,
start taking them, at a frequency that will satisfy the terms of the SLA, and control the
growth of the log from here in. If the database doesn't require point-in-time recovery,
switch the database to SIMPLE recovery.

174

Chapter 5: Log Backups

In either case, if the log has grown unacceptably large (or even full) in the meantime, refer
to the forthcoming section on Handling the 9002 Transaction Log Full error.

Other factors preventing log truncation

There are a few factors, in addition to a lack of log backups, which can "pin" the head
of the log, and so prevent space in the file from being reused. Some of these factors can
cause the size of the log to grow rapidly, or prevent the log file from being truncated, even
when operating in SIMPLE recovery model.

The concept of the active log, and the criteria for log truncation, as discussed earlier in
the chapter, also explains why a "rogue" long-running transaction, or a transaction that
never gets committed, can cause very rapid log growth, regardless of the recovery model
in use. If we have a single, very long-running transaction, then any log records that relate
to transactions that started and committed after this transaction must still be part of
the active log. This can prevent large areas of the log from being truncated, either by a
log backup or by a CHECKPOINT, even though the vast majority of the log records are no
longer required.

Such problems manifest in a value of ACTIVE TRANSACTION for the log_reuse_wait_
desc column. The course of action in the short term is to discover which transaction
is causing the problem and find out if it's possible to kill it. In the longer term, you
need to work out how to tune very long-running transactions or break them down
into smaller units, and to find out what application issues are causing transactions
to remain uncommitted.

DBCC OPENTRAN

A tool that is useful in tracking down rogue transactions is DBCC OPENTRAN(DatabaseName). It will

report the oldest active transaction for that database, along with its start time, and the identity of the

session that started the transaction.

175

Chapter 5: Log Backups

There are several other issues that can be revealed through the log_reuse_wait_
desc column, mainly relating to various processes, such as replication, which require
log records to remain in the log until they have been processed. We haven't got room
to cover them here, but Gail Shaw offers a detailed description of these issues in her
article, Why is my transaction log full? at www.sqlservercentral.com/articles/
Transaction+Log/72488/.

Excessive logging activity

If no problems are revealed by the log_reuse_wait_desc column then the log growth
may simply be caused by a very high rate of logging activity. For a database using the
FULL recovery model, all operations are fully logged, including bulk data imports, index
rebuilds, and so on, all of which will write heavily to the log file, causing it to grow rapidly
in size.

It is out of scope for this book to delve into the full details of bulk operations but, essen-
tially, you need to find a way to either minimize the logging activity or, if that's not
possible, then simply plan for it accordingly, by choosing appropriate initial size and
growth settings for the log, as well as an appropriate log backup strategy.

As noted in Chapter 1, certain bulk operations can be minimally logged, by temporarily
switching the database from FULL to BULK_LOGGED recovery, in order to perform the
operation, and then back again. Assuming your SLA will permit this, it is worth consid-
ering, given that any bulk logged operation will immediately prevent point-in-time
recovery to a point within any log file that contains records relating to the minimally
logged operations. We'll cover this option in a little more detail in Chapter 6.

http://www.sqlservercentral.com/articles/Transaction+Log/72488/
http://www.sqlservercentral.com/articles/Transaction+Log/72488/

176

Chapter 5: Log Backups

Handling the 9002 Transaction Log Full error

As noted earlier, in the worst case of uncontrolled log growth you may find yourself
facing down the dreaded "9002 Transaction Log Full" error. There is no more space
within the log to write new records, there is no further space on the disk to allow the log
file to grow, and so the database becomes read-only until the issue is resolved.

Obviously the most pressing concern in such cases is to get SQL Server functioning
normally again, either by making space in the log file, or finding extra disk space. If the
root cause of the log growth turns out to be no log backups (or insufficiently frequent
ones), then perform one immediately. An even quicker way to make space in the log,
assuming you can get permission to do it, is to temporarily switch the database to
SIMPLE recovery to force a log truncation, then switch it back to FULL and perform a
full backup.

The next step is to investigate all possible causes of the log growth, as discussed in the
previous sections, and implement measures to prevent its recurrence.

Having done so, however, you may still be left with a log file that has ballooned to an
unacceptably large size. As a one-off operation, in such circumstances, it's acceptable to
use DBCC SHRINKFILE to reclaim space in the log and reduce its physical size.

The recommended way to do this is to disconnect all users from the database (or wait for
a time when there is very low activity), take a log backup or just force a CHECKPOINT if
the database is in SIMPLE recovery, and then perform the DBCC SHRINKFILE operation,
as follows: DBCC SHRINKFILE(<logical name of log file>,TRUNCATEONLY);. This
will shrink the log to its smallest possible size. You can then resize the log appropriately,
via an ALTER DATABASE command. This technique, when performed in this manner as
a one-off operation, should resize the log and remove any fragmentation that occurred
during its previous growth.

177

Chapter 5: Log Backups

Finally, before moving on, it's worth noting that there is quite a bit of bad advice out
there regarding how to respond to this transaction log issue. The most frequent offenders
are suggestions to force log truncation using BACKUP LOG WITH TRUNCATE_ONLY
(deprecated in SQL Server 2005) or its even more disturbing counterpart, BACKUP LOG
TO DISK='NUL', which takes a log backup and discards the contents, without SQL Server
having any knowledge that the log chain is broken. Don't use these techniques. The
only correct way to force log truncation is to temporarily switch the database to
SIMPLE recovery.

Likewise, you should never schedule regular DBCC SHRINKFILE tasks as a means of
controlling the size of the log as it can cause terrible log fragmentation, as discussed in
the next section.

Log fragmentation

A fragmented log file can dramatically slow down any operation that needs to read the log
file. For example, it can cause slow startup times (since SQL Server reads the log during
the database recovery process), slow RESTORE operations, and more. Log size and growth
should be planned and managed to avoid excessive numbers of growth events, which can
lead to this fragmentation.

A log is fragmented if it contains a very high number of VLFs. In general, SQL Server
decides the optimum size and number of VLFs to allocate. However, a transaction log that
auto-grows frequently in small increments, will suffer from log fragmentation. To see this
in action, let's simply re-create our previous ForceFailure database, withal its configu-
ration settings set at whatever the model database dictates, and then run the DBCC
LogInfo command, which is an undocumented and unsupported command (at least
there is very little written about it by Microsoft) but which will allow us to interrogate the
VLF architecture.

178

Chapter 5: Log Backups

CREATE DATABASE [ForceFailure]
ALTER DATABASE [ForceFailure] SET RECOVERY FULL WITH NO_WAIT
GO

DBCC Loginfo;
GO

Listing 5-10: Running DBCC Loginfo on the ForceFailure database.

The results are shown in Figure 5-13. The DBCC LogInfo command returns one row
per VLF and, among other things, indicates the Status of that VLF. A Status value
of 2 indicates a VLF is active and cannot be truncated; a Status value of 0 indicates
an inactive VLF.

Figure 5-13: Five VLFs for our empty ForceFailure database.

Five rows are returned, indicating five VLFs (two of which are currently active). We
are not going to delve any deeper here into the meaning of any of the other columns
returned.

Now let's insert a large number of rows (one million) into a VLFTest table, in the
ForceFailure database, using a script reproduced by kind permission of Jeff Moden
(www.sqlservercentral.com/Authors/Articles/Jeff_Moden/80567/), and then rerun
the DBCC LogInfo command, as shown in Listing 5-11.

http://www.sqlservercentral.com/Authors/Articles/Jeff_Moden/80567/

179

Chapter 5: Log Backups

USE ForceFailure ;
GO
IF OBJECT_ID('dbo.VLFTest', 'U') IS NOT NULL
 DROP TABLE dbo.VLFTest ;
--===== AUTHOR: Jeff Moden
--===== Create and populate 1,000,000 row test table.
-- "SomeID" has range of 1 to 1000000 unique numbers
-- "SomeInt" has range of 1 to 50000 non-unique numbers
-- "SomeLetters2";"AA"-"ZZ" non-unique 2-char strings
-- "SomeMoney"; 0.0000 to 99.9999 non-unique numbers
-- "SomeDate" ; >=01/01/2000 and <01/01/2010 non-unique
-- "SomeHex12"; 12 random hex characters (ie, 0-9,A-F)
SELECT TOP 1000000
 SomeID = IDENTITY(INT,1,1),
 SomeInt = ABS(CHECKSUM(NEWID())) % 50000 + 1 ,
 SomeLetters2 = CHAR(ABS(CHECKSUM(NEWID())) % 26 + 65)
 + CHAR(ABS(CHECKSUM(NEWID())) % 26 + 65) ,
 SomeMoney = CAST(ABS(CHECKSUM(NEWID())) % 10000 / 100.0 AS MONEY) ,
 SomeDate = CAST(RAND(CHECKSUM(NEWID())) * 3653.0 + 36524.0 AS DATETIME) ,
 SomeHex12 = RIGHT(NEWID(), 12)
INTO dbo.VLFTest
FROM sys.all_columns ac1
 CROSS JOIN sys.all_columns ac2 ;

DBCC Loginfo;
GO

--Tidy up once you're done as we no longer need this database
DROP DATABASE ForceFailure
GO

Listing 5-11: Inserting one million rows and interrogating DBCC Loginfo.

This time, the DBCC LogInfo command returns 131 rows, indicating 131 VLFs, as shown
in Figure 5-14.

180

Chapter 5: Log Backups

Figure 5-14: 131 VLFs for our ForceFailure database, with one million rows.

The growth properties inherited from the model database dictate a small initial size for
the log files, then growth in relatively small increments. These properties are inappro-
priate for a database subject to this sort of activity and lead to the creation of a large
number of VLFs. By comparison, try re-creating ForceFailure, but this time with some
sensible initial size and growth settings (such as those shown in Listing 5-1). In my test,
this resulted in an initial 4 VLFs, expanding to 8 VLFs after inserting a million rows.

The "right" number of VLFs for a given database depends on a number of factors,
including, of course, the size of the database. Clearly, it is not appropriate to start with
a very small log and grow in small increments, as this leads to fragmentation. However,
it might also cause problems to go to the opposite end of the scale and start with a huge
(tens of GB) log, as then SQL Server would create very few VLFs, and this could affect log
space reuse. Further advice on how to achieve a reasonable number of VLFs can be found
in Paul Randal's TechNet article Top Tips for Effective Database Maintenance, at
http://technet.microsoft.com/en-us/magazine/2008.08.database.aspx.

If you do diagnose a very fragmented log, you can remedy the situation using DBCC
SHRINKFILE, as described in the previous section. Again, never use this as a
general means of controlling log size; instead, ensure that your log is sized, and
grows, appropriately.

http://technet.microsoft.com/en-us/magazine/2008.08.database.aspx

181

Chapter 5: Log Backups

Summary

This chapter explained in detail how to capture log backups using either SSMS Backup
Wizard or T-SQL scripts. We also explored, and discussed, how to avoid certain
log-related issues such as explosive log growth and log fragmentation.

Do not to remove any of the backup files we have captured; we are going to use each
of these in the next chapter to perform various types of restore operation on our
DatabaseForLogBackups database.

182

Chapter 6: Log Restores

Whereas log backups will form a routine part of our daily maintenance tasks on a given
database, log restores, at least in response to an emergency, will hopefully be a much rarer
occurrence. However, whenever they need to be performed, it's absolutely vital the job is
done properly.

In this chapter, we're going to restore the full backup of our DatabaseForLogBackups
database from Chapter 5, and then apply our series of log backups in order to return our
databases to various previous states. We'll demonstrate how to perform a complete trans-
action log restore, and how to restore to a point in time within a log file.

Log Restores in the SLA

With an appropriate backup schedule in place, we know that with the right collection of
files and enough time we can get a database back online and, with a point-in-time restore,
get it back to a state fairly close to the one it was in before whatever unfortunate event
befell it.

However, as discussed in Chapter 2, the SLA needs to clearly stipulate an agreed
maximum time for restoring a given database, which takes sensible account of the
size of the database, where the necessary files are located, and the potential complexity
of the restore.

183

Chapter 6: Log Restores

Possible Issues with Log Restores

There are several factors that could possibly affect our ability to perform a point-in-time
log restore successfully or at least cause some disruption to the process:

•	 an incomplete series of log backup files

•	 a missing full backup database file

•	 minimally logged transactions in a log file.

Let's take a look at each in turn.

Missing or corrupt log backup

A restore operation to a particular point will require an unbroken log backup chain; that
is, we need to be able to apply each and every backup file, in an unbroken sequence, up
to the one that contains the log records covering the time to which we wish to restore
the database. If we don't have a complete sequence of log files describing a complete LSN
chain right up to the point we wish to restore, then we will only be able to restore to the
end of the last file before the sequence was broken. The most common cause of a broken
log file sequence is a missing or corrupted backup file. However, another possibility is that
someone manually forced a truncation of the log without SQL Server's knowledge (see
the Handling the 9002 Transaction Log Full error section in Chapter 5).

This could prove disastrous, especially in the case of a failure very late in a day. For
example, if we are taking log backups each hour, but somehow lose the transaction log
backup file that was taken at 1 p.m., a failure that happens at 8 p.m. will cost us eight full
hours of data loss.

184

Chapter 6: Log Restores

Missing or corrupt full backup

If we find that the latest full backup file, on which we planned to base a RESTORE
operation, is missing or corrupt, then there is still hope that we can perform our point-in-
time restore. Full backups do not break the log chain, and each log backup contains all the
log records since the last log backup, so we can restore the previous good full backup and
then restore the full chain of log files extending from this full backup up to the desired
point of recovery.

However, this is not a reason to skip full backups, or to adopt a cavalier attitude towards
full backup failures. When performing a restore operation, the greatest chance of success
comes when that operation involves the smallest number of files possible. The more files
we have to restore, the greater the chance of failure.

Minimally logged operations

In Chapter 5, we discussed briefly the fact that it is not possible to restore a database to a
point in time within a log file that contains minimally logged operations, recorded while
the database was operating in the BULK_LOGGED recovery model. In order to visualize
this, Figure 6-1 depicts an identical backup timeline for two databases, each of which we
wish to restore to the same point in time (represented by the arrow). The green bar repre-
sents a full database backup and the yellow bars represent a series of log backups. The
only difference between the two databases is that the first is operating in FULL recovery
model, and the second in BULK LOGGED.

185

Chapter 6: Log Restores

Figure 6-1: Database backup timeline.

During the time span of the fifth log backup of the day, a BULK INSERT command was
performed on each database, in order to load a set of data. This bulk data load completed
without a hitch but, in an unrelated incident, within the time span of the fifth log backup,
a user ran a "rogue" transaction and crucial data was lost. The project manager informs
the DBA team and requests that the database is restored to a point just where the trans-
action that resulted in data loss started.

In the FULL recovery model database this is not an issue. The bulk data load was fully
logged and we can restore the database to any point in time within that log file. We
simply restore the last full database backup, without recovery, and apply the log files to
the point in time right before the unfortunate data loss incident occurred (we'll see how
to do this later in the chapter).

In the BULK LOGGED database, we have a problem. We can restore to any point in time
within the first four log backups, but not to any point in time within the fifth log backup,
which contains the minimally logged operations. For that log file, we are in an "all or
nothing" situation; we must apply none of the operations in this log file, so stopping the
restore at the end of the fourth file, or we must apply all of them, proceeding to restore to
any point in time within the sixth log backup.

186

Chapter 6: Log Restores

In other words, we can restore the full database backup, again without recovery, and
apply the first four log backups to the database. Unfortunately, we will not have the
option to restore to any point in time within the fifth log. If we apply the whole of the
fifth log file backup, this would defeat the purpose of the recovery, since the errant
process committed its changes somewhere inside of that log backup file, so we'd simply be
removing the data we were trying to get back! We have little choice but to restore up to
the end of the fourth log, enter database recovery, and report the loss of any data changes
that were made after this time.

Hopefully, this will never happen to you and, unless your SLA adopts a completely "zero
tolerance" attitude towards any risk of data loss, it is not a reason to avoid BULK_LOGGED
recovery model altogether. There are valid reasons using this recovery model in order to
reduce the load on the transaction log, and if we follow best practices, we should not find
ourselves in this type of situation.

USE [master]
GO

BACKUP LOG [SampleDB] TO DISK = '\\path\example\filename.trn'
GO

ALTER DATABASE [SampleDB] SET RECOVERY BULK_LOGGED WITH NO_WAIT
GO

-- Perform minimally logged transactions here
-- Stop minimally logged transactions here

ALTER DATABASE [SampleDB] SET RECOVERY FULL WITH NO_WAIT
GO

BACKUP LOG [SampleDB] TO DISK = '\\path\example\filename.trn'
GO

Listing 6-1: A template for temporarily switching a database to BULK_LOGGED recovery model.

187

Chapter 6: Log Restores

If we do need to perform maintenance operations that can be minimally logged and
we wish to switch to BULK_LOGGED model, the recommended practice is to take a log
backup immediately before switching to BULK_LOGGED, and immediately after switching
the database back to FULL recovery, as demonstrated in Listing 6-1. This will, as far as
possible, isolate the minimally logged transactions in a single log backup file.

Performing Log Restores

Being prepared to restore your database and log backups is one of the DBAs most
important jobs. All DBAs are likely, eventually, to find themselves in a situation where
a crash recovery is required, and it can be a scary situation. However, the well-prepared
DBA will know exactly where the required backup files are stored, will have been
performing backup verification and some random test restores, and can exude a calm
assurance that this database will be back online as quickly as possible.

As we did for log backups, we're going to discuss how to perform log restores the "GUI
way," in SSMS, and then by using native T-SQL Backup commands. We're going to be
restoring to various states the DatabaseForLogBackups database from Chapter 5, so
before we start, let's review, pictorially, our backup scheme for that database, and what
data is contained within each backup file.

With our first example, using the GUI, we'll restore the DatabaseForLogBackups
database to the state in which it existed at the point after the first log backup was taken;
in other words, we'll restore right to the end of the transaction log DatabaseForLog-
Backups_Native_Log_1.trn, at which point we should have 20 rows in each of our
three message tables.

188

Chapter 6: Log Restores

Figure 6-2: Backup scheme for DatabaseForLogBackups.

In our second example, using a T-SQL script, we'll restore to a specific point in time
within the second log backup, just before the last 100,000 records were inserted into
MessageTable3. This will leave the first two tables with their final row counts (1,020 and
10,020, respectively), but the third with just 20 rows.

As discussed in Chapter 1, there are several different ways to restore to a particular point
inside a log backup; in this case, we'll demonstrate the most common means, which is to
use the STOPAT parameter in the RESTORE LOG command to restore the database to a
state that reflects all transactions that were committed at the specified time.

GUI-based log restore

We will begin by using the native SQL Server backup files that we took in Chapter 5 to
restore our database to the state that it was in after the first transaction log backup was
taken. We are going to restore the entire transaction log backup in this example. Go
ahead and get SSMS started and connected to your test SQL Server.

189

Chapter 6: Log Restores

Right-click on DatabaseForLogBackups in the object explorer and select Tasks |
Restore | Database… to begin the restore process and you'll see the Restore Database
screen, which we examined in detail in Chapter 4.

This time, rather than restore directly over an existing database, we'll restore to a new
database, basically a copy of the existing DatabaseForLogBackups but as it existed
at the end of the first log backup. So, in the To database: section, enter a new database
name, such as DatabaseForLogBackups_RestoreCopy.

In the Source for restore section of the screen, you should see that the required backup
files are auto-populated (SQL Server can interrogate the msdb database for the backup
history). This will only be the case if all the backup files are in their original location (C:\
SQLBackups\Chapter5, if you followed through the examples). Therefore, as configured
in Figure 6-3, our new copy database would be restored to the end of the second log
backup, in a single restore operation. Alternatively, by simply deselecting the second log
file, we could restore the database to the end of the first log file.

Figure 6-3: Initial Restore Database screen for DatabaseForLogBackups.

190

Chapter 6: Log Restores

However, if the backup files have been moved to a new location, we'd need to manually
locate each of the required files for the restore process, and perform the restore process
in several steps (one operation to restore the full backup and another the log file). Since
it is not uncommon that the required backups won't still be in their original local folders,
and since performing the restore in steps better illustrates the process, we'll ignore this
useful auto-population feature for the backup files, and perform the restore manually.
Click on From device: and choose the browse button to the right of that option, navigate
to C:\SQLBackups\Chapter5 and choose the full backup file. Having done so, the relevant
section of the Restore Database page should look as shown in Figure 6-4.

Figure 6-4: Restore the full backup file.

Next, click through to the Options page. We know that restoring the full backup is only
the first step in our restore process, so once the full backup is restored we need the new
DatabaseForLogBackups_RestoreCopy database to remain in a restoring state,
ready to accept further log files. Therefore, we want to override the default restore state
(RESTORE WITH RECOVERY) and choose instead RESTORE WITH NORECOVERY, as shown
in Figure 6-5.

191

Chapter 6: Log Restores

Figure 6-5: Restore the full backup file while leaving the database in a restoring state.

Note that SQL Server has automatically renamed the data and log files for the new
database so as to avoid clashing with the existing DatabaseForLogBackups database,
on which the restore is based. Having done this, we're ready to go. First, however, you
might want to select the Script menu option, from the top of the General Page, and
take a quick look at the script that has been generated under the covers. I won't show it
here, as we'll get to these details in the next example, but you'll notice use of the MOVE
parameter, to rename the data and log files, and the NORECOVERY parameter, to leave
the database in a restoring state. Once the restore is complete, you should see the new
DatabaseForLogBackups_RestoreCopy database in your object explorer, but with a
green arrow on the database icon, and the word "Restoring…" after its name.

We're now ready to perform the second step, and restore our first transaction log. Right-
click on the new DatabaseForLogBackups_RestoreCopy database and select Tasks

192

Chapter 6: Log Restores

| Restore | Transaction Log…. In the Restore source section, we can click on From
previous backups of database:, and then select DatabaseForLogBackups database.
SQL Server will then retrieve the available log backups for us to select. Alternatively, we
can manually select the required log backup, which is the route we'll choose here, so
click on From file or tape: and select the first log backup file from its folder location (C:\
SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_1.trn). The screen should
now look as shown in Figure 6-6.

Figure 6-6: Preparing to restore the log file.

193

Chapter 6: Log Restores

Now switch to the Options page and you should see something similar to Figure 6-7.

Figure 6-7: Configuring the data and log files for the target database.

This time we want to complete the restore and bring the database back online, so we can
leave the default option, RESTORE WITH RECOVERY selected. Once you're ready, click
OK and the log backup restore should complete and the DatabaseForLogBackups_
RestoreCopy database should be online and usable.

As healthy, paranoid DBAs, our final job is to confirm that we have the right rows in each
of our tables, which is easily accomplished using the simple script shown in Listing 6-2.

USE DatabaseForLogBackups_RestoreCopy
SELECT COUNT(*) FROM dbo.MessageTable1
SELECT COUNT(*) FROM dbo.MessageTable2
SELECT COUNT(*) FROM dbo.MessageTable3

Listing 6-2: Checking our row counts.

194

Chapter 6: Log Restores

If everything ran correctly, there should be 20 rows of data in each table. We can also run
a query to return the columns from each table, to make sure that the data matches what
we originally inserted.

As is hopefully clear, GUI-based restores, when all the required backup files are still
available in their original local disk folders, can be quick, convenient, and easy. However,
if they are not, for example due to the backup files being moved, after initial backup, from
local disk to network space, or after a backup has been brought back from long-term
storage on tape media, then these GUI restores can be quite clunky, and the process is
best accomplished by script.

T-SQL point-in-time restores

In this section, we will be performing a point-in-time restore. This operation will use all
three of the backup files (one full, two log) to restore to a point in time somewhere before
we finalized the last set of INSERT statements that were run against the DatabaseFor-
LogBackups database.

When doing a point-in-time restore, we are merely restoring completely all of the log
backup files after the full database backup, except the very last log file, where we'll stop at
a certain point and, during database recovery, SQL Server will only roll forward the trans-
actions up to that specified point. In order to restore to the right point, in this example
you will need to refer back to the timestamp value you saw in the output of Listing 5-6,
the third data load for the DatabaseForLogBackups database.

Hopefully, you will rarely be called upon to perform these types of restore but when
you are, it's vital that you're well drilled, having practiced your restore routines many
times, and confident of success, based on your backup validation techniques and random
test restores.

195

Chapter 6: Log Restores

GUI-based point-in-time restore

It's entirely possible to perform point-in-time restores via the GUI. On the Restore Database page, we

simply need to configure a specific date and time, in the To a point in time: option, rather than accept

the default setting of most recent possible. We don't provide a full worked example in the GUI, but feel

free to play around with configuring and executing these types of restore in the GUI environment.

Don't worry; point-in-time restores are not as complicated as they may sound! To prove
it, let's jump right into the script in Listing 6-3.

The overall intent of this script is to restore the DatabaseForLogBackup full backup
file over the top of the DatabaseForLogBackup_RestoreCopy database, created in
the previous GUI restore, apply the entire contents of the first log backup, and then the
contents of the second log backup, up to the point just before we inserted 100,000 rows
into MessageTable3.

USE [master]
GO

--STEP 1: Restore the full backup. Leave database in restoring state
RESTORE DATABASE [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Full.bak'
WITH FILE = 1, MOVE N'DatabaseForLogBackups' TO N'C:\SQLData\
DatabaseForLogBackups_RestoreCopy.mdf',
MOVE N'DatabaseForLogBackups_log' TO N'C:\SQLData\DatabaseForLogBackups_
RestoreCopy_1.ldf',
NORECOVERY, STATS = 10
GO

--STEP 2: Completely restore 1st log backup. Leave database in restoring state
RESTORE LOG [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log.trn'
WITH FILE = 1, NORECOVERY, STATS = 10
GO

196

Chapter 6: Log Restores

--STEP 3: P-I-T restore of 2nd log backup. Recover the database
RESTORE LOG [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_2.trn'
WITH FILE = 1, NOUNLOAD, STATS = 10,
STOPAT = N'January 30, 2012 3:34 PM' , -- configure your time here
RECOVERY
GO

Listing 6-3: T-SQL script for a point-in-time restore of DatabaseForLogbackups.

The first section of the script restores the full backup file to the restore copy database.
We use the MOVE parameter for each file to indicate that, rather than use the data and
log files for DatabaseForLogBackups as the target for the restore, we should use those
for a different database, in this case DatabaseForLogBackup_RestoreCopy. The
NORECOVERY parameter indicates that we wish to leave the target database, Database-
ForLogBackup_RestoreCopy, in a restoring state, ready to accept further log backup
files. Finally, we use the REPLACE parameter, since we are overwriting the data and log
files that are currently being used by the DatabaseForLogBackup_RestoreCopy
database.

The second step of the restore script applies the first transaction log backup to the
database. This is a much shorter command, mainly due to the fact that we do not have
to specify a MOVE parameter for each data file, since we already specified the target data
and log files for the restore, and those files will have already been placed in the correct
location before this RESTORE LOG command executes. Notice that we again use the
NORECOVERY parameter in order to leave the database in a non-usable state so we can
move on to the next log restore and apply more transactional data.

The second and final LOG RESTORE command is where you'll spot the brand new STOPAT
parameter. We supply our specific timestamp value to this parameter in order to instruct
SQL Server to stop applying log records at that point. The supplied timestamp value is
important since we are instructing SQL Server to restore the database to the state it was
in at the point of the last committed transaction at that specific time. We need to use the
date time that was output when we ran the script in Chapter 5 (Listing 5-6). In my case,
the time portion of the output was 3.33 p.m.

197

Chapter 6: Log Restores

You'll notice that in Listing 6-3 I added one minute to this time, the reason being that
the time output does not include seconds, and the transactions we want to include could
have committed at, for example, 2:33:45. By adding a minute to the output and rounding
up to 2:34:00, we will capture all the rows we want, but not the larger set of rows that
inserted next, after the delay. Note, of course, that the exact format of the timestamp, and
its actual value, will be different for you!

This time, we specify the RECOVERY parameter, so that when we execute the command
the database will enter recovery mode, and the database will be restored to the point of
the last committed transaction at the specified timestamp. When you run Listing 6-3 as a
whole, you should see output similar to that shown in Figure 6-8.

54 percent processed.

100 percent processed.

Processed 232 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups' on file 1.

Processed 5 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups_log' on file 1.

RESTORE DATABASE successfully processed 237 pages in 0.549 seconds (3.369 MB/sec).

100 percent processed.

Processed 0 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups' on file 1.

Processed 9 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups_log' on file 1.

RESTORE LOG successfully processed 9 pages in 0.007 seconds (9.556 MB/sec).

10 percent processed.

20 percent processed.

31 percent processed.

40 percent processed.

50 percent processed.

61 percent processed.

71 percent processed.

80 percent processed.

90 percent processed.

100 percent processed.

198

Chapter 6: Log Restores

Processed 0 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups' on file 1.

Processed 7033 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups_log' on file 1.

RESTORE LOG successfully processed 7033 pages in 1.807 seconds (30.403 MB/sec).

Figure 6-8: Output from the successful point-in-time restore operation.

We see the typical percentage completion messages as well as the total restore operation
metrics after each file is completed. What we might like to see in the message output, but
cannot, is some indication that we performed a point-in-time restore with the STOPAT
parameter. There is no obvious way to tell if we successfully did that other than to
double-check our database to see if we did indeed only get part of the data changes that
are stored in our second log backup file.

All we have to do is rerun Listing 6-2 and this time, if everything went as planned, we
should have 1,020 rows in MessageTable1, 10,020 rows in MessageTable2, but only 20
rows in MessageTable3, since we stopped the restore just before the final 100,000 rows
were added to that table.

Possible difficulties with point-in-time restores

When restoring a database in order to retrieve lost data after, for example, a rogue trans-
action erroneously deleted it, getting the exact time right can be the difference between
stopping the restore just before the data was removed, which is obviously what we want,
or going too far and restoring to the point after the data was removed.

The less sure you are of the exact time to which you need to restore, the trickier the
process can become. One option, which will be demonstrated in Chapter 8, is to perform
a STANDBY restore, which leaves the target database in a restoring state, but keeps it
read-only accessible. In this way you can roll forward, query to see if the lost data is still
there, roll forward a bit further, and so on.

199

Chapter 6: Log Restores

Aside from third-party log readers (very few of which offer support beyond SQL Server
2005), there are a couple of undocumented and unsupported functions that can be used
to interrogate the contents of log files (fn_dblog) and log backups (fn_dump_dblog).
So for example, we can look at the contents of our second log backup files as shown in
Listing 6-4.

SELECT *
FROM fn_dump_dblog(DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_2.trn',
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT, DEFAULT,
 DEFAULT, DEFAULT, DEFAULT);

Listing 6-4: Exploring log backups with fn_dump_dblog.

It's not pretty and it's not supported (so use with caution); it accepts a whole host of
parameters, the only one we've defined being the path to the log backup, and it returns
a vast array of information that we're not going to begin to get into here…but, it does
return the Begin Time for each of the transactions contained in the file, and it may give
you some help in working out where you need to stop.

An alternative technique to point-in-time restores using STOPAT, is to try to work out the
LSN value associated with, for example, the start of the rogue transaction that deleted
your data. We're not going to walk through an LSN-based restore here, but a good
explanation of some of the practicalities involved can be found here: http://janiceclee.
com/2010/07/25/alternative-to-restoring-to-a-point-in-time/.

http://janiceclee.com/2010/07/25/alternative-to-restoring-to-a-point-in-time/
http://janiceclee.com/2010/07/25/alternative-to-restoring-to-a-point-in-time/

200

Chapter 6: Log Restores

Forcing Restore Failures for Fun

After successfully performing two restore operations, let's get some first-hand experience
with failure. Understanding how SQL Server responds to certain common mistakes is a
great first step to being prepared when tragedy actually strikes. Take a look at the script
in Listing 6-5, a restore of a full backup over the top of an existing database, and try to
predict what's going to go wrong, and why.

USE [master]
GO
RESTORE DATABASE [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Full.bak'
WITH FILE = 1,
MOVE N'DatabaseForLogBackups'
 TO N'C:\SQLData\DatabaseForLogBackups_RestoreCopy.mdf',
MOVE N'DatabaseForLogBackups_log'
 TO N'C:\SQLData\DatabaseForLogBackups__RestoreCopy_1.ldf',
STATS = 10, RECOVERY
GO

Listing 6-5: Spot the deliberate mistake, Part 1.

Do you spot the mistake? It's quite subtle, so if you don't manage to, simply run the script
and examine the error message:

Msg 3159, Level 16, State 1, Line 1

The tail of the log for the database "DatabaseForLogBackups_RestoreCopy" has not been backed

up. Use BACKUP LOG WITH NORECOVERY to backup the log if it contains work you do not want to

lose. Use the WITH REPLACE or WITH STOPAT clause of the RESTORE statement to just overwrite

the contents of the log.

Msg 3013, Level 16, State 1, Line 1

RESTORE DATABASE is terminating abnormally.

The script in Listing 6-5 is identical to what we saw in Step 1 of Listing 6-3, except that
here we are restoring over an existing database, and receive an error which is pretty
descriptive. The problem is that we are about to overwrite the existing log file for the

201

Chapter 6: Log Restores

DatabaseForLogBackups_RestoreCopy database, which is a FULL recovery model
database, and we have not backed up the tail of the log, so we would lose any transactions
that were not previously captured in a backup.

This is a very useful warning message to get in cases where we needed to perform crash
recovery and had, in fact, forgotten to do a tail log backup. In such cases, we could start
the restore process with the tail log backup, as shown in Listing 6-6, and then proceed.

USE master
GO
BACKUP LOG DatabaseForLogBackups_RestoreCopy
TO DISK = 'D:\SQLBackups\Chapter5\DatabaseForLogBackups_RestoreCopy_log_tail.trn'
WITH NORECOVERY

Listing 6-6: Perform a tail log backup.

In cases where we're certain that our restore operation does not require a tail log backup,
we can use WITH REPLACE or WITH STOPAT. In this case, the error can be removed,
without backing up the tail of the log, by adding the WITH REPLACE clause to Listing 6-5.

Let's take a look at a second example failure. Examine the script in Listing 6-7 and see if
you can spot the problem.

--STEP 1: Restore the log backup
USE [master]
GO
RESTORE DATABASE [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Full.bak'
WITH FILE = 1,
MOVE N'DatabaseForLogBackups'
 TO N'C:\SQLData\DatabaseForLogBackups_RestoreCopy.mdf',
MOVE N'DatabaseForLogBackups_log'
 TO N'C:\SQLData\DatabaseForLogBackups__RestoreCopy_1.ldf',
STATS = 10, REPLACE
GO

202

Chapter 6: Log Restores

--Step 2: Restore to the end of the first log backup
RESTORE LOG [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_1.trn'
WITH FILE = 1, RECOVERY, STATS = 10
GO

Listing 6-7: Spot the deliberate mistake, Part 2.

Look over each of the commands carefully and then execute this script; you should see
results similar to those shown in Figure 6-9.

54 percent processed.

100 percent processed.

Processed 232 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups' on file 1.

Processed 5 pages for database 'DatabaseForLogBackups_RestoreCopy', file

'DatabaseForLogBackups_log' on file 1.

RESTORE DATABASE successfully processed 237 pages in 1.216 seconds (1.521 MB/sec).

Msg 3117, Level 16, State 1, Line 2

The log or differential backup cannot be restored because no files are ready to rollforward.

Msg 3013, Level 16, State 1, Line 2

RESTORE LOG is terminating abnormally.

Figure 6-9: Output from the (partially) failed restore.

We can see that this time the full database backup restore, over the top of the existing
database, was successful (note that we remembered to use REPLACE). It processed all of
the data in what looks to be the correct amount of time. Since that operation completed,
it must be the log restore that caused the error. Let's look at the error messages in the
second part of the output, which will be in red.

The first error we see in the output is the statement "The log or differential backup cannot
be restored because no files are ready to rollforward." What does that mean? If you didn't
catch the mistake in the script, it was that we left out an important parameter in the full
database restore operation. Take a look again, and you will see that we don't have the
NORECOVERY option in the command. Therefore, the first restore command finalized the

203

Chapter 6: Log Restores

restore and placed the database in a recovered state, ready for user access (with only ten
rows in each table!); no log backup files can then be applied as part of the current restore
operation. Always specify NORECOVERY if you need to continue further with a log backup
restore operation.

Of course, there are many other possible errors that can arise if you're not fully paying
attention during the restore process, and we can't cover them all. However, as one final
example, take a look at Listing 6-8 and see if you can spot the problem.

USE [master]
GO
RESTORE DATABASE [DatabaseForLogBackups_RestoreCopy]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Full.bak'
WITH FILE = 1,
MOVE N'DatabaseForLogBackups'
 TO N'C:\SQLData\DatabaseForLogBackups_RestoreCopy.mdf',
MOVE N'DatabaseForLogBackups_log'
 TO N'C:\SQLData\DatabaseForLogBackups__RestoreCopy_1.ldf',
NORECOVERY, STATS = 10, REPLACE
GO

RESTORE LOG [DatabaseForLogBackups]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_2.trn'
WITH FILE = 1, NORECOVERY, STATS = 10
GO

RESTORE LOG [DatabaseForLogBackups]
FROM DISK = N'C:\SQLBackups\Chapter5\DatabaseForLogBackups_Native_Log_1.trn'
WITH FILE = 1, RECOVERY, STATS = 10
GO

Listing 6-8: Forcing one more fun failure.

Did you catch the problem before you ran the script? If not, take a look at your output,
examine the error message you get when the first log file restore is attempted. I'm sure
you'll be able to figure out what's wrong in short order!

204

Chapter 6: Log Restores

Summary

After reading and working through this chapter, you should also be fairly comfortable
with the basics of log restore operations, and in particular with point-in-time restores.
The key to successful restores is to be well organized and well drilled. You should know
exactly where the required backup files are stored; you should have confidence the
operation will succeed, based on your backup validations, and regular, random "spot-
check" restores.

You may be under pressure to retrieve critical lost data, or bring a stricken database back
online, as quickly as possible, but it's vital not to rush or panic. Proceed carefully and
methodically, and your chances of success are high.

205

Chapter 7: Differential Backup and
Restore

A differential database backup in SQL Server is simply a copy of every page that has had
a change made to it since the last full backup was taken. We capture, in a differential
backup file, the changed data pages then, during a restore process, apply that differential
backup to the last full backup, also known as the base backup, in order to roll the database
forward to the state in which it existed at the point the differential backup was taken.

In my experience, opinion is somewhat split within the DBA community as to the value
of differential database backups. Some DBAs seem to regard this third type of backup as
an unnecessary complication and prefer, where possible, to restrict their backup strategy
to two types of backup: full and log. Others, however, find them to be a necessity, and a
useful way of reducing the time required to take backups, space required to store local
backup files, and the number of log files that may need to be applied during a point-in-
time restore. My opinion is that differential backups, used correctly and in the right situa-
tions, are a key recovery option in your environment.

The basic structure of this chapter will be familiar, so we'll be moving at a quicker pace;
after discussing why and when differential backups can form a useful part of your backup
and restore strategy, and some pros and cons in their use, we'll walk through examples
of taking and then restoring native differential backups, using the SSMS GUI and T-SQL,
gathering metrics as we go. Finally, we'll take a look a few common errors that can arise
when taking and restoring differential backups.

206

Chapter 7: Differential Backup and Restore

Differential Backups, Overview

As noted in the introduction, a differential database backup is a copy of every page that
has changed since the last full backup. The last part of that sentence is worth stressing. It
is not possible to take a differential database backup without first taking a full database
backup, known as the base backup. Whenever a new full backup is taken, SQL Server
will clear any markers in its internal tracking mechanism, which are stored to determine
which data pages changed since the last full backup, and so would need to be included
in any differential backup. Therefore, each new full backup becomes the base backup for
any subsequent differential backups. If we lose a full backup, or it becomes corrupted, any
differential backups that rely on that base will be unusable.

This is the significant difference in the relationship between a differential backup and its
associated full backup, and the relationship between log backups and their associated full
backup. While we always restore a full backup before any log backups, the log backups are
not inextricably linked to any single full backup; if a full backup file goes missing, we can
still go back to a previous full backup and restore the full chain of log files, since every log
backup contains all the log that was entered since the last log backup. A full backup resets
the log chain, so that we have all the needed information to begin applying subsequent
log backups, but doesn't break the chain. A differential backup always contains all changes
since the last full backup, and so is tied to one specific full backup.

Because the data changes in any differential backup are cumulative since the base backup,
if we take one full backup followed by two differential backups then, during a restore
process where we wish to return the database to a state as close as possible to that it was
in at the time of the disaster, we only need to restore the full backup and the single, most
recent differential backup (plus any subsequent transaction log backups).

207

Chapter 7: Differential Backup and Restore

Advantages of differential backups

Perhaps the first question to answer is why we would want to capture only the changed
data in a backup; why not just take another full backup? The answer is simple: backup
time and backup file space utilization. A full database backup process, for a large database,
will be a time- and resource-consuming process, and it is usually not feasible to run this
process during normal operational hours, due to the detrimental impact it could have on
the performance of end-user and business processes. In most cases, a differential database
backup will contain much less data, and require much less processing time than a full
database backup. For a large database that is not subject to a huge number of changes, a
differential backup can execute in 10% of the time it would take for a full backup.

For a real-world example, let's consider one of my moderately-sized production databases.
The processing time for a full database backup is usually about 55 minutes. However,
the average differential backup takes only about 4 minutes to complete. This is great,
since I still have a complete set of backups for recovery, but the processing time is greatly
reduced. Remember that the larger a database, the more CPU will be consumed by the
backup operation, the longer the backup operation will take, and the greater the risk will
be of some failure (e.g. network) occurring during that operation.

The other saving that we get with a differential backup, over a full backup, is the space
saving. We are only storing the data pages that have been modified since the last full
backup. This is typically a small fraction of the total size, and that will be reflected in the
size of the differential backup file on disk. As such, a backup strategy that consists of, say,
one daily full backup plus a differential backup, is going to consume less disk space than
an equivalent strategy consisting of two full backups.

208

Chapter 7: Differential Backup and Restore

Will differential backups always be smaller than full backups?

For the most part, if you refresh your base backup on a regular schedule, you will find that a differential

backup should be smaller in size than a full database backup. However, there are situations where a

differential backup could become even larger than its corresponding base backup, for example if the base

backup is not refreshed for a long period and during that time a large amount of data has been changed

or added. We'll discuss this further shortly, in the Possible issues with differential backups section.

Let's assume that the same moderately-sized production database, mentioned above,
has a backup strategy consisting of a weekly full backup, hourly transaction log backups
and daily differential backups. I need to retain on disk, locally, the backups required to
restore the database to any point in the last three days, so that means storing locally the
last three differential backups, the last three days' transaction log backups, plus the base
full backup. The full backup size is about 22 GB, the log backups are, on average, about 3
GB each, and 3 days' worth of differential backups takes up another 3 GB, giving a total of
about 28 GB. If I simply took full backups and log backups, I'd need almost 70 GB of space
at any time for one database.

Deciding exactly the right backup strategy for a database is a complex process. We want
to strive as far as possible for simplicity, short backup times, and smaller disk space
requirements, but at the same time we should never allow such goals to compromise the
overall quality and reliability of our backup regime.

Differential backup strategies

In what situations can the addition of differential backups really benefit the overall
database recovery scheme? Are there any other cases where they might be useful?

209

Chapter 7: Differential Backup and Restore

Reduced recovery times

The number one reason that most DBAs and organizations take differential backups is as
a way of reducing the number of log files that would need to be restored in the case of an
emergency thus, potentially, simplifying any restore process. For example, say we had a
backup strategy consisting of a nightly full backup, at 2 a.m., and then hourly log backups.
If a disaster occurred at 6.15 p.m., we'd need to restore 17 backup files (1 full backup and 16
log backups), plus the tail log backup, as shown in Figure 7-1.

Figure 7-1: A long chain of transaction log backups.

This is a somewhat dangerous situation since, as we have discussed, the more backup
files we have to take, store, and manage the greater the chance of one of those files being
unusable. This can occur for reasons from disk corruption to backup failure. Also, if any
of these transaction log backup files is not usable, we cannot restore past that point in the
database's history.

If, instead, our strategy included an additional differential backup at midday each day,
then we'd only need to restore eight files: the full backup, the differential backup, and six
transaction log backups (11–16), plus a tail log backup, as shown in Figure 7-2. We would
also be safe in the event of a corrupted differential backup, because we would still have all
of the log backups since the full backup was taken.

210

Chapter 7: Differential Backup and Restore

Figure 7-2: Using a differential backup can shorten the number of backup files to restore.

In any situation that requires a quick turnaround time for restoration, a differential
backup is our friend. The more files there are to process, the more time it will also take to
set up the restore scripts, and the more files we have to work with, the more complex will
be the restore operation, and so (potentially) the longer the database will be down.

In this particular situation, the savings might not be too dramatic, but for mission-critical
systems, transaction logs can be taken every 15 minutes. If we're able to take one or two
differential backups during the day, it can cut down dramatically the number of files
involved in any restore process.

Consider, also, the case of a VLDB where full backups take over 15 hours and so nightly
full backups cannot be supported. The agreed restore strategy must support a maximum
data loss of one hour, so management has decided that weekly full backups, taken on
Sunday, will be supplemented with transaction log backups taken every hour during the
day. Everything is running fine until one Friday evening the disk subsystem goes out on
that machine and renders the database lost and unrecoverable. We are now going to have
to restore the large full backup from the previous Sunday, plus well over 100 transaction
log files. This is a tedious and long process.

Fortunately, we now know of a better way to get this done, saving a lot of time and
without sacrificing too much extra disk space: we take differential database backups each
night except Sunday as a supplemental backup to the weekly full one. Now, we'd only
need to restore the full, differential and around 20 log backups.

211

Chapter 7: Differential Backup and Restore

Database migrations

In Chapters 3 and 5, we discussed the role of full and log backups in database migra-
tions in various scenarios. Differential restores give us another great way to perform this
common task and can save a lot of time when the final database move takes place.

Imagine, in this example, that we are moving a large database, operating in SIMPLE
recovery model, from Server A to Server B, using full backups. We obviously don't want to
lose any data during the transition, so we kill any connections to the database and place
it into single-user mode before we take the backup. We then start our backup, knowing
full well that no new changes can be made to our database or data. After completion, we
take the source database offline and begin the restore the database to Server B. The whole
process takes 12 hours, during which time our database is down and whatever front-end
application it is that uses that database is also offline. No one is happy about this length of
down-time. What could we do to speed the process up a bit?

A better approach would be to incorporate differential database backups. 16 hours before
the planned migration (allowing a few hours' leeway on the 12 hours needed to perform
the full backup and restore), we take a full database backup, not kicking out any users
and so not worrying about any subsequent changes made to the database. We restore to
Server B the full database backup, using the NORECOVERY option, to leave the database in
a state where we can apply more backup files.

Once the time has come to migrate the source database in its final state, we kill any
connections, place it in single-user mode and perform a differential backup. We have
also been very careful not to allow any other full backups to happen via scheduled jobs or
other DBA activity. This is important, so that we don't alter the base backup for our newly
created differential backup.

Taking the differential backup is a fast process (10–15 minutes), and the resulting backup
file is small, since it only holds data changes made in the last 12 to 16 hours. Once the
backup has completed, we take the source database offline and immediately start the

212

Chapter 7: Differential Backup and Restore

differential restore on the target server, which also takes only 10–15 minutes to complete,
and we are back online and running.

We have successfully completed the migration, and the down-time has decreased from a
miserable 12 hours to a scant 30 minutes. There is a bit more preparation work to be done
using this method, but the results are the same and the uptime of the application doesn't
need to take a significant hit.

Possible issues with differential backups

In most cases in my experience, the potential issues or downsides regarding differential
backups are just minor inconveniences, rather than deal breakers, and usually do not
outweigh the savings in disk space usage and backup time, especially for larger databases.

Invalid base backup

The biggest risk with differential backups is that we come to perform a restore, and find
ourselves in a situation where our differential backup file doesn't match up to the base
backup file we have ready (we'll see this in action later). This happens when a full backup
is taken of which we are unaware. Full database backups are taken for many reasons
outside of your nightly backup jobs. If, for example, someone takes a full backup in order
to restore it to another system, and then deletes that file after they are done, our next
differential is not going to be of much use, since it is using that deleted file as its base.

The way to avoid this situation is to ensure that any database backups that are taken
for purposes other than disaster recovery are copy-only backups. In terms of the data it
contains and the manner in which it is restored, a copy-only backup is just like a normal
full backup. However, the big difference is that, unlike a regular full backup, with a
copy-only backup, SQL Server's internal mechanism for tracking data pages changed
since the last full backup is left untouched and so the core backup strategy is unaffected.

213

Chapter 7: Differential Backup and Restore

However, if this sort of disaster does strike, all we can do is look through the system
tables in MSDB to identify the new base full backup file and hope that it will still be on
disk or tape and so can be retrieved for use in your restore operation. If it is not, we are
out of luck in terms of restoring the differential file. We would need to switch to using the
last full backup and subsequent transaction log backups, assuming that you were taking
log backups of that database. Otherwise, our only course of action would be to use the
last available full database backup.

Bottom line: make sure that a) only those people who need to take backups have the
permissions granted to do so, and b) your DBA team and certain administrative users
know how and when to use a copy-only backup operation.

Missing or corrupt base backup

Without a base full backup, there is no way to recover any subsequent differential
backup files. If we need a base backup that has been archived to offsite tape storage,
then there may be a significant delay in starting the restore process. We can prevent this
from happening by making sure the mechanism of backup file cleanup leaves those base
files on disk until a new one is created. I keep weekly base backups in a specially-named
folder that isn't touched for seven days, so that I know the files will be available in that
time span.

If a base backup simply goes missing from your local file system, this is an issue that needs
careful investigation. Only the DBA team and the Server Administration team should
have access to the backup files and they should know much better than to delete files
without good cause or reason.

Finally, there is no getting around the fact that every restore operation that involves
a differential backup will involve a minimum of two files (the base full and the differ-
ential) rather than one. Let's say, just for the sake of illustration, that your SLA dictates a
maximum of 12 hours' data loss, so you take backups at midnight and midday. If we only
take full backups, then we'll only ever need to restore one full backup file; if our midday

214

Chapter 7: Differential Backup and Restore

backup is a differential, then we'll always need to restore the midnight full, followed
by the midday differential. In the event of corruption or loss of a single backup file, the
maximum exposure to data loss, in either case, is 24 hours.

This really is a small risk to take for the great rewards of having differential backups in
your rotation. I have taken many thousands of database backups and restored thousands
of files as well. I have only run into corrupt files a few times and they were never caused
by SQL Server's backup routines.

To help alleviate this concern, we should do two things. Firstly, always make sure backups
are being written to some sort of robust storage solution. We discussed this in Chapter 2,
but I can't stress enough how important it is to have backup files stored on a redundant
SAN or NAS system. These types of systems can cut the risk of physical disk corruptions
down to almost nothing.

Secondly, as discussed in Chapter 4, we should also perform spot-check restores of files.
I like to perform at least one randomly-chosen test restore per week. This gives me even
more confidence that my backup files are in good shape without having to perform
CHECKSUM tests on each and every backup file.

Infrequent base refresh and/or frequently updated
databases

The next possible issue regards the management and timing of the full base backup.
If the base backup isn't refreshed regularly, typically on a weekly basis, the differentials
will start to take longer to process. If a database is subject to very frequent modification,
then differential backups get bigger and more resource-intensive and the benefits of
differential over full, in terms of storage space and backup time reduction, will become
more marginal. Ultimately, if we aren't refreshing the base backup regularly then
the benefits obtained from differentials may not justify the complicating factor of an
additional backup type to manage.

215

Chapter 7: Differential Backup and Restore

Differentials in the backup and restore SLA

So what does all this mean with regard to how differential backups fit into our overall
Backup SLA? My personal recommendation is to use differential backups as part of
your backup regimen on a SQL Server as often as possible. In the previous sections,
we've discussed their reduced file size and faster backup times, compared to taking an
additional full backup and the benefits that can bring, especially for large databases. We've
also seen how they can be used to reduce the number of transaction log files that need to
be processed during point-in-time restores.

For some VLDBs, differential backups may be a necessity. I manage several databases that
take 12 or more hours to have a full backup and, in these cases, nightly full backups would
place undue strain not only on the SQL Server itself but the underlying file system. I
would be wasting CPU, disk I/O and precious disk space every night. Performing a weekly
full database backup and nightly differential backups has very little negative impact on
our recoverability, compared to nightly full backups, and any concerns in this regard
shouldn't stop you from implementing them.

Nevertheless, some database owners and application managers feel skittish about relying
on differential backups in the case of a recovery situation, and you may get some push
back. They may feel that you are less protected by not taking a full backup each night and
only recording the changes that have been made. This is normal and you can easily calm
their nerves by explaining exactly how this type of backup works, and how any risks can
be mitigated.

216

Chapter 7: Differential Backup and Restore

Preparing for Differential Backups

Before we get started taking differential backups, we need to do a bit of preparatory work,
namely choosing an appropriate recovery model for our database, creating that database
along with some populated sample tables, and then taking the base full backup for that
database. I could have used the sample database from Chapter 3, plus the latest full
backup from that chapter as the base, but I decided to make it easier for people who, for
whatever reason, skipped straight to this chapter. Since we've been through this process
several times now, the scripts will be presented more or less without commentary; refer
back to Chapters 3 and 5 if you need further explanation of any of the techniques.

Recovery model

There are no recovery model limitations for differential backups; with the exception of
the master database, we can take a differential backup of any database in any recovery
model. The only type of backup that is valid for the master database is a full backup.

For our example database in this chapter, we're going to assume that, in our Backup
SLA, we have a maximum tolerance of 24 hours' potential data loss. However, unlike in
Chapter 3, this time, we'll satisfy this requirement using a weekly full backup and nightly
differential backups.

Since we don't need to perform log backups, it makes sense, for ease of log management,
to operate the database in SIMPLE recovery model.

217

Chapter 7: Differential Backup and Restore

Sample database and tables plus initial data load

Listing 7-1 shows the script to create the sample DatabaseForDiffBackups database,
plus a very simple table (MessageTable), and then load it with an initial 100,000 rows
of data. When creating the database, we place the data and log file in a specific,
non-default folder, C:\SQLData\, and set appropriate initial size and growth charac-
teristics for these files. We also set the database recovery model to SIMPLE. Feel free to
modify the data and log file paths if you need to place them elsewhere on your server.

USE [master]
GO
CREATE DATABASE [DatabaseForDiffBackups] ON PRIMARY
(NAME = N'DatabaseForDiffBackups'
 , FILENAME = N'C:\SQLData\DatabaseForDiffBackups.mdf'
 , SIZE = 102400KB , FILEGROWTH = 10240KB) LOG ON
(NAME = N'DatabaseForDiffBackups_log'
 , FILENAME = N'C:\SQLData\DatabaseForDiffBackups_log.ldf'
 , SIZE = 51200KB , FILEGROWTH = 10240KB)
GO
ALTER DATABASE [DatabaseForDiffBackups] SET RECOVERY SIMPLE
GO

USE [DatabaseForDiffBackups]
GO

CREATE TABLE [dbo].[MessageTable]
 (
 [Message] [nvarchar](100) NOT NULL
)
ON [PRIMARY]
GO

INSERT INTO MessageTable
VALUES ('Initial Data Load: This is the first set of data we are populating the table with')
GO 100000

Listing 7-1: DatabaseForDiffBackups database, MessageTable table, initial

data load (100,000 rows).

218

Chapter 7: Differential Backup and Restore

Base backup

As discussed earlier, just as we can't take log backups without first taking a full backup
of a database, so we also can't take a differential backup without taking a full base
backup. Any differential backup is useless without a base. Listing 7-2 performs the
base full backup for our DatabaseForDiffBackups database and stores it in the
C:\SQLBackups\Chapter7 folder. Again, feel free to modify this path as appropriate f
or your system.

USE [master]
GO

BACKUP DATABASE [DatabaseForDiffBackups]
TO DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Full_Native.bak'
WITH NAME = N'DatabaseForDiffBackups-Full Database Backup', STATS = 10
GO

Listing 7-2: Base full backup for DatabaseForDiffBackups.

We are not going to worry about the execution time for this full backup, so once the
backup has completed successfully, you can close this script without worrying about the
output. However, we will take a look at the backup size though, which should come out
to just over 20 MB. We can take a look at how our differential backup file sizes compare,
as we pump more data into the database.

Taking Differential Backups

As per our usual scheme, we're going to demonstrate how to take differential backups the
"GUI way," in SSMS, and by using native T-SQL Backup commands. In Chapter 8, you'll
see how to perform differential backups, as part of a complete and scheduled backup
routine using the Red Gate SQL Backup tool.

219

Chapter 7: Differential Backup and Restore

Before taking the first differential backup, we'll INSERT 10,000 more rows into
MessageTable, as shown in Listing 7-3. This is typical of the type of load that we
would typically find in a differential backup.

USE [DatabaseForDiffBackups]
GO

INSERT INTO MessageTable
VALUES ('Second Data Load: This is the second set of data we are populating the table with')
GO 10000

Listing 7-3: Second data load (10,000 rows) for MessageTable.

Native GUI differential backup

We are now ready to take our first differential database backup, via the SSMS GUI backup
configuration tool; this should all be very familiar to you by now if you worked through
previous chapters, so we're going to move fast!

In SSMS, right-click on the DatabaseForDiffBackups database, and navigate Tasks |
Backup… to reach the familiar Backup Database configuration screen. In the Source
section, double-check that the correct database is selected (a good DBA always double-
checks) and then change the Backup type to Differential.

Leave the Backup set section as-is, and move on to the Destination section. Remove
the default backup file (which would append our differential backup to the base
full backup file) and add a new destination file at C:\SQLBackups\Chapter7\, called
DatabaseForDiffBackups_Diff_Native_1.bak. The screen will look as shown
in Figure 7-3.

220

Chapter 7: Differential Backup and Restore

Figure 7-3: Native GUI differential backup configuration.

There's nothing to change on the Options page, so we're done. Click OK and the
differential backup will be performed.

Figure 7-4 summarizes the storage requirements and execution time metrics for our first
differential backup. The execution time was obtained by scripting out the equivalent
BACKUP command and running the T-SQL, as described in Chapter 3. The alternative
method, querying the backupset table in msdb (see Listing 3-5), does not provide
sufficient granularity for a backup that ran in under a second.

221

Chapter 7: Differential Backup and Restore

Differential Backup Name Number of
Rows

Execution
Time

Storage Required

DatabaseForDiffBackups_Diff_

Native_1.bak

10000 0.311 Seconds 3.16 MB

Figure 7-4: Differential backup statistics, Part 1.

Native T-SQL differential backup

We are now going to take our second native differential backup using T-SQL code. First,
however, let's INSERT a substantial new data load of 100,000 rows into MessageTable,
as shown in Listing 7-4.

USE [DatabaseForDiffBackups]
GO

INSERT INTO MessageTable
VALUES ('Third Data Load: This is the third set of data we are populating the table with')
GO 100000

Listing 7-4: Third data load (100,000 rows) for MessageTable.

We're now ready to perform our second differential backup, and Listing 7-5 shows the
code to do it. If you compare this script to the one for our base full backup (Listing 7-2),
you'll see they are almost identical in structure, with the exception of the WITH DIFFER-
ENTIAL argument that we use in Listing 7-5 to let SQL Server know that we are not going
to be taking a full backup, but instead a differential backup of the changes made since the
last full backup was taken. Double-check that the path to the backup file is correct, and
then execute the script.

222

Chapter 7: Differential Backup and Restore

USE [master]
GO

BACKUP DATABASE [DatabaseForDiffBackups]
TO DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Diff_Native_2.bak'
WITH DIFFERENTIAL,
 NAME = N'DatabaseForDiffBackups-Differential Database Backup',
STATS = 10
GO

Listing 7-5: Native T-SQL differential backup for DatabaseForDiffBackups.

Having run the command, you should see results similar to those shown in Figure 7-5.

Figure 7-5: Native differential T-SQL backup script message output.

Figure 7-6 summarizes the storage requirements and execution time metrics for our
second differential backup, compared to the first differential backup.

223

Chapter 7: Differential Backup and Restore

Differential Backup Name Number of
Rows

Execution
Time (S)

Storage
Required (MB)

DatabaseForDiffBackups_Diff_

Native_1.bak

10000 0.31 3.2

DatabaseForDiffBackups_Diff_

Native_2.bak

110000 1.57 20.6

Figure 7-6: Differential backup statistics, Part 2.

So, compared to the first differential backup, the second one contains 11 times more rows,
took about five times longer to execute, and takes up over six times more space. This all
seems to make sense; don't forget that backup times and sizes don't grow linearly based
on the number of records, since every backup includes in it, besides data, headers, backup
information, database information, and other structures.

Compressed differential backups

By way of comparison, I reran the second differential backup timings, but this time
using backup compression. Just as for full backups, the only change we need to make to
our backup script is to add the COMPRESSION keyword, which will ensure the backup is
compressed regardless of the server's default setting. Remember, this example will only
work if you are using SQL Server 2008 R2 or above, or the Enterprise edition of SQL
Server 2008.

Note that, if you want to follow along, you'll need to restore full and first differential
backups over the top of the existing DatabaseForDiffBackups database, and then
rerun the third data load (alternatively, you could start again from scratch).

224

Chapter 7: Differential Backup and Restore

USE [master]
GO

BACKUP DATABASE [DatabaseForDiffBackups]
TO DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Diff_Native_Compressed.bak'
WITH NAME = N'DatabaseForDiffBackups-Diff Database Backup', STATS = 10, COMPRESSION
GO

Listing 7-6: Compressed differential backup.

In my test, the compressed backup offered very little advantage in terms of execution
time, but substantial savings in disk space, as shown in Figure 7-7.

Differential Backup Name Number of
Rows

Execution
Time (S)

Storage
Required (MB)

DatabaseForDiffBackups_Diff_Native_1.

bak

10000 0.31 3.2

DatabaseForDiffBackups_Diff_Native_2.

bak

110000 1.57 20.6

DatabaseForDiffBackups_Diff_Native_

Compressed.bak

110000 1.43 0.5

Figure 7-7: Differential backup statistics, Part 3.

225

Chapter 7: Differential Backup and Restore

Performing Differential Backup Restores

We are now ready to perform a RESTORE on each of our differential backup files, once
using the SSMS GUI, and once using a T-SQL script.

Native GUI differential restore

We are going to restore our first differential backup file (_Diff_Native_1.bak) for the
DatabaseForDiffBackups database, over the top of the existing database. If you have
already removed this database, don't worry; as long as you've still got the backup files, it
will not affect the example in this section.

In SSMS, right-click on the DatabaseForDiffBackups database, and navigate Tasks
| Restore | Database to reach the General page of the Restore Database configuration
screen, shown in Figure 7-8.

Figure 7-8: Starting the restore process for DatabaseForDiffBackups.

226

Chapter 7: Differential Backup and Restore

Notice that the base full backup, and the second differential backups have been auto-
selected as the backups to restore. Remember that, to return the database to the most
recent state possible, we only have to restore the base, plus the most recent differential;
we do not have to restore both differentials. However, in this example we do want to
restore the first rather than the second differential backup, so deselect the second differ-
ential in the list in favor of the first.

Now, click over to the Options screen; in the Restore options section, select Overwrite
the existing database. That done, you're ready to go; click OK, and the base full backup
will be restored, followed by the first differential backup.

Let's query our newly restored database in order to confirm that it worked as expected;
if so, we should see a count of 100,000 rows with a message of Initial Data Load…, and
10,000 rows with a message of Second Data Load…, as confirmed by the output of Listing
7-7 (the message text is cropped for formatting purposes).

USE [DatabaseForDiffBackups]
GO

SELECT Message ,
 COUNT(Message) AS Row_Count
FROM MessageTable
GROUP BY Message

Message Row_Count
--
Initial Data Load: This is the first set of data… 100000

Second Data Load: This is the second set of data… 10000

(2 row(s) affected)

Listing 7-7: Query to confirm that the differential restore worked as expected.

227

Chapter 7: Differential Backup and Restore

Native T-SQL differential restore

We're now going to perform a second differential restore, this time using T-SQL
scripts. While we could perform this operation in a single script, we're going to split
it out into two scripts so that we can see, more clearly than we could during the GUI
restore, the exact steps of the process. Once again, our restore will overwrite the existing
DatabaseForDiffBackups database. The first step will restore the base backup,
containing 100,000 rows, and leave the database in a "restoring" state. The second step
will restore the second differential backup file (_Diff_Native_2.bak), containing all
the rows changed or added since the base backup (10,000 rows from the second data
load and another 100,000 from the third), and then recover the database, returning it
to a usable state.

Without further ado, let's restore the base backup file, using the script in Listing 7-8.

USE [master]
GO

RESTORE DATABASE [DatabaseForDiffBackups]
FROM DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Full_Native.bak'
WITH NORECOVERY, STATS = 10
GO

Listing 7-8: Base full database backup restore.

Notice the WITH NORECOVERY argument, meaning that we wish to leave the database in
a restoring state, ready to receive further backup files. Also note that we did not specify
REPLACE since it is not needed here, since DatabaseForDiffBackups is a SIMPLE
recovery model database.

Having executed the script, refresh your object explorer window and you should see that
the DatabaseForDiffBackups database now displays a Restoring… message, as shown
in Figure 7-9.

228

Chapter 7: Differential Backup and Restore

Figure 7-9: The DatabaseForDiffBackups database in restoring mode.

We're now ready to run the second RESTORE command, shown in Listing 7-9, to get back
all the data in the second differential backup (i.e. all data that has changed since the base
full backup was taken) and bring our database back online.

USE [master]
GO

RESTORE DATABASE [DatabaseForDiffBackups]
FROM DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Diff_Native_2.bak'
WITH STATS = 10
GO

Listing 7-9: Native T-SQL differential restore.

We don't explicitly state the WITH RECOVERY option here, since RECOVERY is the default
action. By leaving it out of our differential restore we let SQL Server know to recover the
database for regular use.

229

Chapter 7: Differential Backup and Restore

Once this command has successfully completed, our database will be returned to the
state it was in at the time we started the second differential backup. As noted earlier, this
is actually no reason, other than a desire here to show each step, to run Listings 7-8 and
7-9 separately. We can simply combine them and complete the restores process in a single
script. Give it a try, and you should see a Messages output screen similar to that shown in
Figure 7-10.

Figure 7-10: Native differential restore results.

Remember that the differential backup file contained slightly more data than the base full
backup, so it makes sense that a few more pages are processed in the second RESTORE.
The faster backup time for the differential backup compared to the base full backup, even
though the former had more data to process, can be explained by the higher overhead
attached to a full restore; it must prepare the data and log files and create the space for
the restore to take place, whereas the subsequent differential restore only needs to make
sure there is room to restore, and start restoring data.

230

Chapter 7: Differential Backup and Restore

Everything looks good, but let's put on our "paranoid DBA" hat and double-check.
Rerunning Listing 7-7 should result in the output shown in Figure 7-11.

Figure 7-11: Data verification results from native T-SQL differential restore.

Restoring compressed differential backups

Listing 7-10 shows the script to perform the same overall restore process as the previous
section, but using the compressed differential backup file.

USE [master]
GO

RESTORE DATABASE [DatabaseForDiffBackups]
FROM DISK='C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Full_Native.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForDiffBackups]
FROM DISK='C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Diff_Native_Compressed.bak'
WITH RECOVERY
GO

Listing 7-10: Restoring a compressed native differential backup.

231

Chapter 7: Differential Backup and Restore

As you can see, it's no different than a normal differential restore. You don't have to
include any special options to let SQL Server know the backup is compressed. That infor-
mation is stored in the backup file headers, and SQL Server will know how to handle the
compressed data without any special instructions from you in the script!

You will undoubtedly see that the restore took just a bit longer that the uncompressed
backup would take to restore. This is simply because more work is going on to decom-
press the data and it, and that extra step, cost CPU time, just as an encrypted backup file
would also take slightly longer to restore.

Forcing Failures for Fun

Having scored several notable victories with our differential backup and restore processes,
it's time to taste the bitter pill of defeat. Think of it as character building; it will toughen
you up for when similar errors occur in the real world! We'll start with a possible error
that could occur during the backup part of the process, and then look at a couple of
possible errors that could plague your restore process.

Missing the base

Go ahead and run the script in Listing 7-11. It creates a brand new database, then attempts
to take a differential backup of that database.

USE [master]
GO

CREATE DATABASE [ForcingFailures] ON PRIMARY
(NAME = N'ForcingFailures', FILENAME = N'C:\SQLDATA\ForcingFailures.mdf',
 SIZE = 5120KB , FILEGROWTH = 1024KB) LOG ON
(NAME = N'ForcingFailures_log', FILENAME = N'C:\SQLDATA\ForcingFailures_log.ldf',
 SIZE = 1024KB , FILEGROWTH = 10%)
GO

232

Chapter 7: Differential Backup and Restore

BACKUP DATABASE [ForcingFailures]
TO DISK = N'C:\SQLBackups\Chapter7\ForcingFailures_Diff.bak'
WITH DIFFERENTIAL, STATS = 10
GO

Listing 7-11: A doomed differential backup.

If you hadn't already guessed why this won't work, the error message below will leave you
in no doubt.

Msg 3035, Level 16, State 1, Line 2

Cannot perform a differential backup for database "ForcingFailures", because a current

database backup does not exist. Perform a full database backup by reissuing BACKUP DATABASE,

omitting the WITH DIFFERENTIAL option.

Msg 3013, Level 16, State 1, Line 2

BACKUP DATABASE is terminating abnormally.

We can't take a differential backup of this database without first taking a full database
backup as the base from which to track subsequent changes!

Running to the wrong base

Let's perform that missing full base backup of our ForcingFailures database, as shown
in Listing 7-12.

USE [master]
GO
BACKUP DATABASE [ForcingFailures]
TO DISK = N'C:\SQLBackups\Chapter7\ForcingFailures_Full.bak'
WITH STATS = 10
GO

Listing 7-12: Base full backup for ForcingFailures database.

233

Chapter 7: Differential Backup and Restore

We are now fully prepared for some subsequent differential backups. However,
unbeknown to us, someone sneaks in and performs a second full backup of the database,
in order to restore it to a development server.

USE [master]
GO
BACKUP DATABASE [ForcingFailures]
TO DISK = N'C:\SQLBackups\ForcingFailures_DEV_Full.bak'
WITH STATS = 10
GO

Listing 7-13: A rogue full backup of the ForcingFailures database.

Back on our production system, we perform a differential backup.

USE [master]
GO
BACKUP DATABASE [ForcingFailures]
TO DISK = N'C:\SQLBackups\Chapter7\ForcingFailures_Diff.bak'
WITH DIFFERENTIAL, STATS = 10
GO

Listing 7-14: A differential backup of the ForcingFailures database.

Some time later, we need to perform a restore process, over the top of the existing
(FULL recovery model) database, so prepare and run the appropriate script, only to
get a nasty surprise.

USE [master]
GO
RESTORE DATABASE [ForcingFailures]
FROM DISK = N'C:\SQLBackups\Chapter7\ForcingFailures_Full.bak'
WITH NORECOVERY, REPLACE, STATS = 10
GO

234

Chapter 7: Differential Backup and Restore

RESTORE DATABASE [ForcingFailures]
FROM DISK = N'C:\SQLBackups\Chapter7\ForcingFailures_Diff.bak'
WITH STATS = 10
GO

Processed 176 pages for database 'ForcingFailures', file 'ForcingFailures' on file 1.
Processed 1 pages for database 'ForcingFailures', file 'ForcingFailures_log' on file 1.
RESTORE DATABASE successfully processed 177 pages in 0.035 seconds (39.508 MB/sec).

Msg 3136, Level 16, State 1, Line 2

This differential backup cannot be restored because the database has not been restored to the
correct earlier state.

Msg 3013, Level 16, State 1, Line 2

RESTORE DATABASE is terminating abnormally.

Listing 7-15: A failed differential restore of the ForcingFailures database.

Due to the "rogue" second full backup, our differential backup does not match our base
full backup. As a result, the differential restore operation fails and the database is left in
a restoring state. This whole mess could have been averted if that non-scheduled full
backup had been taken as a copy-only backup, since this would have prevented SQL
Server assigning it as the new base backup for any subsequent differentials.

However, what can we do at this point? Well, the first step is to examine the backup
history in the msdb database to see if we can track down the rogue backup, as shown in
Listing 7-16.

USE [MSDB]
GO

SELECT bs.type ,
 bmf.physical_device_name ,
 bs.backup_start_date ,
 bs.user_name
FROM dbo.backupset bs
 INNER JOIN dbo.backupmediafamily bmf
 ON bs.media_set_id = bmf.media_set_id
WHERE bs.database_name = 'ForcingFailures'
ORDER BY bs.backup_start_date ASC

Listing 7-16: Finding our rogue backup.

235

Chapter 7: Differential Backup and Restore

This query will tell us the type of backup taken (D = full database, I = differential
database, somewhat confusingly), the name and location of the backup file, when the
backup was started, and who took it. We can check to see if that file still exsists in the
designated directory and use it to restore our differential backup (we can also roundly
castigate whoever was responsible, and give them a comprehensive tutorial on use of
copy-only backups).

If the non-scheduled full backup file is no longer in that location and you are unable to
track it down, then there is not a lot you can do at this point, unless you are also taking
transaction log backups for the database. If not, you'll simply have to recover the database
as it exists, as shown in Listing 7-17, and deal with the data loss.

USE [master]
GO
RESTORE DATABASE [ForcingFailures] WITH RECOVERY

Listing 7-17: Bringing our database back online.

Recovered, already
For our final example, we'll give our beleaguered ForcingFailures database a rest and
attempt a differential restore on DatabaseForDiffBackups, as shown in Listing 7-18. See if
you can figure out what is going to happen before executing the command.

USE [master]
GO

RESTORE DATABASE [DatabaseForDiffBackups]
FROM DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Full_Native.bak'
WITH REPLACE, STATS = 10
GO

RESTORE DATABASE [DatabaseForDiffBackups]
FROM DISK = N'C:\SQLBackups\Chapter7\DatabaseForDiffBackups_Diff_Native_2.bak'
WITH STATS = 10
GO

Listing 7-18: Spot the mistake in the differential restore script.

236

Chapter 7: Differential Backup and Restore

This script should look very familiar to you but there is one small omission from this
version which will prove to be very important. Whether or not you spotted the error, go
ahead and execute it, and you should see output similar to that shown in Figure 7-12.

Figure 7-12: No files ready to roll forward.

The first RESTORE completes successfully, but the second one fails with the error
message "The log or differential backup cannot be restored because no files are ready to
rollforward." The problem is that we forgot to include the NORECOVERY argument in the
first RESTORE statement. Therefore, the full backup was restored and database recovery
process proceeded as normal, to return the database to an online and usable state. At this
point, the database is not in a state where it can accept further backups.

If you see this type of error when performing a restore that takes more than one backup
file, differential, or log, you now know that there is a possibility that a previous RESTORE
statement on the database didn't include the NORECOVERY argument that would allow
for more backup files to be processed.

237

Chapter 7: Differential Backup and Restore

Summary

We have discussed when and why you should be performing differential backups. Differ-
ential backups, used properly, can help a DBA make database restores a much simpler and
faster process than they would be with other backup types. In my opinion, differential
backups should form an integral part of the daily backup arsenal.

If you would like more practice with these types of backups, please feel free to modify the
database creation, data population and backup scripts provided throughout this chapter.
Perhaps you can try a differential restore of a database and move the physical data and log
files to different locations.

Finally, we explored some of the errors that can afflict differential backup and restore; if
you know, up front, the sort of errors you might see, you'll be better armed to deal with
them when they pop up in the real world. We couldn't cover every possible situation,
of course, but knowing how to read and react to error messages will save you time and
headaches in the future.

238

Chapter 8: Database Backup and
Restore with SQL Backup Pro

This chapter will demonstrate how to perform each of the types of database backup
we've discussed in previous chapters (namely full and differential database backups and
log backups), using Red Gate's SQL Backup Pro tool. At this stage, knowledge of the basic
characteristics of each type of backup is assumed, based on prior chapters, in order to
focus on the details of capturing the backups using either the SQL Backup GUI or SQL
Backup scripts.

One of the advantages of using such a tool is the relative ease with which backups can
be automated – a vital task for any DBA. We'll discuss a basic SQL Backup script that will
allow you to take full, log, or differential backups of all selected databases on a SQL Server
instance, store those backups in a central location, and receive notifications of any failure
in the backup operation.

Preparing for Backups

As usual, we need to create our sample database, tables, and data. Listing 8-1 shows the
script to create a DatabaseForSQLBackups database.

USE master
go

CREATE DATABASE [DatabaseForSQLBackups] ON PRIMARY (
 NAME = N'DatabaseForSQLBackups'
 , FILENAME = N'C:\SQLData\DatabaseForSQLBackups.mdf'
 , SIZE = 512000KB
 , FILEGROWTH = 102400KB) LOG ON (
 NAME = N'DatabaseForSQLBackups_log'

http://www.red-gate.com/products/dba/sql-backup/?utm_source=ebook&utm_medium=weblink&utm_content=shawnmcgbook_dbateam&utm_campaign=sqlbackup

239

Chapter 8: Database Backup and Restore with SQL Backup Pro

 , FILENAME = N'C:\SQLData\DatabaseForSQLBackups_log.ldf'
 , SIZE = 102400KB
 , FILEGROWTH = 10240KB)
GO
ALTER DATABASE [DatabaseForSQLBackups] SET RECOVERY SIMPLE
GO

Listing 8-1: Creating DatabaseForSQLBackups.

Notice that we set the database, initially at least, to SIMPLE recovery model. Later we'll
want to perform both differential database backups and log backups, so our main, opera-
tional model for the database will be FULL. However, as we'll soon be performing two
successive data loads of one million rows each, and we don't want to run into the problem
of bloating the log file (as described in the Troubleshooting Log Issues section of Chapter 5),
we're going to start off in SIMPLE model, where the log will be auto-truncated, and only
switch to FULL once these initial "bulk loads" have been completed.

Listing 8-2 shows the script to create our two, familiar, sample tables, and then load
MessageTable1 with 1 million rows.

USE [DatabaseForSQLBackups]
GO
CREATE TABLE [dbo].[MessageTable1]
 (
 [MessageData] [nvarchar](200) NOT NULL ,
 [MessageDate] [datetime2] NOT NULL
)
ON [PRIMARY]
GO

CREATE TABLE [dbo].[MessageTable2]
 (
 [MessageData] [nvarchar](200) NOT NULL ,
 [MessageDate] [datetime2] NOT NULL
)
ON [PRIMARY]
GO

USE [DatabaseForSQLBackups]

240

Chapter 8: Database Backup and Restore with SQL Backup Pro

GO
DECLARE @messageData NVARCHAR(200)

SET @messageData = 'This is the message we are going to use to fill
 up the first table for now. We want to get this
 as close to 200 characters as we can to fill up
 the database as close to our initial size as we
 can!!'

INSERT INTO MessageTable1
VALUES (@messageData, GETDATE())
GO 1000000

Listing 8-2: Creating sample tables and initial million row data load for MessageTable1.

Take a look in the C:\SQLData folder, and you should see that our data and log files are
still at their initial sizes; the data file is approximately 500 MB in size (and is pretty much
full), and the log file is still 100 MB in size. Therefore we have a total database size of
about 600 MB.

It's worth noting that, even if we'd set the database in FULL recovery model, the observed
behavior would have been the same, up to this point. Don't forget that a database is only
fully engaged in FULL recovery model after the first full backup, so the log may still have
been truncated during the initial data load.

If we'd performed a full backup before the data load, the log would not have been
truncated and would now be double that of our data file, just over 1 GB. Of course, this
means that the log file would have undergone many auto-growth events, since we only set
it to an initial size of 100 MB and to grow in 10 MB steps.

241

Chapter 8: Database Backup and Restore with SQL Backup Pro

Full Backups

In this section, we'll walk through the process of taking a full backup of the example
DatabaseForSQLBackups database, using both the SQL Backup GUI, and SQL Backup
T-SQL scripts. In order to follow through with the examples, you'll need to have installed
the Red Gate SQL Backup Pro GUI on your client machine, registered your test SQL
Server instances, and installed the server-side components of SQL Backup. If you've not
yet completed any part of this, please refer to Appendix A, for installation and configu-
ration instructions.

SQL Backup Pro full backup GUI method

Open the SQL Backup management GUI, expand the server listing for your test server, in
the left pane, right-click the DatabaseForSQLBackups database and select Back Up…
from the menu to enter Step 1 (of 5) in the Back Up wizard. The left pane lets you select
the server to back up (which will be the test server housing our database) and the right
pane allows you to select a backup template that you may have saved on previous runs
through the backup process (at Step 5). Since this is our first backup, we don't yet have any
templates, so we'll discuss this feature later.

Step 2 is where we specify the database(s) to back up (DatabaseForSQLBackups will
be preselected) and the type of backup to be performed (by default, Full). In this case,
since we do want to perform a full backup, and only of the DatabaseForSQLBackups
database, we can leave this screen exactly as it is (see Figure 8-1).

242

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-1: SQL Backup Configuration, Step 2.

A few additional features to note on this screen are as follows:

•	 we can take backups of more than one database at a time; a useful feature when you
need one-time backups of multiple databases on a system

•	 if we wish to backup most, but not all, databases on a server, we can select the
databases we don't wish to backup, and select Exclude these from the top drop-down

•	 the Filter list… check box allows you to screen out any databases that are not available
for the current type of backup; for example, this would ensure that you don't attempt
to take a log backup of a database that is running under the SIMPLE recovery model.

Step 3 is where we will configure settings to be used during the backup. For this first run
through, we're going to focus on just the central Backup location portion of this screen,
for the moment, and the only two changes we are going to make are to the backup file

243

Chapter 8: Database Backup and Restore with SQL Backup Pro

location and name. Adhering closely to the convention used throughout, we'll place the
backup file in the C:\SQLBackups\Chapter8\ folder and call it DatabaseForSQLBackups_
Full_1.sqb. Notice the .sqb extension that denotes this as a SQL Backup-generated
backup file. Once done, the screen will look as shown in Figure 8-2.

Figure 8-2: SQL Backup Step 3 configuration.

244

Chapter 8: Database Backup and Restore with SQL Backup Pro

There are two options offered below the path and name settings in the Backup location
section that allow us to "clean up" our backup files, depending on preferences.

•	 Overwrite existing backup files… Overwrite any backup files in that location that
share the same name.

•	 Delete existing backup files… Remove any files that are more than x days old, or
remove all but the latest x files. We also have the option of cleaning these files up
before we start a new backup. This is helpful if the database backup files are quite large
and wouldn't fit on disk if room was not cleared beforehand. However, be sure that any
backups targeted for removal have first been safely copied to another location .

The top drop-down box of this screen offers the options to split or mirror a backup
file (which we will cover at the end of this chapter). The Network copy location
section allows us to copy the finished backup to a second network location, after it has
completed. This is a good practice, and you also get the same options of cleaning up the
files on your network storage. What you choose here doesn't have to match what you
chose for your initial backup location; for example, you can store just one day of backups
on a local machine, but three days on your network location.

Backup compression and encryption

Step 4 is where we configure some of the most useful features of SQL Backup, including
backup compression. We'll compare how SQL Backup compression performs against
the native uncompressed and native compressed backups that we investigated in
previous chapters.

For the time being, let's focus on the Backup processing portion of this screen, where we
configure backup compression and backup encryption.

245

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-3: SQL Backup Step 4 configuration.

Backup compression is enabled by default, and there are four levels of compression,
offering progressively higher compression and slower backup speeds. Although the
compressed data requires lower levels of disk I/O to write to the backup file, the
overriding factor is the increased CPU time required in compressing the data in
the first place.

As you can probably guess, picking the compression level is a balancing act; the better the
compression, the more disk space will be saved, but the longer the backups run, the more
likely are issues with the backup operation.

Ultimately, the choice of compression level should be guided by the size of the database
and the nature of the data (i.e. its compressibility). For instance, binary data does not
compress well, so don't spend CPU time attempting to compress a database full of binary
images. In other cases, lower levels of compression may yield higher compression ratios.
We can't tell until we test the database, which is where the Compression Analyzer comes
in. Go ahead and click on the Compression Analyzer… button and start a test against
the DatabaseForSQLBackups database. Your figures will probably vary a bit, but you
should see results similar to those displayed in Figure 8-4.

246

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-4: SQL Backup Compression Analyzer.

For our database, Levels 1 and 4 offer the best compression ratio, and since a backup size
of about 4.5 MB (for database of 550 MB) is pretty good, we'll pick Level 1 compression,
which should also provide the fastest backup times.

Should I use the compression analyzer for every database?

Using the analyzer for each database in your infrastructure is probably not your best bet. We saw very

fast results when testing this database, because is it very small compared to most production databases.

The larger the database you are testing, the longer this test will take to run. This tool is recommended for

databases that you are having compression issues with, perhaps on a database where you are not getting

the compression ratio that you believe you should be.

247

Chapter 8: Database Backup and Restore with SQL Backup Pro

The next question we need to consider carefully is this: do we want to encrypt all of
that data that we are writing to disk? Some companies operate under strict rules and
regulations, such as HIPAA and SOX, which require database backups to be encrypted.
Some organizations just like the added security of encrypted backups, in helping prevent
a malicious user getting access to those files.

If encryption is required, simply tick the Encrypt backup box, select the level of
encryption and provide a secure password. SQL Backup will take care of the rest, but at a
cost. Encryption will also add CPU and I/O overhead to your backups and restores. Each
of these operations now must go through the "compress | encrypt | store on disk" process
to back up, as well as the "retrieve from disk| decrypt | decompress" routines, adding an
extra step to the both backup and restore processes.

Store your encryption password in a safe and secure location!

Not having the password to those backup files will stop you from ever being able to restore those files

again, which is just as bad as not having backups at all!

Our database doesn't contain any sensitive data and we are not going to use encryption
on this example.

Backup optimization and verification

We're going to briefly review what options are available in the Optimization and On
completion sections, and some of the considerations in deciding the correct values, but
for our demo we'll leave all of them either disabled or at their default settings.

248

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-5a: Optimization and On completion options.

Depending on the system, some good performance benefits can be had by allowing
more threads to be used in the backup process. When using a high-end CPU, or many
multi-core CPUs, we can split hefty backup operations across multiple threads, each of
which can run in parallel on a separate core. This can dramatically reduce the backup
processing time.

The Maximum transfer size and Maximum data block options can be important param-
eters in relation to backup performance. The transfer size option dictates the maximum
size of each block of memory that SQL Backup will write to the backup file, on disk. The
default value is going to be 1,024 KB (i.e. 1 MB), but if SQL Server is experiencing memory
pressure, it may be wise to lower this value so that SQL Backup can write to smaller
memory blocks, and therefore isn't fighting so hard, with other applications, for memory.

If this proves necessary, we can add a DWORD registry key to define a new default value on
that specific machine. All values in these keys need to be in multiples of 65,536 (64 KB), up
to a maximum of 1,048,576 (1,024 KB, the default).

249

Chapter 8: Database Backup and Restore with SQL Backup Pro

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Red Gate\SQL Backup\
BackupSettingsGlobal\<instance name>\MAXTRANSFERSIZE (32-bit)

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Red Gate\SQL Backup\
BackupSettingsGlobal\<instance name>\MAXTRANSFERSIZE (64-bit)

The maximum data block option (by default 2 MB) determines the size of the actual data
blocks on disk, when storing backup data. For optimal performance, we want this value
to match or fit evenly in the block size of the media to which the files are being written;
if the data block sizes overlap the media block boundaries, it may result in performance
degradation. Generally speaking, SQL Server will automatically select the correct block
size based on the media.

However, if necessary, we can create a registry entry to overwrite the default value:

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Red Gate\SQL Backup\
BackupSettingsGlobal\<instance name>\MAXDATABLOCK (32-bit)

•	 HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Red Gate\SQL Backup\
BackupSettingsGlobal\<instance name>\MAXDATABLOCK (64-bit)

The network resilience options determine how long to wait before retrying a failed
backup operation, and how many times to retry; when the retry count has been
exhausted, a failure message will be issued. We want to be able to retry a failed backup
a few times, but we don't want to retry so many times that a problem in the network or
disk subsystem is masked for too long; in other words, rather than extend the backup
operation as it retries again and again, it's better to retry only a few times and then fail,
therefore highlighting the network issue. This is especially true when performing full
backup operations on large databases, where we'll probably want to knock that retry
count down from a default of 10 to 2–3 times. Transaction log backups, on the other
hand, are typically a short process, so retrying 10 times is not an unreasonable number in
this case.

250

Chapter 8: Database Backup and Restore with SQL Backup Pro

The On completion section gives us the option to verify our backup files after completion
and send an email once the operations are complete. The verification process is similar
to the CHECKSUM operation in native SQL Server backups (see Chapter 2). SQL Backup
will make sure that all data blocks have been written correctly and that you have a valid
backup file.

Note that, at the time of this book going to print, Red Gate released SQL Backup Pro
Version 7, which expands the backup verification capabilities to allow standard backup
verification (BACKUP…WITH CHECKSUM) and restore verification (RESTORE VERIFYONLY),
as shown in Figure 8-5b. We'll revisit the topic of backup verification with SQL Backup
later in the chapter.

 Fig 8-5b: New Backup verification options in SQL Backup 7

The email notification can be set to alert on any error, warning, or just when the backup
has completed in any state including success.

251

Chapter 8: Database Backup and Restore with SQL Backup Pro

Running the backup

Step 5 of the wizard is simply a summary of the options we selected for our SQL Backup
operation. Check this page carefully, making sure each of the selected options looks as it
should. At the bottom is a check box that, when enabled, will allow us to save this backup
operation configuration as a template, in which case we could then load it on Step 1 of
the wizard and then skip straight to Step 5. We are not going to save this example as a
template. The Script tab of this step allows us to view the T-SQL code that has been
generated to perform this backup.

Click on the Finish button and the backup will be executed on your server, and a dialog
box will report the progress of the operation. Once it completes, the new window will
(hopefully) display two green check marks, along with some status details in the lower
portion of the window, as seen in Figure 8-6.

Database size : 600.000 MB

Compressed data size: 3.592 MB

Compression rate : 99.40%

Processed 62696 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on file 1.

Processed 1 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on file 1.

BACKUP DATABASE successfully processed 62697 pages in 3.100 seconds (158.006 MB/sec).

SQL Backup process ended.

Figure 8-6: Status details from a successful SQL Backup GUI backup operation.

Backup metrics: SQL Backup Pro vs. native vs. native
compressed

Figure 8-6 reports an initial database size of 600 MB, a backup file size of 3.6 MB and
backup time of about 3 seconds. Remember, these metrics are ballpark figures and won't
match exactly the ones you get on your system. Don't necessarily trust SQL Backup on
the backup size; double-check it in the backup location folder (in my case it was 3.7 MB;
pretty close!).

252

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-7 compares these metrics to those obtained for identical operations using native
backup, compressed native backup, as well as SQL Backup using a higher compression
level (3).

Backup Operation Backup File Size

in MB (on disk)

Backup Time

(seconds)

% Difference compared

to Native Full

(+ = bigger / faster)

Size Speed

Native Full 501 19.6

Native Full with Compression 6.7 4.6 -98.7 +76.5

SQL Backup Full Compression Level 1 3.7 3.1 -99.3 +84.2

SQL Backup Full Compression Level 3 7.3 4.5 -98.5 +77

Figure 8-7: Comparing full backup operations for DatabaseForSQLBackups (0.5 GB).

SQL Backup (Compression Level 1) produces a backup file that requires less than 1% of
the space required for the native full backup file. To put this into perspective, in the space
that we could store 3 days' worth of full native backups using native SQL Server, we could
store nearly 400 SQL Backup files. It also increases the backup speed by about 84%. How
does that work? Basically, every backup operation reads the data from the disk and writes
to a backup-formatted file, on disk. By far the slowest part of the operation is writing the
data to disk. When SQL Backup (or native compression) performs its task, it is reading all
of the data, passing it through a compression tool and writing much smaller segments of
data, so less time is used on the slowest operation.

In this test, SQL Backup with Compression Level 1 outperformed the native compressed
backup. However, for SQL Backup with Compression Level 3, their performance was
almost identical. It's interesting to note that while Level 3 compression should, in theory,
have resulted in a smaller file and a longer backup time, compared to Level 1, we in fact
saw a larger file and a longer backup time! This highlights the importance of selecting the
compression level carefully.

253

Chapter 8: Database Backup and Restore with SQL Backup Pro

SQL Backup Pro full backup using T-SQL

We're now going to perform a second full backup our DatabaseForSQLBackups
database, but this time using a SQL Backup T-SQL script, which will look similar to the
one we saw on the Script tab of Step 5 of the GUI wizard. Before we do so, let's populate
MessageTable2 with a million rows of data of the same size and structure as the data in
MessageTable1, so that our database file should be hovering somewhere around 1 GB
in size.

USE [DatabaseForSQLBackups]
GO

DECLARE @messageData NVARCHAR(200)

SET @messageData = 'This is a different message we are going to
 use to fill up the second table. We want to get
 this as close to 200 characters as we can to
 fill up the database as close to our initial
 size as we can.'

INSERT INTO dbo.MessageTable2
VALUES (@messageData, GETDATE())
GO 1000000

Listing 8-3: Populating the MessageTable2 table.

Take a look in the SQLData folder, and you'll now see that the data file is now about 1GB
in size and the log file is still around 100 MB. Now that we have some more data to work
with, Listing 8-4 shows the SQL Backup T-SQL script to perform a second full backup of
our DatabaseForSQLBackups database.

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_2.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, THREADCOUNT = 2, COMPRESSION = 1"'
GO

Listing 8-4: Second full backup of DatabaseForSQLBackups using SQL Backup T-SQL.

254

Chapter 8: Database Backup and Restore with SQL Backup Pro

The first thing to notice is that the backup is executed via an extended stored procedure
called sqlbackup, which resides in the master database and utilizes some compiled
DLLs that have been installed on the server. We pass to this stored procedure a set of
parameters as a single string, which provides the configuration settings that we wish to
use for the backup operation. Some of the names of these settings are slightly different
from what we saw for native backups but, nevertheless, the script should look fairly
familiar. We see the usual BACKUP DATABASE command to signify that we are about to
backup the DatabaseForSQLBackups database. We also see the TO DISK portion and
the path to where the backup file will be stored.

The latter portion of the script sets values for some of the optimization settings that we
saw on Step 4 of the GUI wizard. These are not necessary for taking the backup, but it's
useful to know what they do.

•	 DISKRETRYINTERVAL – One of the network resiliency options; amount of time
in seconds SQL Backup will wait before retrying the backup operation, in the case
of a failure.

•	 DISKRETRYCOUNT – Another network resiliency option; number of times a backup
will be attempted in the event of a failure. Bear in mind that the more times we retry,
and the longer the retry interval, the more extended will be the backup operation.

•	 THREADCOUNT – Using multiple processors and multiple threads can offer a huge
performance boost when taking backups.

The only setting that could make much of a difference is the threadcount parameter,
since on powerful multi-processor machines it can spread the load of backup
compression over multiple processors.

Go ahead and run the script now and the output should look similar to that shown in
Figure 8-8.

255

Chapter 8: Database Backup and Restore with SQL Backup Pro

Backing up DatabaseForSQLBackups (full database) to:

 C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_2.sqb

Database size : 1.074 GB

Compressed data size: 6.679 MB

Compression rate : 99.39%

Processed 125208 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on file 1.

Processed 1 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on file 1.

BACKUP DATABASE successfully processed 125209 pages in 5.974 seconds (163.742 MB/sec).

SQL Backup process ended.

Figure 8-8: SQL Backup T-SQL script results.

We are now presented with two result sets. The first result set, shown in Figure
8-8, provides our detailed backup metrics, including database size, and the size and
compression rate of the resulting backup file. The second result set (not shown) gives us
the exit code from SQL Backup, an error code from SQL Server and a list of files used in
the command.

We can see from the first result set that the new backup file size is just under 7 MB, and
if we take a look in our directory we can confirm this. Compared to our first Red Gate
backup, we can see that this is a bit less than double the original file size, but we will take
a closer look at the numbers in just a second.

After these metrics, we see the number of pages processed. Referring back to Chapter 3
confirms that this is the same number of pages as for the equivalent native backup, which
is as expected. We also see that the backup took just 6 seconds to complete which, again,
is roughly double the figure for the first full backup. Figure 8-9 compares these metrics to
those obtained for native backups, and compressed native backups.

256

Chapter 8: Database Backup and Restore with SQL Backup Pro

Backup Operation Backup File

Size in MB (on

disk)

Backup Time

(seconds)

% Difference compared

to Native Full

(+ = bigger / faster)

Size Speed

Native Full 1000 41

Native Full with Compression 12.7 8.3 -98.7 +80.5

SQL Backup Full Compression Level 1 6.8 6.0 -99.3 +85.4

SQL Backup Full Compression Level 3 14.2 7.5 -98.6 +81.7

Figure 8-9: Comparing full backup operations for DatabaseForSQLBackups (1 GB).

All the results are broadly consistent with those we achieved for the first full backup.
It confirms that for this data, SQL Backup Compression Level 1 is the best-performing
backup, both in terms of backup time and backup file size.

Log Backups

In this section, we'll walk through the process of taking log backups of the example
DatabaseForSQLBackups database, again using either the SQL Backup GUI, or a SQL
Backup T-SQL script.

Preparing for log backups

At this point, the database is operating in SIMPLE recovery model, and we cannot take log
backups. In order to start taking log backups, and prevent the log file from being auto-
truncated from this point on, we need to switch the recovery model of the database to
FULL, and then take another full backup, as shown in Listing 8-5.

257

Chapter 8: Database Backup and Restore with SQL Backup Pro

USE master
GO
ALTER DATABASE [DatabaseForSQLBackups] SET RECOVERY FULL
GO

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, THREADCOUNT = 2, COMPRESSION = 1"'
GO

Listing 8-5: Switching DatabaseForSQLBackups to FULL recovery and taking a full backup.

The database is now operating in FULL recovery and this backup file, DatabaseFor
SQLBackups_Full_BASE.sqb, will be the one to restore, prior to restoring any
subsequent log backups.

Finally, let's perform a third, much smaller, data load, adding ten new rows to each
message table, as shown in Listing 8-6.

USE [DatabaseForSQLBackups]
GO
INSERT INTO dbo.MessageTable1
VALUES ('1st set of short messages for MessageTable1', GETDATE())
GO 50000

-- this is just to help with our point-in-time restore (Chapter 8)
PRINT GETDATE()
GO

258

Chapter 8: Database Backup and Restore with SQL Backup Pro

--Dec 3 2011 1:33PM

INSERT INTO dbo.MessageTable2
VALUES ('1st set of short messages for MessageTable2', GETDATE())
GO 50000

Listing 8-6: Loading new messages into our message tables.

SQL Backup Pro log backups

In this section, rather than perform two separate backups, one via the GUI and one via a
SQL Backup script, we're just going to do one transaction log backup and let you decide
whether you want to perform it via the GUI or the script.

If you prefer the GUI approach, open up SQL Backup and start another a backup
operation for the DatabaseForSQLBackups database.

On Step 2 of the Wizard, select Transaction Log as the Backup type. You'll see that the
option Remove inactive entries from transaction log is auto-checked. This means that
the transaction log can be truncated upon backup, making the space in the log available
for future entries. This is the behavior we want here, so leave it checked. However, if we
were to uncheck it, we could take a log backup that leaves the transactions in the file
(similar to a NO_TRUNCATE native backup or a copy-only log backup in that it won't affect
future backups).

The Databases to back up section may list several databases that are grayed out; these
will be the ones that are ineligible for transaction log backups, usually because they are
operating in SIMPLE recovery model, rather than FULL or BULK LOGGED. Checking the
Filter list… button at the bottom will limit the list to only the eligible databases. Make
sure that only the DatabaseForSQLBackups database is selected, then click Next.

259

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-10: Selecting the type of backup and the target database.

On Step 3, we set the name and location for our log backup file. Again, adhering to the
convention used throughout the book, we'll place the backup file in the C:\SQLBackups\
Chapter8\ folder and call it DatabaseForSQLBackups_Log_1.sqb.

Step 4 of the wizard is where we will configure the compression, optimization and
resiliency options of our transaction log backup. The Compression Analyzer only tests
full backups and all transaction logs are pretty much the same in terms of compressibility.
We'll choose Compression Level 1, again, but since our transaction log backup will, in
this case, process only a small amount of data, we could select maximum compression
(Level 4) without affecting the processing time significantly.

We're not going to change any of the remaining options on this screen, and we have
discussed them all already, so go ahead and click on Next. If everything looks as expected
on the Summary screen, click on Finish to start the backup. If all goes well, within a
few seconds the appearance of two green checkmarks will signal that all pieces of the
operation have been completed, and some backup metrics will be displayed.

If you prefer the script-based approach, Listing 8-7 shows the SQL Backup T-SQL script
that does directly what our SQL Backup GUI did under the covers.

260

Chapter 8: Database Backup and Restore with SQL Backup Pro

USE [master]
GO

EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_1.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10,
COMPRESSION = 1, THREADCOUNT = 2"'

Listing 8-7: A transction log backup, using SQL Backup T-SQL.

Whichever way you decide to execute the log backup, you should see backup metrics
similar to those shown in Figure 8-11.

Backing up DatabaseForSQLBackups (transaction log) to:

 C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_1.sqb

Backup data size : 50.625 MB

Compressed data size: 7.020 MB

Compression rate : 86.13%

Processed 6261 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log'

on file 1.

BACKUP LOG successfully processed 6261 pages in 0.662 seconds (73.877 MB/sec).

SQL Backup process ended.

Figure 8-11: Backup metrics for transaction log backup on DatabaseForSQLBackups.

The backup metrics report a compressed backup size of 7 MB, which we can verify
by checking the actual size of the file in the C:\SQLBackups\Chapter8\ folder, and a
processing time of about 0.7 seconds. Once again, Figure 8-12 compares these metrics to
those obtained for native backups, compressed native backups and for SQL Backup with a
higher compression level.

261

Chapter 8: Database Backup and Restore with SQL Backup Pro

Backup Operation Backup File Size

in MB (on disk)

Backup Time

(seconds)

% Difference compared

to Native

(+ = bigger / faster)

Size Speed

Native Log 50.2 0.87

Native Log with Compression 5.6 0.89 -88.8 -2.3

SQL Backup Log Compression Level 1 6.9 0.66 -86.3 +24

SQL Backup Log Compression Level 3 4.5 1.26 -91 -44.8

Figure 8-12: Comparing log backup operations for DatabaseForSQLBackups.

In all cases, there is roughly a 90% saving in disk space for compressed backups, over
the native log backup. In terms of backup performance, native log backups, native
compressed log backups, and SQL Backup Compression Level 1 all run in sub-second
times, so it's hard to draw too many conclusions except to say that for smaller log files the
time savings are less significant than for full backups, as would be expected. SQL Backup
Compression Level 3 does offer the smallest backup file footprint, but the trade-off is
backup performance that is significantly slower than for native log backups.

Differential Backups

Finally, let's take a very quick look at how to perform a differential database backup using
SQL Backup. For full details on what differential backups are, and when they can be
useful, please refer back to Chapter 7.

First, simply adapt and rerun Listing 8-6 to insert a load of 100,000 rows into each of the
message tables (also, adapt the message text accordingly).

262

Chapter 8: Database Backup and Restore with SQL Backup Pro

Then, if you prefer the GUI approach, jump-start SQL Backup and work through in the
exactly the same way as described for the full backup. The only differences will be:

•	 at Step 2, choose Differential as the backup type

•	 at Step 3, call the backup file DatabaseForSQLBackups_Diff_1.sqb and locate it in
the C:\SQLBackups\Chapter8 folder

•	 at Step 4, choose Compression Level 1.

If you prefer to run a script, the equivalent SQL Backup script is shown in Listing 8-8.

USE [master]
GO
EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Diff_1.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10,
COMPRESSION = 1, THREADCOUNT = 2, DIFFERENTIAL"'

Listing 8-8: SQL Backup differential T-SQL backup code.

Again, there is little new here; the command is more or less identical to the one for
full backups, with the addition of the DIFFERENTIAL keyword to the WITH clause
which instructs SQL Server to only backup any data changed since the last full backup
was taken.

Backing up DatabaseForSQLBackups (differential database) to:

 C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Diff_1.sqb

Backup data size : 269.063 MB

Compressed data size: 2.575 MB

Compression rate : 99.04%

Processed 33752 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on file 1.

Processed 2 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on file 1.

BACKUP DATABASE WITH DIFFERENTIAL successfully processed 33754 pages in 1.695 seconds (155.573 MB/sec).

SQL Backup process ended.

Figure 8-13: S QL Backup differential metrics (Compression Level 1).

263

Chapter 8: Database Backup and Restore with SQL Backup Pro

Let's do a final metrics comparison for a range of differential backups.

Backup Operation Backup File Size

in MB (on disk)

Backup Time

(seconds)

% Difference compared

to Native

(+ = bigger / faster)

Size Speed

Native Log 270.4 4.4

Native Log with Compression 4.2 2.4 -98.4 +45.5

SQL Backup Log Compression Level 1 2.6 1.7 -99.0 +61.4

SQL Backup Log Compression Level 3 4.7 2.7 -98.3 +38.6

Figure 8-14: Comparing differential backup operations for DatabaseForSQLBackups.

Once again, the space and time savings from compressed backup are readily apparent,
with SQL Backup Compression Level 1 emerging as the most efficient on both counts, in
these tests.

Building a reusable and schedulable backup
script

One of the objectives of this book is to provide the reader with a jumping-off point for
their SQL Server backup strategy. We'll discuss how to create a SQL Backup script that
can be used in a SQL Agent job to take scheduled backups of databases, and allow the
DBA to:

•	 take a backup of selected databases on a SQL Server instance, including relevant
system databases

264

Chapter 8: Database Backup and Restore with SQL Backup Pro

•	 configure the type of backup required (full, differential, or log)

•	 store the backup files using the default naming convention set up in
Red Gate SQL Backup Pro

•	 capture a report of any error or warning codes during the backup operation.

Take a look at the script in Listing 8-9, and then we'll walk through all the major sections.

USE [master]
GO

DECLARE @BackupFileLocation NVARCHAR(200) ,
 @EmailOnFailure NVARCHAR(200) ,
 @SQLBackupCommand NVARCHAR(2000) ,
 @DatabaseList NVARCHAR(2000) ,
 @ExitCode INT ,
 @ErrorCode INT ,
 @BackupType NVARCHAR(4)

-- Conifgure Options Here
SET @BackupFileLocation = N'\\NetworkServer\ShareName\'
 + @@SERVERNAME + '\'
SET @EmailOnFailure = N'DBATeam@MyCompany.com'
SET @DatabaseList = N'DatabaseForDiffBackups_SB'
SET @BackupType = N'DIFF'

-- Do Not Modify Below
SET @SQLBackupCommand = CASE @BackupType
 WHEN N'FULL'
 THEN N'-SQL "BACKUP DATABASES [' + @DatabaseList
 + N'] TO DISK = ''' + @BackupFileLocation
 + N'<AUTO>.sqb'' WITH MAILTO_ONERRORONLY = '''
 + @EmailOnFailure
 + N''', DISKRETRYINTERVAL = 30,
 DISKRETRYCOUNT = 10, COMPRESSION = 3,
 THREADCOUNT = 2"'
 WHEN N'LOG'
 THEN N'-SQL "BACKUP LOGS [' + @DatabaseList
 + N'] TO DISK = ''' + @BackupFileLocation
 + N'<AUTO>.sqb'' WITH MAILTO_ONERRORONLY = '''
 + @EmailOnFailure

265

Chapter 8: Database Backup and Restore with SQL Backup Pro

 + N''', DISKRETRYINTERVAL = 30,
 DISKRETRYCOUNT = 10, COMPRESSION = 3,
 THREADCOUNT = 2"'
 WHEN N'DIFF'
 THEN N'-SQL "BACKUP DATABASES [' + @DatabaseList
 + N'] TO DISK = ''' + @BackupFileLocation
 + N'<AUTO>.sqb'' WITH MAILTO_ONERRORONLY = '''
 + @EmailOnFailure
 + N''', DISKRETRYINTERVAL = 30,
 DISKRETRYCOUNT = 10, COMPRESSION = 3,
 THREADCOUNT = 2, DIFFERENTIAL"'
 END

EXECUTE master..sqlbackup @SQLBackupCommand, @ExitCode OUTPUT,
 @ErrorCode OUTPUT

-- If our backup operations return any errors or warnings execute below
IF (@ExitCode >= 500
 OR @ErrorCode > 0
)
 BEGIN
 -- Raise an error to fail your backup job
 RAISERROR(N'Backup operation error', 10,1)
 END

Listing 8-9: Reusable database backup code.

The script starts by declaring the required variables, and the sets the values of the four
confugurable variables, as below.

•	 @BackupFileLocation – The backup path for our database backup files. This
should be pointed at the centralized storage location. Also notice that the
servername variable is used as a subdirectory. It is common practice to separate
backup files by server, so this will use each server name as a subdirectory to store that
set of backup files.

•	 @EmailOnFailure – We always want to know when backups fail. In some environ-
ments, manually checking all database backup operations is just not feasible. Having
alerts sent to the DBA team on failure is a good measure to have in place. Be sure to

266

Chapter 8: Database Backup and Restore with SQL Backup Pro

test the email setting on each server occasionally, to guarantee that any failure alerts
are getting through. Details of how to configure the email settings are in Appendix A.

•	 @DatabaseList – A comma delimited text list that contains the names of any
databases that we want to back up. SQL Backup allows you to back up any number
of databases at one time with a single command. When backing up every database
on a server, we can simply omit this parameter from the script and, in the BACKUP
command, replace [' + @DatabaseList + '] with [*].

•	 @BackupType – Used to determine what type of database backup will be taken. In this
script there are three choices for this variable to take; full, log, and differential.

In the next section of the script, we build the BACKUP commands, using the variables
for which we have just configured values. We store the BACKUP command in the
@SQLBackupCommand variable, until we are ready to execute it. Notice that a simple
CASE statement is used to determine the type of backup operation to be performed,
according to the value stored in @BackupType. We don't need to modify anything in
this section of the script, unless making changes to the other settings being used in the
BACKUP command, such as the compression level. Of course, we could also turn those
into configurable parameters.

The next section of the script is where we execute our BACKUP command, storing the
ExitCode and ErrorCode output parameters in our defined variables, where:

•	 ExitCode is the output value from the SQL Backup extended stored procedure. Any
number above 0 indicates some sort of issue with the backup execution.

•	 ExitCode >= 500 indicates a serious problem with at least one of the backup files
and will need to investigate further.

•	 ExitCode < 500 is just a warning code. The backup operation itself may have
run successfully, but there was some issue that was not critical enough to cause the
entire operation to fail.

267

Chapter 8: Database Backup and Restore with SQL Backup Pro

•	 ErrorCode is the SQL Server return value. A value above 0 is returned only when SQL
Server itself runs into an issue. Having an error code returned from SQL Server almost
always guarantees a critical error for the entire operation.

We test the value of each of these codes and, if a serious problem has occurred, we raise
an error to SQL Server so that, if this were run in a SQL Server Agent job, it would
guarantee to fail and alert someone, if the job were configured to do so. We do have it
set up to send email from SQL Backup on a failure, but also having the SQL Agent job
alert on failure is a nice safeguard to have in place. What we do in this section is totally
customizable and dictated by our needs.

Restoring Database Backups with SQL
Backup Pro

Having performed our range of full, log and differential backups, using SQL Backup, it's
time to demonstrate several useful restore examples, namely:

•	 restoring to the end of a given transaction log

•	 a complete restore, including restores of the tail log backup

•	 a restore to a particular point in time within a transaction log file.

Preparing for restore

In order to prepare for our restore operations, we're going to add a few new rows to
MessageTable1, perform a log backup, and then add a few new rows to Messag-
eTable2, as shown in Listing 8-10.

268

Chapter 8: Database Backup and Restore with SQL Backup Pro

USE [DatabaseForSQLBackups]
GO
INSERT INTO dbo.MessageTable1
VALUES ('What is the meaning of life, the Universe and everything?',
 GETDATE())
GO 21

USE [master]
GO

EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_2.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10,
COMPRESSION = 1, INIT, THREADCOUNT = 2"'

USE [DatabaseForSQLBackups]
GO

INSERT INTO dbo.MessageTable2
VALUES ('What is the meaning of life, the Universe and everything?',
 GETDATE())
GO 21

Listing 8-10: Add 21 rows, take a log backup, add 21 rows.

So, to recap, we have 2 million rows captured in the base full backup. We switched the
database from SIMPLE to FULL recovery model, added 100,000 rows to our tables, then
did a log backup, so the TLog1 backup captures the details of inserting those 100,000
rows. We then added another 200,000 rows and took a differential backup. Differentials
capture all the data added since the last full backup, so 300,000 rows in this case. We then
added 21 rows and took a second log backup, so the TLog2 backup will capture details
of 200,021 inserted rows (i.e. all the changes since the last log backup). Finally, we added
another 21 rows which are not currently captured in any backup. The backup scheme
seems quite hard to swallow when written out like that, so hopefully Figure 8-15 will
make it easier to digest.

269

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-15: Current backup scheme.

SQL Backup Pro GUI restore to the end of a log
backup

First, let's see how easy it is to perform a one-off restore via SQL Backup, using the GUI,
especially if all the required files are still stored locally, in their original location. We'll
then look at the process again, step by step, using scripts. In this first example, we're going
to restore the database to the state in which it existed at the time we took the second
transaction log backup (DatabaseForSQLBackups_Log_2.sqb).

Start up the SQL Backup Restore wizard and, at Step 1, select the required transaction log
backup, as shown in Figure 8-16.

In this case, all the required backup files are still stored locally, so they are available from
the backup history. As such, we only have to select the last file to be restored and, when
we click Next, SQL Backup will calculate which other files it needs to restore first, and
will load them automatically.

270

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-16: Restore the latest transaction log file.

However, if the restore is taking place several days or weeks after the backup, then the
files will likely have been moved to a new location, and we'll need to manually locate each
of the required files for the restore process before SQL Backup will let us proceed.

To do so, select Browse for backup files to restore from the top drop-down box, and then
click the Add Files… button to locate each of the required files, in turn. We can select
multiple files in the same directory by holding down the Ctrl button on the keyboard.
We can also add a network location into this menu by using the Add Server button, or by
pasting in a full network path in the file name box.

Whether SQL Backup locates the files for us, or we do it manually, we should end up with
a screen that looks similar to that shown in Figure 8-17.

271

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-17: Identifying the required files for the restore process.

In this example, we need our base full backup and our differential backup files. Note
that the availability of the differential backup means we can bypass our first transaction
log backup (DatabaseForSQLBackups_Log_1.sqb). However, if for some reason the
differential backup was unavailable, then we could still complete the restore process using
the full backup followed by both the log files.

We're going to overwrite the existing DatabaseForSQLBackups database and leave
the data and log files in their original C:\SQLData directory. Note that the handy File
locations drop-down is an innovation in SQL Backup 6.5; if using an older version, you'll
need to manually fill in the paths using the ellipsis (…) buttons.

272

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-18: Overwrite the existing database.

Click Next and, on the following screen, SQL Backup warns us that we've not performed
a tail log backup and gives us the option to do so, before proceeding. We do not need to
restore the tail of the log as part of this restore process as we're deliberately only restoring
to the end of our second log backup file. However, remember that the details of our
INSERTs into MessageTable2, in Listing 8-10, are not currently backed up, and we don't
want to lose details of these transactions, so we're going to go ahead and perform this tail
log backup.

Accepting this option catapults us into a log backup operation and we must designate
the name and location for the tail log backup, and follow through the process, as was
described earlier in the chapter.

273

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-19: Backing up the tail of the log.

Once complete, we should receive a message saying that the backup of the tail of the
transaction log was successful and to click Next to proceed with the restore. Having done
so, we re-enter Step 3 of our original restore process, offering a number of database
restore options.

Figure 8-20: Database restore options.

274

Chapter 8: Database Backup and Restore with SQL Backup Pro

The first section of the screen defines the Recovery completion state, and we're going to
stick with the first option, Operational (RESTORE WITH RECOVERY). This will leave our
database in a normal, usable state once the restore process is completed. The other two
options allow us to leave the database in a restoring state, expecting more backup files, or
to restore a database in Standby mode. We'll cover each of these later in the chapter.

The Transaction log section of the screen is used when performing a restore to a specific
point in time within a transaction log backup file, and will also be covered later.

The final section allows us to configure a few special operations, after the restore is
complete. The first option will test the database for orphaned users. An orphaned user
is created when a database login has permissions set internally to a database, but that
user doesn't have a matching login, either as a SQL login or an Active Directory login.
Orphaned users often occur when moving a database between environments or servers,
and are especially problematic when moving databases between operationally different
platforms, such as between development and production, as we discussed in Chapter 3. Be
sure to take care of these orphaned users after each restore, by either matching the user
with a correct SQL Server login or by removing that user's permission from the database.

The final option is used to send an email to a person or a group of people, when the
operation has completed and can be configured such that a mail is sent regardless of
outcome, or when an error or warning occurs, or on error only. This is a valuable feature
for any DBA. Just as we wrote email notification into our automated backup scripts, so we
also need to know if a restore operation fails for some reason, or reports a warning. This
may be grayed out unless the mail server options have been correctly configured. Refer to
Appendix A if you want to try out this feature here.

Another nice use case for these notifications is when performing time-sensitive restores
on VLDBs. We may not want to monitor the restore manually as it may run long into the
night. Instead, we can use this feature so that the DBA, and the departments that need
the database immediately, get a notification when the restore operation has completed.

275

Chapter 8: Database Backup and Restore with SQL Backup Pro

Click Next to reach the, by now familiar, Summary screen. Skip to the Script tab to take
a sneak preview of the script that SQL Backup has generated for this operation. You'll see
that it's a three-step restore process, restoring first the base full backup, then the differ-
ential backup, and finally the second log backup (you'll see a similar script again in the
next section and we'll go over the full details there).

EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups] FROM DISK =

''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE.sqb'' WITH NORECOVERY, REPLACE"'

EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups] FROM DISK =

''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Diff_1.sqb'' WITH NORECOVERY"'

EXECUTE master..sqlbackup '-SQL "RESTORE LOG [DatabaseForSQLBackups] FROM DISK =

''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_2.sqb'' WITH RECOVERY, ORPHAN_CHECK"'

Listing 8-11: The SQL Backup script generated by the SQL Backup Wizard.

As a side note, I'm a little surprised to see the REPLACE option in the auto-generated
script; it's not necessary as we did perform a tail log backup.

If everything is as it should be, click Finish and the restore process will start. All steps
should show green check marks to let us know that everything finished successfully and
some metrics for the restore process should be displayed, a truncated view of which is
given in Figure 8-21.

…<snip>…

Restoring DatabaseForSQLBackups (database) from:

C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE.sqb

Processed 125208 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on

file 1.

Processed 3 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on

file 1.

RESTORE DATABASE successfully processed 125211 pages in 16.715 seconds (58.522 MB/sec).

SQL Backup process ended.

…<snip>…

276

Chapter 8: Database Backup and Restore with SQL Backup Pro

Restoring DatabaseForSQLBackups (database) from:

C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Diff_1.sqb

Processed 33744 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on

file 1.

Processed 2 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on

file 1.

RESTORE DATABASE successfully processed 33746 pages in 6.437 seconds (40.956 MB/sec).

SQL Backup process ended.

…<snip>…

Restoring DatabaseForSQLBackups (transaction logs) from:

C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_2.sqb

Processed 0 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on file

1.

Processed 12504 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log'

on file 1.

RESTORE LOG successfully processed 12504 pages in 1.798 seconds (54.330 MB/sec).

No orphaned users detected.

SQL Backup process ended.

…<snip>…

Figure 8-21: Metrics for SQL Backup restore to end of the second log backup.

We won't dwell on the metrics here as we'll save that for a later section, where we
compare the SQL Backup restore performance with native restores.

Being pessimistic DBAs, we won't believe the protestations of success from the output of
the restore process, until we see with our own eyes that the data is as it should be.

USE DatabaseForSQLBackups
GO
SELECT MessageData, COUNT(MessageData)
FROM dbo.MessageTable1
GROUP BY MessageData

SELECT MessageData, COUNT(MessageData)
FROM dbo.MessageTable2
GROUP BY MessageData

Listing 8-12: Verifying our data.

277

Chapter 8: Database Backup and Restore with SQL Backup Pro

The result confirms that all the data is there from our full, differential, and second log
backups, but that the 21 rows we inserted into MessageTable2 are currently missing.

Figure 8-22: Results of data verification.

Never fear; since we had the foresight to take a tail log backup, we can get those
missing 21 rows back.

SQL Backup T-SQL complete restore

We're now going to walk through the restore process again, but this time we'll use a SQL
Backup script, as shown in Listing 8-13, and we'll perform a complete restore, including
the tail log backup.

USE master
go
--step 1: Restore the base full backup
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE.sqb'' WITH
NORECOVERY, DISCONNECT_EXISTING, REPLACE"'

278

Chapter 8: Database Backup and Restore with SQL Backup Pro

--step 2: Restore the diff backup
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Diff_1.sqb'' WITH
NORECOVERY"'

--step 3: Restore the second log backup
EXECUTE master..sqlbackup '-SQL "RESTORE LOG [DatabaseForSQLBackups]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_2.sqb'' WITH
NORECOVERY"'

--step 4: Restore the tail log backup and recover the database
EXECUTE master..sqlbackup '-SQL "RESTORE LOG [DatabaseForSQLBackups]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_Tail.sqb'' WITH
RECOVERY, ORPHAN_CHECK"'

Listing 8-13: A complete restore operation with SQL Backup T-SQL.

There shouldn't be too much here that is new, but let's go over some of the WITH clause
options.

•	 DISCONNECT_EXISTING – Used in Step 1, this kills any current connections to the
database. Without this option, we would need to use functionality similar to that
which we built into our native restore script in Chapter 3 (see Listing 4-2).

•	 REPLACE – This is required here, since we are now working with a new, freshly-
restored copy of the database and we aren't performing a tail log backup as the first
step of this restore operation. SQL Server will use the logical file names and paths that
are stored in the backup file. Remember that this only works if the paths in the backup
file exist on the server to which you are restoring.

•	 NORECOVERY – Used in Steps 1–3, this tells SQL Server to leave the database in a
restoring state and to expect more backup files to be applied.

•	 ORPHAN_CHECK – Used in Step 4, this is the orphaned user check on the database,
after the restore has completed, as described in the previous section.

•	 RECOVERY – Used in Step 4, this instructs SQL Server to recover the database to a
normal usable state when the restore is complete.

279

Chapter 8: Database Backup and Restore with SQL Backup Pro

Execute the script, then, while it is running, we can take a quick look at the SQL Backup
monitoring stored procedure, sqbstatus, a feature that lets us monitor any SQL Backup
restore operation, while it is in progress. Quickly open a second tab in SSMS and execute
Listing 8-14.

EXEC master..sqbstatus
GO

Listing 8-14: Red Gate SQL Backup Pro monitoring stored procedure.

The stored procedure returns four columns: the name of the database being restored; the
identity of the user running the restore; how many bytes of data have been processed;
and the number of compressed bytes that have been produced in the backup file. It can
be useful to check this output during a long-running restore the first time you perform
it, to gauge compression rates, or to get an estimate of completion time for restores and
backups on older versions of SQL Server, where Dynamic Management Views are not
available to tell you that information.

Once the restore completes, you'll see restore metrics similar to those shown in Figure
8-21, but with an additional section for the tail log restore. If you rerun Listing 8-12 to
verify your data, you should find that the "missing" 21 rows in MessageTable2 are back!

SQL Backup point-in-time restore to standby

In our final restore example, we're going to restore a standby copy of the DatabaseFor-
SQLBackups database to a specific point in time in order to attempt to retrieve some
accidentally deleted data.

Standby servers are commonly used as a High Availability solution; we have a secondary,
or standby, server that can be brought online quickly in the event of a failure of the
primary server. We can restore a database to the standby server, and then successively

280

Chapter 8: Database Backup and Restore with SQL Backup Pro

ship over and apply transaction logs, using the WITH STANDBY option, to roll forward the
standby database and keep it closely in sync with the primary. In between log restores, the
standby database remains accessible but in a read-only state. This makes it a good choice
for near real-time reporting solutions where some degree of time lag in the reporting data
is acceptable.

However, this option is occasionally useful when in the unfortunate position of needing
to roll forward through a set of transaction logs to locate exactly where a data mishap
occurred. It's a laborious process (roll forward a bit, query the standby database, roll
forward a bit further, query again, and so on) but, in the absence of any other means to
restore a particular object or set of data, such as a tool that supports object-level restore
(more on this a little later) it could be a necessity.

In order to simplify our point-in-time restore, let's run another full backup, as shown in
Listing 8-15.

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE2.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, THREADCOUNT = 2, COMPRESSION =
1"'
GO

Listing 8-15: A new base full backup of DatabaseForSQLBackups.

We'll then add some more data to each of our message tables, before simulating a disaster,
in the form of someone accidentally dropping MessageTable2.

USE [DatabaseForSQLBackups]
GO
INSERT INTO dbo.MessageTable1
VALUES ('MessageTable1, I think the answer might be 41. No, wait...',
 GETDATE())
GO 41

281

Chapter 8: Database Backup and Restore with SQL Backup Pro

/* Find date of final INSERT from previous statement
 This is to help us with the RESTORE process

USE DatabaseForSQLBackups
GO
SELECT TOP(1) MessageData,MessageDate
FROM dbo.MessageTable1
WHERE MessageData LIKE 'MessageTable1%'
ORDER BY MessageDate DESC

-- Output: 2011-12-06 10:41:36.540

*/
INSERT INTO dbo.MessageTable2
VALUES ('MessageTable2, the true answer is 42!', GETDATE())
GO 42
-- final insert time: 2011-12-06 10:42:45.897

--Disaster strikes!
DROP TABLE dbo.MessageTable2
GO

Listing 8-16: Disaster strikes MessageTable2.

In this simple example, we have the luxury of knowing exactly when each event occurred.
However, imagine this is a busy production database, and we only find out about the
accidental table loss many hours later. Listing 8-17 simulates one of our regular, scheduled
log backups, which runs after the data loss has occurred.

USE [master]
GO
EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_3.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10,
COMPRESSION = 1, THREADCOUNT = 2"'

Listing 8-17: A post-disaster log backup.

282

Chapter 8: Database Backup and Restore with SQL Backup Pro

Restore to standby using the SQL Backup Pro GUI

Having contrived the data loss, we can now start the restore process. Right-click on
DatabaseForSQLBackups, pick the latest transaction log backup (DatabaseForSQL-
Backups_Log_3.sqb) and click Next. Again, since the files are still in their original
location, SQL Backup will locate any other files it needs from further back down the
chain, in this case, just the latest full backup. If you've moved the full backup file, locate it
manually, as described before.

Figure 8-23: Identifying the backup files for our PIT restore.

Our intention here, as discussed, is to restore a copy of the DatabaseForSQLBackups
database in Standby mode. This will give us read access to the standby copy as we attempt
to roll forward to just before the point where we lost Messagetable2. So, this time, we'll
restore to a new database, called DatabaseForSQLBackups_Standby, as shown in
Figure 8-24.

283

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-24: Restoring to a new, standby copy of the DatabaseForSQLBackups database.

At Step 3, we're going to choose a new option for the completion state of our restored
database, which is Read-only (RESTORE WITH STANDBY). In doing so, we must create an
undo file for the standby database. As we subsequently apply transaction log backups to
our standby database, to roll forward in time, SQL Server needs to be able to roll back the
effects of any transactions that were uncommitted at the point in time to which we are
restoring. However, the effects of these uncommitted transactions must be preserved.
As we roll further forward in time, SQL Server may need to reapply the effects of a trans-
action it previously rolled back. If SQL Server doesn't keep a record of that activity, we
wouldn't be able to keep our database relationally sound. All of this information regarding
the rolled back transactions is managed through the undo file.

We'll place the undo file in our usual SQLBackups directory. In the central portion of the
screen, we have the option to restore the transaction log to a specific point in time; we're
going to roll forward in stages, first to a point as close as we can after 10:41:36.540, which
should be the time we completed the batch of 41 INSERTs into MessageTable1. Again,
remember that in a real restore scenario, you will probably not know which statements
were run when.

284

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-25: Restoring WITH STANDBY to a specific point in a transaction log.

Click Next to reach the Summary screen, where we can also take a quick preview of
the script that's been generated (we'll discuss this in more detail shortly). Click Finish
to execute the restore operation and it should complete quickly and successfully, with
the usual metrics output. Refresh the SSMS Object Explorer to reveal a database called
DatabaseForSQLBackups_Standby, which is designated as being in a Standby/
Read-Only state. We can query it to see if we restored to the point we intended.

USE DatabaseForSQLBackups_Standby
GO
SELECT MessageData ,
 COUNT(MessageData)
FROM dbo.MessageTable1
GROUP BY MessageData

285

Chapter 8: Database Backup and Restore with SQL Backup Pro

SELECT MessageData ,
 COUNT(MessageData)
FROM dbo.MessageTable2
GROUP BY MessageData
GO

Listing 8-18: Querying the standby database.

As we hoped, we've got both tables back, and we've restored the 41 rows in Messag-
eTable1, but not the 42 in MessageTable2.

Figure 8-26: Verifying our data, Part 1.

To get these 42 rows back, so the table is back to the state it was when dropped, we'll need
to roll forward a little further, but stop just before the DROP TABLE command was issued.
Start another restore operation on DatabaseForSQLBackups, and proceed as before
to Step 2. This time, we want to overwrite the current DatabaseForSQLBackups_
Standby database, so select it from the drop-down box.

286

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-27: Overwriting the current standby database.

At Step 3, we'll specify another standby restore, using the same undo file, and this time
we'll roll forward to just after we completed the load of 42 rows into Messagetable2,
but just before that table got dropped (i.e. as close as we can to 10:42:45.897).

287

Chapter 8: Database Backup and Restore with SQL Backup Pro

Figure 8-28: Rolling further forward.

Once again, the operation should complete successfully, with metrics similar to those
shown in Figure 8-29.

Restoring DatabaseForSQLBackups_Standby (database) from:

C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE2.sqb

Processed 125208 pages for database 'DatabaseForSQLBackups_Standby', file

'DatabaseForSQLBackups' on file 1.

Processed 3 pages for database 'DatabaseForSQLBackups_Standby', file 'DatabaseForSQLBackups_

log' on file 1.

RESTORE DATABASE successfully processed 125211 pages in 16.512 seconds (59.241 MB/sec).

SQL Backup process ended.

Restoring DatabaseForSQLBackups_Standby (transaction logs) from:

C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_3.sqb

Processed 0 pages for database 'DatabaseForSQLBackups_Standby', file 'DatabaseForSQLBackups'

on file 1.

Processed 244 pages for database 'DatabaseForSQLBackups_Standby', file 'DatabaseForSQLBackups_

log' on file 1.

RESTORE LOG successfully processed 244 pages in 0.032 seconds (59.555 MB/sec).

No orphaned users detected.

SQL Backup process ended.

Figure 8-29: Output metrics for the PIT restore.

288

Chapter 8: Database Backup and Restore with SQL Backup Pro

Rerun our data verification query, from Listing 8-18 and you should see that we now have
the 42 rows restored to MessageTable2.

Restore to standby using a SQL Backup script

Before we move on, it's worth taking a more detailed look at the SQL Backup T-SQL
script that we'd use to perform the same point-in-time restore operation.

EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups_Standby]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE2.sqb''
WITH NORECOVERY, MOVE ''DatabaseForSQLBackups''
TO ''C:\SQLData\DatabaseForSQLBackups_Standby.mdf'',
MOVE ''DatabaseForSQLBackups_log'' TO
''C:\SQLData\DatabaseForSQLBackups_Standby_log.ldf''"'

EXECUTE master..sqlbackup '-SQL "RESTORE LOG [DatabaseForSQLBackups_Standby]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Log_3.sqb''
WITH STANDBY = ''C:\SQLBackups\Undo_DatabaseForSQLBackups_Standby.dat'',
STOPAT = ''2011-12-06T10:42:46'', ORPHAN_CHECK"'

Listing 8-19: Restore to standby SQL Backup script.

The first command restores the base backup file to a new database, using the MOVE
argument to copy the existing data and log files to the newly designated files. We
specify NORECOVERY so that the database remains in a restoring state, to receive
further backup files.

The second command applies the log backup file to this new database. Notice the use of
the WITH STANDBY clause, which indicates the restored state of the new database, and
associates it with the correct undo file. Also, we use the STOPAT clause, with which you
should be familiar from Chapter 4, to specify the exact point in time to which we wish
to roll forward. Any transactions that were uncommitted at the time will be rolled back
during the restore.

289

Chapter 8: Database Backup and Restore with SQL Backup Pro

This is the first of our restore operations that didn't end with the RECOVERY keyword.
The STANDBY is one of three ways (RECOVERY, NORECOVERY, STANDBY) to finalize a
restore, and one of the two ways to finalize a restore and leave the data in an accessible
state. It's important to know which finalization technique to use in which situations, and
to remember they don't all do the same thing.

Alternatives to restore with standby

In a real-world restore, our next step, which we have not yet tackled here, would be to
transfer the lost table back into the production database (DatabaseForSQLBackups).
This, however, is not always an easy thing to do. If we do have to bring back data this
way, we may run into referential integrity issues with data in related tables. If the data in
other tables contains references to the lost table, but the database doesn't have the proper
constraints in place, then we could have a bit of a mess to clean up when we import that
data back into the production database.

Also, one of the problems with this restore to standby approach is that you might also
find yourself in a position where you have a VLDB that would require a great deal of time
and space to restore just to get back one table, as in our example. In this type of situation,
if your VLDB wasn't designed with multiple data files and filegroups, you might be able
turn to an object-level restore solution. These tools will restore, from a database backup,
just a single table or other object without having to restore the entire database.

Restore metrics: native vs. SQL Backup Pro

In order to get some comparison between the performances of native restores versus
restores from compressed backups, via SQL Backup, we'll first simply gather metrics for
a SQL backup restore of our latest base backup of DatabaseForSQBackups (_Full_
BASE2.sqb), shown in Listing 8-20.

290

Chapter 8: Database Backup and Restore with SQL Backup Pro

USE master
go
--Restore the base full backup
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE2.sqb''
WITH RECOVERY, DISCONNECT_EXISTING, REPLACE"'

…
Restoring DatabaseForSQLBackups (database) from:
C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_BASE2.sqb
Processed 125208 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on file 1.

Processed 3 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on file 1.

RESTORE DATABASE successfully processed 125211 pages in 15.901 seconds (82.195 MB/sec).

Listing 8-20: Metrics for SQL restore of full database backup.

Then, we'll take a native, compressed full backup of the newly restored database, and then
a native restore from that backup.

USE [master]
GO
BACKUP DATABASE DatabaseForSQLBackups TO
DISK = N'C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_Native.bak'
WITH COMPRESSION, INIT, NAME = N'DatabaseForSQLBackups-Full Database Backup'
GO

RESTORE DATABASE [DatabaseForSQLBackups] FROM
DISK = N'C:\SQLBackups\Chapter8\DatabaseForSQLBackups_Full_Native.bak'
WITH FILE = 1, STATS = 25, REPLACE
GO

…
25 percent processed.
50 percent processed.
75 percent processed.

100 percent processed.

Processed 125208 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups' on file 1.

Processed 2 pages for database 'DatabaseForSQLBackups', file 'DatabaseForSQLBackups_log' on file 1.

RESTORE DATABASE successfully processed 125210 pages in 13.441 seconds (53.044 MB/sec).

Listing 8-21: Code and metrics for native restore of full database backup.

291

Chapter 8: Database Backup and Restore with SQL Backup Pro

As a final test, we can rerun Listing 8-21, but performing a native, non-compressed
backup, and then restoring from that. In my tests, the restore times for native compressed
and SQL Backup compressed backups were roughly comparable, with the native
compressed restores performing slightly faster. Native non-compressed restores were
somewhat slower, running in around 21 seconds in my tests.

Verifying Backups

As discussed in Chapter 2, the only truly reliable way of ensuring that your various backup
files really can be used to restore a database is to perform regular test restores. However,
there are a few other things you can do to minimize the risk that, for some reason, one of
your backups will be unusable.

SQL Backup backups, like native backups can, to some extent, be checked for validity
using both BACKUP...WITH CHECKSUM and RESTORE VERIFYONLY. If both options are
configured for the backup process (see Figure 8-5b) then SQL Backup will verify that the
backup is complete and readable and then recalculate the checksum on the data pages
contained in the backup file and compare it against the checksum values generated
during the backup. Listing 8-22 shows the script.

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''D:\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL.sqb''
WITH CHECKSUM, DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, THREADCOUNT = 2,
VERIFY"'

Listing 8-22: BACKUP…WITH CHECKSUM and RESTORE VERIFYONLY with SQL Backup.

Alternatively, we can run either of the validity checks separately. As discussed in Chapter
2, BACKUP…WITH CHECKSUM verifies only that each page of data written to the backup file
is error free in relation to how it was read from disk. It does not validate that the backup
data is valid, only that what was being written, was written correctly. It can cause a lot
of overhead and slow down backup operations significantly, so evaluate its use carefully,
based on available CPU capacity.

292

Chapter 8: Database Backup and Restore with SQL Backup Pro

Nevertheless, these validity checks do provide some degree of reassurance, without the
need to perform full test restores. Remember that we also need to be performing DBCC
CHECKDB routines on our databases at least weekly, to make sure they are in good health
and that our backups will be restorable.

There are two ways to do this: we can run DBCC CHECKDB before the backup, as a
T-SQL statement, in front of the extended stored procedure that calls SQL Backup
Pro or, with version 7 of the tool, we can also enable the integrity check via the
Schedule Restore Jobs… wizard, as shown in Figure 8-30.

Figure 8-30: Configuring DBCC CHECKDB options as part of a restore job.

Backup Optimization

We discussed many ways to optimize backup storage and scheduling back in Chapter
2, so here, we'll focus just on a few optimization features that are supported by SQL
Backup. The first is the ability to back up to multiple backup files on multiple devices.
This is one of the best ways to increase throughput in backup operations, since we can
write to several backup files simultaneously. This only applies when each disk is physi-
cally separate hardware; if we have one physical disk that is partitioned into two or more
logical drives, we will not see a performance increase since the backup data can only be
written to one of those logical drives at a time.

293

Chapter 8: Database Backup and Restore with SQL Backup Pro

Listing 8-23 shows the SQL Backup command to back up a database to multiple backup
files, on separate disks. The listing will also show how to restore from these multiple files,
which requires the addition of extra file locations.

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL_1.sqb'',
DISK = ''D\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL_2.sqb'',
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3"'

EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForSQLBackups]
FROM DISK = ''C:\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL_1.sqb'',
DISK = ''D:\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL_2.sqb'',
WITH RECOVERY"'

Listing 8-23: Backing up a database to multiple files with SQL Backup.

This is useful not only for backup throughput/performance; it is also a useful way to cut
down on the size of a single backup, for transfer to other systems. Nothing is more infuri-
ating than trying to copy a huge file to another system only to see it fail after 90% of the
copy is complete. With this technique, we can break down that large file and copy the
pieces separately.

Note that backup to multiple files is also supported in native T-SQL and for native
backups, as shown in Listing 8-24.

BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = 'C:\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL_Native_1.bak',
 DISK = 'C:\SQLBackups\Chapter8\DatabaseForSQLBackups_FULL_Native_2.bak'

Listing 8-24: Native backup to multiple files.

Having covered how to split backups to multiple locations, let's now see how to back up a
single file, but have it stored in multiple locations, as shown in Listing 8-25. This is useful
when we want to back up to a separate location, such as a network share, when taking the
original backup. This is only an integrated option when using the SQL Backup tool.

294

Chapter 8: Database Backup and Restore with SQL Backup Pro

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForSQLBackups]
TO DISK = ''C:\SQLBackups\Chatper8\DatabaseForSQLBackups_FULL.sqb''
WITH COMPRESSION = 3, COPYTO = ''\\NETWORKMACHINE\SHARENAME\'', THREADCOUNT = 2"'

Listing 8-25: Back up a database with a copy to a separate location.

This will cause the backup process to run a bit longer, since it has to back up the database
as well as copy it to another location. Just remember that network latency can be a major
time factor in the completion of the backups, when using this option.

Ultimately, to get the most performance out of a backup, we will need to tune each
backup routine to match the specific environment. This requires testing the disk
subsystem, the throughput of SQL Server, and making adjustments in the backup
process to get the best backup performance. There is a useful listing on the Red Gate
support site that offers some tips on how to do this using just a few extra parameters in
the SQL Backup stored procedure:
www.red-gate.com/supportcenter/content/SQL_Backup/help/6.5/
SBU_OptimizingBackup.

Summary

All of the same principles that we have discussed when using native SQL Server backup
procedures apply when using Red Gate SQL Backup Pro. We want to follow the same
best practices, and we can implement the same type of backup strategies if we are using
SQL Backup in our environment. Red Gate SQL Backup Pro is not a requirement for our
backup strategies, but it is a great tool that can save substantial amounts of time and disk
space. Always remember to use the right tool for the right job.

http://www.red-gate.com/supportcenter/content/SQL_Backup/help/6.5/SBU_OptimizingBackup
http://www.red-gate.com/supportcenter/content/SQL_Backup/help/6.5/SBU_OptimizingBackup

295

Chapter 9: File and Filegroup Backup
and Restore

So far in this book, all of the full and differential backups we've taken have been
database backups; in other words our full and differential backups have been capturing
the contents of all data files in all filegroups. However, it's also possible to perform these
types of backups on individual files or filegroups. Likewise, it's also possible in some
cases, and assuming you have a complete set of accompanying transaction log backups, to
restore just a subset of a database, such as an individual file or filegroup, rather than the
entire database.

I'll state upfront that, in my experience, it is relatively rare for a DBA to have too many
databases that are subject to either file backups or filed-based restores. Even databases
straying into the hundreds of gigabytes range, which may take a few hours to back up,
will be managed, generally, using the usual mix of full database backups, supplemented by
differential database backups (and, of course, log backups). Likewise, these databases will
be restored, as necessary, using the normal database restore techniques we've discussed in
previous chapters.

However, it's when we start managing databases that run into the terabyte range that we
start getting into trouble using these standard database backup and restore techniques,
since it may no longer be possible to either back up the database in the required time, or
restore the whole database within the limits of acceptable down-time. In such cases, file-
based backup and restore becomes a necessity, and in this chapter, we'll discuss:

•	 potential advantages of file-based backup and restore

•	 common file architectures to support file-based backup and restore

•	 performing full and differential file backups using native SSMS and T-SQL, as well as
SQL Backup

296

Chapter 9: File and Filegroup Backup and Restore

•	 performing several different types of file-based restore, namely:

•	 complete restores – restore right to the point of failure

•	 point-in-time restores – restore to a specific point in a transaction log backup using
the STOPAT parameter

•	 restoring just a single data file – recovering the database as a whole, by restoring
just a single "failed" secondary data file

•	 online piecemeal restore, with partial database recovery – bringing a database
back online quickly after a failure, by restoring just the primary data file, followed
later by the other data files. This operation requires SQL Server Enterprise
(or Developer) Edition.

Advantages of File Backup and Restore

In order to exploit the potential benefits of file-based backup and restore, we need to have
a database where the filegroup architecture is such that data is split down intelligently
across multiple filegroups. We'll discuss some ways to achieve this in the next section but,
assuming for now that this is the case, the benefits below can be gained.

•	 Easier VLDB backup administration – For very large databases (i.e. in the terabyte
range) it is often not possible to run a nightly database backup, simply due to time
constraints and the fact that such backups have a higher risk of failure because of the
very long processing times. In such cases, file backups become a necessity.

•	 Restoring a subset of the data files – Regardless of whether we take database or file
backups, it's possible in some cases to recover a database by restoring only a subset of
that database, say, a single filegroup (though it's also possible to restore just a single
page), rather than the whole database.

•	 Online piecemeal restores – In the Enterprise Edition of SQL Server 2005, and later,
we can make a database "partially available" by restoring only the PRIMARY filegroup
and bringing the database back online, then later restoring other secondary filegroups.

297

Chapter 9: File and Filegroup Backup and Restore

•	 Improved disk I/O performance – Achieved by separating different files and filegroups
onto separate disk drives. This assumes that the SAN, DAS, or local storage is set up to
take advantage of the files being on separate physical spindles, or SSDs, as opposed to
separate logical disks.

Piecemeal restores can be a massive advantage for any database, and may be a necessity
for VLDBs, where the time taken for a full database restore would fall outside the
down-time stipulated in the SLA.

In terms of disk I/O performance, it's possible to gain performance advantages by creating
multiple data files within a filegroup, and placing each file on a separate drive and, in
some case, by separating specific tables and indexes into a filegroup, again on a dedicated
drive. It's even possible to partition a single object across multiple filegroups (a topic
we won't delve into further in this book, but see http://msdn.microsoft.com/en-us/
library/ms162136.aspx for a general introduction).

In general, I would caution against going overboard with the idea of trying to optimize
disk I/O by manual placement of files and filegroups on different disk spindles, unless it is
a proven necessity from a performance or storage perspective. It's a complex process that
requires a lot of prior planning and ongoing maintenance, as data grows. Instead, I think
there is much to be said for keeping file architecture as simple as is appropriate for a given
database, and then letting your SAN or direct-attached RAID array take care of the disk
I/O optimization. If a specific database requires it, then by all means work with the SAN
administrators to optimize file and disk placement, but don't feel the need to do this on
every database in your environment. As always, it is best to test and see what overhead
this would place on the maintenance and administration of the server as opposed to the
potential benefits which it provides.

With that in mind, let's take a closer, albeit still relatively brief, look at possible filegroup
architectures.

http://msdn.microsoft.com/en-us/library/ms162136.aspx
http://msdn.microsoft.com/en-us/library/ms162136.aspx

298

Chapter 9: File and Filegroup Backup and Restore

Common Filegroup Architectures

A filegroup is simply a logical collection of one or more database files. So far in this book,
our database creation statements have been very straightforward, and similar in layout to
the one shown in Listing 9-1.

CREATE DATABASE [FileBackupsTest] ON PRIMARY
(NAME = N'FileBackupsTest'
 , FILENAME = N'C:\SQLData\FileBackupsTest.mdf'
) LOG ON
(NAME = N'FileBackupsTest_log'
 , FILENAME = N'C:\SQLData\FileBackupsTest_log.ldf'
)
GO

Listing 9-1: A simple database file architecture.

In other words, a single data file in the PRIMARY filegroup, plus a log file (remember that
log files are entirely separate from data files; log files are never members of a filegroup).
However, as discussed in Chapter 1, it's common to create more than one data file per
filegroup, as shown in Listing 9-2.

CREATE DATABASE [FileBackupsTest] ON PRIMARY
(NAME = N'FileBackupsTest',
 FILENAME = N'C:\SQLData\FileBackupsTest.mdf'),
(NAME = N'FileBackupsTest2',
 FILENAME = N'D:\SQLData\FileBackupsTest2.ndf')
 LOG ON
(NAME = N'FileBackupsTest_log',
 FILENAME = N'E:\SQLData\FileBackupsTest_log.ldf'
)
GO

Listing 9-2: Two data files in the PRIMARY filegroup.

299

Chapter 9: File and Filegroup Backup and Restore

Now we have two data files in the PRIMARY filegroup, plus the log file. SQL Server will
utilize all the data files in a given database on a "proportionate fill" basis, making sure that
each data file is used equally, in a round-robin fashion. We can also back up each of those
files separately, if we wish.

We can place each data file on a separate spindle to increase disk I/O performance.
However, we have no control over exactly which data gets placed where, so we may end
up with most of the data that is very regularly updated written to one file and most of the
data that is rarely touched in the second. We'd have one disk working to peak capacity
while the other sat largely idle, and we wouldn't achieve the desired performance benefit.

The next step is to exert some control over exactly what data gets stored where, and this
means creating some secondary filegroups, and dictating which objects store their data
where. Take a look at Listing 9-3; in it we create the usual PRIMARY filegroup, holding our
mdf file, but also a user-defined filegroup called SECONDARY, in which we create three
secondary data files.

CREATE DATABASE [FileBackupsTest] ON PRIMARY
(NAME = N'FileBackupsTest',
 FILENAME = N'E:\SQLData\FileBackupsTest.mdf' ,
 SIZE = 51200KB , FILEGROWTH = 10240KB),
 FILEGROUP [Secondary]
(NAME = N'FileBackupsTestUserData1',
 FILENAME = N'G:\SQLData\FileBackupsTestUserData1.ndf' ,
 SIZE = 5120000KB , FILEGROWTH = 1024000KB),
(NAME = N'FileBackupsTestUserData2',
 FILENAME = N'H:\SQLData\FileBackupsTestUserData2.ndf' ,
 SIZE = 5120000KB , FILEGROWTH = 1024000KB),
(NAME = N'FileBackupsTestUserData3',
 FILENAME = N'I:\SQLData\FileBackupsTestUserData3.ndf' ,
 SIZE = 5120000KB , FILEGROWTH = 1024000KB)
 LOG ON
(NAME = N'FileBackupsTest_log',
 FILENAME = N'F:\SQLData\FileBackupsTest_log.ldf' ,
 SIZE = 1024000KB , FILEGROWTH = 512000KB)
GO
USE [FileBackupsTest]
GO

300

Chapter 9: File and Filegroup Backup and Restore

IF NOT EXISTS (SELECT name
 FROM sys.filegroups
 WHERE is_default = 1
 AND name = N'Secondary')
 ALTER DATABASE [FileBackupsTest] MODIFY FILEGROUP [Secondary] DEFAULT
GO

Listing 9-3: A template for creating a multi-filegroup database.

Crucially, we can now dictate, to a greater or less degree, what data gets put in which
filegroup. In this example, immediately after creating the database, we have stipulated
the SECONDARY filegroup, rather than the PRIMARY filegroup, as the default filegroup for
this database. This means that our PRIMARY filegroup will hold only our system objects
and data (plus pointers to the secondary data files). By default, any user objects and data
will now be inserted into one of the data files in the SECONDARY filegroup, unless this was
overridden by specifying a different target filegroup when the object was created. Again,
the fact that we have multiple data files means that we can back each file up separately, if
the entire database can't be backed up in the allotted nightly window.

There are many different ways in which filegroups can be used to dictate, at the file level,
where certain objects and data are stored. In this example, we've simply decided that the
PRIMARY is for system data, and SECONDARY is for user data, but we can take this further.
We might decide to store system data in PRIMARY, plus any other data necessary for the
functioning of a customer-facing sales website. The actual sales and order data might be
in a separate, dedicated filegroup. This architecture might be especially beneficial when
running an Enterprise Edition SQL Server, where we can perform online piecemeal
restores. In this case, we could restore the PRIMARY first, and get the database back
online and the website back up. Meanwhile we can get to work restoring the other,
secondary filegroups.

We might also split tables logically into different filegroups, for example:

•	 separating rarely-used archive data from current data (e.g. current year's sales data in
one filegroup, archive data in others)

301

Chapter 9: File and Filegroup Backup and Restore

•	 separating out read-only data from read-write data

•	 separating out critical reporting data.

Another scheme that you may encounter is use of filegroups to separate the non-clustered
indexes from the indexed data, although this seems to be a declining practice in cases
where online index maintenance is available, with Enterprise Editions of SQL Server,
and due to SAN disk systems becoming faster. Remember that the clustered index data is
always in the same filegroup as the base table.

We can also target specific filegroups at specific types of storage, putting the most
frequently used and/or most critical data on faster media, while avoiding eating up high-
speed disk space with data that is rarely used. For example, we might use SSDs for critical
report data, a slower SAN-attached drive for archive data, and so on.

All of these schemes may or may not represent valid uses of filegroups in your
environment, but almost all of them will add complexity to your architecture, and to
your backup and restore process, assuming you employ file-based backup and restore.
As discussed earlier, I only recommend you go down this route if the need is proven, for
example for VLDBs where the need is dictated by backup and or restore requirements. For
databases of a manageable size, we can continue to use database backups and so gain the
benefit of using multiple files/filegroups without the backup and restore complexity.

Of course, one possibility is that a database, originally designed with very simple file
architecture, grows to the point that it is no longer manageable in this configuration.
What is to be done then? Changing the file architecture for a database requires very
careful planning, both with regard to immediate changes to the file structure and how
this will evolve to accommodate future growth. For the initial redesign, we'll need to
consider questions such as the number of filegroups required, how the data is going to be
separated out across those filegroups, how many data files are required, where they are
going to be stored on disk, and so on. Having done this, we're then faced with the task of
planning how to move all the data, and how much time is available each night to get the
job done.

302

Chapter 9: File and Filegroup Backup and Restore

These are all questions we need to take seriously and plan carefully, with the help of
our most experienced DBAs; getting this right the first time will save some huge
headaches later.

Let's consider a simple example, where we need to re-architect the file structure for
a database which currently stores all data in a single data file in PRIMARY. We have
decided to create an additional secondary filegroup, named UserDataFilegroup, which
contains three physical data files, each of which will be backed up during the nightly
backup window. This secondary filegroup will become the default filegroup for the
database, and the plan is that from now on only system objects and data will be stored in
the PRIMARY data file.

How are we going to get the data stored in the primary file into this new filegroup?
It depends on the table index design, but ideally each table in the database will have
a clustered index, in which case the easiest way to move the data is to re-create the
clustered index while moving the data currently in the leaf level of that index over to the
new filegroup. The code would look something like that shown in Listing 9-4. In Enter-
prise editions of SQL Server, we can set the ONLINE parameter to ON, so that the index
will be moved but still be available. When using Standard edition go ahead and switch
this to OFF.

CREATE CLUSTERED INDEX [IndexName]
ON [dbo].[TableName] ([ColumnName] ASC)
WITH (DROP_EXISTING = ON, ONLINE = ON) ON [UserDataFileGroup]

Listing 9-4: Rebuilding an index in a new filegroup.

If the database doesn't have any clustered indexes, then this was a poor design choice; it
should! We can create one for each table, on the most appropriate column or columns,
using code similar to Listing 9-4 (omitting the DROP_EXISTING clause, though it won't
hurt to include it). Once the clustered index is built, the table will be moved, along with
the new filegroup.

303

Chapter 9: File and Filegroup Backup and Restore

If this new index is not actually required, we can go ahead and drop it, as shown in Listing
9-5, but ideally we'd work hard to create a useful index instead that we want to keep.

DROP INDEX [IndexName] ON [dbo].[TableName] WITH (ONLINE = ON)
GO

Listing 9-5: Dropping the newly created index.

Keep in mind that these processes will move the data and clustered indexes over to the
new filegroup, but not the non-clustered, or other, indexes. We will still need to move
these over manually. Many scripts can be found online that will interrogate the system
tables, find all of the non-clustered indexes and move them.

Remember, also, that the process of moving indexes and data to a different physical file
or set of files can be long, and disk I/O intensive. Plan out time each night, over a certain
period, to get everything moved with as little impact to production as possible. This is
also not a task to be taken lightly, and it should be planned out with the senior database
administration team.

File Backup

When a database creeps up in size towards the high hundreds of gigabytes, or into the
terabyte realm, then database backups start to become problematic. A full database
backup of a database of this size could take over half of a day, or even longer, and still
be running long into the business day, putting undue strain on the disk and CPU and
causing performance issues for end-users. Also, most DBAs have experienced the anguish
of seeing such a backup fail at about 80% completion, knowing that starting it over will
eat up another 12 hours.

304

Chapter 9: File and Filegroup Backup and Restore

Hopefully, as discussed in the previous sections, this database has been architected such
that the data is spread across multiple data files, in several filegroups, so that we can still
back up the whole database bit by bit, by taking a series of file backups, scheduled on
separate days. While this is the most common reason for file backups, there are other
valid reasons too, as we have discussed; for example if one filegroup is read-only, or
modified very rarely, while another holds big tables, subject to frequent modifications,
then the latter may be on a different and more frequent backup schedule.

A file backup is simply a backup of a single data file, subset of data files or an entire
filegroup. Each of the file backups contains only the data from the files or filegroups that
we have chosen to be included in that particular backup file. The combination of all of
the file backups, along with all log backups taken over the same period of time, is the
equivalent of a full database backup. Depending on the size of the database, the number
of files, and the backup schedule, this can constitute quite a large number of backups.

We can capture both full file backups, capturing the entire contents of the designated
file or filegroup, and differential file backups, capturing only the pages in that file or
filegroup that have been modified since the last full file backup (there are also partial and
partial differential file backups, but we'll get to those in Chapter 10).

Is there a difference between file and filegroup backups?

The short answer is no. When we take a filegroup backup we are simply specifying that the backup file

should contain all of the data files in that filegroup. It is no different than if we took a file backup and

explicitly referenced each data file in that group. They are the exact same backup and have no differences.

This is why you may hear the term file backup used instead of filegroup backup. We will use the term file

backup for the rest of this chapter.

Of course, the effectiveness of file backups depends on these large databases being
designed so that there is, as best as can be achieved, a distribution of data across the data
files and filegroups such that the file backups are manageable and can complete in the
required time frame. For example, if we have a database of 900 GB, split across three

305

Chapter 9: File and Filegroup Backup and Restore

file groups, then ideally each filegroup will be a more manageable portion of the total
size. Depending on which tables are stored where, this ideal data distribution may not
be possible, but if one of those groups is 800 GB, then we might as well just take full
database backups.

For reasons that we'll discuss in more detail in relation to file restores, it's essential, when
adopting a backup strategy based on file backups, to also take transaction log backups. It's
not possible to perform file-based restores unless SQL Server has access to the full set of
accompanying transaction logs. The file backups can and will be taken at different times,
and SQL Server needs the subsequent transaction log backups in order to guarantee its
ability to roll forward each individual file backup to the required point, and so restore the
database, as a whole, to a consistent state.

File backups and read-only filegroups

The only time we don't have to apply a subsequent transaction log backup when restoring a file backup,

is when SQL Server knows for a fact that the data file could not have been modified since the backup was

taken, because the backup was of a filegroup explicitly designated as READ_ONLY). We'll cover this in

more detail in Chapter 10, Partial Backup and Restore.

So, for example, if we take a weekly full file backup of a particular file or filegroup, then
in the event of a failure of that file, we'd potentially need to restore the file backup plus a
week's worth of log files, to get our database back online in a consistent state. As such, it
often makes sense to supplement occasional full file backups with more frequent differ-
ential file backups. In the same way as differential database backups, these differential
file backups can dramatically reduce the number of log files that need processing in a
recovery situation.

In coming sections, we'll first demonstrate how to take file backups using both the SSMS
GUI and native T-SQL scripts. We'll take full file backups via the SSMS GUI, and then
differential file backups using T-SQL scripts. We'll then demonstrate how to perform the
same actions using the Red Gate SQL Backup tool.

306

Chapter 9: File and Filegroup Backup and Restore

Note that it is recommended, where possible, to take a full database backup and start
the log backups, before taking the first file backup (see: http://msdn.microsoft.com/
en-us/library/ms189860.aspx). We'll discuss this in more detail shortly, but note that, in
order to focus purely on the logistics of file backups, we don't follow this advice in
our examples.

Preparing for file backups

Before we get started taking file backups, we need to do the usual preparatory work,
namely choosing an appropriate recovery model for our database, and then creating that
database along with some populated sample tables. Since we've been through this process
many times now, I'll only comment on those parts of the scripts that are substantially
different from what has gone before. Please refer back to Chapters 3 and 5 if you need
further explanation of any other aspects of these scripts.

Recovery model

Since we've established the need to take log backups, we will need to operate the database
in FULL recovery model. We can also take log backups in the BULK_LOGGED model
but, as discussed in Chapter 1, this model is only suitable for short-term use during bulk
operations. For the long-term operation of databases requiring file backups, we should be
using the FULL recovery model.

Sample database and tables plus initial data load

Listing 9-6 shows the script to create a database with both a PRIMARY and a SECONDARY
filegroup, and one data file in each filegroup. Again, note that I've used the same drive
for each filegroup and the log file, purely as a convenience for this demo; in reality, they
would be on three different drives, as demonstrated previously in Listing 9-3.

http://msdn.microsoft.com/en-us/library/ms189860.aspx
http://msdn.microsoft.com/en-us/library/ms189860.aspx

307

Chapter 9: File and Filegroup Backup and Restore

USE [master]
GO

CREATE DATABASE [DatabaseForFileBackups] ON PRIMARY
(NAME = N'DatabaseForFileBackups'
 , FILENAME = N'C:\SQLData\DatabaseForFileBackups.mdf'
 , SIZE = 10240KB , FILEGROWTH = 10240KB), FILEGROUP [SECONDARY]
(NAME = N'DatabaseForFileBackups_Data2'
 , FILENAME = N'C:\SQLData\DatabaseForFileBackups_Data2.ndf'
 , SIZE = 10240KB , FILEGROWTH = 10240KB) LOG ON
(NAME = N'DatabaseForFileBackups_log'
 , FILENAME = N'C:\SQLData\DatabaseForFileBackups_log.ldf'
 , SIZE = 10240KB , FILEGROWTH = 10240KB)
GO

ALTER DATABASE [DatabaseForFileBackups] SET RECOVERY FULL
GO

Listing 9-6: Multiple data file database creation script.

The big difference between this database creation script, and any that have gone before,
is that we're creating two data files: a primary (mdf) data file called DatabaseForFile-
Backups, in the PRIMARY filegroup, and a secondary (ndf) data file called Database-
ForFileBackups_Data2 in a user-defined filegroup called SECONDARY. This name is
OK here, since we will be storing generic data in the second filegroup, but if the filegroup
was designed to store a particular type of data then it should be named appropriately
to reflect that. For example, if creating a secondary filegroup that will group together
files used to store configuration information for an application, we could name it
CONFIGURATION.

Listing 9-7 creates two sample tables in our DatabaseForFileBackups database, with
Table_DF1 stored in the PRIMARY filegroup and Table_DF2 stored in the SECONDARY
filegroup. We then load a single initial row into each table.

308

Chapter 9: File and Filegroup Backup and Restore

USE [DatabaseForFileBackups]
GO

CREATE TABLE dbo.Table_DF1
 (
 Message NVARCHAR(50) NOT NULL
)
ON [PRIMARY]
GO

CREATE TABLE dbo.Table_DF2
 (
 Message NVARCHAR(50) NOT NULL
)
ON [SECONDARY]
GO

INSERT INTO Table_DF1
VALUES ('This is the initial data load for the table')

INSERT INTO Table_DF2
VALUES ('This is the initial data load for the table')
GO

Listing 9-7: Table creation script and initial data load for file backup configuration.

Notice that we specify the filegroup for each table as part of the table creation statement,
via the ON keyword. SQL Server will create a table on whichever of the available filegroups
is marked as the default group. Unless specified otherwise, the default group will be the
PRIMARY filegroup. Therefore, the ON PRIMARY clause, for the first table, is optional, but
the ON SECONDARY clause is required.

In previous chapters, we've used substantial data loads in order to capture meaningful
metrics for backup time and file size. Here, we'll not be gathering these metrics, but
rather focusing on the complexities of the backup (and restore) processes, so we're
keeping row counts very low.

309

Chapter 9: File and Filegroup Backup and Restore

SSMS native full file backups

We're going to perform full file backups of each of our data files for the Database-
ForFileBackups database, via the SSMS GUI. So, open up SSMS, connect to your test
server, and bring up the Back Up Database configuration screen.

In the Backup component section of the screen, select the Files and filegroups radio
button and it will instantly bring up a Select Files and Filegroups window. We want
to back up all the files (in this case only one file) in the PRIMARY filegroup, so tick the
PRIMARY box, so the screen looks as shown in Figure 9-1, and click OK.

Figure 9-1: Selecting the files to include in our file backup operation.

310

Chapter 9: File and Filegroup Backup and Restore

Following the convention used throughout the book, we're going to store the backup files
in C:\SQLBackups\Chapter9, so go ahead and create that subfolder on your database
server, and then, in the Backup wizard, Remove the default backup destination, click
Add…, locate the Chapter9 folder and call the backup file DatabaseForFileBackups_
FG1_Full.bak.

Once back on the main configuration page, double-check that everything on the screen
looks as expected and if so, we have no further work to do, so we can click OK to start the
file backup operation. It should complete in the blink of an eye, and our first file/filegroup
backup is complete!

We aren't done yet, however. Repeat the whole file backup process exactly as described
previously but, this time, pick the SECONDARY filegroup in the Select Files and Filegroups
window and, when setting the backup file destination, call the backup file Database-
ForFileBackups_FG2_Full.bak. Having done this, check the Chapter9 folder and
you should find your two backup files, ready for use later in the chapter.

We've completed our file backups, but we're still not quite done here. In order to be
able to restore a database from its component file backups, we need to be able to apply
transaction log backups so that SQL Server can confirm that it is restoring the database
to a consistent state. So, we are going to take one quick log backup file. Go back into the
Back Up Database screen a third time, select Transaction Log as the Backup type, and
set the backup file destination as C:\SQLBackups\Chapter9\DatabaseForFileBackups_
TLOG.trn.

Native T-SQL file differential backup

We're now going to perform differential file backups of each of our data files for the
DatabaseForFileBackups database, using T-SQL scripts. First, let's load another row
of sample data into each of our tables, as shown in Listing 9-8.

311

Chapter 9: File and Filegroup Backup and Restore

USE [DatabaseForFileBackups]
GO

INSERT INTO Table_DF1
VALUES ('This is the second data load for the table')

INSERT INTO Table_DF2
VALUES ('This is the second data load for the table')
GO

Listing 9-8: Second data load for DatabaseForFileBackups.

Without further ado, the script to perform a differential file backup of our primary data
file is shown in Listing 9-9.

USE [master]
GO

BACKUP DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Diff.bak'
WITH DIFFERENTIAL, STATS = 10
GO

Listing 9-9: Differential file backup of the primary data file for DatabaseForFileBackups.

The only new part of this script is the use of the FILE argument to specify which of the
data files to include in the backup. In this case, we've referenced by name our primary
data file, which lives in the PRIMARY filegroup. We've also used the DIFFERENTIAL
argument to specify a differential backup, as described in Chapter 7.

Go ahead and run the script now and you should see output similar that shown in
Figure 9-2.

312

Chapter 9: File and Filegroup Backup and Restore

Figure 9-2: File differential backup command results.

What we're interested in here are the files that were processed during the execution
of this command. You can see that we only get pages processed on the primary data
file and the log file. This is exactly what we were expecting, since this is a differential
file backup, capturing the changed data in the primary data file, and not a differential
database backup.

If we had performed a differential (or full) database backup on a database that has
multiple data files, then all those files will be processed as part of the BACKUP command
and we'd capture all data changed in all of the data files. So, in this case, it would have
processed both the data files and the log file.

Let's now perform a differential file backup of our secondary data file, as shown in
Listing 9-10.

USE [master]
GO

BACKUP DATABASE [DatabaseForFileBackups] FILEGROUP = N'SECONDARY'
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG2_Diff.bak'
WITH DIFFERENTIAL, STATS = 10
GO

Listing 9-10: Differential filegroup backup for DatabaseForFileBackups.

313

Chapter 9: File and Filegroup Backup and Restore

This time, the script demonstrates the use of the FILEGROUP argument to take a backup
of the SECONDARY filegroup as a whole. Of course, in this case there is only a single data
file in this filegroup and so the outcome of this command will be exactly the same as if
we had specified FILE = N'DatabaseForFileBackups_Data2' instead. However, if
the SECONDARY filegroup had contained more than one data file, then all of these files
would have been subject to a differential backup. If you look at the message output, after
running the command, you'll see that only the N'DatabaseForFileBackups_Data2
data file and the log file are processed.

Now we have a complete set of differential file backups that we will use to restore the
database a little later. However, we are not quite done. Since we took the differential
backups at different times, there is a possible issue with the consistency of the database,
so we still need to take another transaction log backup. In Listing 9-11, we first add one
more row each to the two tables and capture a date output (we'll need this later in a
point-in-time restore demo) and then take another log backup.

USE [master]
GO

INSERT INTO DatabaseForFileBackups.dbo.Table_DF1
VALUES ('Point-in-time data load for Table_DF1')

INSERT INTO DatabaseForFileBackups.dbo.Table_DF2
VALUES ('Point-in-time data load for Table_DF2')
GO

SELECT GETDATE() -- note the date value. We will need it later.

BACKUP LOG [DatabaseForFileBackups]
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_TLOG2.trn'
GO

Listing 9-11: Taking our second native transaction log backup.

314

Chapter 9: File and Filegroup Backup and Restore

SQL Backup file backups

Let's take a quick look at how to capture both types of file backup, full and differential,
via the Red Gate SQL Backup tool. I assume basic familiarity with the tool, based on the
coverage provided in the previous chapter, and so focus only on aspects of the process
that are different from what has gone before, with database backups. We're going to take
a look at file backups using SQL Backup scripts only, and not via the SQL Backup GUI.
There are a couple of reasons for this:

•	 the version of SQL Backup (6.4) that was used in this book did not support differential
file backups via the GUI

•	 assuming that, if you worked through Chapter 8, you are now comfortable using the
basic SQL Backup functionality, so you don't need to see both methods.

To get started, we'll need a new sample database on which to work. We can simply
adapt the database creation script in Listing 9-6 to create a new, identically-structured
database, called DatabaseForFileBackup_SB and then use Listing 9-7 to create the
tables and insert the initial row. Alternatively, the script to create the database and tables,
and insert the initial data, is provided ready-made (DatabaseForFileBackup_SB.sql) in
code download for this book, at http://www.simple-talk.com/RedGateBooks/
ShawnMcGehee/SQLServerBackupAndRestore_Code.zip.

SQL Backup full file backups

Having created the sample database and tables, and loaded some initial data, let's jump
straight in and take a look at the script to perform full file backups of both the PRIMARY
and SECONDARY data files, as shown in Listing 9-12.

http://www.simple-talk.com/RedGateBooks/
ShawnMcGehee/SQLServerBackupAndRestore_Code.zip
http://www.simple-talk.com/RedGateBooks/
ShawnMcGehee/SQLServerBackupAndRestore_Code.zip

315

Chapter 9: File and Filegroup Backup and Restore

USE [master]
GO
--SQL Backup Full file backup of PRIMARY filegroup
EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForFileBackups_SB]
FILEGROUP = ''PRIMARY'' TO DISK =
''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3, THREADCOUNT = 2"'

--SQL Backup Full file backup of secondary data file
EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForFileBackups_SB]
FILE = ''DatabaseForFileBackups_SB_Data2''
TO DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_Data2.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3, THREADCOUNT = 2"'

Listing 9-12: SQL Backup full file backup of primary and secondary data files.

Most of the details of this script, with regard to the SQL Backup parameters that control
the compression and resiliency options, have been covered in detail in Chapter 8, so I
won't repeat them here. We can see that we are using the FILEGROUP parameter here
to perform the backup against all files in our PRIMARY filegroup. Since this filegroup
includes just our single primary data file, we could just as well have specified the file
explicitly, which is the approach we take when backing up the secondary data file.

Having completed the full file backups, we are going to need to take a quick log backup
of this database, just as we did with the native backups, in order to ensure we can restore
the database to a consistent state, from the component file backups. Go ahead and run
Listing 9-13 in a new query window to get a log backup of our DatabaseForFile-
Backups_SB test database.

USE [master]
GO

EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForFileBackups_SB]
TO DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_TLOG.sqb''"'

Listing 9-13: Taking our log backup via SQL Backup script.

316

Chapter 9: File and Filegroup Backup and Restore

SQL Backup differential file backups

The SQL Backup commands for differential file backups are very similar to those for the
full file backups, so we'll not dwell long here. First, we need to insert a new row into each
of our sample tables, as shown in Listing 9-14.

USE [DatabaseForFileBackups_SB]
GO

INSERT INTO Table_DF1
VALUES ('This is the second data load for the table')

INSERT INTO Table_DF2
VALUES ('This is the second data load for the table')
GO

Listing 9-14: Second data load for DatabaseForFileBackups_SB.

Next, Listing 9-15 shows the script to perform the differential file backups for both the
primary and secondary data files.

USE [master]
GO
EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForFileBackups_SB]
FILEGROUP = ''PRIMARY'' TO DISK =
''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_Diff.sqb''
WITH DIFFERENTIAL, DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3,
THREADCOUNT = 2"'

EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForFileBackups_SB]
FILE = ''DatabaseForFileBackups_SB_Data2''
TO DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_Data2_Diff.sqb''
WITH DIFFERENTIAL, DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3,
THREADCOUNT = 2"'

Listing 9-15: SQL Backup differential file backup of primary and secondary data files.

317

Chapter 9: File and Filegroup Backup and Restore

The only significant difference in this script compared to the one for the full file backups,
apart from the different backup file names, is use of the DIFFERENTIAL argument to
denote that the backups should only take into account the changes made to each file
since the last full file backup was taken.

Take a look at the output for this script, shown in truncated form in Figure 9-3; the first
of the two SQL Backup operations processes the primary data file (DatabaseForFile-
Backups), and the transaction log, and the second processes the secondary data file
(DatabaseForFileBackups_Data2) plus the transaction log.

Backing up DatabaseForFileBackups_SB (files/filegroups differential) to:

 C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_Diff.sqb

Backup data size : 3.250 MB

Compressed data size: 55.500 KB

Compression rate : 98.33%

Processed 56 pages for database 'DatabaseForFileBackups_SB', file

'DatabaseForFileBackups_SB' on file 1.

Processed 2 pages for database 'DatabaseForFileBackups_SB', file

'DatabaseForFileBackups_SB_log' on file 1.

BACKUP DATABASE...FILE=<name> WITH DIFFERENTIAL successfully processed 58 pages in 0.036

seconds (12.396 MB/sec).

SQL Backup process ended.

Figure 9-3: SQL Backup differential file backup results.

Having completed the differential file backups, we do need to take one more backup and I
think you can guess what it is. Listing 9-16 takes our final transaction log backup of
the chapter.

USE [master]
GO

EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForFileBackups_SB]
TO DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_TLOG2.sqb''"'

Listing 9-16: Second SQL Backup transaction log backup.

318

Chapter 9: File and Filegroup Backup and Restore

File Restore

In all previous chapters, when we performed a restore operation, we restored the
database as a whole, including all the data in all the files and filegroups, from the full
database backup, plus any subsequent differential database backups. If we then wished
to roll forward the database, we could do so by applying the full chain of transaction
log backups.

However, it is also possible to restore a database from a set individual file backups; the
big difference is that that we can't restore a database just from the latest set of full (plus
differential) file backups. We must also apply the full set of accompanying transaction
log backups, up to and including the log backup taken after the final file backup in the
set. This is the only way SQL Server can guarantee that it can restore the database to a
consistent state.

Consider, for example, a simple case of a database comprising three data files, each in a
separate filegroup and where FG1_1, FG2_1, FG3_1 are full files backups of each separate
filegroup, as shown in Figure 9-4.

Figure 9-4: A series of full file and transaction log backups.

319

Chapter 9: File and Filegroup Backup and Restore

Notice that the three file backups are taken at different times. In order to restore this
database, using backups shown, we have to restore the FG1_1, FG2_1 and FG3_1 file
backups, and then the chain of log backups 1–5. Generally speaking, we need the chain
of log files starting directly after the oldest full file backup in the set, and finishing with
the one taken directly after the most recent full file backup. Note that even if we are
absolutely certain that in Log5 no further transactions were recorded against any of the
three filegroups, SQL Server will not trust us on this and requires this log backup file to
be processed in order to guarantee that any changes recorded in Log5 that were made to
any of the data files, up to the point the FG3_1 backup completed, are represented in the
restore, and so the database has transactional consistency.

We can also perform point-in-time restores, to a point within the log file taken after all of
the current set of file backups; in Figure 9-4, this would be to some point in time within
the Log5 backup. If we wished to restore to a point in time within, say, Log4, we'd need
to restore the backup for filegroup 3 taken before the one shown in Figure 9-4 (let's call it
FG3_0), followed by FG1_1 and FG2_1, and then the chain of logs, starting with the one
taken straight after FG3_0 and ending with Log4.

This also explains why Microsoft recommends taking an initial full database backup and
starting the log backup chain before taking the first full file backup. If we imagine that
FG1_1, FG2_1 and FG3_1 file backups were the first-ever full file backups for this database,
and that they were taken on Monday, Wednesday and Friday, then we'd have no restore
capability in that first week, till the FG3_1 and Log5 backups were completed.

It's possible, in some circumstances, to restore a database by restoring only a single file
backup (plus required log backups), rather than the whole set of files that comprise
the database. This sort of restore is possible as long as you've got a database composed
of several data files or filegroups, regardless of whether you're taking database or file
backups; as long as you've also got the required set of log backups, it's possible to restore a
single file from a database backup.

320

Chapter 9: File and Filegroup Backup and Restore

The ability to recover a database by restoring only a subset of the database files can be
very beneficial. For example, if a single data file for a VLDB goes offline for some reason,
we have the ability to restore from file backup just the damaged file, rather than restoring
the entire database. With a combination of the file backup, plus the necessary trans-
action log backups, we can get that missing data file back to the state it was in as close as
possible to the time of failure, and much quicker than might be possible if we needed to
restore the whole database from scratch!

With Enterprise Edition SQL Server, as discussed earlier, we also have the ability to
perform online piecemeal restores, where again we start by restoring just a subset of the
data files, in this case the primary filegroup, and then immediately bringing the database
online having recovered only this subset of the data.

As you've probably gathered, restoring a database from file backups, while potentially
very beneficial in reducing down-time, can be quite complex and can involve managing
and processing a large number of backup files. The easiest way to get a grasp of how the
various types of file restore work is by example. Therefore, over the following sections,
we'll walk though some examples of how to perform, with file backups, the same restore
processes that we've seem previously in the book, namely a complete restore and a point-
in-time restore. We'll then take a look at an example each of recovering from a "single
data file failure," as well as online piecemeal restore.

We're not going to attempt to run through each type of restore in four different ways
(SSMS, T-SQL, SQL Backup GUI, SQL Backup T-SQL), as this would simply get tedious.
We'll focus on scripted restores using either native T-SQL or SQL Backup T-SQL, and
leave the equivalent restores, via GUI methods, as an exercise for the reader. It's worth
noting, though, that whereas for database backups the SQL Backup GUI will automati-
cally detect all required backup files (assuming they are still in their original locations), it
will not do so for file backups; each required backup file will need to be located manually.

321

Chapter 9: File and Filegroup Backup and Restore

Performing a complete restore (native T-SQL)

We're going to take a look at an example of performing a complete restore of our
DatabaseForFileBackups database. Before we start, let's insert a third data load, as
shown in Listing 9-17, just so we have one row in each of the tables in the database that
isn't yet captured in any of our backup files.

USE [DatabaseForFileBackups]
GO

INSERT INTO Table_DF1
VALUES ('This is the third data load for the table')

INSERT INTO Table_DF2
VALUES ('This is the third data load for the table')
GO

Listing 9-17: Third data load for DatabaseForFileBackups.

Figure 9-5 depicts the current backups we have in place. We have the first data load
captured in full file backups, the second data load captured in the differential file backups,
and a third data load that is not in any current backup file, but we'll need to capture it in
a tail log backup in order to restore the database to its current state. In a case where we
were unable to take a final tail log backup we'd only be able to roll forward to the end of
the TLOG2 backup. In this example, we are going to take one last backup, just to get our
complete database back intact.

322

Chapter 9: File and Filegroup Backup and Restore

Figure 9-5: Required backups for our complete restore of DatabaseForFileBackups.

The first step is to capture that tail log backup, and prepare for the restore process, as
shown in Listing 9-18.

USE master
GO
--backup the tail
BACKUP LOG [DatabaseForFileBackups]
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_TLOG_TAIL.trn'
WITH NORECOVERY
GO

Listing 9-18: Tail log backup.

Notice the use of the NORECOVERY option in a backup; this lets SQL Server know that we
want to back up the transactions in the log file and immediately place the database into a
restoring state. This way, no further transactions can slip past us into the log while we are
preparing the RESTORE command.

We're now ready to start the restore process. The first step is to restore the two full
file backups. We're going to restore over the top of the existing database, as shown
in Listing 9-19.

323

Chapter 9: File and Filegroup Backup and Restore

USE master
GO
RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Full.bak'
WITH REPLACE
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups_Data2'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG2_Full.bak'
WITH NORECOVERY
GO

Listing 9-19: Restoring the full file backups.

Processed 184 pages for database 'DatabaseForFileBackups', file 'DatabaseForFileBackups'

on file 1.

Processed 6 pages for database 'DatabaseForFileBackups', file 'DatabaseForFileBackups_log'

on file 1.

The roll forward start point is now at log sequence number (LSN) 23000000026800001.

Additional roll forward past LSN 23000000036700001 is required to complete the restore

sequence.

This RESTORE statement successfully performed some actions, but the database could not be

brought online because one or more RESTORE steps are needed. Previous messages indicate

reasons why recovery cannot occur at this point.

RESTORE DATABASE ... FILE=<name> successfully processed 190 pages in 0.121 seconds (12.251

MB/sec).

Processed 16 pages for database 'DatabaseForFileBackups', file

'DatabaseForFileBackups_Data2' on file 1.

Processed 2 pages for database 'DatabaseForFileBackups', file 'DatabaseForFileBackups_log'

on file 1.

RESTORE DATABASE ... FILE=<name> successfully processed 18 pages in 0.105 seconds (1.274

MB/sec).

Figure 9-6: Output message from restoring the full file backups.

Notice that we didn't specify the state to which to return the database after the first
RESTORE command. By default this would attempt to bring the database back online,
with recovery, but in this case SQL Server knows that there are more files to process, so it

324

Chapter 9: File and Filegroup Backup and Restore

keeps the database in a restoring state. The first half of the message output from running
this command, shown in Figure 9-6, tells us that the roll forward start point is at a specific
LSN number but that an additional roll forward is required and so more files will have to
be restored to bring the database back online.

The second part of the message simply reports that the restore of the backup for the
secondary data file was successful.

Since we specified that the database should be left in a restoring state after the second
restore command, SQL Server doesn't try to recover the database to a usable state (and is
unable to do so). If you check your Object Explorer in SSMS, you'll see that Database-
ForFileBackups is still in a restoring state.

After the full file backups, we took a transaction log backup (_TLOG), but since we're
rolling forward past the subsequent differential file backups, where any data changes
will be captured for each filegroup, we don't need to restore the first transaction log, on
this occasion. So, let's go ahead and restore the two differential file backups, as shown in
Listing 9-20.

USE master
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Diff.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups_Data2'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG2_Diff.bak'
WITH NORECOVERY
GO

Listing 9-20: Restore the differential file backups.

325

Chapter 9: File and Filegroup Backup and Restore

The next step is to restore the second transaction log backup (_TLOG2), as shown in
Listing 9-21. When it comes to restoring the transaction log backup files, we need to
specify NORECOVERY on all of them except the last. The last group of log backup files
we are restoring (represented by only a single log backup in this example!) may be
processing data for all of the data files and, if we do not specify NORECOVERY, we can
end up putting the database in a usable state for the user, but unable to apply the last
of the log backup files.

USE master
GO

RESTORE DATABASE [DatabaseForFileBackups]
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_TLOG2.trn'
WITH NORECOVERY
GO

Listing 9-21: Restore the second log backup.

Finally, we need to apply the tail log backup, where we know our third data load is
captured, and recover the database.

RESTORE DATABASE [DatabaseForFileBackups]
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_TLOG_TAIL.trn'
WITH RECOVERY
GO

Listing 9-22: Restore the tail log backup and recover the database.

A simple query of the restored database will confirm that we've restored the database,
with all the rows intact.

USE [DatabaseForFileBackups]
GO

SELECT * FROM Table_DF1
SELECT * FROM Table_DF2

326

Chapter 9: File and Filegroup Backup and Restore

Message
--
This is the initial data load for the table

This is the second data load for the table

This is the point-in-time data load for the table

This is the third data load for the table

(4 row(s) affected)

Message

--

This is the initial data load for the table

This is the second data load for the table

This is the point-in-time data load for the table

This is the third data load for the table

(4 row(s) affected)

Listing 9-23: Verifying the restored data.

Restoring to a point in time (native T-SQL)

Listing 9-24 shows the script to restore our DatabaseForFileBackups to a point in
time either just before, or just after, we inserted the two rows in Listing 9-11.

USE master
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Full.bak'
WITH REPLACE
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups_Data2'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG2_Full.bak'
WITH NORECOVERY
GO

327

Chapter 9: File and Filegroup Backup and Restore

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Diff.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups_Data2'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG2_Diff.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForFileBackups]
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_TLOG2.trn'
WITH RECOVERY, STOPAT = '2012-02-07T13:18:00' -- enter your time here
GO

Listing 9-24: Filegroup restore to a point in time.

Notice that we include the REPLACE keyword in the first restore, since we are trying to
replace the database and in this case aren't starting with a tail log backup, and there may
be transactions in the log that haven't been backed up yet. We then restore the second full
file backup and the two differential file backups, leaving the database in a restoring state
each time.

Finally, we restore the second transaction log backup, using the STOPAT parameter to
indicate the time to which we wish to restore the database. In my example, I set the
time for the STOPAT parameter to be about 30 seconds before the two INSERTs were
executed, and Listing 9-25 confirms that only the first two data loads are present in the
restored database.

328

Chapter 9: File and Filegroup Backup and Restore

USE DatabaseForFileBackups
GO
SELECT * FROM dbo.Table_DF1
SELECT * FROM dbo.Table_DF2

Message
--
This is the initial data load for the table

This is the second data load for the table

(2 row(s) affected)

Message

--

This is the initial data load for the table

This is the second data load for the table

(2 row(s) affected)

Listing 9-25: Checking on the point-in-time restore data.

Great! We can see that our data is exactly what we expected. We have restored the data to
the point in time exactly where we wanted. In the real world, you would be restoring to a
point in time before a disaster struck or when data was somehow removed or corrupted.

Restoring after loss of a secondary data file

One of the major potential benefits of file-based restore, especially for VLDBs, is the
ability to restore just a single data file, rather than the whole database, in the event
of a disaster.

Let's imagine that we have a VLDB residing on one of our most robust servers. Again, this
VLDB comprises three data files in separate filegroups that contain completely different
database objects and data, with each file located on one of three separate physical hard
drives in our SAN attached drives.

329

Chapter 9: File and Filegroup Backup and Restore

Everything is running smoothly, and we get great performance for this database until our
SAN suddenly suffers a catastrophic loss on one of its disk enclosures and we lose the
drive holding one of the secondary data files. The database goes offline.

We quickly get a new disk attached to our server, but the secondary data file is lost and
we are not going to be able to get it back. As this point, all of the tables and data in that
data file will be lost but, luckily, we have been performing regular full file, differential file,
and transaction log backups of this database, and if we can capture a final tail-of-the-
log backup, we can get this database back online using only the backup files for the lost
secondary data file, plus the necessary log files, as shown in Figure 9-7.

Figure 9-7: Example backups required to recover a secondary data file.

In order to get the lost data file back online, with all data up to the point of the disk crash,
we would:

•	 perform a tail log backup – this requires a special form of log backup, which does not
truncate the transaction log

•	 restore the full file backup for the lost secondary data file

•	 restore the differential file backup for the secondary data file, at which point SQL
Server would expect to be able to apply log backups 3 and 4 plus the tail log backup

•	 recover the database.

330

Chapter 9: File and Filegroup Backup and Restore

Once you do this, your database will be back online and recovered up to the point of the
failure! This is a huge time saver since restoring all of the files could take quite a long
time. Having to restore only the data file that was affected by the crash will cut your
recovery time down significantly.

However, there are a few caveats attached to this technique, which we'll discuss as we
walk through a demo. Specifically, we're going to use SQL Backup scripts (these can
easily be adapted into native T-SQL scripts) to show how we might restore just a single
damaged, or otherwise unusable, secondary data file for our DatabaseForFile-
Backups_SB database, without having to restore the primary data file.

Note that if the primary data file went down, we'd have to restore the whole database,
rather than just the primary data file. However, with Enterprise Edition SQL Server, it
would be possible to get the database back up and running by restoring only the primary
data file, followed subsequently by the other data files. We'll discuss that in more detail in
the next section.

This example is going to use our DatabaseForFileBackups_SB database to restore
from a single disk / single file failure, using SQL Backup T-SQL scripts. A script
demonstrating the same process using native T-SQL is available with the code
download for this book.

If you recall, for this database we have Table_DF1, stored in the primary data file
(DatabaseForFileBackups_SB.mdf) in the PRIMARY filegroup, and Table_DF2,
stored in the secondary data file (DatabaseForFileBackups_SB_Data2.ndf) in the
SECONDARY filegroup. Our first data load (one row into each table) was captured in full
file backups for each filegroup. We then captured a first transaction log backup. Our
second data load (an additional row into each table) was captured in differential file
backups for each filegroup. Finally, we took a second transaction log backup.

Let's perform a third data load, inserting one new row into Table_DF2.

331

Chapter 9: File and Filegroup Backup and Restore

USE [DatabaseForFileBackups_SB]
GO
INSERT INTO Table_DF2
VALUES ('This is the third data load for Table_DF2')
GO

Listing 9-26: Third data load for DatabaseForFileBackups_SB.

Now we're going to simulate a problem with our secondary data file which takes it
(and our database) offline; in Listing 9-27 we take the database offline. Having done so,
navigate to the C:\SQLData\Chapter9 folder and delete the secondary data file!

-- Take DatabaseForFileBackups_SB offline
USE master
GO
ALTER DATABASE [DatabaseForFileBackups_SB] SET OFFLINE;
GO

/*Now delete DatabaseForFileBackups_SB_Data2.ndf!*/

Listing 9-27: Take DatabaseForFileBackups_SB offline and delete secondary data file!

Scary stuff! Next, let's attempt to bring our database back online.

USE master
GO
ALTER DATABASE [DatabaseForFileBackups_SB] SET ONLINE;
GO

Msg 5120, Level 16, State 5, Line 1
Unable to open the physical file "C:\SQLData\DatabaseForFileBackups_SB_Data2.ndf".
Operating system error 2: "2(failed to retrieve text for this error. Reason: 15105)".

Msg 945, Level 14, State 2, Line 1

Database 'DatabaseForFileBackups_SB' cannot be opened due to inaccessible files or

insufficient memory or disk space. See the SQL Server errorlog for details.

Msg 5069, Level 16, State 1, Line 1

ALTER DATABASE statement failed.

Listing 9-28: Database cannot come online due to missing secondary data file.

332

Chapter 9: File and Filegroup Backup and Restore

As you can see, this is unsuccessful, as SQL Server can't open the secondary data file.
Although unsuccessful, this attempt to bring the database online is still necessary, as we
need the database to attempt to come online, so the log file can be read.

We urgently need to get the database back online, in the state it was in when our
secondary file failed. Fortunately, the data and log files are on separate drives from the
secondary, so these are still available.

We know that there is data in the log file that isn't captured in any log backup, so our first
task is to back up the log. Unfortunately, a normal log backup operation, such as shown in
Listing 9-29 will not succeed.

-- a normal tail log backup won't work
USE [master]
GO
EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForFileBackups_SB]
TO DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_TLOG_TAIL.sqb''
WITH NORECOVERY"'
GO

Listing 9-29: A standard tail log backup fails.

In my tests, this script just hangs and has to be cancelled, which is unfortunate. The
equivalent script in native T-SQL results in an error message to the effect that:

"Database 'DatabaseForFileBackups_SB' cannot be opened due to inaccessible files or

insufficient memory or disk space."

SQL Server cannot back up the log this way because the log file is not available and part
of the log backup process, even a tail log backup, needs to write some log info into the
database header. Since it cannot, we need to use a different form of tail backup to get
around this problem.

333

Chapter 9: File and Filegroup Backup and Restore

What we need to do instead, is a special form of tail log backup that uses the NO_
TRUNCATE option, so that SQL Server can back up the log without access to the data files.
In this case the log will not be truncated upon backup, and all log records will remain in
the live transaction log. Essentially, this is a special type of log backup and isn't going to
remain useful to us after this process is over. When we do get the database back online
and completely usable, we want to be able to take a backup of the log file in its original
state and not break the log chain. In other words, once the database is back online, we can
take another log backup (TLOG3, say) and the log chain will be TLOG2 followed by TLOG3
(not TLOG2, TLOG_TAIL, TLOG3). I would, however, suggest attempting to take some
full file backups immediately after a failure, if not a full database backup, if that is at all
possible.

USE [master]
GO
EXECUTE master..sqlbackup '-SQL "BACKUP LOG [DatabaseForFileBackups_SB]
TO DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_TLOG_TAIL.sqb''
WITH NO_TRUNCATE"'
GO

Listing 9-30: Performing a tail log backup with NO_TRUNCATE for emergency single file recovery.

Note that if we cannot take a transaction log backup before starting this process, we
cannot get our database back online without restoring all of our backup files. This
process will only work if we lose a single file from a drive that does not also house the
transaction log.

Now that we have our tail log backup done, we can move on to recovering our lost
secondary data file. The entire process is shown in Listing 9-31. You will notice that there
are no backups in this set of RESTORE commands that reference our primary data file.
This data would have been left untouched and doesn't need to be restored. Having to
restore only the lost file will save us a great deal of time.

334

Chapter 9: File and Filegroup Backup and Restore

USE [master]
GO
-- restore the full file backup for the secondary data file
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForFileBackups_SB]
FILE = ''DatabaseForFileBackups_SB_Data2''
FROM DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_Data2.sqb''
WITH NORECOVERY"'

-- restore the differential file backup for the secondary data file
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForFileBackups_SB]
FILE = ''DatabaseForFileBackups_SB_Data2''
FROM DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_Data2_Diff.sqb''
WITH NORECOVERY"'

-- restore the subsequent transaction log backup
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForFileBackups_SB]
FROM DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_TLOG2.sqb''
WITH NORECOVERY"'

-- restore the tail log backup and recover the database
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForFileBackups_SB]
FROM DISK = ''C:\SQLBackups\Chapter9\DatabaseForFileBackups_SB_TLOG_TAIL.sqb''
WITH RECOVERY"'

Listing 9-31: Single file disaster SQL Backup restoration script.

What we have done here is restore the full file, the differential file and all of the trans-
action log file backups that were taken after the differential file backup, including the tail
log backup. This has brought our database back online and right up to the point where
the tail log backup was taken.

Now you may be afraid that you didn't get to it in time and some data may be lost, but
don't worry. Any transactions that would have affected the missing data file would not
have succeeded after the disaster, even if the database stayed online, and any that didn't
use that missing data file would have been picked up by the tail log backup.

335

Chapter 9: File and Filegroup Backup and Restore

Quick recovery using online piecemeal restore

When using SQL Server Enterprise Edition, we have access to a great feature that can save
hours of recovery time in the event of a catastrophic database loss. With this edition, SQL
Server allows us to perform an online restore. Using the Partial option, we can restore
the primary data file of our database and bring it back online without any other data files
needing to be restored. In this way, we can bring the database online and in a usable state
very quickly, and then apply the rest of the backups at a later time, while still allowing
users to access a subset of the data.

The tables and data stored in the secondary data files will not be accessible until they
are restored. The database will stay online throughout the secondary data file restores,
though. This way, we can restore the most important and most used data first, and the
least used, archive data for instance, later, once we have all of the other fires put out.

Let's take a look at an example; again, this requires an Enterprise (or Developer) Edition
of SQL Server. Listing 9-32 creates a new database, with two tables, and inserts a row of
data into each of the tables. Note, of course, that in anything other than a simple test
example, the primary and secondary files would be on separate disks.

USE [master]
GO
CREATE DATABASE [DatabaseForPartialRestore] ON PRIMARY
(NAME = N'DatabaseForPartialRestore',
 FILENAME = N'C:\SQLData\DatabaseForPartialRestore.mdf' ,
 SIZE = 5120KB , FILEGROWTH = 5120KB), FILEGROUP [Secondary]
(NAME = N'DatabaseForPartialRestoreData2',
 FILENAME = N'C:\SQLData\DatabaseForPartialRestoreData2.ndf' ,
 SIZE = 5120KB , FILEGROWTH = 5120KB) LOG ON
(NAME = N'DatabaseForPartialRestore_log',
 FILENAME = N'C:\SQLData\DatabaseForPartialRestore_log.ldf' ,
 SIZE = 5120KB , FILEGROWTH = 5120KB)
GO

336

Chapter 9: File and Filegroup Backup and Restore

USE [DatabaseForPartialRestore]
GO
IF NOT EXISTS (SELECT name
 FROM sys.filegroups
 WHERE is_default = 1
 AND name = N'Secondary')
 ALTER DATABASE [DatabaseForPartialRestore] MODIFY FILEGROUP [Secondary] DEFAULT
GO

USE [master]
GO
ALTER DATABASE [DatabaseForPartialRestore] SET RECOVERY FULL WITH NO_WAIT
GO

USE [DatabaseForPartialRestore]
GO
CREATE TABLE [dbo].[Message_Primary]
 (
 [Message] [varchar](50) NOT NULL
)
ON [Primary]
GO
CREATE TABLE [dbo].[Message_Secondary]
 (
 [Message] [varchar](50) NOT NULL
)
ON [Secondary]
GO

INSERT INTO Message_Primary
VALUES ('This is data for the primary filegroup')
INSERT INTO Message_Secondary
VALUES ('This is data for the secondary filegroup')
GO

Listing 9-32: Creating our database and tables for testing.

This script is pretty long, but nothing here should be new to you. Our new database
contains both a primary and secondary filegroup, and we establish the secondary
filegroup as the DEFAULT, so this is where user objects and data will be stored, unless we
specify otherwise. We then switch the database to FULL recovery model just to be sure

337

Chapter 9: File and Filegroup Backup and Restore

that we can take log backups of the database; always validate which recovery model is in
use, rather than just relying on the default being the right one. Finally, we create one table
in each filegroup, and insert a single row into each table.

Listing 9-33 simulates a series of file and log backups on our database; we can imagine
that the file backups for each filegroup are taken on successive nights, and that the log
backup after each file backup represents the series of log files that would be taken during
the working day. Note that, in order to keep focused, we don't start proceedings with a
full database backup, as would generally be recommended.

USE [master]
GO

BACKUP DATABASE [DatabaseForPartialRestore] FILEGROUP = N'PRIMARY'
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_FG_Primary.bak'
WITH INIT
GO

BACKUP LOG [DatabaseForPartialRestore]
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_LOG_1.trn'
WITH NOINIT
GO

BACKUP DATABASE [DatabaseForPartialRestore] FILEGROUP = N'SECONDARY'
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_FG_Secondary.bak'
WITH INIT
GO

BACKUP LOG [DatabaseForPartialRestore]
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_LOG_2.trn'
WITH NOINIT
GO

Listing 9-33: Taking our filegroup and log backups.

338

Chapter 9: File and Filegroup Backup and Restore

With these backups complete, we have all the tools we need to perform a piecemeal
restore! Remember, though, that we don't need to be taking file backups in order to
perform a partial/piecemeal restore. If the database is still small enough, we can still take
full database backups and then restore just a certain filegroup from that backup file, in
the manner demonstrated next.

Listing 9-34 restores just our primary filegroup, plus subsequent log backups, and then
beings the database online – without the secondary filegroup!

USE [master]
GO

RESTORE DATABASE [DatabaseForPartialRestore] FILEGROUP = 'PRIMARY'
FROM DISK = 'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_FG_Primary.bak'
WITH PARTIAL, NORECOVERY, REPLACE
GO

RESTORE LOG [DatabaseForPartialRestore]
FROM DISK = 'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_LOG_1.trn'
WITH NORECOVERY
GO

RESTORE LOG [DatabaseForPartialRestore]
FROM DISK = 'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_LOG_2.trn'
WITH RECOVERY
GO

Listing 9-34: Restoring our primary filegroup via an online piecemeal restore.

Notice the use of the PARTIAL keyword to let SQL Server know that we will want to only
partially restore the database, i.e. restore only the primary filegroup. We could also restore
further filegroups here, but the only one necessary is the primary filegroup. Note the use
of the REPLACE keyword, since we are not taking a tail log backup.

Even though we recover the database upon restoring the final transaction log, we can still,
in this case, restore the other data files later. The query in Listing 9-35 attempts to access
data in both the primary and secondary filegroups.

339

Chapter 9: File and Filegroup Backup and Restore

USE [DatabaseForPartialRestore]
GO

SELECT Message
FROM Message_Primary
GO
SELECT Message
FROM Message_Secondary
GO

Listing 9-35: Querying the restored database.

The first query should return data, but the second one will fail with the following error:

Msg 8653, Level 16, State 1, Line 1

The query processor is unable to produce a plan for the table or view 'Message_Secondary'

because the table resides in a filegroup which is not online.

This is exactly the behavior we expect, since the secondary filegroup is still offline. In a
well-designed database we would, at this point, be able to access all of the most critical
data, leaving just the least-used data segmented into the filegroups that will be restored
later.

The real bonus is that we can subsequently restore the other filegroups, while the
database is up and functioning! Nevertheless, the online restore is going to be an
I/O-intensive process and we would want to affect the users as little as possible, while
giving as much of the SQL Server horsepower as we could to the restore. That means that
it's best to wait till a time when database access is sparse before restoring the subsequent
filegroups, as shown in Listing 9-36.

USE [master]
GO
RESTORE DATABASE [DatabaseForPartialRestore]
FROM DISK = 'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_FG_SECONDARY.bak'
WITH RECOVERY
GO

340

Chapter 9: File and Filegroup Backup and Restore

RESTORE LOG [DatabaseForPartialRestore]
FROM DISK = 'C:\SQLBackups\Chapter9\DatabaseForPartialRestore_LOG_2.trn'
WITH RECOVERY
GO

Listing 9-36: Restoring the secondary filegroup.

We restore the secondary full file backup, followed by all subsequent log backups, so
that SQL Server can bring the other filegroup back online while guaranteeing relational
integrity. Notice that in this case each restore is using WITH RECOVERY; in an online
piecemeal restore, with the Enterprise edition, each restore leaves the database online and
accessible to the end-user. The first set of restores, in Listing 9-34, used NORECOVERY, but
that was just to get us to the point where the primary filegroup was online and available.
All subsequent restore steps use RECOVERY.

Rerun Listing 9-35, and all of the data should be fully accessible!

Common Issues with File Backup and Restore

What's true for any backup scheme we've covered throughout the book, involving the
management of numerous backup files of different types, is doubly true for file backups:
the biggest danger to the DBA is generally the loss or corruption of one of those files.

Once again, the best strategy is to minimize the risk via careful planning and documen-
tation of the backup strategy, careful storage and management of the backup files and
regular, random backup verification via test restores (as described in Chapter 2). If a full
file backup goes missing, or is corrupt, we'll need to start the restore from the previous
good full file backup, in which case we had better have a complete chain of transaction
log files in order to roll past the missing full file backup (any differentials that rely on the
missing full one will be useless).

341

Chapter 9: File and Filegroup Backup and Restore

A similar argument applies to missing differential file backups; we'll have to simply rely
on the full file backup and the chain of log files. If a log file is lost, the situation is more
serious. Transaction log files are the glue that holds together the other two file backup
types, and they should be carefully monitored to make sure they are valid and that they
are being stored locally as well as on long-term storage. Losing a transaction log backup
can be a disaster if we do not have a set of full file and file differential backups that cover
the time frame of the missing log backup. If a log file is unavailable or corrupt, and we
really need it to complete a restore operation, we are in bad shape. In this situation, we
will not be able to restore past that point in time and will have to find a way to deal with
the data loss. This is why managing files carefully, and keeping a tape backup offsite is so
important for all of our backup files.

File Backup and Restore SLA

File backup and restore will most likely be a very small part of most recoverability strat-
egies. For most databases, the increased management responsibility of file backups will
outweigh the benefits gained by adopting such a backup strategy. As a DBA, you may
want to "push back" on a suggestion of this type of backup unless you judge the need to
be there. If the database is too large to perform regular (e.g. nightly) full database backups
and the acceptable down-time is too short to allow a full database restore, then file
backups would be needed, but they should not be the norm for most DBAs.

If file backups are a necessity for a given database, then the implications of this, for
backup scheduling and database recovery times, need to be made clear in the SLA. Of
course, as we've demonstrated, down time could in some circumstances, such as where
online piecemeal restore is possible, be much shorter.

As with all backup and restore SLAs, once agreed, we need to be sure that we can
implement a backup and recovery strategy that will comply with the maximum tolerance
to data loss and that will bring a database back online within agreed times in the event of
a disaster, such as database failure or corruption.

342

Chapter 9: File and Filegroup Backup and Restore

Considerations for the SLA agreement, for any databases requiring file backups include
those shown below.

•	 Scheduling of full file backups – I recommend full file backup at least once per week,
although I've known cases where we had to push beyond this as it wasn't possible to
get a full backup of each of the data files in that period.

•	 Scheduling of differential file backups – I recommend scheduling differential
backups on any day where a full file backup is not being performed. As discussed in
Chapter 7, this can dramatically decrease the number of log files to be processed for
a restore operation.

•	 Scheduling of transaction log backups – These should be taken daily, at an interval
chosen by yourself and the project manager whose group uses the database. I would
suggest taking log backups of a VLDB using file backups at an interval of no more
than 1 hour. Of course, if the business requires a more finely-tuned window of recov-
erability, you will need to shorten that schedule down to 30 or even 15 minutes, as
required. Even if the window of data loss is more than 1 hour, I would still suggest
taking log backups hourly.

For any database, it's important to ensure that all backups are completing successfully,
and that all the backup files are stored securely and in their proper location, whether on a
local disk or on long-term tape storage. However, in my experience, the DBA needs to be
exceptionally vigilant in this regard for databases using file backups. There are many more
files involved, and a missing log file can prevent you from being able to restore a database
to a consistent state. With a missing log file and in the absence of a full file or differential
file backup that covers the same time period, we'd have no choice but to restore to a point
in time before the missing log file was taken. These log backups are also your "backup of a
backup" in case a differential or full file backup goes missing.

I would suggest keeping locally at least the last two full file backups, subsequent differ-
ential file backup and all log backups spanning the entire time frame of these file backups,
even after they have been written to tape and taken to offsite storage.

343

Chapter 9: File and Filegroup Backup and Restore

It may seem like a lot of files to keep handy, but since this is one of the most file intensive
types of restores, it is better to be more safe than sorry. Waiting for a file from tape
storage can cost the business money and time that they don't want to lose.

Restore times for any database using file backups can vary greatly, depending on the
situation; sometimes we'll need to restore several, large full file backups, plus any differ-
ential backups, plus all the necessary log backups. Other times, we will only need to
restore a single file or filegroup backup plus the covering transaction log backups. This
should be reflected in the SLA, and the business owners and end-users should be prepared
for this varying window of recovery time, in the event that a restore is required. If the
estimated recovery time is outside acceptable limits for complete restore scenarios, then
if the SQL Server database in question is Enterprise Edition, y consider supporting the
online piecemeal restore process discussed earlier. If not, then the business owner will
need to weigh up the cost of upgrading to Enterprise Edition licenses, against the cost of
extended down-time in the event of a disaster.

As always, the people who use the database will drive the decisions made and reflected in
the SLA. They will know the fine details of how the database is used and what processes
are run against the data. Use their knowledge of these details when agreeing on appro-
priate data loss and recovery time parameters, and on the strategy to achieve them.

Forcing Failures for Fun

After a number of graceful swan dives throughout this chapter, get ready for a few belly-
flops! Listing 9-37 is an innocent-looking script that attempts to take a full file backup of
the secondary data file of the DatabaseForFileBackups database. We've performed several
such backups successfully before, so try to figure out what the problem is before you
execute it.

344

Chapter 9: File and Filegroup Backup and Restore

USE [master]
GO

BACKUP DATABASE [DatabaseForFileBackups] FILE = N'SECONDARY'
TO DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Full2.bak'
WITH STATS = 10
GO

Listing 9-37: File/filegroup confusion.

The error is quite subtle so, if you can't spot it, go ahead and execute the script and take a
look at the error message, shown in Figure 9-8.

Figure 9-8: The file "SECONDARY" is not part of the database…

The most revealing part of the error message here states that The file "SECONDARY" is
not part of database "DatabaseForFileBackups. However, we know that the SECONDARY
filegroup is indeed part of this database. The error we made was with our use of the FILE
parameter; SECONDARY is the name of the filegroup, not the secondary data file. We can
either change the parameter to FILEGROUP (since we only have one file in this filegroup),
or we can use the FILE parameter and reference the name of the secondary data file
explicitly (FILE= N'DatabaseForFileBackups_Data2').

Let's now move on to a bit of file restore-based havoc. Consider the script shown in
Listing 9-38, the intent of which appears to be to restore our DatabaseForFileBackups
database to the state in which it existed when we took the second transaction log
backup file.

345

Chapter 9: File and Filegroup Backup and Restore

USE [Master]
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Full.bak'
WITH NORECOVERY, REPLACE
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups_Data2'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG2_Full.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForFileBackups] FILE = N'DatabaseForFileBackups'
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_FG1_Diff.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForFileBackups]
FROM DISK = N'C:\SQLBackups\Chapter9\DatabaseForFileBackups_TLOG2.trn'
WITH RECOVERY
GO

Listing 9-38: File restore failure.

The error in the script is less subtle, and I'm hoping you worked out what the problem is
before seeing the error message in Figure 9-8.

Listing 9-39: The backup set is too recent…

346

Chapter 9: File and Filegroup Backup and Restore

We can see that the first three RESTORE commands executed successfully but the fourth
failed, with a message stating that the LSN contained in the backup was too recent to
apply. Whenever you see this sort of message, it means that a file is missing from your
restore script. In this case, we forgot to apply the differential file backup for the secondary
data file; SQL Server detects the gap in the LSN chain and aborts the RESTORE command,
leaving the database in a restoring state.

The course of action depends on the exact situation. If the differential backup file
is available and you simply forgot to include it, then restore this differential backup,
followed by TLOG2, to recover the database. If the differential file backup really is missing
or corrupted, then you'll need to process all transaction log backups taken after the full
file backup was created. In our simple example this just means TLOG and TLOG2, but in a
real-world scenario this could be quite a lot of log backups.

Again, hopefully this hammers home the point that it is a good idea to have more than
one set of files on hand, or available from offsite storage, which could be used to bring
your database back online in the event of a disaster. You never want to be in the situation
where you have to lose more data than is necessary, or are not be able to restore at all.

Summary

In my experience, the need for file backup and restore has tended to be relatively rare,
among the databases that I manage. The flipside to that is that the databases that do need
them tend to be VLDBs supporting high visibility projects, and all DBAs need to make
sure that they are well-versed in taking, as well as restoring databases from, the variety of
file backups.

File backup and restore adds considerable complexity to our disaster recovery strategy, in
terms of both the number and the type of backup file that must be managed. To gain full
benefit from file backup and restores, the DBA needs to give considerable thought to the
file and filegroup architecture for that database, and plan the backup and restore process

347

Chapter 9: File and Filegroup Backup and Restore

accordingly. There are an almost infinite number of possible file and filegroup architec-
tures, and each would require a subtly different backup strategy. You'll need to create
some test databases, with multiple files and filegroups, work through them, and then
document your approach. You can design some test databases to use any number of data
files, and then create jobs to take full file, differential file, and transaction log backups that
would mimic what you would use in a production environment. Then set yourself the
task of responding to the various possible disaster scenarios, and bring your database back
online to a certain day, or even a point in time that is represented in one of the trans-
action log backup files.

348

Chapter 10: Partial Backup and
Restore

Partial backups are similar to file and filegroup backups in that they allow us to back
up only a subset of the data files that comprise a database. However, whereas file and
filegroup backups allow us to back up specific, individual files and filegroups, partial
backups will make a backup copy of the primary filegroup and all read/write filegroups,
omitting by default any filegroups designated as READONLY. This means that partial
backups are only relevant for databases that contain read-only filegroups; otherwise,
a partial backup will capture exactly the same data and objects as an equivalent full
database backup.

Partial backups are available in SQL Server 2005 and later, and were designed to reduce
the backup footprint for large databases that contain a high proportion of read-only
data. After all, why would we back up the same data each night when we know that it
cannot have been changed, since it was in a read-only state? We wouldn't, or shouldn't, be
backing up that segment of the data on a regular schedule.

In this chapter, we will discuss:

•	 why and where partial backups may be applicable in a backup and restore scheme

•	 how to perform partial and differential partial backups

•	 how to restore a database that adopts a partial backup strategy

•	 potential problems with partial backups and how to avoid them.

349

Chapter 10: Partial Backup and Restore

Why Partial Backups?

Partial backups allow us to back up, on a regular schedule, only the read-write objects
and data in our databases. Any data and objects stored in read-only filegroups will not,
by default, be captured in a partial backup. From what we've discussed in Chapter 9, it
should be clear that we can achieve the same effect by capturing separate file backups of
each of the read-write filegroups. However, suppose we have a database that does not
require support for point-in-time restores; transaction log backups are required when
performing file-based backups, regardless, so this can represent an unnecessarily complex
backup and restore process.

With partial backups, we only need to take transaction log backups if they are needed
for point-in-time recovery, and so they are ideal for use with SIMPLE recovery model
databases, as a means to trim database backups down to a more manageable size, without
introducing the added administrative overhead of log backups. Note that partial backups
are valid for databases operating in any recovery model; it's just that they were specifi-
cally designed to simplify back up for very large, SIMPLE recovery model databases that
contain a large portion of read-only data.

So, in what situations might we want to adopt partial backups on a database in our
infrastructure? Let's say we have a SQL Server-backed application for a community
center and its public classes. The database holds student information, class information,
grades, payment data and other data about the courses. At the end of each quarter,
one set of courses completes, and a new set begins. Once all of the information for a
current quarter's courses is entered into the system, the data is only lightly manipulated
throughout the course lifetime. The instructor may update grades and attendance a few
times per week, but the database is not highly active during the day. Once the current set
of courses completes, at quarter's end, the information is archived, and kept for historical
and auditing purposes, but will not be subject to any further changes.

This sort of database is a good candidate for partial backups. The "live" course data will
be stored in a read-write filegroup. Every three months, this data can be appended to a

350

Chapter 10: Partial Backup and Restore

set of archive tables for future reporting and auditing, stored in a read-only filegroup
(this filegroup would be switched temporarily to read-write in order to run the archive
process). We can perform this archiving in a traditional data-appending manner by
moving all of the data from the live tables to the archive tables, or we could streamline
this process via the use of partitioning functions.

Once the archive process is complete and the new course data has been imported, we
can take a full backup of the whole database and store it in a safe location. From then
on, we can adopt a schedule of, say, weekly partial backups interspersed with daily
differential partial backups. This way we are not wasting any space or time backing
up the read-only data.

Also, it may well be acceptable to operate this database in SIMPLE recovery model, since
we know that once the initial course data is loaded, changes to the live course data are
infrequent, so an exposure of one day to potential data loss may be tolerable.

In our example, taking a full backup only once every three months may seem a little too
infrequent. Instead, we might consider performing a monthly full backup, to provide a
little extra insurance, and simplify the restore process.

Performing Partial Database Backups

In most DBAs' workplaces, partial backups will be the least used of all the backup
types so, rather than walk through two separate examples, one for native SQL Server
backup commands and one for SQL Backup, we'll only work through an example of
partial backup and restore using native T-SQL commands, since partial backups are not
supported in either SSMS or in the Maintenance Plan wizard. The equivalent SQL Backup
commands will be presented, but outside the context of a full worked example.

351

Chapter 10: Partial Backup and Restore

Preparing for partial backups

Listing 10-1 shows the script to create a DatabaseForPartialBackups database with
multiple data files. The primary data file will hold our read-write data, and a secondary
data file, in a filegroup called Archive, will hold our read-only data. Having created the
database, we immediately alter it to use the SIMPLE recovery model.

USE [master]
GO

CREATE DATABASE [DatabaseForPartialBackups] ON PRIMARY
(NAME = N'DatabaseForPartialBackups'
 , FILENAME = N'C:\SQLData\DatabaseForPartialBackups.mdf'
 , SIZE = 10240KB , FILEGROWTH = 10240KB), FILEGROUP [Archive]
(NAME = N'DatabaseForPartialBackups_ReadOnly'
 , FILENAME = N'C:\SQLData\DatabaseForPartialBackups_ReadOnly.ndf'
 , SIZE = 10240KB , FILEGROWTH = 10240KB) LOG ON
(NAME = N'DatabaseForPartialBackups_log'
 , FILENAME = N'C:\SQLData\DatabaseForPartialBackups_log.ldf'
 , SIZE = 10240KB , FILEGROWTH = 10240KB)
GO

ALTER DATABASE [DatabaseForPartialBackups] SET RECOVERY SIMPLE
GO

Listing 10-1: Creating the DatabaseForPartialBackups test database.

The script is fairly straightforward and there is nothing here that we haven't discussed in
previous scripts for multiple data file databases. The Archive filegroup will eventually be
set to read-only, but first we are going to need to create some tables in this filegroup and
populate one of them with data, as shown in Listing 10-2.

352

Chapter 10: Partial Backup and Restore

USE [DatabaseForPartialBackups]
GO

CREATE TABLE dbo.MainData
 (
 ID INT NOT NULL
 IDENTITY(1, 1) ,
 Message NVARCHAR(50) NOT NULL
)
ON [PRIMARY]
GO

CREATE TABLE dbo.ArchiveData
 (
 ID INT NOT NULL ,
 Message NVARCHAR(50) NOT NULL
)
ON [Archive]
GO

INSERT INTO dbo.MainData
VALUES ('Data for initial database load: Data 1')
INSERT INTO dbo.MainData
VALUES ('Data for initial database load: Data 2')
INSERT INTO dbo.MainData
VALUES ('Data for initial database load: Data 3')
GO

Listing 10-2: Creating the MainData and ArchiveData tables and populating the MainData table.

The final preparatory step for our example is to simulate an archiving process, copying
data from the MainData table into the ArchiveData table, setting the Archive
filegroup as read-only, and then deleting the archived data from MainData, and inserting
the next set of "live" data.

Before running Listing 10-3, make sure there are no other query windows connected
to the DatabaseForPartialBackups database. If there are, the conversion of the
secondary file group to READONLY will fail, as we need to have exclusive access on the
database before we can change filegroup states.

353

Chapter 10: Partial Backup and Restore

USE [DatabaseForPartialBackups]
GO

INSERT INTO dbo.ArchiveData
 SELECT ID ,
 Message
 FROM MainData
GO

ALTER DATABASE [DatabaseForPartialBackups] MODIFY FILEGROUP [Archive] READONLY
GO

DELETE FROM dbo.MainData
GO

INSERT INTO dbo.MainData
VALUES ('Data for second database load: Data 4')
INSERT INTO dbo.MainData
VALUES ('Data for second database load: Data 5')
INSERT INTO dbo.MainData
VALUES ('Data for second database load: Data 6')
GO

Listing 10-3: Data archiving and secondary data load.

Finally, before we take our first partial backup, we want to capture one backup copy
of the whole database, including the read-only data, as the basis for any subsequent
restore operations. We can take a partial database backup before taking a full one,
but we do want to make sure we have a solid restore point for the database, before
starting our partial backup routines. Therefore, Listing 10-4 takes a full database
backup of our DatabaseForPartialBackups database. Having done so, it also
inserts some more data into MainData, so that we have fresh data to capture in our
subsequent partial backup.

354

Chapter 10: Partial Backup and Restore

USE [master]
GO

BACKUP DATABASE DatabaseForPartialBackups
TO DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_FULL.bak'
GO

INSERT INTO DatabaseForPartialBackups.dbo.MainData
VALUES ('Data for third database load: Data 7')
INSERT INTO DatabaseForPartialBackups.dbo.MainData
VALUES ('Data for third database load: Data 8')
INSERT INTO DatabaseForPartialBackups.dbo.MainData
VALUES ('Data for third database load: Data 9')
GO

Listing 10-4: Full database backup of DatabaseForPartialBackups, plus third data load.

The output from the full database backup is shown in Figure 10-1. Notice that, as
expected, it processes both of our data files, plus the log file.

Processed 176 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups' on file 1.

Processed 16 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups_ReadOnly' on file 1.

Processed 2 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups_log' on file 1.

BACKUP DATABASE successfully processed 194 pages in 0.043 seconds (35.110 MB/sec).

Figure 10-1: Output from the full database backup.

Partial database backup using T-SQL

We are now ready to perform our first partial database backup, which will capture the
data inserted in our third data load, as shown in Listing 10-5.

355

Chapter 10: Partial Backup and Restore

BACKUP DATABASE DatabaseForPartialBackups READ_WRITE_FILEGROUPS
TO DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Full.bak'
GO

Listing 10-5: A partial backup of DatabaseForPartialBackups.

The only difference between this backup command and the full database backup
command shown in Listing 10-4 is the addition of the READ_WRITE_FILEGROUPS
option. This option lets SQL Server know that the command is a partial backup and to
only process the read-write filegroups contained in the database.

The output should be similar to that shown in Figure 10-2. Notice that this time only the
primary data file and the log file are processed. This is exactly what we expected to see:
since we are not processing any of the read-only data, we shouldn't see that data file being
accessed in the second backup command.

Processed 176 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups' on file 1.

Processed 2 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups_log' on file 1.

BACKUP DATABASE...FILE=<name> successfully processed 178 pages in 0.039 seconds (35.481

MB/sec).

Figure 10-2: Partial backup results.

Differential partial backup using T-SQL

Just as we can have differential database backups, which refer to a base full database
backup, so we can take differential partial database backups that refer to a base partial
database backup, and will capture only the data that changed in the read-write data files,
since the base partial backup was taken.

356

Chapter 10: Partial Backup and Restore

Before we run a differential partial backup, we need some fresh data to process.

USE [DatabaseForPartialBackups]
GO

INSERT INTO MainData
VALUES ('Data for fourth database load: Data 10')
INSERT INTO MainData
VALUES ('Data for fourth database load: Data 11')
INSERT INTO MainData
VALUES ('Data for fourth database load: Data 12')
GO

Listing 10-6: Fourth data load, in preparation for partial differential backup.

Listing 10-7 shows the script to run our partial differential backup. The one significant
difference is the inclusion of the WITH DIFFERENTIAL option, which converts the
command from a full partial to a differential partial backup.

USE [master]
GO

BACKUP DATABASE [DatabaseForPartialBackups] READ_WRITE_FILEGROUPS
TO DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Diff.bak'
WITH DIFFERENTIAL
GO

Listing 10-7: Performing the partial differential backup.

Once this command is complete, go ahead and check the output of the command in the
messages tab to make sure only the proper data files were processed. We are done taking
partial backups for now and can move on to our restore examples.

357

Chapter 10: Partial Backup and Restore

Performing Partial Database Restores

We will be performing two restore examples: one restoring the DatabaseForPartial-
Backups database to the state in which it existed after the third data load, using the full
database and full partial backup files, and one restoring the database to its state after the
fourth data load, using the full database, full partial, and differential partial backup files.

Restoring a full partial backup

Listing 10-8 show the two simple steps in our restore process. The first step restores our
full database backup file, which will restore the data and objects in both our read-write
and read-only filegroups. In this step, we include the NORECOVERY option, so that SQL
Server leaves the database in a state where we can apply more files. This is important
so that we don't wind up with a database that is online and usable before we apply the
partial backup.

The second step restores our full partial backup file. This will overwrite the read-write
files in the existing database with the data from the backup file, which will contain all the
data we inserted into the primary data file, up to and including the third data load. We
specify that this restore operation be completed with RECOVERY.

USE [master]
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_FULL.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Full.bak'
WITH RECOVERY
GO

Listing 10-8: Restoring the partial full database backup.

358

Chapter 10: Partial Backup and Restore

The output from running this script is shown in Figure 10-3. We should see all files being
processed in the first command, and only the read-write and transaction log file being
modified in the second command.

Processed 176 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups' on file 1.

Processed 16 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups_ReadOnly' on file 1.

Processed 2 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups_log' on file 1.

RESTORE DATABASE successfully processed 194 pages in 0.760 seconds (1.986 MB/sec).

Processed 176 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups' on file 1.

Processed 2 pages for database 'DatabaseForPartialBackups', file

'DatabaseForPartialBackups_log' on file 1.

RESTORE DATABASE ... FILE=<name> successfully processed 178 pages in 0.124 seconds (11.159

MB/sec).

Figure 10-3: Partial database backup restore output.

Everything looks good, and exactly as expected, but let's put on our Paranoid DBA hat
once more and check that the restored database contains the right data.

USE [DatabaseForPartialBackups]
GO

SELECT ID ,
 Message
FROM dbo.MainData
SELECT ID ,
 Message
FROM dbo.ArchiveData

Listing 10-9: Checking out our newly restored data.

359

Chapter 10: Partial Backup and Restore

Hopefully, we'll see three rows of data in the ArchiveData table and six rows of data in
the read-write table, MainData, as confirmed in Figure 10-4.

Figure 10-4: Results of the data check on our newly restored database.

Restoring a differential partial backup

Our restore operation this time is very similar, except that we'll need to process all three
of our backup files, to get the database back to its state after the final data load. You may
be wondering why it's necessary to process the full partial backup in this case, rather than
just the full backup followed by the differential partial backup. In fact, the full database
backup cannot serve as the base for the differential partial backup; only a full partial
backup can serve as the base for a differential partial backup, just as only a full database
backup can serve as a base for a differential database backup. Each differential partial
backup holds all the changes since the base partial backup so, if we had a series of differ-
ential partial backups, we would only need to restore the latest one in the series.

360

Chapter 10: Partial Backup and Restore

Listing 10-10 shows the script; we restore the full database and full partial backups,
leaving the database in a restoring state, then apply the differential partial backup and
recover the database.

USE [master]
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_FULL.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Full.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Diff.bak'
WITH RECOVERY
GO

Listing 10-10: Restoring the partial differential backup file.

Once again, check the output from the script to make sure everything looks as it
should, and then rerun Listing 10-9 to verify that there are now three more rows in
the MainData table, for a total of nine rows, and still only three rows in the
ArchiveData table.

Special case partial backup restore

Here, we'll take a quick look at a special type of restore operation that we might term a
"partial online piecemeal restore," which will bring the database online by restoring only
the read-only filegroup in the database (requires Enterprise edition), as shown in Listing
10-11. This type of restore can be done with both full partial backups as well as full file

361

Chapter 10: Partial Backup and Restore

backups, provided the full file backup contains the primary filegroup, with the database
system information. This is useful if we need to recover a specific table that exists in the
read-write filegroups, or we want to view the contents of the backup without restoring
the entire database.

-- restore the read-write filegroups
RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Full.bak'
WITH RECOVERY, PARTIAL
GO

Listing 10-11: Performing a partial online restore.

Now, we should have a database that is online and ready to use, but with only the
read-write filegroup accessible, which we can verify with a few simple queries, shown
in Listing 10-12.

USE [DatabaseForPartialBackups]
GO

SELECT ID ,
 Message
FROM MainData
GO
SELECT ID ,
 Message
FROM ArchiveData
GO

Listing 10-12: Selecting data from our partially restored database.

The script attempts to query both tables and the output is shown in Figure 10-5.

362

Chapter 10: Partial Backup and Restore

Figure 10-5: Unable to pull information from the archive table.

We can see that we did pull six rows from the MainData table, but when we attempted to
pull data from the ArchiveData table, we received an error, because that filegroup was
not part of the file we used in our restore operation. We can see the table exists and even
see its structure, if so inclined, since all of that information is stored in the system data,
which was restored with the primary filegroup.

SQL Backup Partial Backup and Restore

In this section, without restarting the whole example from scratch, we will take a look at
the equivalent full partial and differential partial backup commands in SQL Backup, as
shown in Listing 10-13.

USE master
GO
-- full partial backup with SQL Backup
EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForPartialBackups]
READ_WRITE_FILEGROUPS
TO DISK = ''C:\SQLBackups\Chapter10\DatabaseForPartialBackups_Partial_Full.sqb''
WITH DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3, THREADCOUNT =
2"'

363

Chapter 10: Partial Backup and Restore

-- differential partial backup with SQL Backup
EXECUTE master..sqlbackup '-SQL "BACKUP DATABASE [DatabaseForPartialBackups]
READ_WRITE_FILEGROUPS
TO DISK = ''C:\SQLBackups\Chapter10\DatabaseForPartialBackups_Partial_Diff.sqb''
WITH DIFFERENTIAL, DISKRETRYINTERVAL = 30, DISKRETRYCOUNT = 10, COMPRESSION = 3,
THREADCOUNT = 2"'

Listing 10-13: A SQL Backup script for full partial and differential partial backups.

The commands are very similar to the native commands, and nearly identical to the
SQL Backup commands we have used in previous chapters. The only addition is the
same new option we saw in the native commands earlier in this chapter, namely
READ_WRITE_FILEGROUPS.

Listing 10-14 shows the equivalent restore commands for partial backups; again, they are
very similar to what we have seen before in other restore scripts. We restore the last full
database backup leaving the database ready to process more files. This will restore all of
the read-only data, and leave the database in a restoring state, ready to apply the partial
backup data. We then apply the full partial and differential partial backups, and recover
the database.

-- full database backup restore
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = ''C:\SQLBackups\Chapter10\DatabaseForPartialBackups_FULL.sqb''
WITH NORECOVERY"'

-- full partial backup restore
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK =
''C:\SQLBackups\Chapter10\DatabaseForPartialBackups_Partial_Full.sqb''
WITH NORECOVERY"'

-- differential partial backup restore
EXECUTE master..sqlbackup '-SQL "RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = ''C:\SQLBackups\Chapter10\DatabaseForPartialBackups_Partial_Diff.sqb''
WITH RECOVERY"'

Listing 10-14: A SQL Backup script for full and differential partial restores.

364

Chapter 10: Partial Backup and Restore

Possible Issues with Partial Backup and Restore

The biggest issue when restoring a database using partial backups is the storage and
management of the read-only data. This data is captured in a full database backup,
directly after the data import, and then not backed up again. As such, it is easy for its
existence to slip from a DBA's mind. However, the fact that this portion of the database is
backed up less frequently, does not mean it is less important; it is still an integral piece of
the recovery strategy, so manage each file in your backup strategy carefully and make sure
the full database backup doesn't get lost in the archival jungle.

When performing one of the full database backups on a database where the backup
strategy includes subsequent partial backups, it's a good idea to perform a checksum on
that full database backup (see Chapter 2 for details). This can, and most likely will, slow
down the backup speed but if you can take the speed hit, it's nice to have the reassurance
that this full backup is valid, since they will be captured infrequently. Of course,
performing a test restore with the newly created full backup file is even better!

If you do find that your full database backup has not been stored properly or that the
file is somehow corrupted, what can you do? Well, not a whole lot. Hopefully you have
multiple copies stored in different locations for just this type of situation. Keeping a
copy on long-term storage, as well as locally on a robust disk, are other good ideas when
dealing with data that is not backed up on a regular basis. Be diligent when you are
managing your backup files. Remember that your data is your job!

365

Chapter 10: Partial Backup and Restore

Partial Backups and Restores in the SLA

Like file backup and restore, partial backup and restore will most likely form a very small
part of your overall recoverability strategy; partial backups are a very useful and time
saving tool in certain instances, but they will not likely be the "go-to" backup type in most
situations, largely because most databases simply don't contain a large proportion of
read-only data.

However, if a strategy involving partial backups seems a good fit for a database then, in
the SLA for that database, you'll need to consider such issues as:

•	 frequency of refreshing the full database backup

•	 frequency of full partial and differential partial backups

•	 are transaction log backups still required?

As noted earlier, partial backups are designed with SIMPLE recovery model databases in
mind. When applied in this way, it means that we can only restore to the last backup that
was taken, most likely a full partial or a differential partial backup, and so we do stand to
lose some data modifications in the case of, say, a midday failure. That is something you
have to weigh against your database restore needs to decide if this type of backup will
work for you. Like every other type of backup, weigh up the pros and cons to see which
type, or combination of types, is right for your database.

Just because this type of backup was designed mainly for SIMPLE recovery model
databases, it doesn't mean that we can only use it in such cases. For a FULL recovery
model database that has a much smaller window of data loss acceptability, such as
an hour, but does contain a large section of read-only data, this backup type can still
work to our advantage. We would, however, need to take transaction log backups in
addition to the partial full and partial differentials. This will add a little more complexity
to the backup and restore processes in the event of emergency, but will enable point-in-
time restore.

366

Chapter 10: Partial Backup and Restore

Forcing Failures for Fun

Much as I hate to end the chapter, and the book, on a note of failure, that is sometimes
the lot of the DBA; deal with failures as and when they occur, learn what to look out for,
and enforce measures to ensure the problem does not happen again. With that in mind,
let's walk through a doomed partial backup scheme. Take a look at the script in Listing
10-15 and, one last time, try to work out what the problem is before running it.

USE [master]
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_FULL.bak'
WITH NORECOVERY
GO

RESTORE DATABASE [DatabaseForPartialBackups]
FROM DISK = N'C:\SQLBackups\Chapter10\DatabaseForPartialBackups_PARTIAL_Diff.bak'
WITH RECOVERY
GO

Listing 10-15: Forcing a restore error with partial database backup restore.

Do you spot the mistake? Figure 10-6 shows the resulting SQL Server error messages.

Figure 10-6: Forced failure query results

367

Chapter 10: Partial Backup and Restore

The first error we get in the execution of our script is the error "File DatabaseForPartial-
Backups is not in the correct state to have this differential backup applied to it." This is telling
us that the database is not prepared to process our second restore command, using the
differential partial backup file.

The reason is that we have forgotten to process our partial full backup file. Since the
partial full file, not the full database file, acts as the base for the partial differential, we
can't process the partial differential without it. This is why our database is not in the
correct state to process that differential backup file.

Summary

You should now be familiar with how to perform both partial full and partial differential
backups and be comfortable restoring this type of backup file. With this, I invite you to sit
back for a moment and reflect on the fact that you now know how to perform all of the
major, necessary types of SQL Server backup and restore operation. Congratulations!

The book is over, but the journey is not complete. Backing up databases and performing
restores should be something all DBAs do on a very regular basis. This skill is paramount
to the DBA and we should keep working on it until the subject matter becomes second
nature.

Nevertheless, when and if disaster strikes a database, in whatever form, I hope this book,
and the carefully documented and tested restore strategy that it helps you generate,
will allow you to get that database back online with an acceptable level of data loss, and
minimal down-time.

Good luck!

Shawn McGehee

368

Appendix A: SQL Backup Pro
Installation and Configuration

This appendix serves as a Quick Reference on how to download, install and configure the
SQL Backup tool from Red Gate Software, so that you can work through any examples
in the book that use this tool. You can download a fully-functional trial version of the
software from Red Gate's website, at www.red-gate.com/products/dba/sql-backup/.

By navigating to the Support pages for this tool, you can find further and fuller infor-
mation on how to install, configure and use this tool, including step-by-step tutorials and
troubleshooting guides. See, for example, http://www.red-gate.com/supportcenter/
Content/SQL_Backup/help/6.5/SBU_Gettingstarted, and the links therein.

With the software package downloaded, there are basically two steps to the installation
process, first installing the SQL Backup GUI, and then the SQL Backup services.

SQL Backup Pro GUI Installation

This section will demonstrate how to install the SQL backup GUI tool, which will enable
you to register servers for use, and then execute and manage backups across your servers
(having first installed the SQL Backup services on each of these SQL Server machines).
The GUI tool will normally be installed on the client workstation, but can also be
installed on a SQL Server.

Open the SQL Backup zip file, downloaded from the Red Gate website, and navigate
to the folder called SQLDBABundle. Several files are available for execution, as shown
in Figure A-1. The one you want here, in order to install the SQL Backup GUI is

http://www.red-gate.com/products/dba/sql-backup/
http://www.red-gate.com/supportcenter/Content/SQL_Backup/help/6.5/SBU_Gettingstarted
http://www.red-gate.com/supportcenter/Content/SQL_Backup/help/6.5/SBU_Gettingstarted

369

Appendix A: SQL Backup Pro Installation and Configuration

SQLDBABundle.exe, so double-click the file, or copy the file to an uncompressed folder,
in order to begin the installation.

Figure A-1: Finding the installation file.

There is the option to install several DBA tools from Red Gate, but here you just want to
install SQL Backup (current version at time of writing was SQL Backup 6.5), so select that
tool, as shown in Figure A-2, and click the Next button to continue.

Figure A-2: Installing SQL Backup 6.5.

370

Appendix A: SQL Backup Pro Installation and Configuration

On the next page, you must accept the license agreement. This is a standard EULA and
you can proceed with the normal routine of just selecting the "I accept…" check box and
clicking Next to continue. If you wish to read through the legalese more thoroughly, print
a copy for some bedtime reading.

On the next screen, select the folder where the SQL Backup GUI and service installers
will be stored. Accept the default, or configure a different location, if required, and
then click Install. The installation process should only take a few seconds and, once
completed, you should see a success message and you can close the installer program.

That's all there is to it, and you are now ready to install the SQL Backup services on your
SQL Server machine.

SQL Backup Pro Services Installation

You can now use the SQL Backup GUI tool to connect to a SQL Server and install the
SQL Backup services on that machine. Open the SQL Backup GUI and, once past the
flash page offering some import/registration tools and demo screens (feel free to peruse
these at a later time), you'll arrive at the main SQL Backup screen.

Underneath the top menu items (currently grayed out), is a tab that contains a server
group named after the current time zone on the machine on which the GUI installed.
In the bottom third of the screen are several tables where, ultimately, will be displayed
the backup history for a selected server, current processes, log copy queues and job
information.

Right-click on the server group and select Add SQL Server, as shown in Figure A-3.

371

Appendix A: SQL Backup Pro Installation and Configuration

Figure A-3: Starting the server registration process.

Once the Add SQL Server screen opens, you can register a new server. Several pieces of
information will be required, as shown below.

•	 SQL Server: This is the name of the SQL Server to register.

•	 Authentication type: Choose to use your Windows account to register or a
SQL Server login.

•	 User name: SQL Login user name, if using SQL Server authentication.

•	 Password: SQL Login password, if using SQL Server authentication.

•	 Remember password: Check this option to save the password for a SQL Server login.

•	 Native Backup and restore history: Time period over which to import details of native
SQL Server backup and restore activity into your local cache.

372

Appendix A: SQL Backup Pro Installation and Configuration

•	 Install or upgrade server components: Leaving this option checked will automatically
start the installation or upgrade of a server's SQL Backup services.

Having have filled in the General tab information, you should see a window similar to
that shown in Figure A-4.

Figure A-4: SQL Server registration information.

There is a second tab, Options, which allows you to modify the defaults for
the options below.

•	 Location: You can choose a different location so the server will be placed
in the tab for that location.

•	 Group: Select the server group in which to place the server being registered.

•	 Alias: An alias to use for display purposes, instead of the server name.

373

Appendix A: SQL Backup Pro Installation and Configuration

•	 Network protocol: Select the SQL Server communication protocol to use
with this server.

•	 Network packet size: Change the default packet size for SQL Server
communications in SQL Backup GUI.

•	 Connection time-out: Change the length of time that the GUI will
attempt communication with the server before failing.

•	 Execution time-out: Change the length of time that SQL Backup will
wait for a command to start before stopping it.

Accept all the defaults for the Options page, and go ahead and click Connect. Once the
GUI connects to the server, you will need to fill out two more pages of information about
the service that is being installed. On the first page, select the account under which the
SQL Backup service will run; it will need to be one that has the proper permissions to
perform SQL Server backups, and execute the extended stored procedures that it will
install in the master database, and it will need to have the sysadmin server role, for the
GUI interface use.

You can use a built-in system account or a service account from an Active Directory
pool of users (recommended, for management across a domain). For this example, use
the Local System account. Remember, too, that in SQL Server 2008 and later, the
BUILTIN\Administrators group is no longer, by default, a sysadmin on the server, so
you will need to add whichever account you are using to the SQL Server to make sure you
have the correct permissions set up.

Figure A-5 shows an example of the security setup for a typical domain account for the
SQL Backup service on a SQL Server.

374

Appendix A: SQL Backup Pro Installation and Configuration

Figure A-5: Security setup for new server installation.

375

Appendix A: SQL Backup Pro Installation and Configuration

On the next page, you will see the SQL Server authentication credentials. You can use a
different account from the service account, but it is not necessary if the permissions are
set up correctly. Stick with the default user it has selected and click Finish to start the
installation. Once that begins, the installation files will be copied over and you should,
hopefully, see a series of successful installation messages, as shown in Figure A-6.

Figure A-6: Successful SQL backup service installation.

You have now successfully installed the SQL Backup service on a SQL Server. In the next
section, you'll need to configure that service.

376

Appendix A: SQL Backup Pro Installation and Configuration

SQL Backup Pro Configuration

Your newly-registered server should be visible in the default group (the icon to the right
of the server name indicates that this is a trial version of the software). Right-click the
server name to bring up a list of options, as shown in Figure A-7, some of which we will be
using throughout this book.

Figure A-7: Getting to the SQL Backup options configuration.

Go ahead and select Options… to bring up the Server Options window.

File management

The File Management tab allows you to configure backup file names automatically,
preserve historical data and clean up MSDB history on a schedule.

377

Appendix A: SQL Backup Pro Installation and Configuration

The first option, Backup folder, sets the default location for all backup files generated
through the GUI. This should point to the normal backup repository for this server so
that any backups that are taken, especially if one is taken off the regular backup schedule,
will end up in the right location.

The next option, File name format, sets the format of the auto-generated name option
that is available with SQL Backup, using either the GUI or T-SQL code. Of course, it is up
to you how to configure this setting, but my recommendation is this:
<DATABASE>_<DATETIME yyyymmdd_hhnnss>_<TYPE>

Using this format, any DBA can very quickly identify the database, what time the backup
was taken, and what type of backup it was, and it allows the files to be sorted in alpha-
betical and chronological order. If you store in a shared folder multiple backups from
multiple instances that exist on the same server, which I would not recommend, you can
also add the <INSTANCE> tag for differentiation.

The next option, Log file folder, tells SQL Backup where on the server to store the log
files from SQL Backup operations. Also in this section of the screen, you can configure
log backup management options, specifying for how long backups should be retained in
the local folder. I would recommend keeping at least 90 days' worth of files, but you could
keep them indefinitely if you require a much longer historical view.

The final section of the screen is Server backup history, which will clean up the backup
history stored in the msdb database; you may be surprised by how much historical data
will accumulate over time. The default is to remove this history every 90 days, which I
think is a little low. I would keep at least 180 days of history, but that is a choice you will
have to make based on your needs and regulations.

If the SQL Backup server components are installed on an older machine which has never
had its msdb database cleaned out, then the first time SQL Backup runs the msdb "spring
clean," it can take quite a long time and cause some blocking on the server. There are no
indexes on the backup and restore history tables in msdb, so it's a good idea to add some.

378

Appendix A: SQL Backup Pro Installation and Configuration

Once you are done configuring these options, the window should look similar, but
probably slightly different, to that shown in Figure A-8.

Figure A-8: File management configuration.

Email settings

The Email Settings tab will allow you to configure the settings for the emails that SQL
Backup can send to you, or to a team of people, when a failure occurs in, or warning is
raised for, one of your backup or restore operations. It's a very important setting to get
configured correctly, and tested.

There are just five fields that you need to fill out.

•	 SMTP Host: This is the SMTP server that will receive any mail SQL Backup needs to
send out.

379

Appendix A: SQL Backup Pro Installation and Configuration

•	 Port: The standard port is 25; do not change this unless instructed to by your
email administration team.

•	 Username: Email account user name. This is not needed if your SQL Server is autho-
rized by Exchange, or some other Email Server, to relay email from an address. Talk to
your email admins about getting this set up for your SQL Servers.

•	 Password: Email account password.

•	 Send from: This is the actual name of the email account from which the email will
be sent. You can use one email account for all of your SQL Servers (e.g. SQLBackups@
MyCompany.com), or use an identifiable account for each server (e.g. MyServer123@
MyCompany.com). If your SQL Servers are authorized to relay email without authen-
tication you can just use the second example without having to actually set up the mail
account. That is also something to discuss with your email administrators.

Once this screen is configured, it should look similar to that shown in Figure A-9. Always
use the Send Test Email… button to send a test email and make sure everything was set
up correctly.

380

Appendix A: SQL Backup Pro Installation and Configuration

Figure A-9: Setting up email settings.

You are now installed and ready to start with the SQL Backup sections of the book! As
noted at the start, if you have any trouble getting SQL Backup installed and running
properly, visit the support section of the Red Gate site. There are many FAQs on common
issues and a full message board with Red Gate support staff monitoring all of your
questions and concerns.

About Red Gate
You know those annoying jobs that spoil your day
whenever they come up?

Writing out scripts to update your production database,
or trawling through code to see why it’s running so slow.

Red Gate makes tools to fix those problems for you.
Many of our tools are now industry standards. In fact,
at the last count, we had over 650,000 users.

But we try to go beyond that. We want to support you
and the rest of the SQL Server and .NET communities in
any way we can.

First, we publish a library of free books on .NET and
SQL Server. You’re reading one of them now. You can
get dozens more from www.red-gate.com/books

Second, we commission and edit rigorously accurate articles from experts on the
front line of application and database development. We publish them in our online
journal Simple Talk, which is read by millions of technology professionals each year.

On SQL Server Central, we host the largest SQL Server community
in the world. As well as lively forums, it puts out a daily dose of
distilled SQL Server know-how through its newsletter, which now
has nearly a million subscribers (and counting).

Third, we organize and sponsor events (about 50,000 of you
came to them last year), including SQL in the City, a free event
for SQL Server users in the US and Europe.

So, if you want more free books and articles, or to get
sponsorship, or to try some tools that make your life easier,

then head over to www.red-gate.com

	Introduction
	Software Requirements and Code Examples
	Chapter 1: Basics of Backup and Restore
	Components of a SQL Server Database
	Data files
	Filegroups
	Transaction log

	SQL Server Backup Categories and Types
	SQL Server database backups
	SQL Server transaction log backups
	File backups

	Recovery Models
	Simple
	Full
	Bulk Logged

	Restoring Databases
	Restoring system databases
	Restoring single pages from backup

	Summary

	Chapter 2: Planning, Storage and Documentation
	Backup Storage
	Local disk (DAS or SAN)
	Network device
	Tape

	Backup Tools
	Maintenance plan backups
	Custom backup scripts
	Third-party tools

	Backup and Restore Planning
	Backup requirements
	Restore requirements
	An SLA template
	Example restore requirements and backup schemes
	Backup scheduling

	Backup Verification and Test Restores
	Back up WITH CHECKSUM
	Verifying restores
	DBCC CHECKDB

	Documenting Critical Backup Information
	Summary

	Chapter 3: Full Database Backups
	What is a Full Database Backup?
	Why Take Full Backups?
	Full Backups in the Backup and Restore SLA
	Preparing for Full Backups
	Choosing the recovery model
	Database creation
	Creating and populating the tables

	Taking Full Backups
	Native SSMS GUI method
	Native T-SQL method

	Native Backup Compression
	Verifying Backups
	Building a Reusable and Schedulable Backup Script
	Summary

	Chapter 4: Restoring From Full Backup
	Full Restores in the Backup and Restore SLA
	Possible Issues with Full Database Restores
	Large data volumes
	Restoring databases containing sensitive data
	Too much permission

	Performing Full Restores
	Native SSMS GUI full backup restore
	Native T-SQL full restore

	Forcing Restore Failures for Fun
	Considerations When Restoring to a Different Location
	Restoring System Databases
	Restoring the msdb database
	Restoring the master database

	Summary

	Chapter 5: Log Backups
	A Brief Peek Inside a Transaction Log
	Three uses for transaction log backups
	Performing database restores
	Large database migrations
	Log shipping

	Log Backups in the Backup and Restore SLA
	Preparing for Log Backups
	Choosing the recovery model
	Creating the database
	Creating and populating tables
	Taking a base full database backup

	Taking Log Backups
	The GUI way: native SSMS log backups
	T-SQL log backups

	Forcing Log Backup Failures for Fun
	Troubleshooting Log Issues
	Failure to take log backups
	Other factors preventing log truncation
	Excessive logging activity
	Handling the 9002 Transaction Log Full error
	Log fragmentation

	Summary

	Chapter 6: Log Restores
	Log Restores in the SLA
	Possible Issues with Log Restores
	Missing or corrupt log backup
	Missing or corrupt full backup
	Minimally logged operations

	Performing Log Restores
	GUI-based log restore
	T-SQL point-in-time restores
	Possible difficulties with point-in-time restores

	Forcing Restore Failures for Fun
	Summary

	Chapter 7: Differential Backup and Restore
	Differential Backups, Overview
	Advantages of differential backups
	Differential backup strategies
	Possible issues with differential backups
	Differentials in the backup and restore SLA

	Preparing for Differential Backups
	Recovery model
	Sample database and tables plus initial data load
	Base backup

	Taking Differential Backups
	Native GUI differential backup
	Native T-SQL differential backup
	Compressed differential backups

	Performing Differential Backup Restores
	Native GUI differential restore
	Native T-SQL differential restore
	Restoring compressed differential backups

	Forcing Failures for Fun
	Missing the base
	Running to the wrong base
	Recovered, already

	Summary

	Chapter 8: Database Backup and Restore with SQL Backup
	Preparing for Backups
	Full Backups
	SQL Backup full backup GUI method
	SQL Backup full backup using T-SQL

	Log Backups
	Preparing for log backups
	SQL Backup log backups

	Differential Backups
	Building a reusable and schedulable backup script
	Restoring Database Backups with SQL Backup
	Preparing for restore
	SQL Backup GUI restore to the end of a log backup
	SQL Backup T-SQL complete restore
	SQL Backup point-in-time restore to standby
	Restore metrics: native vs. SQL Backup

	Verifying Backups
	Backup Optimization
	Summary

	Chapter 9: File and Filegroup Backup and Restore
	Advantages of File Backup and Restore
	Common Filegroup Architectures
	File Backup
	Preparing for file backups
	SSMS native full file backups
	Native T-SQL file differential backup
	SQL Backup file backups

	File Restore
	Performing a complete restore (native T-SQL)
	Restoring to a point in time (native T-SQL)
	Restoring after loss of a secondary data file
	Quick recovery using online piecemeal restore

	Common Issues with File Backup and Restore
	File Backup and Restore SLA
	Forcing Failures for Fun
	Summary

	Chapter 10: Partial Backup and Restore
	Why Partial Backups?
	Performing Partial Database Backups
	Preparing for partial backups
	Partial database backup using T-SQL
	Differential partial backup using T-SQL

	Performing Partial Database Restores
	Restoring a full partial backup
	Restoring a differential partial backup
	Special case partial backup restore

	SQL Backup Partial Backup and Restore
	Possible Issues with Partial Backup and Restore
	Partial Backups and Restores in the SLA
	Forcing Failures for Fun
	Summary

	Appendix A: SQL Backup Installation and Configuration
	SQL Backup GUI Installation
	SQL Backup Services Installation
	SQL Backup Configuration
	File management
	Email settings

	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack
	_GoBack

