Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved




Introduction

What is this book? Why do you need it? How do you use it?

This book grew out of another book. In 1995, when FoxPro grew into Visual FoxPro, Tamar, together with
Ted Roche, the technical editor of this book, wrote a book called Hacker’s Guide to Visual FoxPro 3.0
(Addison-Wesley). The bulk of that book, nearly 700 of its 900-some pages, was an alphabetic reference to
every command, function, property, event, method, and system variable in Visual FoxPro. Oddly enough,
Tamar and Ted didn’t just sit down and create a single Word document starting from "A" and working their
way through to "Z." In fact, about 600 documents went into that section of the book.

When the writing was done and the smoke cleared, Ted had a brilliant idea. (Actually, he had the idea well
before the writing was done.) VFP 3 was the first version of the product to support Automation. He wrote
some code to take those 600 documents and put them together in the right order to create the reference
section of the Hacker's Guide.

In 1998, Tamar and Ted were at it again with an updated and expanded version called Hacker's Guide to
Visual FoxPro 6.0 (Hentzenwerke). This time, Tamar took on the task of assembling the book while Ted used
Automation to turn the whole thing into an HTML Help file. With the new material from VFP 5 and 6, there
weren’t 600 documents involved; there were more than 800.

In addition, changes in the way the book was managed meant that, before producing the final version, a lot of
clean-up work had to be done. For example, Microsoft had changed the name of the product during the beta
process. (Visual FoxPro 98 became Visual FoxPro 6.) The copy editor had done a wonderful job of finding
inconsistencies in terminology, catching things like "textbox" vs. "text box," but some sections edited early in
the process needed to be corrected. The biggest issue of all came very late in the game when a decision
was made to make the book 8.5" x 11" instead of 7" x 9"—this meant that margins had to be changed, tables
had to be resized, and many other changes were needed to every one of those 800+ documents.

Handling all of these changes by hand would have taken months and the book would have been hopelessly
late. Automation to the rescue. Tamar wrote VFP code to open each document in Word, do the necessary
processing, and save it as a new document. After all the processing was done, an updated version of Ted’s
original assembly code created the reference section.

Along the way, while falling in love with Automation, Tamar beat her head against the wall regularly. Brute
force was the order of the day. The Word documentation was helpful, as were the people on CompuServe’s
MSWord forum. But nowhere was there a real resource for someone writing Automation code like this,
especially someone writing it from Visual FoxPro.

Meanwhile, back at the ranch

While Tamar and Ted were having adventures with books, Della was working on perhaps the best-known



FoxPro application in the world. The Joint Flow and Analysis System for Transportation (JFAST) is a logistics
application written for the US Department of Defense. It aids in planning the movement of people and
materiel—give it a long list of what you need (from tanks to troops to canteens), along with where it is now,
where it needs to be, and when it needs to get there, and it produces a detailed schedule to load the people
and materiel onto ships and aircraft to get it to its destination. (That sentence is far too bald a statement of
what JFAST does. Watching this application in action is an astonishing experience.)

Della’s portion of the tool creates reports and briefings that explain the recommended plan. Automation is
used to produce PowerPoint briefings, suitable for presenting the plan to high ranking generals, and even the
Commander In Chief. Automation is also used to generate a Word document that analyzes the strengths and
weakness of the plan. Other modules were developed to automate Microsoft Project and Microsoft
Schedule+ to provide still more analytical views.

This all came about when Brian Jones, the genius behind JFAST (and its project manager), came to Della’s
office with an idea. He knew it was possible to take data from FoxPro tables and put it into another program
and that Automation (actually, DDE was the reigning technology at the time) was key. He described what he
wanted, and Della set off to accomplish her mission.

First came AutoBrief, the automated briefing system. The idea is that the user can select a series of slides
from a master list, and push the Start button. AutoBrief generates slides based on the current data in the
FoxPro tables. In AutoBrief's infancy, Office 95 was the current version. Documentation on the Office object
models was sparse; as for example code, what example code? Even VB examples were hard to come by.
But with a lot of perseverance, Della managed to conquer the PowerPoint object and the Excel model as
well—Excel is used to generate the many graphs that are needed in the presentation.

Then came AutoAnalysis, which produces a Word document containing lists, tables, charts, and even verbal
analysis. Again, using limited documentation, Della’s code produces a very professional document at the
touch of a button, including table of contents, index, headers, footers, lists, and Excel graphs and DataMaps.
At least Word and Excel had a macro recorder, making it much easier to learn the object model; PowerPoint
95 didn’t have a macro recorder at all. (See Chapter 2, "The Office Servers," to find out just how useful the
macro recorders are.)

Then Office 97 shipped. The entire object model for Excel, Word, and PowerPoint was radically changed.
The change was for the better because each application’s object model was much more consistent with the
other Office applications (that is, had better polymorphism). Regardless of how wonderful the changes were,
though, the code was still broken. Big time. It was then that Della realized the value of writing wrapper code.
Big time. Fortunately, the wrapper code was a little easier to write, since Office 97 had much better
documentation, in both quantity and quality. Error handling became an issue, as more and more users relied
heavily on this Automation feature, illustrating the need to check for broken registries, improper installations
of Office, and other gotchas that FoxPro developers aren’t used to checking.

Della’s been developing Automation code in FoxPro on a daily basis since 1995. She still wishes for a good
Automation resource for the FoxPro developer. So she jumped at the chance to write this book.

What is this book?

In this book, we’'ll try to save you from the pain we've already been through. We’'ll do it in a couple of ways.



First, we'll share the key pieces of automating the Office applications, the things we think pretty much anyone
working with them needs to know. In fact, we think most of this is relevant whether you're automating Office
from Visual FoxPro, Visual Basic, Visual C++, or Visual SquidPro.

Second, we'll tell you everything we know about how to find out more about the Office Automation servers.
We'll share our tricks for figuring out which object you need to talk to, what method to call, and which
property really matters.

Third, we'll tell you what tripped us up. We'll tell you about the methods that seemed intuitively obvious to us,
but in reality, were just the wrong thing.

Versions

This book was written with Visual FoxPro 6.0 (actually VFP 6.0 Service Pack 3, but it applies to the original
version as well) and with Microsoft Office 2000. Almost everything here applies as well to Office 97. When
there are serious version differences, you'll find an icon in the text to warn you.

On the VFP side, it's a little trickier. Automation worked quite well in VFP 5, and the chances are good that
almost everything here works there, too, but we haven't tested most of it there. As we're writing this book, we
hope to see early betas for the next version of Visual FoxPro soon. Everything in our past experience tells us
that all of this will work there, too, and in fact will work better, that is, that any problems we might have in VFP
6 are likely to get fixed in VFP 7 (or whatever they decide to call it).

Using the examples

Because we're FoxPro programmers, and because every other book on the market uses Visual Basic for
examples, the examples in this book are written in VFP. What's amazing, though, is that you have to really
look at the code examples to realize that. In this brave new world of Automation and interoperability, VFP
code and VB code don't look as different as they used to. But more about that later.

The major examples in this book use the TasTrade database that comes with Visual FoxPro. If you've
worked with another Microsoft product (say, Access), you may find the actual data familiar. That's because it
is—VFP’s TasTrade data is pretty much the same as Access’s Northwinds database. There are some
differences, but the customers, employees, and data within look pretty similar.

In VFP 6 and later, the system variable _SAMPLES points to the directory where sample programs and data
were installed. The examples in this book use this variable to find the TasTrade data. To install the sample
data, you must perform the MSDN portion of the VFP installation, which also installs the Help file.

If you're using an earlier version of VFP, replace references to _SAMPLES with HOME()+"\SAMPLES\". In
those versions, the samples were installed as part of the main VFP installation. No MSDN installation was
needed.

Most of the in-line examples throughout the book assume that you have already created the appropriate
Automation server and stored a reference to it in a variable. In the first chapter that addresses each of the
servers, we show you how to do so and introduce the variable that we use for that server (for example,
oWord for Word). After that, we assume the existence of the variable and that it has a valid reference. If



you're working through the examples from the Command Window as you read, you should find this
assumption quite comfortable.

For larger examples, we had to make a choice. In real applications, you almost always want to open the
Automation server, do what needs to be done, and close the server. In that situation, you can use a local
variable to hold the reference to the server. For our purposes, however, we usually want the server to stay
open and accessible following the example so that you can examine the results and reference the server
from the Command Window. However, we didn’t want to leave multiple instances of the servers running,
abandoned and using your system resources. So most of the examples that are included in the Developer
Downloads clear any variables that might be references to Automation objects, and then create a public
variable to reference the server. We do not recommend using this technique in your applications.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



This is dedicated to the ones we love.



Acknowledgements

As is true for any work of this sort, we couldn’t have written this book without the help of many people. We'll
start with shared thanks to the people who contributed in one way or another to the content of the book, then
finish with our more personal thank yous.

Our technical editor, Ted Roche, tested tons of examples, asked hard questions, caught us when we got
sloppy, and generally did the things technical editors are supposed to do. But he really did much more
because he’s the one who first showed Tamar how elegant Automation could be and got her hooked on it.
Without Ted, this book would never have existed.

Whil Hentzen has been a friend for much longer than he’s been a publishing magnate. Thanks for once again
providing an outlet for people who just need to put words on pages.

Lots of people answered our questions as we tried to understand how Office worked. Many of them are
Microsoft MVPs for the help they give others. Our thanks to Chris Woodman, Bob Buckland, Brian Reilly, Rolf
Keller, Jessie Louise McClennan, Mike Sherrill, and Steven Stern. Special thanks to Cindy Meister, who
reviewed some of the Word material in an earlier form, as well as answering tons of questions. Our apologies
to anyone we missed.

A couple of people provided more than just answers. Rick Strahl allowed us to include GetConstants.EXE, an
application that extracts the constants from a type library, in the Developer Download files available at

Wwww.hentzenwerke.com. See Chapter 2, "The Office Servers," for more information.

John V. Petersen introduced us to VFPCOM.DLL, which provides two-way communication between VFP and
Automation servers (see Chapter 13, "Inter-Office Communication”), and wrote a special DLL that makes it
work with PowerPoint. John’s DLL is included in the Developer Download files. Robert Green of Microsoft
also provided some of the information we needed to include VFPCOM.DLL.

Sometimes, the biggest help comes not from answering our questions, but from providing ideas and
opportunities. In 1995, Brian Jones approached Della with his ideas for an Office Automation component of
the famous JFAST program. Della’s been writing Automation code ever since. Thanks to Brian’s ideas and
the ability to implement them in such a long-lived project, Della has the knowledge and experience to
document for others in this book.

Over the years, far too many people in the FoxPro community have helped us out for us to begin to list them
all here. You know who you are, and we appreciate all your help. However, special thanks to Mac Rubel, who
helped formulate some of these ideas very early in the process, and Dan Freeman, who taught Tamar an
awful lot about spelunking in the Office object models.

Many people in a number of different product groups at Microsoft have participated in bringing Automation to
the point that it's a viable technology. We don't know their names, but we sure do appreciate their work.


http://www.hentzenwerke.com/

By the time you write the third book, your family gets kind of used to it and starts wondering if it's an addiction
of some sort. (It is.) Thanks once again to my husband, Marshal, who makes it all possible, and my sons,
Solomon and Nathaniel, who make it worthwhile.

To my extended family and friends, your willingness to let me babble on about my work is always
appreciated, as is the change of pace from it you provide.

Thanks as always to the crew at Advisor Media, and my other friends and colleagues in the professional

community.

—Tamar

Because this is my first book, my family is just getting used to this, and, thanks to Tamar’s influence, they're
assuming this is going to become a way of life. (I hope so.) My husband, Mike, has been a terrific source of
encouragement, inspiration, and support. My daughter, Kelsey, and my son, Kerry, have been wonderfully
patient, hearing me say many, many times, "We’'ll do that later, honey. Mommy’s writing her book, now."

Thanks to my Mom and Dad, for all their love and immense support. My extended family deserves a lot of
credit for putting up with my laptop at a number of family gatherings.

There are so many others of you to thank. Many thanks to the CompuServe FoxGang, for all the confidence
and knowledge you've helped me build. Thank you so much to my co-workers at the Systems Development
Institute at the University of Tennessee, and especially the entire JFAST team. And to all the friends and

acquaintances I've met on-line and at DevCons, thanks for your encouragement.

Tamar, Ted, and Whil: a special thanks to you for inviting me to collaborate with you, and make my dream of
writing a book come true.

—della

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 1 - Introducing Automation

Automation is the latest and most successful in a series of attempts at inter-application communication. It lets one application
boss another around.

Once upon a time, every application stood alone. If it needed to do something, it had to do it all by itself.
There was no alternative because each application took control of the computer when it ran. That was, more
or less, "a long time ago in a galaxy far, far away."

Since those long ago days of DOS, many schemes have been attempted to allow applications to cooperate
with each other. Each successive attempt has been an improvement upon the one that preceded it. (Well,
most of them have been improvements, anyway.) Automation is the latest and greatest in the never-ending
quest for applications that do one thing well and communicate with other applications that do something else
well.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



If all you have is a hammer, does that make everything a nail?

When you're really familiar with a product, it's tempting to use it for all your needs. Many people have been
doing that with their favorite applications for years. We know people who do their word processing in Quattro
Pro and others who do "database processing” with mail merge in Word.

Certainly it's true of FoxPro programmers. Need a number cruncher? Write it in FoxPro. Need a word
processor? Write it in FoxPro. Need a file manager? Write it in FoxPro. That we can do so many diverse
things is a testament to FoxPro’s strength and versatility. But using our hammer (FoxPro) to do it doesn't
make all those tasks nails.

Both users’ needs and applications’ capabilities are growing. While it made sense to write a simple word
processor for editing customer notes in FoxPro/DOS in 1994, it doesn’t make sense to do so in Visual FoxPro
6.0 in 2000. There are too many alternatives out there that can just be plugged into a VFP app.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



A brief history of Automation

In the beginning, there was DDE, Dynamic Data Exchange. DDE was Windows’ first attempt at allowing
applications to communicate directly with each other. (Before that, of course, applications could communicate
by sharing data through common file formats and the Clipboard.) With DDE, a document could be linked from
a client application into a document in a server application. The server exposed one or more "topics" that it
could make available; the client could then ask to "discuss" any of those topics. A number of applications still
offer DDE.

OLE, the successor to DDE, incorporated several approaches to inter-application communication. The
service that gives OLE its acronym, though, is the ability to put a document from one application (the server)
inside a document from another (the client). You can link the server document to the client document so that
the client document gets updated when the server document is changed. Alternatively, you can embed the
server document in the client document, which makes a copy of the server document, breaking its ties with
the original. These two choices led to the name Object Linking and Embedding. (Microsoft has actually
disavowed that version of the name. As far as it's concerned, OLE is just OLE, but we find it easier to
remember its meaning.)

Over time, OLE was extended to support in-place editing, which allows objects from one application to be
both viewed and edited in another. When the user decides to edit the linked object, the client application’s
menu is replaced by or supplemented with items from the server application’s menu. The user can edit the
server document as needed and then return to the client application, at which point the original menus and
toolbars return.

The frosting on the OLE cake, though, is Automation, which was introduced in OLE 2.0. With Automation,
commands can be issued in one application and sent to another. They're written in standard object code,
using the appropriate syntax for the host language (the one issuing them, which in our case is FoxPro). Think
of Automation as one application grabbing a megaphone and telling another one what to do. The number of
applications that work with Automation, either as the application holding the megaphone or as the application
listening on the other end, is increasing all the time.

OLE or ActiveX or COM or what?

Since all of this comes from Microsoft, it goes without saying that the names of things have changed over
time. When Automation was first introduced, it was called "OLE Automation." Then "OLE" was changed to
"ActiveX," and OLE Automation became, briefly, ActiveX Automation. Ultimately, Microsoft dropped "ActiveX"
from the name, and this technology became known as simply "Automation."

The technology that holds the whole thing together is COM (Component Object Model or Common Object
Model, depending on the phase of the moon), which specifies ways for applications to work together. The
COM umbrella incorporates the OLE/ActiveX techniques and even provides hooks into operating system
objects, many of which also work with Automation.

The latest, hottest version of all this is DCOM (for Distributed COM), which allows COM to work across
multiple machines. With DCOM, Automation can involve applications running on two different machines.



Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting Automation to work

Two applications are involved in any Automation session. The application that's in charge (issuing the orders)
is called the Automation client (or just client). The application that's being manipulated is the Automation
server (or just server). The client addresses an instance of the server as if it were any other object, reading
and setting properties and calling methods. This simple techniqgue means that a Visual FoxPro application
(the client) can address anything from the Office applications to Windows' file system to Lotus Notes to all
kinds of other things. In fact, VFP itself can be used as an Automation server.

To get started, the client creates an instance of the server application. (See the various "Basics" chapters in
the product-specific sections of this book for details on how to do so for each of the Office applications.)
Internally, when a client attempts to instantiate a server, Windows goes off to the registry and says, "Help!
Somebody wants to create such-and-such server.” The registry looks up the server by name and then finds
out what program it is and where that program is stored. Windows executes the program in question
(assuming it finds such an entry in the registry and finds the specified program where it's supposed to be). It
then returns a reference to the newly executing program to the client, which hangs on to it so it can find it
again later.

Obviously, there are lots of places along the way where something can go wrong. The server name might not
be found in the registry, the program might not be found where it's supposed to be, there may not be
sufficient system resources to start the program, and so on and so forth. If anything goes wrong, an error is
raised and the server fails to start. (See Chapter 14, "Handling Automation Errors," for ideas about what to do
when that happens.)

However, if all goes well, the client has a reference to the server and can start ordering the server around.
It's like being in a restaurant once the waiter has introduced himself. You know his name, and you know what
he looks like, so you can call him over when you need him, and you can start telling him what to do. Except
for one thing. You don’t know what's on the menu. You can make some educated guesses based on what
the place looks like. For an application, that corresponds to guesswork based on which application it is and
what you know it does. But to use the restaurant efficiently, you need the menu. To work with the application
server efficiently, you need to know what it can do. Chapter 2, "The Office Servers," examines how to find the
menu for an application server.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Where do you go from here?

The remaining chapters in Section | take a look at the Office servers generally and at VFP’s commands and
functions for writing Automation code. Chapter 2 shows how to explore the Office servers to find out what
they can do and how they do it. Chapter 3, "Visual FoxPro as an Automation Client," examines FoxPro’s role
as an Automation client.

Sections Il through V each focus on one of the Office applications. Word, Excel, and PowerPoint have a lot in
common, so those three sections are structured in a fairly similar manner, each starting with a "Basics"
chapter and then branching out into more advanced topics for that application. Outlook has its own outlook
on the world. (We don't discuss Access in this book because automating Access from Visual FoxPro didn’t
seem like a pressing need, though it is possible.)

It's also important to realize that to automate any application, you must first be familiar with that application.
This book does explain how various features of the Office applications work before showing how to automate
them, but it also assumes that you've used them before. If you've never opened PowerPoint and worked with
it interactively, you'll find Section 1V pretty tough going, for example. Spend some time as an end user before
you try to program it. We'll return to this theme over and over because it's an important one.

Section VI covers an assortment of advanced topics. First, we look at the construction of documents
involving multiple Office servers, including tasks like putting charts from Excel into PowerPoint presentations
or Word documents. Chapter 14 covers handling Automation errors. Your existing error handler probably
can’'t manage these for you because they don't happen inside FoxPro. Finally, in Chapter 15, "Wrapping Up
the Servers," we show why it's a good idea to write wrapper classes for the Automation servers—among
other things, it protects you when a new version of Office changes the Automation interface.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 2 - The Office Servers

Learning about the Office servers is a challenging task, but there are a variety of approaches, tools, and resources available.
Certain features of the Office applications, like collections, are common to all of them—mastering them up front will pay off
fast.

Microsoft Office incorporates a whole bunch of applications and applets, but the main reason people buy and
use it are the big two: Word and Excel. Along with them come a couple of others that are used by an
increasing number of people who may not have planned to do so initially—PowerPoint and Outlook.

Word is an incredibly powerful word processor. It provides users with the ability to create anything from a
simple note to complex reports and legal documents, and everything in between.

Excel is a sophisticated spreadsheet program. It includes integrated graphing capabilities and has a
significant collection of built-in financial, statistical, and mathematical functions.

PowerPoint builds and displays presentations. Like the other applications, its abilities range from simple to
complex—it offers everything from straightforward slides with a few bullet points and some text to full
multimedia shows.

Outlook is harder to describe because it has a little of everything. For some, it's simply a mail client. For
others, it's a calendar and to-do list. It also incorporates an address book, a journal, a notebook, and lots of
opportunities to customize.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Exploring the Office servers

All of the Office applications share a programming language—Visual Basic for Applications, or VBA. For
Automation developers, having a shared programming language isn’t as impressive as it sounds because,
while each Office application uses the same syntax and commands, that's only helpful if you're actually
writing in that programming language. For Automation, you're not. You're writing in the language of the client
application—the one controlling the Automation process.

On the other hand, for a variety of reasons, it's very handy to be able to read VBA when you're writing
Automation code. Since we're all programmers here, that’s not a big problem. But there are a couple of
peculiarities about VBA (from the FoxPro developer’s perspective, anyway) that make it hard to read for
those who are unfamiliar with it. We’'ll look at each of these issues as we dig into the Office servers.

To use the Office servers, then, the key issue is finding out what methods and properties they have and
determining the parameters to pass to their methods. There are three main approaches to take. In most
cases, you'll need to combine all three to get what you need. Beyond those, there are a couple of other ways
you can learn about Automation and then test out what you've learned.

Read the fine manual (RTFM)

Each of the Office servers has a Help file that documents its members. The method of getting to that Help file
varies with the application. In the big three—Word, Excel, and PowerPoint—you can access it from the main
Help menu for the application. On the Contents page, go down almost to the bottom. In Word and Excel
2000, look for "Programming Information” just above the bottom of the Contents list. In PowerPoint 2000, the
entry to find is "Microsoft PowerPoint Visual Basic Reference," also near the bottom of the Contents list. In all
three cases, you can open the specified item to see a list of Automation topics. Outlook’s Automation Help is
well hidden. You have to open the "Advanced Customization" topic to find "Microsoft Outlook Visual Basic
Reference."

éhws SAQ‘

o
Ay ShQQ Getting to the Help files is a little different in Office 97. You start out the same

way in Word, Excel, and PowerPoint—by choosing the Contents page from Help and scrolling
down to the bottom. Then, in all three, look for "Microsoft X Visual Basic Reference," where X
is the product you're using. When you choose that item, it opens to reveal "Visual Basic
Reference." Choosing that item opens a new Help window that contains just the Automation
Help for that product. Getting to Visual Basic Help for Outlook 97 is extremely complex. The
steps are spelled out in the main Help file—search for "Visual Basic." Understand, though,
that VBA is not the primary programming language for Outlook 97, and automating it with VBA
is trickier in some ways than automating the other Office 97 products.

If you can’t find the appropriate item in the Help contents, it means you didn't install the VBA Help file with the
application. To do so, you have to choose Custom installation. The standard installation doesn’t include these
files. (In Office 97, the standard installation was called "complete," but it wasn't.) You can install the VBA Help



files at any time by running Setup again. In Office 2000, you do so by choosing Visual Basic Help from Office
Tools. (By default, the VBA Help files are set to install on first use. If you know you're planning to do
Automation work, we suggest that you go ahead and install them on your hard drive in the first place. The
whole set of four [Word, Excel, PowerPoint, and Outlook] for Office 2000 is less than 5 MB.)

By this point, you may have noticed that getting to the VBA portion of the Help can be something of a pain. In
Office 2000, VBA Help is integrated into the regular Help and doesn’t open a separate window, so working
within it is difficult, too. In Office 97, once you get to VBA Help, it's way too easy to close it—just hit ESC and
it's gone.

Fortunately, there’s an easy alternative here. Although accessible from within the main Help file for its
respective application, the VBA Help for each Office application actually lives in a separate file. In Office 97,
the filename is in the form VBAapp8.HLP, where "app" is some form of the application name. For Office
2000, it's VBAapp9.CHM, because the Office 2000 applications use HTML Help; that's why you can't close
Help with ESC anymore. Given all of these difficulties in getting to VBA Help, we strongly recommend that
you create shortcuts on your desktop for each of the Help files you're likely to use. Then, they're only a
double-click away.

) sméb For the most part, the upgrade from Office 97 to Office 2000 is either positive or
neutral. We also like HTML Help in general. In fact, the electronic version of this book uses
HTML Help. However, the Office 2000 Help files, including the VBA Help files, are far less
useful than their Office 97 equivalents. In Office 97, Help files had three pages: Contents,
Index, and Find. Index featured an alphabetic list of terms from the Help file (like the index of a
book), while Find provided full-text searching. For the VBA Help files, the Index page offered

a quick way to go directly to any object, property, or method.

Office 2000 Help files have only two pages: Contents and Search. The team at Microsoft
merged the Index and Find pages to create a single Search page, which offers full-text search
without the real-time component of the Find page. There is no way to move quickly to a
keyword. We suspect that there are some good usability arguments for the new search
mechanism in the Help files for the main products. End users probably find this approach
more productive. However, we cannot understand how programmers can be expected to use
the VBA Help files productively without an index. (The best substitute for the Index page is the
separate alphabetical lists of Objects, Properties and Methods on the Contents page. While
we kept the VBA Help files on the Index page in Office 97, in Office 2000, we tend to keep it
set to the Contents page.)

Each of the VBA Help files includes a diagram of the object model for that product. The model is "live"—when
you click on it, you either move to another level of the diagram or to the appropriate entry in Help. Figure 1
shows the top level of the Word object model diagram.

The Help entries for objects include small pieces of the object model diagram as well—clicking on these also
jumps to the indicated entries. Figure 2 shows the entry for the Documents collection in the Word VBA Help
file. The dotted box that says "Multiple Objects" has been clicked, bringing up a dialog box of objects



contained in the Document object.

Despite the difficulties in getting directly to a particular item in Office 2000 Help (a task that was incredibly

easy in Office 97), the VBA Help files are generally clear and correct. If you know what you're looking for, you

can find it there. The real challenge, then, is to figure out what you're looking for.

Let the server write the code

Word, Excel, and PowerPoint have macro recorders that let you turn user actions into VBA code. (Outlook

supports macros, but unfortunately it doesn’t include a macro recorder.)

So one way to figure out how to automate something is to record a macro to do it, and then examine the

macro.

From the menu, choose Tools|Macro|Record New Macro to start recording. Give the macro a name

(preferably a meaningful one, so you can find it again and so you'll know what it is when you come across it

six months from now). Then interactively perform the operation you want to automate. When you're done,

click on the Stop Recording button on the Macro toolbar (which appears automatically when you start

recording).

Microsoft Word Objects

See Also

| Apphcation

— Addins [Addin)
% Answerwizard

ﬂ Azziztant

% AutoCaptions [AutoCaption]

% Browser

—| CaptionLabels [CaptionLabel)

— COMAddIns [COMAddin)
{ CommandBarz [CommandBar]

|
|
|
|
{ AutoCorrect | }
|
|
|
|

CommandB arControls [CommandB arControl] |

{ DefaultwebOptions

 Dialogs [Dialog)

% Documents [Document]

4

|
|
ﬂ Dictionaries [Dictionary] |
|
|

{ EmailOptions

EmailSignature |

ﬂFiIeCunverters [FileConverter] |

% FileSearch |

{ FontMames |

—{ KeysBoundT o [KeyBinding] |
—KeyBindings (KeyBinding) |

—{ Languages [Language] |

Dictionanes [Dictionary] |

—{Languageﬁetlings |

ListGalleries [ListG allery) |

l—{ListTempIates [LigtT emplate] |

L{ListLewels (ListLevel) |

— Mailingl abel |

CustomlLabels [CustomLabel] |

—{ MailMeszage

—1 Options

—{ RecentFiles [RecentFile]

|

|

|
—1 Selection | )

—{ SpellingSuggestions [SpellingSuggestion] |

—1 Synonyminfo

—{ Spstem

—Tasks [Task)

—{ Templates [Template]

4

% HangulHanjaConversionDictionaries [ Dictionary] |

— VBE

— Windows [Window) b




Legend

[ ] object and collection
[ obiject only

P Click red arrow to expand chart

Figure 1. The Word object model diagram. The Help file for each Office product contains a diagram of
the object model for that product. Clicking on one of the rectangles takes you to the Help entry for that
object. Clicking an arrow takes you to another level in the object model diagram.

To look at the recorded macro, choose Tools|Macro|Macros from the menu; that opens the Macros dialog
shown in Figure 3. Highlight the macro you just created (see, you need to know the name already), and then
choose Edit. This brings you into the Visual Basic Editor (VBE)—Figure 4 shows the highlighted macro from
Figure 3 as it appears in the VBE. This particular macro was recorded in Word. (You can also get to the VBE
by choosing Tools|Macro|Visual Basic Editor, or by pressing Alt-F11.)

Word Help M [=1E3
| FY

i Documents Collection Object —

WBObjECtS and Collections ;I See Also Properties Methods Events

Addin Object |App|icalion ‘

Addlns Collection Object

Adjustments Object Documents [Document] |

Application Object L{:Mulliple Objects |

AutoCaption Object

AutoCaptions Collection Object A collection of all the Document objects that are currently cpen in Word.,

AutoCarrect Object Using the Documents Collection

iu:ogorrectgntry O'geﬁt tion Obiect Use the Documents property to return the Documents collection. The following example displays the
utol-amecitnines Loflection Lijec names of the open documents,

AutoTextEntry Object

AutoTextEntries Caollection Object For Each aDoc In DOocuments

Bookmark Object A MTann —  m Mo & m T Rloane © xelaie

opics Found X
Buorder Object P
Borders Collection Object

Click a topic, then click Display:
Browser Object

Title Location - ocuments collection. The
\E Bookmarks Collection Object Microsoft Vord Help
Default¥¥ehOptions Object Characters Collection Object Microsoft Viord Help
Dialog Object CommandBars Collection Object Microsoft Office Yisual Basic Reference
Dialogs Collection Object Comments Collection Object Microsoft VWord Help
Dictionary Object Docqmen_tF'ropemes Collection Object M!crusoﬂ Office Yisual Basic Reference ument named "Sales.doc.”
Dictionaries Collection Obje Email Object Microsoft ilorc Help
Docurent Object Endnaotes Collection Object Microzoft Word Help -
Docurments Collection Obje | ‘ I I 4

DropCap Object ber to return a single ocument

DropDown Object Display I Cancel | without saving changes.

Email Object

Email#uthor Ohbject Documents {"Report .doc™) .Close JaveChanges :=wdDoMNotIaveChanges

EmailOptions Object

EmailSignature Object The index number represents the position of the document in the Documents collection. The following
Endnote Object example activates the first document in the Documents collection,

Endnotes Caollection Object

Envelape Object Documents (1) .Activate
K Remarks

Figure 2. Live Help. Even within Help entries, the object model diagrams are live. In this case, clicking
on the "Multiple Objects" rectangle calls up a dialog that lists other objects contained in the Document
object.

Macro name;

| Bun

| [y | - — | '




e 0 -
AddRedMacros — Cancel |

CreateRedStyle

I::Irru:un:s:t'ati|:|r| GERgs] Step Into |
FixDoubleQuotes

FixDoublaQuotesz Edit |
FixSingleQuotes =
ProductionMoteBullets
ProductionMoteFigure Create |
ProductionMote Tahle i =

Revisionson Delete |
SwitchLastTwa | —

J Organizer. .. |

Macros in: IAII active templates and documents -

Description:
Macro recorded October 8, 1999 by Tamar E. Granor

Figure 3. The Macros dialog. This dialog lists all the macros you've recorded or otherwise stored in an
Office application. It's one entry point to the Visual Basic Editor.

< Microsoft Visual Basic - Normal
JEiIe Edit View Insert Format Debug Run Tools Add-ns Window Help |
a8 @ o |y o abkl | MES 2B Ln195 Col -
“:MNormal - NewMacros (Code)

|(General) LI |Demonstratiunhl'lacm

End Sub

Sub DemconstrationMacro ()
T

' DemonstrationMacro Macro
" Macro recorded october 8, 1999 by Tamar E. Granor
'

felection TypeText Text:="This iz a 3illy macro. "

Jelection.Moveleft Unit:=wdWord, Count:=6, Extend:=wdExtend

Selection.Font.5ize = 164

gelection.Font.Bold = wdToggle

Selection.ParagraphFormat . Alignment = wdAlignParagraphCenter
End Sub

Figure 4. Viewing macros. Editing a macro takes you to the Visual Basic Editor. At first glance, the
code may seem mysterious, but just a few tricks can decode it.

Converting a VBA macro to VFP code is harder than it should be for several reasons. The macro shown in
Figure 4 demonstrates all of them. Consider this line of Word VBA code as you read the following sections.
The line moves the insertion point (the vertical bar that determines where the next character is inserted) six
words to the left, highlighting the words in the process:

Selection.MovelLeft Unit:=wdWord, Count:=6, Extend:=wdExtend
Default objects

First, unlike VFP, VBA makes some assumptions about what object you're talking to. In the preceding line,
Selection translates to VFP’s This.Selection, which represents the current selection (highlighted area) of the
Word instance.

In each Office application, certain objects are considered default objects in the VBA environment. Your code
won't be treated so kindly—you need to be explicit about what object you're addressing. The code you send



to the Automation server must be addressed to the correct object.

Named parameters

VBA allows methods to use what are called named parameters. In the example code line, the method called
is MovelLeft. Three parameters are passed, each in the following form:

parameter name := parameter value

This syntax allows VBA programmers to include only the parameters they need and not worry about the order
of the parameters. Since some VBA methods have a dozen or more parameters, this is a very handy option.

However, VFP doesn’t support named parameters; you must specify parameters in the proper order.
Fortunately, the Help files show the parameters in their required order. (That wasn't true in versions of Office
before Office 97; Help for many methods showed the parameters out of order, and finding the correct order
was extremely difficult.)

When translating from VBA to VFP, add parentheses around the list of parameters, and delete the parameter
names and ":=" symbols. Check Help (or the Object Browser, discussed later in this chapter) to determine the
correct order and number of parameters. Usually, the macro recorder puts the parameters in the correct
order; however, some parameters may be omitted, as named parameters allow VBA developers to leave out
any parameters that are to take the default value. Be sure to check Help for omitted values. Also check to
ensure that the macro recorder really did put them in the proper order; occasionally it doesn't.

Defined constants

The first parameter in the example line shows the third problem that occurs in translating VBA to VFP. It
specifies that a parameter called Unit should have the value wdWord. But what is wdWord? It's one of
thousands of defined constants available in Word'’s version of VBA. (It turns out that wdWord is 2.)

The VBA Help files don’t supply the values of defined constants. In fact, Help uses them exclusively and
doesn’t show their actual values anywhere (ditto for the macro recorder). (Outlook is the exception here. It
has a Help topic titled "Microsoft Outlook Constants" that includes a complete list.) To find out what wdWord
and all of the others stand for, use the Object Browser available through the Visual Basic Editor. (See the
section "Take me for a browse" later in this chapter.)

If there was ever a reason to use header files, VBA constants is it. However, to build the header file, you
need to find the values of the constants. Rick Strahl of West Wind Technologies has created a freeware tool
that reads a COM type library, extracts the constants, and creates a Visual FoxPro header file. The tool,

called GetConstants, is included in the Developer Download files available at www.hentzenwerke.con and

can also be downloaded from Rick’s site (www.west-wind.conj). The Developer Download files also include
header files for each of the Office applications.

We do not recommend using these files as is in your Automation work. The number of constants contained in
them is mind-boggling. The smallest set is for Outlook—it contains 251 constant definitions. Word's file is
nearly 10 times that size, with more than 2,400 constants defined. On one of our test machines, saving a
form with no controls, but pointing to the full Word constant definition file as its Include file, took more than
five seconds. (By contrast, on the same machine, saving a totally empty form took well under a second.)


http://www.hentzenwerke.com/
http://www.west-wind.com/

However, having the complete set of constants at your disposal is very handy. You can cut and paste from
them to create header files appropriate to the tasks you're doing. Rick’s tool also makes it easy to keep your
header files up-to-date as Microsoft adds new constants.

Macro recorder tips

Before moving on to the Object Browser, there are a couple of things worth noting about the macro recorder
and the Visual Basic Editor. First, be aware that the macro recorder doesn’t always produce the best code for
a task. The code it produces gives you an idea of what can be done, but there are often better ways to
accomplish the same task.

The macro recorder is focused on interactive users. While it doesn't just record the user’s keystrokes, neither
does it have the intelligence to figure out the task at hand and put together a complete, logical program to do
it. Lines and lines of code are generated. A good deal of the time, several lines of code can be replaced with
a single method call. Other times, many lines of code are generated that set every possible property for an
object. Perhaps 15 properties are set when you only changed one. Many times, you won't need to set all of
them. However, when you're trying to figure out which properties need to be set, be sure to consider that
many users change the application’s defaults, so don’t assume anything!

Second, the Visual Basic Editor has a feature called IntelliSense that makes writing code there easier. When
you type an object name and a period (like "oRange."), an appropriate list of properties and methods
appears. When you choose a method from the list (use Tab to choose without ending the line), a list of
parameters for that method appears like a ToolTip to guide you. As you enter parameters, your position in the
parameter list is highlighted to keep you on track. This can be very handy when you're trying to figure out
what parameters to pass to a method. Unfortunately, at this writing, Visual FoxPro doesn’t natively support
IntelliSense (though early demos of VFP 7 include it). Write the code in the VBE, and cut and paste it into
VEP.

Take me for a browse

One of the most powerful tools available for figuring out Automation code is the Object Browser (see Figure
5). It lets you drill into the various objects in the hierarchy to determine their properties and methods, see the
parameters for methods, determine the values of constants, and more.

The easiest way to find out about a specific item is to type it into the search dropdown, then press Enter or
click the Find (binoculars) button. The middle pane fills with potential matches. Choose one to learn more
about it in the main section of the Browser underneath. The left pane is filled with the properties, methods,
collections, and constants. The right pane describes what’s available for the highlighted item in the left pane.
In Figure 5, the Object Browser has been used to determine the value of the constant wdWord. In the
bottom-most pane, you can see that it's a constant with a value of 2.

The Object Browser is also useful for moving around the object hierarchy to get a feel for what the various
objects can do. Figure 6 shows the Object Browser with Excel’s objects rather than Word’s (the Visual Basic
Editor was opened from Excel). The members of Excel's Workbook object are shown in the right pane. The
PrintOut method is highlighted, so the very bottom panel shows its (complex) calling syntax. The advantage
of this approach over Help is that the Object Browser actually looks at the type library, so the list it shows is



more likely to be correct than Help. Even better, the Object Browser and Help can work together. Press F1 in
the Browser, and Help opens to the highlighted item.

MI=IES

w Object Browser

[<AN Libraries>

R

I wdWord LI M
[ Search Results
I_I_ibrarv | glass | Member
W 2 fard 2 Willnits & wolard fa
Wt 2 ard & WilDefaultListBehavior & wilWardBListBehavior :
WF. Ao = WidDefaultTableBehavior @ widWord3TableBehavior
I Word =F WidDefaultListBehavior = wdWaorddListBehawviar hd
Classes Wembers of "AWdllnits'
=F v SpellingWWordType ﬂ 5 wdCell
=7 WWdStatistic E wiCharacter
=F WWiStaryType B wdCharacterFarmatting
= Wi StyleType & wdColumn
=F WidSubscriberFormats & wiltern
= WdSummaryLength & wiline
= WdSummanyhode & wdFaragraph
=F Wi Tabalignment 2 wdParagraphFormatting
=F WdTahleader = wiRow
=F Wi TableDirection & wdScreen
=F WdTahleFieldSeparatar & wdZection
=7 W TahleFaormat E wiSentence
=F Wi TahleFormatApply & wiStory
=F Wi TahlePosition = wdTable
=F W TCSC ConverterDirection & wdindow
= Wi TemplateType (28 o\ or

=F Wil TextFormFieldType

= WdTextOrientation

=7 Wi Texturelndex

=F YWdToaFormat

=# WdTocFormat

= WdTofF ormat

= W TrailingCharacter

= Wi TwolinesinCneType

=7 Widllnderline

=F vdlnits

=F W dverticalAlinnment

Const wediWord = 2
tember of Word Wdlnits

-

°

~l

Figure 5. The Object Browser. This powerful tool lets you drill down into objects, find out constant
values, and determine parameters. Here it shows that wdWord is a constant, is a member of a group
of constants called WdUnits, and has a value of 2.

The Browser is also useful for exploring the object hierarchy itself. Figure 7 shows the PowerPoint version of
the Object Browser (this time, the VBE was opened from PowerPoint). The Presentation object's members
are shown in the right pane. The Slides property is highlighted. In the bottom pane, we learn that Slides is a
reference to a Slides collection. Clicking on the underlined Slides takes us to the Slides collection, shown in
Figure 8.

w- Object Browser

[<All Libraries>

e R NS ETNET
I =] #fx

Search Results
| Library
1

| Class | Memhber |




Classes Wembers of "Workbook'

2 \orkiook :l B PersanalviewPrintSettings
21 \orkhooks =2 PivotCaches

2 Waorksheet =& Post

2 WarksheetFunction B PrecisionfsDisplayed

@ \Worksheets B3 PrintCut

=F XlApplicationinternational =3 PrintFreview

F ¥lApplyhNamesOrder =2 Protect

F XIArrangeStyle =3 ProtectSharing

=7 XlArrowHeadLength e ProtectStructure

=F XlArowHeadStyle B ProtectWindows

=R lArowHeadWidth B PublishChjects

= HlAutoF il Type =2 PurgeChangeHistonyMow

=P XlAutaFilterCperator ' ReadOnly

EF HlAxisCrosses ! ReadOnlyRecommended

EF MlAxisGroup =3 RefreshAll

F ¥lAxisType =2 RejectAllChanges
#lBackground =2 ReloadAs

=F XIBarShape J =® Removelser

=F ¥|Bordersindex =% Heply

=F ¥|Bordereight =B HeplyAll
¥|BuiltinDialog =® ResetColors
HICalculation B RevisionMumber

=F XICategoryType =® Route

=F ¥ICellnsertionMode ' Routed

EF HICelType B RoutingSlip
FChantGallery =2 HunAutoMacros

F HIChartitem _I =2 Save

[PriocFieiame])
Mermber of Excel Workbook

Sub PrintQut{[From), [Tol, [Coples], [Preview], [ActivePrinter], [Print Forie], [Colate],

Figure 6. Using the Object Browser to determine parameters. When a method is highlighted, the
bottom pane shows the calling syntax. Since the Browser gets its information directly from the server,

it can’t be wrong.

What does the Browser browse?

For Figure 6, we commented that the Object Browser had been opened from inside Excel. That wasn't really
necessary. You can use the Object Browser from any of the Office tools to open and explore any registered

type library. You can even look at the objects from multiple type libraries at the same time.

To open a type library so the Object Browser can display its contents, choose Tools|References in the Visual
Basic Editor. The dialog shown in Figure 9 is displayed. Check the libraries you want to add to the Object
Browser, and then choose OK. (Be aware that, if you're actually writing code in the VBE, referencing type

libraries in this way has consequences for your projects. So be careful what you actually save.)

w Dhject Browser
[<an Libraries> =l

| [

hﬂ

%

- [o]x]

Search Fesults

Library | Class




|C|asses Members of 'Presentation’
= PpTextStyleType ;l EE | ayoutDirection :l
=F PpTextUnitEffect B Marme
=F PpTransitionSpeed =2 MNewdhindow
=F PpUpdateCption ' NoLineBreakAfter
= PpviewType e MoLineBreakBefore
=P PpWindowState B Moteshaster
BiPresentation e PapeSetup
& Presentations B Parent
& PrintQptions = Path
B PrintRange B PrintOptions
& PrintRanges =@ PrintOut
& PropertyTest B PublizhOhjects
& PropertyTests B ReadCnly
B PublishOhject =% Reloadds
2 PublishChjects =% Save
2 RGEColor =% Saveds
2 Row =% SaveCopyhs
B Rows B Saved
2 Ruler B SlideMaster
2 RulerLevel
& RulerLevels J E SlideShowSettings
& Script ' SlideShowitindow
B Scripts B Tags
& Selection B TermplateMarne b
& ShadowFormat B TitleMaster
& Shape =% | pdatelinks
B ShaneNnde ¥ % wEASInned Ll
Property Slides As Slides ﬂ
rezd-anly
Member of PowerPoint Presentation LI

Figure 7. Exploring the object model. When an item is underlined in the bottom pane, you can click on
it and change your focus in the Browser. Click on Slides, underlined here, to change to the display
shown in Figure 8.

Within the Object Browser, you determine whether you see information from one type library or all of them
with the drop-down list in the top left-hand corner. There’s no way to choose a varied subset of the open
libraries, however—your choice is all or one.

At your command

The Visual FoxPro Command Window is another powerful tool for learning about Automation servers. Once
you've read what Help has to say and looked it up in the Object Browser, sometimes you just need to try it.
That's where the Command Window comes in.

wObjectBrowser ________________________ HEE]|
[<an Libraries> ] o] Bl 2|
| K. 1E

Search Results
Likrany

| Class | Mermber |

Members of 'Slides’
(Al Add

e Application

E& Count

|Classes

# Presentations
¥ PrintCptions
B PrintRance




B PrintRanges = FindBySlidelD
B PropertyTest =® |nsertFromFile
B PropertyTests & |term

B PublishObject B Parent

B PuhlishOhjects =% Paste

B RGBColor =& Range

® Row

B Fows

Bl Ruler

B RulerLevel

B RulerLevels

B Script

® Scripts

2 Zelection

B ShadowF ormat
B Shape

B ShapeMode I
B ShapeNaodes

B ShapeRange J
1 Shapes

4 slide

B SlideRange

Blislides
B SlideShmwSettinns ﬂ

Class Slides|
Member of PowerP oint

Figure 8. The Slides collection. Clicking on the reference to the Slides collection shown in Figure 7
produces this display in the Object Browser. The Browser makes it easy to explore the relationships
among objects in the hierarchy.

Just as it does in every other aspect of working in VFP, the Command Window lets you try things and see
what happens without the overhead of building entire applications or setting up complex scenarios. Create a
reference to the appropriate server and try the sequence of commands one by one, observing the results as

you go.

You can query the value of a property with ? (assuming the value is printable) or execute a method. Even the
VFP Debugger can be used in a limited way. The limit is that properties of COM objects are visible in the
Debugger only after they've been accessed from VFP. You can't just drill down into COM objects in the
Debugger the way you can into VFP’s own objects. Too bad.

References - Normal

tvailable References: CE

Yisual Basic For Applications - Cancel
Microsoft Wiord 9.0 Object Library
OLE Automation

Microsoft Office 9.0 Object Library

Browse...

.

[WEicrosoft Excel 9.0 Object Library

[JProject ﬂ

[ Templaterroject

[Jactive Setup Control Library Priority

[ sctiveMovie control type library Help
[ &ctiveX Conference Contral j

[T Activex DLL to perform Migration of MS Repository &
[[] 4PE Database Setup Wizard

[[J &pplication Performance Explorer 2.0 Interfaces

O ?Dnlication Performance Exolorer CIiTnt _ILI
4 4

(Microsoﬁ Excel 9.0 Object Library

[ PR T - S N e



LU LT B I S U N [N T = e = R B =)

Language: Standard

Figure 9. Adding type libraries. You can examine all kinds of type libraries using Office’s Object
Browser.

We've found it very useful to keep the Command Window visible as we write code. Some commands,
particularly those with lots of specified named parameters (and lots more omitted parameters), can be
particularly gruesome to get right. Try them in the Command Window, and when they’re finally correct, cut
and paste them into your code. One big drawback: the Command Window doesn’t do #DEFINESs. Either set a
variable in the Command Window, or use the corresponding values (remembering to change them to
#DEFINEd constants when you paste into your code).

You may find that you get a lot more out of this book if you "work along" in the code. You'll see that we've
provided the values for each of the constants in #DEFINE statements at the top of the code. While a
#DEFINE line by itself does you no good in the Command Window, cutting and pasting an entire section from
the HTML Help version of this book into the Command Window, and then right-clicking and selecting Execute
runs the code correctly.

Another really cool piece is that you can move back and forth between doing things interactively and doing
them with Automation. That is, when you have an instance of a server available from the Command Window
and visible, you can switch over to the server application and work with it interactively, then come back to
VFP and check the values of properties that were just set by your action, or execute a method, or set some
other properties.

While trying to understand how a particular feature works, we often try something from the Command
Window, then switch over to the server application to see the result, then hit Ctrl-Z (Undo) in the server to
reverse that action before we go back to VFP and try a different parameter or value or approach. Perhaps
more than any other, this ability drives home the reality that Automation really is just one more way to do the
same things a user can do interactively.

We encourage you to explore the servers in the Command Window. It really helps to see instantly just what
that line of code does (or it becomes an instant approach to finding a syntax error, which is still very helpful,
but not nearly as much fun to watch).

On-line and print resources

There are a number of references available for the Office servers besides their respective Help files.
Microsoft Press offers a Visual Basic Programmer’s Guide for both Office 2000 and Office 97. Each is
available both in book form and on-line. Since Microsoft is in the habit of rearranging its web site regularly,
the best way to find the on-line versions is to search microsoft.com for "Visual Basic Programmer’s Guide."

The VBA Help files are also available in printed form. If you'd rather work with a paper copy, you can order
them from Microsoft Press. Look for the Office Language Reference (or the Language Reference for the
individual application you're interested in). The Language Reference guides are available on the Microsoft
web site, too, in case you find yourself stuck somewhere without the Help file.



Microsoft's web site for Office development is located at msdn.microsoft.com/officedev/ (at least it was at the
time of this writing). Check it out for official support, technical articles, bug fixes, and so forth, as well as
pointers to other useful sites.

Once you become comfortable enough reading VBA code, the various Office and Visual Basic magazines
and journals can be useful resources. Take a look at Microsoft Office & Visual Basic for Applications
Developers (www.OfficeVBA.com]) and Woody's Office Watch (www.woodyswatch.com) for starters. Also, a

new journal from Advisor Media, Advisor Expert: Microsoft Outlook and Exchange, looks like it will cover

Outlook automation (Www.Advisor.conj). The major FoxPro magazines, FoxPro Advisor (Wwww.Advisor.con)

and FoxTalk (www.pinpub.com), cover Automation occasionally—the Office servers are the Automation target

only for some of those articles.

For immediate help when you're stuck, your best bet can be to try the FoxPro forums and newsgroups. The
FoxPro community has a well-earned reputation for its helpfulness—enough members are doing Automation
work that simple questions are answered quickly. More difficult ones sometimes go unanswered. There are
on-line communities for the Office applications, as well. We have less experience with them, but we have
found those we've dealt with to be friendly and knowledgeable. See Appendix A, "On-line User
Communities," for a list of on-line user communities for Visual FoxPro and the Office applications.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved


http://www.OfficeVBA.com/
http://www.woodyswatch.com/
http://www.advisor.com/
http://www.advisor.com/
http://www.pinpub.com/

Taking up a collection

The object models of the Office applications (along with most COM servers) contain lots of collections, the
OOP world’s version of arrays. A collection contains references to a number of objects, generally of the same
type, and provides access to those objects. Generally, a collection has a plural name, such as Slides, and
contains objects that are referred to in the singular: the Slides collection contains a series of Slide objects.
Just to be sure that you're good and confused while looking in the Help file, most of the time, you access the
collection by a property of the same name: the Presentation object has a Slides property, which references
the Slides collection. The Slides collection references a series of Slide objects. Just remember that the
collection is plural (as is usually the property to access it), and the object is singular, and you shouldn’'t have
much trouble.

Most collections, including those in Office, have a few standard methods and properties. The Count property
tells you how many items are in the collection. Item, which is a method in some collections and a property in
others (it's a method in the Office apps), provides access to the individual members of the collection.

Item typically takes a single parameter or index (number) and returns a reference to that member of the
collection. In many cases, you can specify the item you want by name rather than number. For example,
consider Visual FoxPro’s Projects collection (which is a COM collection, rather than native to VFP). If the
TasTrade project is open and is the first open project, you can access it as _VFP.Projects.ltem[1] or
_VFP.Projects.ltem['TasTrade.PJX"].

In addition, most collections let you omit the Item keyword and simply attach the parameter/index to the
collection name. So you can write _VFP.Projects["TasTrade.PJX"] or _VFP.Projects[1] and still get a
reference to the project.

As with Visual FoxPro’s arrays, you can use either square brackets or parentheses to access the elements of
a collection. In this book, we use square brackets for both arrays and collections and leave parentheses to
indicate functions and methods.

Changing the collection

Once you get past Count and Item, there’s more diversity. Most, but not all, collections have an Add method,
which allows you to add a new item of the appropriate type to the collection. For example, you use the Add
method of Word’s Documents collection to create a new, empty document, and the Add method of Excel's
Workbooks collection to create a new, empty workbook. In fact, you also use the Add method of Excel’s
Worksheets collection to add a new worksheet to an existing Workbook.

There’s no common technique for removing items from collections. That’s because some types of items
remove themselves when they no longer belong in the collection. For example, when you close a Workbook
in Excel, it removes itself from the Workbooks collection.

The methods that do remove objects from collections tend to belong to the object itself, not to the collections.
Although adding and removing may seem like complementary operations to us, from an object point of view,
they really aren’t. When you're adding, you have only the collection to work with; you don't yet have the thing



you're adding. When you're ready to remove it, you have it in hand and can ask it to remove itself. So Add
methods belong to collections, while Remove methods (or the methods that cause members to be removed)
belong to members of a collection.

Some collections have a fixed number of entries. For example, the Borders collection in Excel represents the
four borders of a range. This collection always has four items; there’s no way to add items to it or remove
items from it. (Word and PowerPoint also have similar Borders collections, with a fixed number of entries.)

Other collections are modified by other actions in the system. For example, Word'’s Revisions collection
contains the changes that have been made to a document. You can’t add or remove items directly because
they’re handled through a different mechanism.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Self-referential object models

When you start digging around the Office object models, it can be a little confusing (okay, very confusing!).

You find that one object has a property that's a reference to a collection of another sort of object, or maybe

it's a reference to another object. The property frequently (but not always) has the same name as the

collection or other object. When you're digging in Help, it sometimes takes two or three jumps to get to

something useful.

Here’s an example. Say you start on Word's object model diagram and click on the Documents collection.
That takes you to the Help page for the Documents collection (shown in Figure 2—Ilook behind the dialog).

What you're probably interested in, though, is the Document object, not the collection, so on the Documents

page, you click on Document. That brings you to the Help page for Document. From there, you may decide to
find out about the Paragraphs property, so you click Properties. Figure 10 shows the Document page and

the resulting dialog.

£ Microsoft Word Help

SERCI= A=

=|oj x|

Contents |§earch|

|7 Document Object

[7 Documents Collection Ohject
[7] DropCap Object

@ DropDown Object

Erviail Object

[ ErnailAuthor Object
EmailOptions Object
EmailSignature Object

[ |

B

Document Object

See also Properties Methods Events

TMultiple Objects !

D [Document) |

Represents a document. The Document object iz a member of the Documents

- that are
[7] Endnote Object TOpICS Found
[7] Endnotes Collection Ohject
® [2] Enwalope Object Click atopic, then click Display.
F
@G- K Title | Locatian N ﬂbertto
s @l OpenEncoding Property Microsoft Word Help men
A Language Object SptirréizteFm;-'\-fordi? Property M?crosog wor: :e:p
L Collection Ohiect ageSetup Property icrosoft Word Help
[#] Languages Co sction Lojec Paragraphs Property Microsoft Word Help 1 pveChange
[7] LetterContent Object .
Parent Property Microsoft Word Help
LineFormat Ohject :
LineNumbering Obiect Passward Property M!crusoﬂ Word Help nents
= g -n Path Property Microsoft Word Help - hments
[7] LinkFormat Ohject - = - - - S
[ List Object 1 |
Lists Collection Object
@ ListEntry Object Display I Cancel |
[7] ListEntries Collection Object

[?] ListFormat Object
[ ListGallery Object
[7 ListGalleries Collection Object
[7] ListLevel Ohject
[# ListLevels Collection Object
ListParagraphs Callection Object
[7] ListTermplate Object
& ListTerplates Collection Object
& -0
slgr-r
PageMumber Object
@ PageMumbers Collection Object
[?] PageSetup Ohject
[7] Pane Chject
[7] Panes Collection Object
[?] Paragraph Object
Paragraphs Callection Object
[7] ParagraphFormat Object
[# PictureF armat Object
ProofreadingErrars Collection Object
& Range Object

[P M m e bilib T4 mbimdin Tihinet

|

| of”

O MO LT T re Tt

You can use the ActiveDocument property to refer to the document with the
focus, The following example uses the Activate method to activate the document
named "Document 1." The example also sets the page orientation to landscape
mode and then prints the document.

Documents ("Documentl™) .Activate
AZctiveDocument . PageSetup .Orientation =
ZcotiveDocument .Printout

wdOrientLandscape

.
4| | B




Figure 10. From Document to Paragraphs. Many objects have properties that reference collections,
using the same name as the collection. While this makes sense, it can make getting help a little

long-winded, especially since often, we're ultimately headed for the individual property, not the

collection.

Choosing the Paragraphs property from the dialog brings up Help for that property, as shown in Figure 11.

To get to Help for the Paragraphs collection requires a click on Paragraphs; to get to the actual Paragraph

object—usually our actual destination—requires yet another click once we get to Paragraphs. (The See Also

for the Paragraphs property does actually offer a direct jump to Paragraph, but to find that out, you'd have to

click on See Also.) This is one of our least favorite things about the VBA Help system. We wish it were smart

enough to offer some kind of consolidated help for the property and collection.

g Microsoft Word Help _
D 86
[=

Contents |§earch|

[?] Paragraphs Property

[7] Parent Property

[7] ParentFrameset Property
[7] PartOfSpeechList Property
[7] Passirm Property

[7] Password Property

Path Propety

[ PathSeparator Property
Pattern Property

[ Percentage Property
PercentWidth Property
[A] Perspective Property

[7] PictureEditar Property
[2] PictureFarmat Property

[91 DivrleDarlinek Dranndtu

4

|

Paragraphs Property
See Also Example Applies To

Returns a Paragraphs collection that represents all the paragraphs in the
specifisd document, rangs, or sslection, Read-only,

For information about returning a single member of a collection, see Returning an
Object from a Collection.

®

Figure 11. Not so helpful. This Help entry and others like it, while accurate, add an extra step when
you're navigating from one object to another in the Help system.

There’s a flip side to the issue of same-named properties and collections/objects. In some situations, the

properties that access the collections or other objects don't have the same names as their targets. For

example, a number of objects reference Word’s ParagraphFormat object through a property named Format.

Since the reference properties almost always use the object names, watch out for the special cases.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved




Chapter 3 - Visual FoxPro as an
Automation Client

Some aspects of Visual FoxPro are relevant, whatever product you're automating.

No matter what you're automating, much of what you do in Visual FoxPro is the same. This chapter takes a
look at the things that stay the same across all servers and across the Office servers.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Managing servers

The first step with any server is getting a reference. There are two possibilities for an Automation server: you
can create a new instance, or you can get a reference to an existing server, if one exists. There are also two
VFP functions that you can use, CreateObject() and GetObiject(), but they don't map exactly to the two
techniques.

CreateObject() always creates a new instance of the server and returns a reference to it. Here's the syntax
for creating Automation objects:

oServer = CreateObject( cServerClass )

cServerClass is the appropriate name for the main class of the Automation server. For the Office
applications, it's "<appname>.Application" where <appname> is "Word" or "Excel" or whatever. For example,
to open PowerPoint, issue this command:

oPowerPoint = CreateObject( "PowerPoint.Application" )

Note that the syntax for creating Automation objects is almost identical to that for creating native objects. The
only difference is the class of the object created. This is polymorphism (one of the pillars of OOP) at work.

If the server is already open and you'd like to use the existing instance, you can use the GetObject() function
instead. GetObject() takes two parameters. For this use, omit the first parameter and pass the server class as
the second. Here's the syntax:

oServer = GetObject(, cServerClass )

If the server is already open, GetObiject() finds it and returns a reference to that instance. However, if the
server is not open, this version of the function generates an error.

For example, to attach to an open instance of Excel, use this command:
oExcel = GetObject(, "Excel.Application")

There’s another way to start a server—by passing GetObject() the name of a file and letting it figure out
which server to use:

oDocument = GetObject( cFileName )

VFP looks up the file's extension in the registry to figure out what application it belongs to, opens that
application, then opens the file; it works pretty much as if you'd double-clicked the file in Windows Explorer,
except that you get an object reference to the file as a "document," so that you can manipulate it as an object.
This example opens the file "C:\Documents\MyFile.DOC" in Word and returns a reference to it:

oDocument = GetObject( "C:\Documents\MyFile.DOC" )

In some situations, the filename may not be sufficient to determine what application to open or what to make
of the file. In that case, you can also pass the name of the class within the server. For example, if the file has



a TXT extension, but you want Word to open it as a document, pass "Word.Document" as the second
parameter, like this:

oDocument = GetObject( "Example.TXT", "Word.Document" )

However, you can't just pass the file type automatically. Most of the time, either VFP or the server application
chokes when it receives the second parameter unnecessarily.

We should point out that there’s a third VFP function in this family, CreateObjectEX(). It's used for creating
objects on a different machine and is part of DCOM. Since this book doesn’t cover DCOM, we don't discuss it
here.

Displaying the Office servers

When you instantiate an Automation server, by default it's invisible. It doesn’t show up on the taskbar. In
Windows NT, it's shown on the Processes page of Task Manager, but not on the Applications page. It does
show in Windows 95/98’s Close Program dialog. It's generally a good thing that it keeps itself somewhat
hidden. Often, you're doing something behind the scenes and there’s no reason for a user to see it
happening. However, while debugging and in some other circumstances, you may want to make the
Automation process visible.

Why not just make the server application visible all the time? Speed. Not surprisingly, manipulating
documents is faster when you can'’t see them. It’s also tidier—although watching a spreadsheet or
presentation being built is pretty cool the first few times, after a while, users are likely to get tired of watching.

This is one area where Outlook is the odd man out. These commands apply to Word, Excel, and PowerPoint
(and, for that matter, to Visual FoxPro when it's used as a server), but not to Outlook. To make the
Automation server visible, set its Visible property to .T.; set Visible to .F. to turn it off. (Actually, in
PowerPoint, you can set Visible to .T., but setting it to .F. generates an error message. Word and Excel give
you complete control over their visibility.) Outlook doesn’t have an analogous property.

The WindowState property of the Application object determines whether the application is minimized,
maximized, or "normal," meaning some user-determined size. Manipulating WindowState when the
application is invisible generally makes it visible (at least to the extent of showing on the taskbar). Each of the
applications has a set of constants for the three possible values of WindowState. For example, for Excel, you
can make these definitions:

#DEFINE xIMaximized -4137
#DEFINE xIMinimized -4140

#DEFINE xINormal -4143
Word needs the following:

#DEFINE wdWindowStateNormal 0
#DEFINE wdWindowStateMaximize 1

#DEFINE wdWindowStateMinimize 2



The Application object of all three applications has Left and Top properties that determine where it's located
on the screen, as well as Height and Width properties. You can manipulate these, unless the application is
maximized. The following code (SetSize.PRG in the Developer Download files available at

www.hentzenwerke.comn]) opens Word, sets the application window to normal, positions it a little below the

upper-left corner of the screen, and then makes it visible.

#DEFINE wdWindowStateNormal 0

LOCAL nScreenHeight, nScreenWidth

LOCAL nWindowHeight, nWindowWidth

* Compute sizes

nScreenHeight = SYSMETRIC(2)

nScreenWidth = SYSMETRIC(1)

* Make it two-thirds the size of the screen in each dimension.
nWindowHeight = INT(.67 * nScreenHeight)

nWindowWidth = INT(.67 * nScreenWidth)

RELEASE ALL LIKE o*

PUBLIC oWord

oWord = CreateObject( "Word.Application" )

WITH oWord

WindowsState = wdWindowStateNormal

.Height = .PixelsToPoints( nWindowHeight, .T.)

Width = .PixelsToPoints( nWindowWidth, .F.)

.Top =10

.Left =10

Visible =.T.

ENDWITH

RETURN

As the example indicates, Height, Width, Top, and Left are measured in points. Word provides a nhumber of
methods for converting other measurements into points (including, in Word 2000, the PixelsToPoints method

used in the example). The other applications offer fewer such methods; in fact, neither Excel nor PowerPoint
includes PixelsToPoints. The conversion factor between pixels and points is about 0.75.

Unless you're doing very precise work, you can probably live with that conversion factor, so in Excel and
PowerPoint, just define your own conversion, like this:

#DEFINE autoPixelsToPoints .75


http://www.hentzenwerke.com/

You can handle converting between inches and points in the same way. There are 72 points to an inch.
Define your own constant for that task, like this:

#DEFINE autolnToPts 72

Even when you're automating Word, there’s some argument that you’re better off doing your own
conversions in VFP than using Word'’s built-in methods. Each call to Word is expensive. In our tests,
arithmetic in VFP was about 100 times faster than calling Word’s conversion methods.

Are we there yet?

All three applications start with no document open and no document window when you call CreateObject(),
but they behave differently when GetObject() is used to open a specific file.

In Word, once GetObiject() is through, there’s a document window containing the specified document. Just
set Visible to .T. for the Application object, and the document window shows:

oDocument.Application.Visible = .T. && this is needed for any of the apps

&& but change the variable appropriately

PowerPoint and Excel are different. Setting Visible to .T. isn’t enough. In PowerPoint, you need to call the
NewWindow method to provide a document window for the specified presentation:

oPresentation.NewWindow()

Excel uses yet another approach to the same problem. There is a document window; you just can't see it.
Call the Activate method for the first window in the Windows collection:

oWorkbook.Windows[1].Activate()

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Working with servers

A few Visual FoxPro language features and interface components make it easier to write and maintain
Automation code. Here's a look at some things to remember as you work in the wild world of Automation.

SET OLEOBJECT

This VFP command determines whether VFP searches the registry when using CreateObject() or
GetObject(). When it's set to ON, VFP searches the registry; when it's set to OFF, that search is skipped.
Why does this command exist? The last place VFP looks to find an object is in the registry. Before searching
the registry, it loads OLE support, which takes up memory. If your application doesn’t require OLE support,
setting OLEOBJECT to OFF provides a bit of a performance enhancement. However, if you're using
Automation, you need OLE support, as well as the ability to find the server in the registry. If you attempt to
instantiate an Automation server while SET OLEOBJECT is set to OFF, an error like "Class definition
WORD.APPLICATION is not found" is generated.

Use WITH...ENDWITH

Much of the code you write to automate any server involves setting properties or calling methods. It's
common to have long stretches of code that consists of not much more than references to properties and
methods, with perhaps a little bit of arithmetic or logic thrown in. You can make that code far more readable
(and thus easier to debug and maintain) by using VFP’'s WITH...ENDWITH command.

A series of commands that all begin with something like oWord.ActiveDocument.Tables[ 3 ].Rows[ 7 ] just
isn't going to lend itself to readability. Instead, surround the group like this:

WITH oWord.ActiveDocument.Tables[ 3 ].Rows[ 7 ]
* put the commands here with a dot in front of each

ENDWITH

In fact, you can nest WITH commands. As you walk down the object hierarchy, doing a few things at each
level, set up a WITH statement for each level—something like this:

#DEFINE wdAlignRowCenter 1

#DEFINE wdRowHeightExactly 2

WITH oWord.ActiveDocument

* Do some things to the document as a whole, like
.Save && save using current filename

* Then move on to the table.

WITH .Tables[ 3]

* Now issue commands aimed at the table as a whole



AllowPageBreaks = .T. && allow table to break across pages
* Then, when you're ready to talk to the single row.

WITH .Rows[ 7 ]

* Now issue the commands for the one row

Alignment = wdAlignRowCenter

.HeightRule = wdRowHeightExactly

.Height =.5

ENDWITH

ENDWITH

ENDWITH

The nesting makes it clear to the reader which WITH each property belongs to. VFP, of course, has no
difficulty figuring it out. There’'s an added bonus besides readability. Code like this runs faster—FoxPro
doesn’t have to sort through multiple levels of hierarchy to find out what object a given property or method
belongs to. In our tests, a fairly simple example that queried about a dozen properties at four levels below the
Application object ran roughly twice as fast using nested WITHSs as it did addressing each property directly.

Also, note that there’s no rule that says the property or method has to be the first thing on the code line. It
often works out that way, but it's perfectly fine to use them elsewhere. For example, the following code is
acceptable:

WITH oExcel
nHeight = .Height
nWidth = .Width

ENDWITH

In fact, as shown by the example in the "Displaying the Office servers" section earlier in this chapter, you can
call methods, perform calculations, and generally do anything you normally would inside a WITH...ENDWITH
pair, as long as you make sure to include the dot before the property or method name.

Use variables for object references

Another way to make your code more readable and speed it up is to assign complex object references to
local variables. Even if a WITH...ENDWITH pair isn’t called for, you may be better off assigning something
like oPowerPoint.ActivePresentation to a VFP variable with a name like oPres (or oPresentation, if you
prefer). The variable name is easier to type and easier to read. As with the WITH statement, it gives VFP a
direct route to the object you're interested in, rather than asking it to climb down the object hierarchy.

We tested the same example as for WITH (querying properties at various levels) and found that setting a
local variable was as fast as—or even a little faster than—using WITH. We suspect the exact trade-off point



varies, depending on factors like available memory, the number of references inside the WITH/to the local
variable, and so forth. There’s no question, however, that either approach is significantly faster than writing
out a long reference to an Automation object. The more deeply nested the reference and the more times you
need it, the more time you save.

When you use local variables, you may need to clean up afterwards. In some situations, these references
can prevent the server from closing when you call the Quit method.

Loop with FOR EACH

In Chapter 2, "The Office Servers," we discussed the prevalence of collections in the Office object models
(and in COM object models more generally). When you need to process all the members of a collection,
VFP’s FOR EACH loop is your best bet. FOR EACH lets you go through a collection (or array) without using
a counter or worrying about how many members there are. Here’s the syntax of FOR EACH:

FOR EACH oMember IN oCollection
* issue commands for oMember

ENDFOR

For example, to display the name of every open document in Word, you can use this code:

FOR EACH oDocument IN oWord.Documents
? oDocument.Name

ENDFOR

Note, by the way, that using FOR EACH implies the use of a local variable as described in the previous
section—the object reference used as the loop variable.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Debugging

Debugging Automation code is something of a challenge. As we noted in Chapter 2, the VFP Debugger isn't
much help. The Watch and Locals windows only show a property of an Automation object once that property
has been accessed from VFP. So you can't drill into those objects to see what’s going on and really examine
them the way you can with native objects. We’'ve also sometimes found that putting COM objects (whether

Automation objects or other COM objects) into the Watch window can be a good way to crash the Debugger.

So how do you debug Automation code? Carefully, and with a lot of advance planning.

Work in the Command Window

We do a lot of our testing and development in the Command Window. It's a lot easier to understand what's
going on when we issue commands one at a time and examine the results. Once we're sure we know which
methods to call and which properties to set to generate the desired documents, then we put them into code.
We find this approach to be far more necessary (we daresay mandatory) with Automation code than with
pure VFP code.

Collections and objects

Watch out for collections vs. individual objects. Since so much Automation code involves collections, it's
really easy to call a method of a collection when you mean to call it for the object, or vice versa. For example,
when you see something like the following, keep in mind that the object it references is an object, not a
collection:

oPowerPoint.Presentations[1]

(This is actually another argument for using local variables. Setting oPresentation to refer to that presentation
helps to avoid confusion.) A handy hint: generally, the collection object is plural (like Presentations), and the
object itself is singular (like Presentation). It's pretty easy to get confused in the Help file looking for
Presentation methods vs. Presentations methods, but knowing to look for the "s" (or not to) was a big
breakthrough for us.

It works, but it doesn't

If your code runs, but the results are wrong, make sure you're manipulating the right objects. Recheck the
appropriate sections in this book and in Help. Make sure you can perform the task (or at least a prototype of
the task) interactively. We'll say it again—you can’t automate what you don’t understand. Try recording a
macro that performs what you'’re trying to automate, and then examine the resulting VBA code to see
whether it sheds some light on the situation.

Parameter problems

If you're having problems with type mismatch errors in method calls, try changing the order of the



parameters. Sometimes (though much less often than in older versions of Office), they're wrong in the docs.
Use the Object Browser to be sure of the proper order. (See Chapter 2, "The Office Servers," for more on
this.)

Similarly, if you're having trouble with an invalid number of parameters, you may need to add commas to
allow for omitted defaults. Again, check in the Object Browser to see the correct list of parameters for a
method.

Unhelpful error messages

When an error occurs on an Automation command, it falls into one of three broad categories: you asked VFP
to do something it can't do, you asked the server to do something it can’'t do, or something went wrong in the
communication between them.

In the first case (a VFP problem), you get a normal VFP error message and can handle it as you would any
other. Things to check in that situation are matching parentheses, mismatched data types, and so forth.

In the second case, you see one of just a few error messages you get when an OLE error occurs. It's almost
always either 1426 or 1429. Along with it, you get an error message of varying information content.
Sometimes, it's truly informative. For example, if you ask for oword.ActiveDocument.Name when there is no
active document, the error message includes "This command is not available because no document is open."
That's pretty good.

But other times, the messages are pretty sparse. For example, querying a non-existent property or
misspelling a method yields simply "Unknown name." We think "No such member" would be a whole lot more
helpful. Really helpful would be something like "This object does not have a member called ‘Mane.™ Then
we'd quickly notice that we’d mistyped "Name" as "Mane" (again). But that seems to be asking for too much.

The real issue is that Visual FoxPro can’t give you more information about the error than the application it's
talking to gives it. That's because Visual FoxPro only knows what the server tells it. When one of these errors
occurs, you need to look hard at the syntax of your command, compare it to the expected syntax, and try to
figure out where you've gone wrong.

The third group of errors reflects the difficulties of communicating between two applications. These may
occur if the server is shut down unexpectedly (say, if the user closes the server from outside your application)
or if there's a problem opening the server. See Chapter 14, "Handling Automation Errors," for ideas on how to
handle these problems gracefully.

Use the Knowledge Base

While finding things in the Microsoft Knowledge Base can be difficult, there is a tremendous accumulation of
information there. When you're stuck on a tricky problem, it's worth digging in and trying a number of search
combinations. If you're having a particular problem, chances are someone else has had it before you.

Try combinations like "Automation” plus "FoxPro" plus the name of the application you're having trouble with.
If that doesn’t work, try taking FoxPro out of the mix—maybe this is a problem in VBA, too. Search for the



particular error code (not the VFP error number, but the OLE error code returned by the server), or use a
phrase from the error description that comes back from the server.

Ask around

Still stuck? There are plenty of places to get on-line help with both VFP and the Office applications. Check
out the list in Appendix A, "On-line User Communities." Be sure to provide enough information in your
message to effectively describe your problem, but not so much detail as to make your message
overwhelming. Often, the very process of trying to verify that your error occurs with the least number of
simple steps will lead you to a solution, when in fact the error does not occur in the simplest case. Add
complexity back in, one command at a time, and you can often isolate the source of your problem.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Time for code

At this point, it's time to dig in and start actually looking at the Office products. The next four sections of the
book look at each of the Office products covered, beginning with Word. Each section starts out with a
"Basics" chapter then takes off from there in a different direction, driven by the product itself.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 4 - Word Basics

Visual FoxPro’s Report Designer can’'t do what you need? Turn to Word instead. Its document orientation provides formatting
from fonts to outlining.

Microsoft Word is an incredibly powerful word processor. It lets users create documents ranging from simple
memos to complex multi-part corporate reports. It also provides tools for processing and managing those
documents in a number of ways, such as checking spelling and grammar, merging with a variety of data
sources, tracking changes, and much more.

Even for simple documents, Word provides myriad tools that allow users to produce attractive output. Users
can work with multiple documents simultaneously, move and copy text within and between documents, and
mark and name portions of a document. Formatting in Word is also quite powerful, with provision for local,
page-level, and document-level control.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Word’s object model

The key object in Word is Document, which represents a single, open document. The Word server has a
Documents collection, which contains references to all open documents. The server also has an
ActiveDocument property that points to the currently active document.

The Document object has lots of properties and methods. Many of its properties are references to collections
such as Paragraphs, Tables, and Sections. Each of those collections contains references to objects of the
indicated type. Each object contains information about the appropriate piece of the document. For example,
the Paragraph object has properties like KeepWithNext and Style, as well as methods like Indent and
Outdent.

The Word server object, called Application, has its own set of properties and methods, including a number of
other collections. In addition to ActiveDocument, the Application object’s properties include Visible,
StartupPath, Version, and WindowState. The Application object also has methods. The simplest to
understand is Quit, which shuts down the server. It has several optional parameters—the first indicates what
to do if any open documents have been changed but not saved. Other methods of the Application object
convert measurements from one set of units to another, check grammar and spelling, and much more.

Word Visual Basic Help contains a diagram of Word’s object model. The figure is "live"—when you click on
an object, you're taken to the Help topic for that object. Figure 1 shows the portion of the object model
diagram that describes the Document object.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Getting to Word

Before you can work with Word, you need an object reference to the Word Automation server or to a specific
object in Word. Two VFP functions let you access Word. CreateObject() opens a new instance of Word and

returns a reference to it, like this:

oWord = CreateObject("Word.Application")

Microsoft Word Objects (Documents)

|Ducuments [Document]

% Bookmarks [Bookmark] |

ﬂ[:halaclers [Range] | 3

%Eummandﬂals [CommandBar] |

ﬂ Comments [Comment] |

—|Ducumeanruperties [D ocumentProperty] |
— Email |
EmailAuthor |

% Endnotes [Endnote]

{ Envelope
— Fields (Field)

ﬂ Footnotes [Footnote]

—| FormFields [FormField)

% Frameset

—HTML Project

% Hyperlinks [Hyperlink]

{ Indexes [Index]

|
|
|
|
|
{ Frames [Frame] |
|
|
|
|
|

% InlineShapes [InlineShape]

L{ HornizontalLineFormat |

% LetterContent |

ﬂLilealaglaphs [LiztParagraph] |
HLists [List) |

ListParagraphs [ListParagraph] |

Range | '.

ﬂ ListT emplates [LiztT emplate] |

L{ Listl evels [Listl evel) |

Font |

{ MailMerge |

M ailM ergebDataSource |

M ailM ergeFields [MailM ergeField] |

—{ PageSetup |

LineNumbernng |

TextColumns [TextColumn] |

—{ Paragraphs [Paragraph] | }

—{ ProofreadingE rrors [B ange] | }

—1 Rewizions [Hevision] |

—{Hange |}

—1 R eadabilityStatistics [ReadabilityStatistic]

—{ Houting5 lip
—i Scripts [Script]

—{ Sections [Section]

|

|

|
—1 Sentences [Range] | b

—{ Shapes [Shape] |
—i StoryRanges [Range] |}
- Styles [Style] >

—{Suhducumenls [Subdocument] |

— Tables [T able) I

—{ T ablez0fAuthontiesCategones [T ablesOfAuthontiesCategory) |

— T ablesOfAuthorities (T ableOfAuthorities) |

—{ Tablez0fContents [T ableOIContents] |

— TablesDiFigures [T ableDfFigures] |

—{ Yanables [Vanable]

—{ ¥BProject

—{ Yersions [Version)

—1 Wehllptions

|
|
|
|
— Windows [Window) I
—1 Words [Range) | b

Legend

[] object and collection
[ object only

P Click red arrow to expand chart



Figure 1. The Word object model. The Help file offers a global view of Word'’s structure.

GetObject() is a little more complex. It takes either of two parameters, which reflect two approaches to
providing a reference to Word. If you pass it the name of an existing document, it checks whether or not Word
is already open. If not, it opens Word. Either way, it opens the specified document and returns a reference to
the document:

oDocument = GetObject("d:\writing\books\automation\chapter4.doc")

If you omit the first parameter to GetObject() and specify the Word Automation server as the second, it looks
for an open instance of Word and returns a reference to that instance:

oWord = GetObject(, "Word.Application")
If Word isn’t open, an error message is generated.

See Chapter 3, "Visual FoxPro as an Automation Client,"” for more general information on CreateObject() and
GetObject() and their use with the Office applications.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Managing documents

The methods for creating, opening, saving, and closing documents are fairly straightforward. The only
complication is in what object provides which method. The methods for creating and opening a document
belong to the Documents collection. The methods for saving and closing a document belong to the Document
object. Although it seems confusing at first glance, this actually makes sense because you don’t have a
Document object to work with at the time you create or open a document. But when it comes time to save or
close it, a document reference is available.

To open an existing document, use the Open method of the Documents collection. Open has many
parameters, but most of the time, the only one that matters is the first: the name and path of the file to open.
The Word server doesn't recognize VFP’s search path, so you usually need to provide the full path to the
document, like this:

oDocument = oWord.Documents.Open("d:\writing\books\automation\chapter4.doc")

If it's successful, Open returns an object reference to the newly opened document. If the specified document
doesn't exist, an error is generated, and nothing is returned. (This example, like the others in this chapter and
the next two, assumes that you have an instance of Word running, with owWord holding a reference to it.)

To create a new document, use the Add method, which has only two, optional, parameters. The important
one is the first, which indicates the path to the template on which the new document should be based. If it's
omitted, the new document is based on the Normal template. (Templates are discussed in more detail in
Chapter 5, "Intermediate Word.")

Like Open, Add returns a reference to the newly created document. This line creates a new document based
on a template called "OfficeFax":

oDocument = oWord.Documents.Add( ;
"C:\WINNT\Profiles\Tamar\Application Data\Microsoft\OfficeFax.DOT")

As with the filename in Open, the full path to the template is needed. See the section "Document templates"
in Chapter 5 for information on where Word installs and keeps templates.

When you're finished working with a document, two methods are available to save it. Both methods belong to
the Document object. The Save method saves the document back to its current file; if it's never been saved,
a Save As dialog box appears. The SaveAs method lets you specify the filename (and a lot of other stuff)
without seeing a dialog, which is usually what you want in Automation code.

If the currently active document has already been saved, this line resaves the document without user
intervention:

oWord.ActiveDocument.Save()

To save the document to a different file, or to save a document for the first time without the user specifying a
filename, call SaveAs and pass the filename, like this:



oWord.ActiveDocument.SaveAs("D:\Documents\ThislsNew.DOC")

Be careful. When you pass a filename to SaveAs, it overwrites any existing file without prompting. (Of
course, SaveAs, like Word’s other methods, doesn't respect VFP’'s SET SAFETY setting, since it's not
running inside VFP.)

You can check whether the document has been saved by testing its Saved property. If Saved is .T., the
document is unchanged. This can be the case either because you've already saved the document and
haven’t changed it since, or because it's a new document and hasn’t yet been modified.

In addition, the Name and FullName properties give you an alternative way to check whether a document has
ever been saved. When you create a new document, Word assigns a name in the form "Documentn,” where
nis a number. When you save the document, you can give it a more meaningful name, as well as specify the
file path. The Name property of the Document contains just the file stem with no path or extension. The
FullName property contains the complete filename, including the path and extension. However, before the file
is saved for the first time, both Name and FullName contain the same string—the initial document name
assigned by Word. You can write code like this to figure out whether to use Save or SaveAs:

WITH oWord.ActiveDocument

IF .Name = .FullName

* Prompt user to get a name,

*then:

.SaveAs( cFileName )

ELSE

.Save

ENDIF

ENDWITH

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Accessing parts of a document

Most of what you want to do with Word involves adding to, modifying, or reading a document, whether it's a
new document you're building or an existing document you're modifying. (There’s actually a third possibility.
You may be working on a new document that's based on a template that contains boilerplate text that you're
customizing.) There are a variety of ways to do these things, but the key to just about all of them is the Range
object and, to a lesser extent, the Selection object.

The Selection object represents the currently highlighted (that is, selected) portion in a document. If nothing
is highlighted, Selection refers to the insertion point. There’s only one Selection object, accessed directly
from the Word Application object. For example, to find out how many paragraphs are in the current selection,
you can use this code:

nParagraphs = oWord.Selection.Paragraphs.Count

A Range object can represent any portion of a document. Ranges are not the same as the Selection area.
You can define or modify Ranges without affecting the current Selection. You can even define multiple
ranges for a document, whereas only one Selection object is available for each document. Ranges are very
useful for repeatedly referencing specific portions of a document.

Ranges can be obtained in many ways. Many Word objects, like Paragraph and Table, have a Range
property that contains an object reference to a Range object for the original object. For example, to create a
Range from the third paragraph of the active document, you can use the following:

oRange = oWord.ActiveDocument.Paragraphs[3].Range

The Document object has a Range method that lets you specify a range by character position. For example,

to get a reference to a Range containing the 100" to 250" characters in the active document (probably not a
particularly useful range), use:

oRange = oWord.ActiveDocument.Range(100,250)

The Document object’s Content property contains a reference to a Range that consists of the entire main
document (the body of the document without headers, footers, footnotes, and so on). So the next two
commands are equivalent:

oRange = oWord.ActiveDocument.Range()
oRange = oWord.ActiveDocument.Content

Beware: for a large document, creating such a variable can take a significant amount of time.

It's easy to convert Range objects to a Selection, and vice versa. Like many other objects, Selection has a
Range property, which provides a Range object from the Selection. Similarly, the Range object has a Select
method that highlights the range’s contents, turning it into the Selection. For example, to highlight the range
from the previous example, use:

oRange.Select()



Selection and Range seem quite similar, and they are in many ways, but there are differences. The biggest,
of course, is that you can have multiple Ranges but only one Selection. In addition, working with a Range is
usually faster than working with a Selection. On the whole, Word VBA experts recommend using Range
rather than Selection wherever possible. The main reason is that using Selection is essentially duplicating
screen actions with code; Range lets you operate more directly. Word’s macro recorder tends to use the
Selection object; this is one thing to be aware of when converting Word macros to VFP code.

Manipulating text

The Text property of Range and Selection contains whatever text is in the specified area. To bring document
contents into FoxPro, create an appropriate Range and read its Text property, like this:

oRange = oWord.ActiveDocument.Paragraphs[7].Range

cParagraph7 = oRange.Text

The Text property also lets you add or change the document contents. You can add text by assigning it to the
Text property.

oRange.Text = "This is a new sentence."

You can also add text to whatever’s already there. Simple text manipulation does the trick.
oRange.Text = oRange.Text + "Add text at the end."

Or you can do this:

oRange.Text = "Add text at the beginning " + oRange.Text

Another possibility is to read text into VFP, manipulate it in some way, and write it back:

cMakeUpper = oRange.Text
cMakeUpper = UPPER(cMakeUpper)

oRange.Text = cMakeUpper

That example can be shortened to a single line, like this:

oRange.Text = UPPER(0oRange.Text)

Using this approach, we can send the data from a record to a new, blank document:

USE _SAMPLES + "TasTrade\Data\Customer"

LOCAL oDocument, oRange

oDocument = oWord.Documents.Add() && Use the Normal template
oRange = oDocument.Range()

oRange.Text = Customer_ID +": " + Company_Name

oRange.Text = oRange.Text + "Attn: " + TRIM(Contact_Name) + ;

" -" + Contact_Title



oRange.Text = oRange.Text + Address
oRange.Text = oRange.Text + TRIM(City) + " " + TRIM(Region) + Postal_Code

oRange.Text = oRange.Text + UPPER(Country)

Because Word always keeps a paragraph marker (CHR(13)) at the end of the document, it adds a paragraph
marker after each addition to oRange.Text when executing this code. In other situations (including the
examples that follow), you need to add the paragraph marker explicitly. The new document looks like Figure
2.

%W Document1 - Microsoft Word

]Eile Edit ¥iew Insert Format Tools Table Window Help X
DEE28RY |V -BI o LBOBES BT 0% -0,
| Normel ~ Caurier New ~11 ~BIU[ESESE EEFEEQN-7-A-,
BLFEI : Alfreds Futterkiste -
Bttn: Maria Anders - Sales Representative

Obere 3tr. 57
Berlin 12209
GERMANY

Figure 2. There’s more than one way to skin a cat. The return address shown can be sent to Word in many
different ways. In this case, with no special formatting involved, the fastest approach is to build the whole
string in VFP, then send it to Word.

Of course, building a document by composing a single string doesn't take advantage of the special
capabilities of Word. Range’s InsertAfter and InsertBefore methods let you add text at the end or beginning,
respectively, and expand the range to include the new text.

Here’s an alternative, faster approach to creating the document shown in Figure 2:

#DEFINE CR CHR(13)

USE _SAMPLES + "TasTrade\Data\Customer"

LOCAL oDocument, oRange

oDocument = oWord.Documents.Add() && Use the Normal template

oRange = oDocument.Range()

oRange.InsertAfter(Customer_ID +": " + Company_Name + CR)
oRange.InsertAfter("Attn: " + TRIM(Contact_Name) +" - " + Contact_Title + CR)
oRange.InsertAfter(Address + CR)

oRange.InsertAfter(TRIM(City) + " " + TRIM(Region) + Postal_Code + CR)

oRange.InsertAfter(UPPER(Country))

In our tests, the InsertAfter version was one-and-a-half times to twice as fast as the concatenation method.

Moving in arange or selection



Besides changing the content of a range or selection, you may need to modify its extent. A number of
methods change the area covered by a range or selection. One of the simplest is the Move method, which
changes the boundaries of the range or selection.

Move accepts two parameters. The first indicates the unit of movement—you can move by characters, words,
paragraphs, rows in a table, or the whole document. The second parameter tells how many of the specified
units to move—a positive number indicates forward movement (toward the end of the document), while a
negative number means backward movement (toward the beginning of the document).

In all cases, the range or selection is reduced (or "collapsed,” in Word VBA terms) to a single point before
being moved. Although collapsing a range or selection sounds dire, it's not. The text contained in the
range/selection remains in the document—only the extent of the range or selection is changed. When moving
forward, the range or selection is reduced to its end point, then moved; when moving backward, it's reduced
to its beginning point before moving. You don’t need to do anything special afterward. For the Automation
programmer, the key issue is to understand where in the range movement begins.

Constants from the wdUnits group are used for the units of movement. Table 1 shows the values for this
group that can be passed to the Move method.

Table 1. Word units. The constants in the wdUnits group represent portions of a document.

Constant Value Description

wdCharacter 1 One character.

wdWord 2 One word.

wdSentence 3 One sentence.

wdParagraph 4 One paragraph.

wdSection 8 One section of a document. (Word allows you to divide documents into

multiple sections with different formatting.)

wdStory 6 The entire length of whichever part of the document you're in. Word considers
the main body of the document to be one "story," the header to be another
"story," the footnotes to be a third, and so forth.

wdCell 12 One cell of a table.




wdColumn 9 One column of a table.

wdRow 10 One row of a table.

wdTable 15 The entire space of a table.

To create a range at the end of the document, you can use the following:

oRange = oWord.ActiveDocument.Range()

oRange.Move( wdStory, 1)

Here’s another way to create the document shown in Figure 2. It uses the Move method to move the Range
object.

#DEFINE CR CHR(13)

#DEFINE wdStory 6

USE _SAMPLES + "TasTrade\Data\Customer"

LOCAL oDocument, oRange

oDocument = oWord.Documents.Add() && Use the Normal template
oRange = oDocument.Range()

oRange.Text = Customer_ID +": " + Company_Name + CR
oRange.Move(wdStory)

oRange.Text = "Attn: " + TRIM(Contact_Name) + " - " + Contact_Title + CR
oRange.Move(wdStory)

oRange.Text = Address + CR

oRange.Move(wdStory)

oRange.Text = TRIM(City) + " " + TRIM(Region) + Postal_Code + CR

oRange.Move(wdStory)

oRange.Text = UPPER(Country)
Speedwise, this version ranks between the concatenation and insert versions.

The Collapse method lets you explicitly reduce a range or selection to a single point. It takes one parameter,
indicating the direction of the collapse. Passing the constant wdCollapseEnd (with a value of 0) collapses the
range or selection to its end point (the point closest to the end of the document). Passing wdCollapseStart
(whose value is 1) reduces the range or selection to its starting point. (That is, Collapse moves either the
starting point of the range to the endpoint or the endpoint to the starting point. The range then consists of just



a single point at what was previously either the end or the beginning of the range.)

The example can be rewritten yet again to use Collapse to control the range:

#DEFINE CR CHR(13)

#DEFINE wdCollapseEnd 0

USE _SAMPLES + "TasTrade\Data\Customer"

LOCAL oDocument, oRange

oDocument = oWord.Documents.Add() && Use the Normal template
oRange = oDocument.Range()

oRange.Text = Customer_ID +": " + Company_Name + CR
oRange.Collapse(wdCollapseEnd)

oRange.Text ="Attn: " + TRIM(Contact_Name) +" - " + Contact_Title + CR
oRange.Collapse(wdCollapseEnd)

oRange.Text = Address + CR

oRange.Collapse(wdCollapseEnd)

oRange.Text = TRIM(City) + " " + TRIM(Region) + Postal_Code + CR
oRange.Collapse(wdCollapseEnd)

oRange.Text = UPPER(Country)
In terms of timing, this version performs about the same as the Move version.

A number of other methods allow fine-tuning of movement. They include MoveEnd, MoveStart, MovelLeft,
MoveRight, EndOf, and StartOf. Some methods apply only to the selection, not to ranges.

Finally, it's worth commenting that, for this particular task, the fastest approach of all is to concatenate all the
strings in VFP, and then send one string to the document:

USE _SAMPLES + "TasTrade\Data\Customer"

LOCAL oDocument, oRange

oDocument = oWord.Documents.Add() && Use the Normal template
oRange = oDocument.Range()

LOCAL cText

cText=""

cText = Customer_ID +": " + Company_Name + CR

cText = cText + "Attn: " + TRIM(Contact_Name) +" - " + Contact_Title + CR



cText = cText + Address + CR

cText = cText + TRIM(City) +" " + TRIM(Region) + Postal_Code + CR
cText = cText + UPPER(Country) + CR

oRange.Text =""

oRange.InsertAfter(cText)

With VFP’s speed at constructing strings, this version takes only one-third to one-quarter as long as the other
approaches. Although Collapse and Move aren’t the best approach in this simple case, they are essential
methods for working with Word.

Bookmarks

A bookmark is a way of naming a range or location. Word maintains a collection of bookmarks, naturally
called Bookmarks. To create a Bookmark, call the Bookmarks collection’s Add method, passing the name for
the new bookmark and the range to which it refers. For example, this code creates a bookmark called Title
for the first paragraph of the document:

oDocument.Bookmarks.Add("Title", oDocument.Paragraphs[1].Range )

Why use bookmarks? Because Word does the work of maintaining them. Rather than keeping track of a
variable in VFP, we can simply ask Word to hang onto a range for us. More importantly, Word can remember
the range between sessions, so that when we return to a document, the bookmark is still available, still
pointing to the same location.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Formatting

If all we could do was send text to Word and read the text that's already there, Automation would be useful,
but not worth too much trouble. However, there’s much more to automating Word than just sending and
receiving text. One of the big benefits of using Word rather than VFP is the ability to apply complex formatting
to documents.

Word allows documents to be formatted in a number of ways, and the objects available for formatting reflect
the way Word structures its commands. For example, the Font object contains properties for the settings
found in Word’s Font dialog (Format|Font on the menu). The ParagraphFormat object controls the settings
found in the Paragraph dialog, such as indentation, spacing, and alignment. Similarly, the settings from the
Page Setup dialog are controlled by the PageSetup object. Style objects represent the preformatted and
user-defined styles available in the document. These four objects manage most of the frequently used
settings. Other objects control other aspects of formatting.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Setting up pages

The Page Setup dialog on Word’s File menu tells Word what kind of paper to expect, where to get it, and how
to lay the document out on that paper once it finds it. The dialog’s controls specify the paper source (default
paper tray, alternate tray, manual feed, and so forth), paper type (letter, legal, A4, and so on), and orientation
of the page (portrait or landscape). The dialog is also used to determine the size of the margins, headers,
and footers, to specify whether the first page of the document has a different header and footer than the rest
and whether odd and even pages have different headers and footers. There are actually a lot more options
there, too. Repeating our theme, Word is amazingly powerful. Figure 3 shows the Margins page of the Page

Setup dialog.
Page Setup
¥ | Paper Size | Paper Source | Layout |
Top: 1 Y Previes
Bottom: 0.5" =
Inside: 1" = — j—
Cutside: ||:|.59" E‘ = =
Gutter: o" = —_ j—
rom edge — —
Header : IIZI.S" E“
a n .

Footer. ID'5 E Apply to: IWhDIe docurnent j
W Mirror margins Gutter position
I” 2 pages per sheet o+ Laft C Top
Default... | oK I Cancel |

Figure 3. The Page Setup dialog. This dialog lets you specify margins, paper size and orientation, whether
headers and footers are the same or different on the first page and on odd and even pages, and much more.

The PageSetup object is the Automation object that parallels the dialog. It has an assortment of properties
that handle the various options available. Unlike many of Word’s objects, most of PageSetup’s properties do
not refer to other objects. They're simply values, making it a little easier to work with than many of the others.
(A note of caution: although the other Office applications have objects named PageSetup, each Office
application’s object is distinct; they can’t be used interchangeably.)

Table 2 shows the most common properties of the PageSetup object, along with constant values for
commonly used settings.

Table 2. PageSetup properties. The PageSetup object mimics the Page Setup dialog on Word’s File menu.

Property Type Description



PaperSize

Numeric

The type of paper to use for the document, such as legal,
letter, A4, and so on.

wdPaperLetter
2
wdPaperLegal
4

wdPaperA4

7
wdPaperl1x17

1

FirstPageTray

Numeric

The source for the first sheet of paper for the document. The
first sheet is handled separately to allow, for example,
letterhead for page one of a letter followed by plain paper for
the rest.

wdPrinterDefaultBin
0
wdPrinterUpperBin
1

wdPrinterLowerBin

wdPrinterManualFeed

4
wdPrinterEnvelopeFeed
5

wdPrinterAutomaticSheetFeed

OtherPagesTray

Numeric

The source for sheets of paper other than the first. Uses the
same constants as FirstPageTray.




Orientation Numeric The orientation of the paper.

wdQOrientPortrait

wdOrientLandscape

1

TopMargin, BottomMargin Numeric The vertical margins of the page, in points.

LeftMargin, RightMargin Numeric The horizontal margins of the page, in points.

VerticalAlignment Numeric The vertical position of the text on the page.

wdAlignVerticalTop

wdAlignVerticalCenter
1
wdAlignVerticalJustify
2

wdAlignVerticalBottom

3
DifferentFirstPageHeaderFooter Logical or Indicates whether the first page of the document has different
Numeric headers and footers than the rest of the document. (Numeric

only if undefined.)

OddAndEvenPagesHeaderFooter Logical or Indicates whether odd pages and even pages have different
Numeric headers and footers. (Numeric only if undefined.)

Like many other measurement-related properties, the margin settings expect points rather than what’'s shown
in the Page Setup dialog. To make specifying measurements easier, the Word Application object has a



number of conversion methods, including InchesToPoints, CentimetersToPoints, PointsTolnches,
PointsToCentimeters, and quite a few more.

The following example creates a document, centers it vertically on the page, gives it different odd and even
page headers and footers, and sets the margins to one inch everywhere but at the bottom, where 0.75" is
used.

* Set up a document with custom margins, different odd and

* even headers and footers, and center alignment

#DEFINE wdAlignVerticalCenter 1

oDocument = oWord.Documents.Add()

WITH oDocument.PageSetup

VerticalAlignment = wdAlignVerticalCenter

.OddAndEvenPagesHeaderFooter =.T.

* Set up .75 bottom margin and 1-inch

* top, left and right margins.

LOCAL nThreeQuartersinPoints, ninchIinPoints

nThreeQuartersinPoints = oWord.InchesToPoints(.75)

ninchinPoints = oWord.InchesToPoints(1)

.BottomMargin = nThreeQuartersinPoints

.TopMargin = ninchInPoints

.LeftMargin = ninchInPoints

.RightMargin = ninchInPoints

ENDWITH

Since the number of points to the inch (or to the centimeter) never changes, you may prefer to perform these
conversions yourself. You can define your own constants and perform the arithmetic in native VFP code
rather than calling Automation methods to do it. Here’s alternative code for the margin setting portion of the
preceding example:

* ALTERNATE METHOD: replaces the seven lines of code, above:
#DEFINE autolnchesToPoints 72

.BottomMargin = 0.75 * autolnchesToPoints



.TopMargin = 1.00 * autolnchesToPoints
.LeftMargin = 1.00 * autolnchesToPoints

.RightMargin = 1.00 * autolnchesToPoints

Our tests show a speed improvement of about two orders of magnitude (that’s about 100 times faster) doing
the conversions ourselves. For an occasional computation, it doesn’t really matter, but if you need to convert
between points and other units hundreds or thousands of times, it's definitely worth using native VFP code
and remembering to include the right constants everywhere.

The PageSetup object has a number of other, more obscure properties, not shown in Table 2. Though the
descriptions for several properties shown in Table 2 refer to the document as a whole, each Section of a
document can have its own PageSetup object whose properties apply only within that section.

PageSetup has only two methods. TogglePortrait switches Orientation between portrait and landscape. It's
equivalent to setting the Orientation property directly to the opposite of its current setting.
SetAsDefaultTemplate makes the current PageSetup the default for this document and for all new
documents based on the active template. It’s like clicking the Default button in the Page Setup dialog. (Watch
out! The name of that method implies that it creates a default template. It doesn't. It creates default settings
for the current template.)

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Setting fonts

Fonts in Word are controlled by the Font dialog on the Format menu (shown in Figure 4). That dialog
controls the font name, size, style (such as bold, italic, underline, and so forth), color, and effects (like
strikethrough, superscripts and subscripts, and much more). It also controls more esoteric options such as
kerning, animation of or around text, the vertical position of text with respect to the baseline, spacing between
characters, and more. The Font object, which is similar to (though not quite the same as) Font objects in the
other Office servers, manages these options.

Font

Font | Character Spacing | Text Effects |
Font styl=:

IReguIar

Times Mew Eomat

Font color: Linderline styls: Underline color:
Automatic LI | fhone) ;I I Atmratic LI

Effects

r Strikethrough " Shadow " Small caps

" Double strikethrough [ outline I all caps

[ Superscript " Emboss I™ Hidden

™ Subscript [~ Engrave
Previesy

Times New Eoman

This is a TrueType font. This font will be used on both printer and screen,

Default,.. | ()4 I Cancel |

Figure 4. Specifying fonts. The Font dialog controls font, size, style, and color, as well as unusual options
like kerning and spacing between characters. In Automation, the Font object manages all of these features.

Range, Selection, and Style (discussed in the section "Working with styles" later in this chapter), as well as
many other objects, each have a Font property that points to a Font object. Changing the properties of the
Font object modifies the font of that portion of the document. For example, to change all the customer
information shown in Figure 2 to 12-point Arial, you can use this code:

oRange = oDocument.Range()
oRange.Font.Name = "Arial"

oRange.Font.Size = 12

To simplify matters, just set the desired font before sending the text to the document. Here’s another version
of the program to send the customer address. This one uses 12-point Arial from the start:



#DEFINE CR CHR(13)

USE _SAMPLES + "TasTrade\Data\Customer"

LOCAL oDocument, oRange

oDocument = oWord.Documents.Add() && Use the Normal template
oRange = oDocument.Range()

oRange.Font.Name ="Arial"

oRange.Font.Size = 12

LOCAL cText

cText =

cText = Customer_ID +": " + Company_Name + CR

cText = cText + "Attn: " + TRIM(Contact_Name) +" - " + Contact_Title + CR
cText = cText + Address + CR

cText = cText + TRIM(City) +" " + TRIM(Region) + Postal_Code + CR

cText = cText + UPPER(Country) + CR

oRange.Text =

oRange.InsertAfter(cText)

In fact, this isn't the best way to set the font for a whole document. It's better to use a template where the font

of the Normal style has been set as needed. (For more information, see the section "Working with styles"

later in this chapter.)

Table 3 lists Font properties you're likely to want to work with, along with Word constants for them, where

appropriate.

Table 3. Font properties. The Font object controls the appearance of the font, from the font face to its size,
style, and much more. This table shows the more common properties. Check Help for more unusual settings.

Property Type Description

Name Character The name of the font.

Size Numeric The size of the font, in points.
Bold Numeric or Logical Indicates whether the text is bold.




Italic Numeric or Logical Indicates whether the text is italic.

Underline NUmeric The type of underline.
wdUnderlineNone

0
wdUnderlineDouble
3
wdUnderlineSingle
1
wdUnderlineDotted
4
wdUnderlineWords
2

wdUnderlineThick

6

Superscript, Numeric or Logical Indicates whether the text is superscript or subscript.
Subscript

It's possible for the text in a range (or whatever area the Font object covers) to have more than one font
setting. When that happens, the various numeric properties get the value wdUndefined (9999999). (That's
also why properties that you'd expect to be logical are listed as numeric or logical.) Font.Name is the empty
string in that situation.

The next example demonstrates a related complication of working with VBA objects in Visual FoxPro.
Although these logical properties (like Bold and Italic) can be set by assigning VFP’s logical values .T. and
.F., they can’t be compared to logical values. Code like this fails with the error "Operator/operand type
mismatch™:

IF oFont.Bold

That's because of Bold’s dual numeric/logical capabilities. When you assign logical values, Word translates
them somewhere along the way, but for comparison, you have to use the numeric values. The next example
(SetUserFont.PRG) defines constants TRUE and FALSE rather than using the VFP logical values. That way,
the code is readable but avoids the type mismatch problem.

You can allow the user to choose the font by calling VFP’s GetFont() function first. Here’s a function that lets



the user specify a font, prompting with the font currently in use, and changes it to the specified font. Run this
code with the following syntax, making sure there’s an active document with a range specified (for example,
run any of the code examples in the previous sections).

SetUserFont(oRange.Font)

Listing 1 shows the code for SetUserFont (it's also included in the Developer Download files available at

www.hentzenwerke.comny).

Listing 1. This function lets the user choose a font, prompting with the name, size, and style of the
font object it receives as a parameter.

* SetUserFont.PRG

* Let the user specify a font, then set
* a passed font object to use it.
#DEFINE TRUE -1

#DEFINE FALSE O

LPARAMETERS oFont

* oFont = Reference to a font object
LOCAL cName, nSize, cStyle

LOCAL cFontString, aFontinfo[3]

* Did we get a font object to work with?
IF VarType(oFont) <>"Q"

RETURN .F.

ENDIF

* Get current settings of font object.
WITH oFont

cName = .Name

nSize = .Size

cStyle =""

IF .Bold = TRUE && Can't use VFP .T. here
cStyle = cStyle + "B"

ENDIF


http://www.hentzenwerke.com/

IF .ltalic = TRUE && or here

cStyle = cStyle +"I"

ENDIF

ENDWITH

* Ask the user for a font

cFontString = GetFont(cName, nSize, cStyle)
IF EMPTY(cFontString)

* User cancelled

RETURN .F.

ELSE

* Parse the chosen into its components
cFontString = CHRTRAN(cFontString, ",", CHR(13))
ALINES(aFontInfo,cFontString)

* Apply them to the font object

WITH oFont

.Name = aFontInfo[1]

.Size = VAL (aFontInfo[2])

IF "B"$aFontInfo[3]

.Bold =.T. && .T. works here

ENDIF

IF "I"$aFontInfo[3]

Italic = .T.

ENDIF

ENDWITH

ENDIF

RETURN .T.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Formatting paragraphs

Paragraphs are a key concept in Word. Much of Word'’s formatting can be thought of as being stored "in" the
marker that follows each paragraph. That's why moving text sometimes changes its formatting. If you fail to
take the paragraph marker along, the moved text picks up the formatting of the new location.

At the paragraph level, you can determine alignment of text (left, right, centered, or full justification), various
kinds of indentation (both amount and type), spacing of lines and paragraphs, handling of widow and
orphans, and much more. Word allows regular indentation from both the left and right margins, as well as first
line indents and hanging indents. Interactively, all of this is managed by the Paragraph dialog on the Format
menu (shown in Figure 5). Behind the scenes, the ParagraphFormat object controls these settings.

Range, Selection, and Style, among others, have a ParagraphFormat object, accessed through the
ParagraphFormat property. The Paragraph object has a Format property that accesses a ParagraphFormat
object.

Paragraph

{ Indents and Spacing | Line and Page Breaks |

alignment: Left - Cutling lewel: IE.Ddy ot - |

[ndentation
Laft: o - Special: By
ry
Right: [ 2] CESIEI R =
Spacing
Before: Opt — Ling spacing: At

After: Opt & ISingIe ﬂ I ﬁ

Previsw

Ahgoam.

Tabs... | O | Cancel

Figure 5. The Paragraph dialog. The Indents and Spacing page shown here lets you indicate alignment,
indentation, and spacing. The Line and Page Breaks page handles widow and orphan control and automatic
hyphenation. The ParagraphFormat object controls these settings for Automation.

Table 4 shows some commonly used properties of the ParagraphFormat object and the frequently used
constant values for them. Like many of Word's objects, ParagraphFormat has only a few methods; none are
likely to be useful in most Automation code.

This example sets the first paragraph in the current range to have a 0.5" first line indent, widow and orphan
control, double spacing, and full justification:



#DEFINE wdAlignParagraphJustify 3
#DEFINE wdLineSpaceDouble 2

WITH oRange.Paragraphs[1].Format

.FirstLinelndent = oWord.InchesToPoints(.5)

.WidowControl =.T.
Alignment = wdAlignParagraphJustify
.LineSpacingRule = wdLineSpaceDouble

ENDWITH
This example triple spaces a range:

#DEFINE wdLineSpaceMultiple 5
WITH oRange.ParagraphFormat
.LineSpacingRule = wdLineSpaceMultiple
.LineSpacing = oWord.LinesToPoints(3)

ENDWITH

Table 4. ParagraphFormat properties.

Property Type

Description

Alignment Numeric

The alignment of text in the paragraph.
wdAlignParagraphLeft

0

wdAlignParagraphRight

2

wdAlignParagraphCenter

1

wdAlignParagraphJustify

3

Leftindent Numeric

The indentation of the left edge of this paragraph from the left margin, in points.




Rightindent Numeric The indentation of the right edge of this paragraph from the right margin, in points.

FirstLinelndent Numeric The indentation of the first line of the paragraph. This property determines
whether the paragraph has the first line indented or "outdented" (providing a
hanging indent). Set a positive value to indent the first line, 0 to keep the first
line flush with the rest of the paragraph, or a negative value for a hanging
indent. Note that, with a hanging indent, the first line doesn’t move to the left;
subsequent lines move to the right.

SpaceBefore, Numeric The amount of white space (known as leading) before and after the paragraph,

SpaceAfter in points.

LineSpacingRule Numeric The kind of line spacing in effect. This setting can entirely determine the line
spacing, or it can set the stage for the LineSpacing property.
wdLineSpaceSingle
0
wdLineSpaceAtLeast
3
wdLineSpaceDouble
2
wdLineSpacelpt5
1
wdLineSpaceExactly
4
wdLineSpaceMultiple
5

LineSpacing Numeric The actual line spacing, in points, when LineSpacingRule is
wdLineSpaceAtLeast, wdLineSpaceExactly, or wdLineSpaceMultiple.

WidowControl Numeric or Indicates whether the first and last lines of the paragraph are kept on the same

Logical

page as the rest of the paragraph.




KeepTogether Numeric or Indicates whether the entire paragraph is kept on a single page.
Logical

KeepWithNext Numeric or Indicates whether the paragraph is kept on the same page with the paragraph
Logical that follows it.

Hyphenation Numeric or Indicates whether the paragraph is hyphenated automatically.
Logical

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved




Working with styles

While it's appropriate to manually adjust the formatting of a word, sentence, or paragraph here and there, the
most effective way to use Word is to take advantage of styles, which are named formats that you can apply
to a portion of a document. When you’re working in Word, you can see the style for the insertion point in the
first dropdown on the Formatting toolbar.

Word has two kinds of styles: paragraph styles and character styles. Character styles are used for fragments
and control only a few settings, primarily font-related. Paragraph styles, as the name implies, apply to entire
paragraphs and include a lot more options. Paragraph styles can specify font and paragraph formatting, as
well as tab settings and much more. In the Style dialog available from Word’s Format menu (see Figure 6),
paragraph styles are preceded by a paragraph marker, while character styles begin with an underlined "a."

Using styles is much like using classes in an object-oriented language. They make it easy to enforce
uniformity throughout and across documents, and they let you change the characteristics of sections of text
with a single change. Word'’s styles offer some other benefits, as well. For example, each paragraph style
sets the default style for the paragraph to follow. With a little more work up front, styles can be used to
provide an outline for a document, as well.

Style
Styles: Paragraph preview

» 1 ormal ;l

T Mormal (el

1 Mote Heading
2 Page Murmber
1 Plain Text

1 Salutation

1 Signature

a Sirong

1 Subtitle

1 Table of Authorities Courier New

1 Table of Figures

1 Title
1 T4 Heading Description

1T70C 1 ¥ | Mormal + Indent: Left 0.5"
List:

IMI styles j
Cirganizer. .. | e, | Modify. .. | Delete |
| Apply I Cancel |

Character preview

Figure 6. Creating and choosing styles. Word'’s Style dialog lists the available styles. Paragraph styles are
preceded by a paragraph symbol, while an underlined "a" precedes character styles. Note in the Description
that the style is described in terms of another—its "base style."

The Document object includes a Styles collection, which contains one Style object for each of the styles
stored in the document. You can add your own styles using the Styles collection’s Add method. Various
objects’ Style properties point to Style objects.

What all this fuss about styles means is that, rather than writing a lot of code to change fonts and sizes, and
to set alignment and leading and other things like that, you can simply define a few custom styles or modify



built-in styles, and then apply them to your documents as needed. For example, this code modifies the
Normal style, which is always available, to use 16-point centered Garamond italic:

#DEFINE wdStyleNormal -1

#DEFINE wdAlignParagraphCenter 1

WITH oWord.ActiveDocument.Styles[ wdStyleNormal ]
WITH .Font

.Name ="Garamond"

.Size = 16

Atalic = .T.

ENDWITH

.ParagraphFormat.Alignment = wdAlignParagraphCenter

ENDWITH

To apply an existing style to a portion of a document, set the Style property of the Range or Paragraph to a
built-in style using a constant, or to the name of a custom style. Table 5 lists the constants for some of the
more commonly used built-in styles. This example applies the Heading 1 style to the range referenced by

oRange:
#DEFINE wdStyleHeading1 -2

oRange.Style = oWord.ActiveDocument.Styles[ wdStyleHeading1 ]

Table 5. Built-in styles. Word has more than 100 built-in styles, each referenced by a defined constant. This
table shows just a few of the most common; use the Object Browser to find the rest.

Constant Value Constant Value
wdStyleNormal -1 wdStyleHeadingl -2
wdStyleBodyText -67 wdStyleHeading2 -3
wdStyleDefaultParagraphFont -66 wdStyleHeading3 -4

Creating custom styles

In addition to modifying the built-in styles, you can create your own custom styles. To add a new style, use
the Add method of the Styles collection. Add takes two parameters: the name of the new style, and the Word
constant that indicates whether it's a paragraph style (wdStyleTypeParagraph = 1) or a character style
(wdStyleTypeCharacter = 2).



Every style is based on an existing style. By default, new paragraph styles are based on the Normal style,

and new character styles are based on the Default Character Font style. The BaseStyle property indicates

which style another style inherits from, however.

Whatever style BaseStyle points to, all other changes to the style’s properties use the BaseStyle as their

point of reference. If you look at the Style dialog, you see that the style’s characteristics are described as

"<The base style>" + "<various other characteristics>." The Description property contains the same

information. So, much like classes in OOP, changes to the base style change any styles based on it.

Table 6 lists key properties of the Style object, along with significant constant values.

Table 6. Style counts. Styles are Word'’s version of OOP. They offer a way to provide uniform formatting
within and across documents.

Property Type Description
BaseStyle Character, The name, constant value, or pointer to the style on which this style is
Numeric, or based. See Table 5 and Help or the Object Browser for constant values
Object for built-in styles.
Type Numeric The kind of style—paragraph or character.
wdStyleTypeParagraph
1
wdStyleTypeCharacter
2
Builtin Logical Indicates whether this a built-in style.
Description Character The description of the style (as shown in the Style dialog).
Font Object Pointer to a Font object for the style.
ParagraphFormat Object Pointer to a ParagraphFormat object for the style.
Borders Object Pointer to a Borders collection for the style.




Shading Object

Pointer to a Shading object for the style.

NextParagraphStyle Character,
Numeric, or
Object

The name, constant value, or pointer to the style for the paragraph to
follow this paragraph, for paragraph styles.

Listing 2 takes the simple customer address document from earlier in the chapter and begins to create a

document worthy of Word. It creates several new styles to do the job. In practice, you could use the built-in

Normal and Heading X (there are multiple heading levels) styles for this document, redefining them as

needed. But the example shows how easy it is to create new styles. (You'll find this program as Styles.PRG

in the Developer Download files available at www.hentzenwerke.con.)

Listing 2. This program creates several custom styles, then uses them to create the document in Figure 7.

* Create a formatted document by sending data from one record.

* Demonstrates Style objects, but it's more likely the needs here

* could be met by existing styles.

#DEFINE CR CHR(13)

#DEFINE wdStyleTypeParagraph 1

#DEFINE wdStyleNormal -1

#DEFINE wdAlignParagraphLeft O

#DEFINE wdAlignParagraphCenter 1

#DEFINE wdCollapseEnd 0

USE _SAMPLES + "TasTrade\Data\Customer"

RELEASE ALL LIKE o*

PUBLIC oWord

LOCAL oWord, oDocument, oRange

LOCAL oBodyStyle, oMajorHeadingStyle, oMinorHeadingStyle

oWord = CreateObject("Word.Application")

oWord.Visible = .T.

oDocument = oWord.Documents.Add() && Use the Normal template



http://www.hentzenwerke.com/

oRange = oDocument.Range()
* Set up styles. Base body style on Normal.
oBodyStyle = oDocument.Styles.Add( "Body", wdStyleTypeParagraph )
WITH oBodyStyle

* This line is overkill since it's the default
.BaseStyle = oDocument.Styles[ wdStyleNormal ]
WITH .Font

.Name ="Arial"

.Size =12

ENDWITH

WITH .ParagraphFormat

* These are fairly normal defaults, so these lines
* may not be necessary

Alignment = wdAlignParagraphLeft

.SpaceAfter =0

ENDWITH

ENDWITH

* Major heading is big and centered.
oMajorHeadingStyle = oDocument.Styles.Add( "MajorHeading", ;
wdStyleTypeParagraph)

WITH oMajorHeadingStyle

.BaseStyle = oBodyStyle

.Font.Size = 20

WITH .ParagraphFormat

Alignment = wdAlignParagraphCenter

.SpaceAfter = 6 && leave aline after



.KeepWithNext =.T. && include at least one line of next

&& paragraph before new page

.KeepTogether =.T. && keep the whole paragraph together

ENDWITH

ENDWITH

* Minor heading is just big.

oMinorHeadingStyle = oDocument.Styles.Add("MinorHeading", ;

wdStyleTypeParagraph )

WITH oMinorHeadingStyle

.BaseStyle = oBodyStyle

.Font.Size = 16

ENDWITH

* Now create customer report

* First, our company info centered at the top

oRange.Style = oMajorHeadingStyle

oRange.InsertAfter("Automation Sample Company" + CR)

oRange.InsertAfter("Factory Blvd." + CR)

oRange.InsertAfter("Robotville, PA 19199" + CR)

* Now leave some blank space, then put info about this customer

oRange.Collapse(wdCollapseEnd )

oRange.End = oRange.End + 1 && to allow assignment to style

oRange.Style = oBodyStyle

oRange.InsertAfter(CR + CR)

* Use minor heading for customer id and name

* Put customer id in bold

oRange.Collapse(wdCollapseEnd )



oRange.End = oRange.End + 1 && to allow assignment to style

oRange.Style = oMinorHeadingStyle

oRange.InsertAfter(Customer_ID + ": " + TRIM(Company_Name) + CR)

oRange.Words[1].Font.Bold = .t.

* Regular body style for address info

oRange.Collapse(wdCollapseEnd )

oRange.End = oRange.End + 1 && to allow assignment to style

oRange.Style = oBodyStyle

oRange.InsertAfter(TRIM(Contact_Title) + ":" + TRIM(Contact_Name) ;

+CR)

oRange.InsertAfter(TRIM(Address) + CR)

oRange.InsertAfter(TRIM(City) + " " + TRIM(Region) +;

Postal_Code + CR)

oRange.InsertAfter(UPPER(TRIM(Country)) + CR)

* Extra line for spacing

oRange.InsertAfter( CR)

* Back to minor heading for phone number

oRange.Collapse(wdCollapseEnd )

oRange.End = oRange.End + 1 && to allow assignment to style

oRange.Style = oMinorHeadingStyle

oRange.InsertAfter( "Phone: " + TRIM(Phone) + CR)

* Fax number in regular body style

oRange.Collapse(wdCollapseEnd )

oRange.End = oRange.End + 1 && to allow assignment to style

oRange.Style = oBodyStyle

oRange.InsertAfter( "Fax: " + TRIM(Fax) + CR)



Note the use of the Words collection to bold only the customer id rather than the whole line. Figure 7 shows
the resulting document in Word.

Bl Documenti - Microsoft Word
JEiIe Edit Miew Insert Format Tools Table Window Helo

DR @RY =B v- o @BORE=H & T 10% -,
| MajorHeading = Arial ~20 ~|Brzu|lEE=s|EEEs

Automation Sample Company
Factory Blvd.
Robotville, PA 19199

ALFKI : Alfreds Futterkiste
Sales Representative:Maria Anders
Obere Str. 57

Berlin 12209

GERMANY

Phone: 030-0074321
Fax: 030-0076545

Figure 7. Using styles. Rather than formatting every item independently, styles let you define and name sets
of formatting characteristics, then apply them uniformly within and across documents. Styles can be
considered OOP for formatting.

In an example this small, it can be hard to see the point of creating and using styles. It's worth noting that the
code in the example is divided almost exactly evenly between formatting the styles and putting the data into
the document. Far more lines would have been needed to perform the same formatting without using styles.
Furthermore, consider what would be needed to add more information for the same customer. Once the
styles are defined, they can be used over and over. With 42 lines of code, we have three styles that can be
applied wherever we need them, no matter how many more lines of code we write to send text to the
document. In Chapter 5, "Intermediate Word," we’ll look at creating templates, in which we can save our own
styles for use in multiple documents.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Borders and shading

Word allows you to put borders around and shading behind various parts of a document to set them off from
the rest of the document. You can put borders around or shade pretty much anything, from a single character
to an entire page. Border styles vary from simple lines to complex patterns and from a half-point to six points.
A border can be applied on any or all sides of the text. Shading can be any color and can run the gamut from
just a plain color to a patterned fill. Interactively, it's all controlled from the Borders and Shading dialog on the
Format menu.

In Automation, two objects run the show. Not surprisingly, they'’re called Borders and Shading. Borders is a
collection of Border objects.

Creating borders

Setting up borders interactively can be tricky. It's often hard to get the border where you actually want it.
That's because the Borders collection can belong to different objects, and the object to which it belongs
determines where the border actually appears. Table 7 lists some of the objects that can hold a Borders
collection and the interpretation of the collection in that case.

Table 7. Almost anything can have borders. The interpretation and size of the Borders collection
depends on what object it belongs to.

Object Meaning of Borders

Section Sets a Page Border for that section of the document.

Paragraphs collection Sets borders around the group of paragraphs in the collection.

Paragraph Sets borders for that paragraph.

Range Sets borders for that range. When the range crosses paragraph boundaries or there’s a

break of some sort, such as a hard page break or a section break within the range, the
range is expanded to include the complete paragraphs at each end. The border is
applied to that expanded range, which is treated like a Paragraphs collection.

Table Sets borders for the outside of the table and for the gridlines inside the table.

Rows collection Sets borders for the rows in the collection. Applies only to the outside borders of the
collection, not to the borders for each row in the collection.




Columns collection Sets borders for the columns in the collection. Applies only to the outside borders of the
collection, not to the borders for each column in the collection.

Row Sets borders for the specified row.
Column Sets borders for the specified column.
Cells collection Sets borders for the cells in the specified collection. This approach works much better

than using either Rows or Columns. Be sure to specify top or bottom borders when
accessing Cells through a Row, and left or right borders when accessing Cells through a
Column. While the others work, they’re not very productive.

Cell Sets borders for a specified cell, indicated by both row and column. This approach is
also effective.

Style Sets borders for a style.

A number of other objects reference Borders collections as well, but they're pretty esoteric.

The Borders collection contains a lot more information than most. Also, unlike most collections, you can't add
members freely. The number of Border objects it contains is determined by the kind of object it belongs to.
Most of the time, there are four members, accessed using these constants: wdBorderTop (-1), wdBorderLeft
(-2), wdBorderBottom (-3), and wdBorderRight (-4). For some objects, including tables, the collection has
additional members. The constants are: wdBorderHorizontal (-5), wdBorderVertical (-6),
wdBorderDiagonalDown (-7), and wdBorderDiagonalUp (-8).

In addition to the individual Border objects, the collection has a number of other properties. Table 8 contains
a sampling of them.

Table 8. Borders collection properties. While most collections have few properties, Borders is
particularly rich in them.

Property Type Description

Count Numeric The number of Border objects in this collection.

InsideLineStyle Numeric The type of line used for the inside of a table. Can be overridden by




setting borders for the individual rows, columns, or cells. Uses the
constants shown for LineStyle in Table 9.

InsideLineWidth Numeric The size of the lines used for the inside of a table. Can be overridden
by setting borders for the individual rows, columns, or cells. Uses the
constants shown for LineWidth in Table 9.

OutsideLineStyle Numeric The type of line used for the outside border of the specified object.
Uses the constants shown for LineStyle in Table 9.

OutsideLineWidth Numeric The size of the lines used for the outside border of the specified object.
Uses the constants shown for LineWidth in Table 9.

Enable Logical Indicates whether or not borders should be enabled for the specified
object. Setting this property to .F. turns off borders for the object.

A variety of other properties determine how far from the specified object the borders appear.

At long last, we reach the actual Border object, which describes the characteristics of a single border.
Table 9 shows its key properties.

This code creates a document and puts a page border of hot air balloons on it. Figure 8 shows the
result (substantially reduced in size).

#DEFINE wdArtBalloonsHotAir 12

#DEFINE wdBorderTop -1

#DEFINE wdBorderBottom -2

#DEFINE wdBorderLeft -3

#DEFINE wdBorderRight -4

oDocument = oWord.Documents.Add()

WITH oDocument.Sections[1]

.Borders[ wdBorderTop ].ArtStyle = wdArtBalloonsHotAir
.Borders[ wdBorderBottom ].ArtStyle = wdArtBalloonsHotAir
.Borders[ wdBorderLeft ].ArtStyle = wdArtBalloonsHotAir
.Borders[ wdBorderRight ].ArtStyle = wdArtBalloonsHotAir

ENDWITH

Table 9. What’s in a border? These properties describe a single border.



Property

Type

Description

LineStyle

Numeric

The type of line used for the border. For example:
wdLineStyleNone

0

wdLineStyleDashDot

5

wdLineStyleSingle

1

wdLineStyleDouble

7

wdLineStyleDot

2
wdLineStyleSingleWavy

18




LineWidth

Numeric

The size of the line used for the border. You cannot set the point size for the
line, but rather must use the constant value for a predefined size. Check the
Object Browser for more choices.

wdLineWidth025pt
2

0.25 points
wdLineWidth050pt
4

0.5 points
wdLineWidthO75pt
6

0.75 points
wdLineWidth100pt
8

1 point
wdLineWidth150pt
10

1.5 points
wdLineWidth225pt
18

2.25 points
wdLineWidth300pt
24

3 points
wdLineWidth450pt
36

4.5 points
wdLineWidth600pt
48

6 points
wdUndefined

9999999




Undefined

Colorindex, Color Numeric The color for the line used for the border. Word offers two sets of colors. Use
Colorindex to specify a value from a short list, using the wdColorindex
constants, or use Color for a full list of RGB values, which can be passed
either with VFP’s RGB() function, as an actual numeric value, or by using the
wdColor constants. Either property is acceptable. Colorindex is quick and
easy, but Color gives you more choices. Note that Color is new in Word 2000.

The graphic to use for a page border. More than 150 are available. Shades of
PrintShop. Here’'s a sampling:

ArtStyle Numeric
wdArtApples

1

wdArtMusicNotes

79
wdArtBalloonsHotAir
12

wdArtPaperClips

82
wdArtBasicBlackDots
156

wdArtPencils

25

ArtWidth Numeric The width of the page border, in points.

Inside Logical Indicates whether the bordered object should have an inside border, if it
supports one.

peeoOPPPPPPPPPRYP

14
?
?
?
?
P
P
?
P

ERERERCRERCRCRERR



ACACRChERERChERCRCRER R SRR

4
4
4
14
4
|4
14
4
4
14
14
14
14
4

vevoorPPPOPPPPRDYD

Figure 8. Page border. The Borders collection lets you add borders to various objects. Its
interpretation changes with the object.

Shading text

After the complexities of borders, the good news is that shading is far easier. There’s only one object
involved, and it has only a handful of properties.

Like borders, shading can be applied at a number of levels. Many objects have a Shading property
that references a Shading object. All the objects listed in Table 7 support shading except for Section,
which makes sense because Section’s Borders collection is really about page borders, something
different than the rest.

Once you know what you want to shade, there are only three components involved in specifying
shading: the background color, the foreground color, and the texture. Better yet, you can often omit
the last two of these. The background color is just what it sounds like—the color to put behind the
text. For most printed documents, you’ll usually want some variant of gray. You can specify it with
either BackgroundPatternColor or BackgroundPatternColorindex. The difference is that
BackgroundPatternColor expects an RGB value, while the longer-named property takes its value from
a list of 18 predefined colors (you can look them up in the Object Browser under wdColorindex). To
specify light gray shading, try:

oRange.Shading.BackgroundPatternColor = RGB(230,230,230)

ForegroundPatternColor and ForegroundPatternColorindex lay another color over the background
color. Doing this doesn’t make much sense if you don’t specify a value for Texture. It’s just an
alternate way of specifying the shading color (or a complex way of mixing colors).

SREES
R\
)
& “\,
QR
“% s»Y  BackgroundPatternColor and ForegroundPatternColor are new in Word

2000. In Word 97, you have to use the Index versions of the two properties and are
limited to the list of predefined colors they provide.

However, Word can do much better tricks. The shading can be muted from full strength down to as
low as 5 percent, with nearly 40 total steps offered. In addition, about a dozen other fill patterns are
available for shading. In that case, the two colors are used as their names indicate. Table 10 shows
some of the constants available for the Texture property.



Table 10. Textured shading. Word offers a variety of textures that allow shading to be more
than just background.

Constant Value Constant Value
wdTextureNone 0 wdTextureCross -11
wdTextureSolid 1000 wdTextureDarkCross -5
wdTexture5Percent 50 wdTextureHorizontal -7
wdTexturel0Percent 100 wdTextureVertical -8
wdTexturel2Pt5Percent 125 wdTextureDiagonalCross -12
wdTexture30Percent 300 wdTextureDiagonalUp -10
wdTexture75Percent 750 wdTextureDiagonalDown -9

This example sets up a diagonal crosshatch of orange on teal:

#DEFINE wdTextureDiagonalCross -12
WITH oRange.Shading

.Texture = wdTextureDiagonalCross
.BackgroundPatternColor = RGB(0,192,255)
.ForegroundPatternColor = RGB(255,128,0)

ENDWITH

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Headers and footers

Have you ever noticed a document that included the chapter title at the top or said something like "Page 3 of
17" at the bottom of each page? Items like those are called headers and footers. Word has tremendous
support for them, allowing you to put different headers on the first page of each section of a document than
on the other pages, and to create separate headers and footers for odd and even pages.

Interactively, you access a document’s Header and Footer through the View menu (see Figure 9), which
makes them available for editing and brings up a special toolbar for the purpose. The toolbar includes tools
for inserting common header and footer items like page numbers, date and time, and so forth. However,
headers and footers can hold any text at all, as well as graphics like company logos.

View Insert Format Too

E MNormal
El Print Layout

REuler

Figure 9. Adding headers and footers. Use the View menu to make headers and footers visible interactively,
so you can add to them. In the object model, they're represented by HeaderFooter objects.

The kinds of headers and footers in a document (different first page, different on odd/even pages) are
controlled through the PageSetup object and are discussed in the section "Setting up pages" earlier in this
chapter. Header and footer content is stored in HeaderFooter objects, which are part of a HeaderFooters
collection, accessed through the Headers and Footers properties of the Section object. Any section can have
up to three of each, accessed via the constants wdHeaderFooterPrimary (1), wdHeaderFooterFirstPage (2),
and wdHeaderFooterEvenPages (3).

Each HeaderFooter object represents a single header or footer. The key properties are shown in Table 11.

Table 11. The HeaderFooter object. Despite its name, each instance represents a single header or footer.

Property Type Description

Exists Logical Indicates whether the specified header or footer exists. Contradictory as
this property seems, it makes sense when applied to a member of the
HeadersFooters collection.

IsHeader Logical Indicates whether or not this is a header. If not, of course, it's a footer.




PageNumbers Object Pointer to a PageNumbers collection that represents page number
information in this header or footer. (See the next section.)

LinkToPrevious Logical Indicates whether this header or footer is the same as the corresponding
header or footer in the previous section of the document.

Page numbering

Page numbers can appear anywhere in a document, but are normally placed in either headers or footers.
Word offers a variety of formatting options for page numbers, from normal Arabic numerals to letters, Roman
numerals, and even chapter numbering (like 1-1, 1-2, and so forth). You also have a choice about the
position of the number. It can go in a header or a footer, and it can be aligned left, center, or right, or at either
an inside or outside margin. The last two choices apply only when the document has different odd and even
page headers and footers, of course. All of those choices come just from the Insert|Page Number dialog. If
you edit the header or footer manually, you can place the page number anywhere you want within it.

Word’s PageNumbers collection consists of individual PageNumber objects. Each represents one occurrence
of a page number in either a header or a footer. PageNumber is quite simple. Its only significant property is
Alignment, which indicates the horizontal position of the page number. Table 12 shows the possible values.

Table 12. Aligning page numbers. These constants are the available values for the Alignment property of
PageNumber.

Constant Value Constant Value
wdAlignPageNumberLeft 0 wdAlignPageNumberinside 3
wdAlignPageNumberCenter 1 wdAlignPageNumberOutside 4
wdAlignPageNumberRight 2

The PageNumbers collection is where all the action occurs. It has a number of properties that describe page
numbering within the section. Table 13 shows the ones you're most likely to use.

To use chapter-type page numbering, the chapter numbers must be identifiable. Associating them with an
outline level does that. (See the next section, "Organizing text with lists.")

Table 13. The PageNumbers collection. Each section of a document lets you restart page numbering
and change the appearance of page numbers.



Property

Type

Description

NumberStyle

Numeric

The style to use for the page number. Check the Object Browser for
additional choices.

wdCaptionNumberStyleArabic

wdCaptionNumberStyleUppercaseRoman
1
wdCaptionNumberStyleLowercaseRoman
2
wdCaptionNumberStyleUppercaseLetter
3
wdCaptionNumberStyleLowercaseLetter
4

wdCaptionNumberStyleHebrewLetterl

45

RestartNumberingAtSection

Logical

Indicates whether the page numbers start over at the beginning of this
section.

StartingNumber

Numeric

The first page number for this section, if RestartNumberingAtSection
is.T.

IncludeChapterNumber

Logical

Indicates whether chapter-type numbering is used. That is, should
page numbers be in the format “"chapter separator page"—for
example, 13-4.

HeadingLevelForChapter

Numeric

The outline to be used as the chapter number in the page number

ChapterPageSeparator

Numeric

The character to use between the chapter number and the page
number, for chapter-type numbering.




wdSeparatorHyphen

wdSeparatorEmDash

wdSeparatorPeriod
1
wdSeparatorEnDash
4

wdSeparatorColon

2

ShowFirstPageNumber Logical Indicates whether the page number appears on the first page of the
section.

This code centers the page number in the footer, using lowercase Roman numerals.

#DEFINE wdCaptionNumberStyleLowercaseRoman 2

#DEFINE wdAlignPageNumberCenter 1

WITH oWord.ActiveDocument.Sections[1].Footers[1].PageNumbers

Add()

.NumberStyle = wdCaptionNumberStyleLowercaseRoman

ENDWITH
oWord.ActiveDocument.Sections[1].Footers[1].PageNumbers[1].Alignment =;

wdAlignPageNumberCenter

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Organizing text with lists

Word provides several alternatives for structuring text into lists. They’re combined in the Bullets and
Numbering dialog on the Format menu. Bullets provide a way of ticking off items that don’t have a particular
order, while the numbered list options are for items that need to appear in a specific order, like instructions.
The third page in that dialog—the Outline Numbered tab—offers options that are even more structured and
ties into Word'’s ability to link styles with document structure. As noted in the previous section, you need to
use outline numbering in order to have pages chapter numbered.

Two sets of objects are involved in creating lists. One hierarchy (ListGalleries, ListTemplates, and ListLevels
and their members) provides a set of choices for the appearance of the list, while the other (Lists and
ListParagraphs and their members) contains the actual list items. This structure mirrors the way styles are
applied to document contents. A variety of Style objects are available and can be applied to the contents, but
any given range has only a single style. Similarly, there are a variety of list templates, but any given list has
only one template applied to it.

Defining list structures

Three collections and their contents provide a wide variety of choices for formatting lists. Figure 10 shows
the hierarchy involved. The ListGalleries collection, accessed through the Application object’s ListGalleries
property, starts things off. Each ListGallery object represents one page in the Bullets and Numbering dialog.
The constants wdBulletGallery (1), wdNumberGallery (2), and wdOutlineNumberGallery (3) are used to
access them.

Liztz alleries [ListGallery] |

L{ListTemplates [LiztT emplate] |
L{ ListLevels [ListLevel] |

Figure 10. Defining list structures. These three collections contain the definitions for all of the bulleted,
numbered, and outline-structured lists you can create.

Each ListTemplate object describes the way a single list is laid out. Like ListGallery, though, ListTemplate
has few properties and methods itself. The only property worthy of note is OutlineNumbered, which indicates
whether or not the template specifies a multi-level outline list. If not, it's restricted to a single level (which is
true for all the lists shown on the first two pages of the Bullets and Numbering dialog). Figure 11 shows the
first page of the Bullets and Numbering dialog, which is not outline numbered, while Figure 12 shows the last
page, which is.

The ListLevels collection is comprised of ListLevel objects, the actual stuff of which lists are made. Table 14
shows the interesting properties of ListLevel. If you don't like the list structures provided, this is the place to
change things. For example, in the first outline numbered list (shown in the second position of the first row in
Figure 12), to change the list to use square brackets rather than parentheses, you could use code like this:

#DEFINE wdOutlineNumberedGallery 3

LOCAL oLevel



WITH oWord.ListGalleries[ wdOutlineNumberedGallery ].ListTemplates[ 1]
FOR EACH oLevel IN .ListLevels

WITH oLevel

* Change ")" to "]"

.NumberFormat = STRTRAN(.NumberFormat, ")", "1")

.NumberFormat = STRTRAN(.NumberFormat, " (", "[")

ENDWITH
ENDFOR
ENDWITH
Bullets and Numbering
Bulleted |uumbered | Cutline Murnbered |
- o] -
0 | |
None *
- o] -
d i 2
o < 2
a < ?
Picture... | Customize. .. |
Reset | Ok I Cancel |

Figure 11. List Galleries without outlines. The first two pages of the Bullets and Numbering dialog provide
single-level lists. The ListGalleries collection has one member for each page of the dialog. Each choice
shown (except the "None" option) is represented by one ListTemplate object.

Bullets and Numbering
Bulleted | MUmbered
1) 1. +
a) 1.1 b3
None
i 1.1.1. .
Aricle | Headi 1 Heading 1 |. Heading 1 |. Roman Para
Section 1.01 1.1 Heading 2 A, Heading A Lettered F
(a) Heading 3 1.1.1 Heading 1. Headir 1. Murmbe
Ligt numbering
¥ Restart numbering ¢ Continue previous list Customize... |




Reset | Ok I Cancel |

Figure 12. Multi-level lists. The third page of the dialog offers outline numbering and provides the third
member of the ListGalleries collection.

Each level can be linked to a style using the LinkedStyle property, so that using that style automatically
indicates numbering level and vice versa. Doing so provides several useful abilities. First, as noted
previously, numbering within chapters is enabled. Second, Word’s Outline View and Document Map become
useful tools. While neither of these strictly requires numbering, both are based on the idea that a document is
organized hierarchically and that the styles chosen reflect that hierarchy. (See "Organizing a document using
styles" in Chapter 6 for more on this topic.) By default, the last four list templates on the Outline Numbered
page are linked to the built-in Heading styles.

Table 14. Defining list structures. ListLevel specifies how one level in a list is laid out.

Property Type Description

NumberStyle Numeric The style for the number for this level.
wdListNumberStyleBullet

23

wdListNumberStyleArabic

0
wdListNumberStyleUppercaseRoman
1
wdListNumberStyleLowercaseRoman
2
wdListNumberStyleUppercaseLetter
3

wdListNumberStyleLowercaseLetter

4

NumberFormat Character A string showing how to insert the level number in the proper style. Use %
followed by a digit to represent the level number, except when
NumberStyle is wdListNumberStyleBullet. (In that case, NumberFormat is
limited to a single character.)




TrailingCharacter

Numeric

The character that follows the number. Use one of these constants:
wdTrailingTab

0

wdTrailingSpace

1

wdTrailingNone

2

StartAt

Numeric

The starting number for the list.

Alignment

Numeric

The alignment of the level number or bullet.
wdListLevelAlignLeft

0

wdListLevelAlignCenter

1

wdListLevelAlignRight

2

NumberPosition

Numeric

The indentation (in points) of the level number or bullet.

TabPosition

Numeric

The indentation (in points) of the tab following the level number or
bullet—that is, where the text should begin on that line.

TextPosition

Numeric

The indentation (in points) of text on the second and subsequent lines of
numbered or bulleted text.

Font

Object

The font to use for the level number.

LinkedStyle

Character

The name of the style linked to this level. (See the text for an explanation.)




Creating lists

The Lists collection of Document references all the lists in a document. Each List object refers to a single list.
The key property of List is ListParagraphs, a collection of the paragraphs in the list. Once a list exists, you
can modify its appearance by working with the properties of these objects.

The process of adding a new list to a document is roundabout, especially if you want a multi-level list. You
can't just set the format you want and start adding items, as you can interactively. You need to add the text to
the document, and then apply the appropriate list template. Then, for a multi-level list, you need to go back
and do appropriate indenting.

Once you have the text range ready to format, use the Range’s ListFormat property to access the
ApplyListTemplate method. This method takes a range and turns it into a list by applying the specified
ListTemplate object to it. An optional fourth parameter (not shown here) allows the list to be formatted in a
way more appropriate for web pages.

oRange.ApplyListTemplate( oListTemplate [, IContinuePreviousList

[, nApplyTo]])

oListTemplate Object Reference to a ListTemplate object.
IContinuePreviousList Logical Indicates whether to continue numbering from the previous list or start over at 1.
nApplyTo Numeric The portion of the list the specified template should be applied to. Uses the

following Word constants: wdListApplyToWholeList (0),
wdListApplyToThisPointForward (1), wdListApplyToSelection (2). This
parameter lets you change the formatting of part of a list, not necessarily the
most aesthetically pleasing idea.

The other important methods are Listindent and ListOutdent, which let you demote and promote items by one
level at a time in an outline list.

Here’s a brief example that creates a multi-level list:

#DEFINE CR CHR(13)

#DEFINE wdListApplyToWholeList 0

* Start with an empty range

oDocument = oWord.Documents.Add()

oRange = oDocument.Range()

* Now create a string containing the items to list

cltems = "First item" + CR +;



"Second item "+ CR +;

"first sub-item for item 2" + CR +;

"second sub-item for item 2" + CR +;

"Third item" + CR

* Send the string to Word

oRange.InsertAfter(cltems)

* Apply alist template
oRange.ListFormat.ApplyListTemplate( oWord.ListGalleries[3].ListTemplates[1], ;
.F., wdListApplyToWholeList)

* Now handle subitems
oRange.ListParagraphs[3].Range().ListFormat.ListIndent()

oRange.ListParagraphs[4].Range().ListFormat.ListIndent()
Here are the results:

1. Firstitem
2. Second item

a. first sub-item for item 2

b. second sub-item for item 2
3. Third item

There is an alternative to using Listindent. Remember the ability to link styles to list levels by using
LinkedStyle? Once you've done so, if you apply the specified styles to a paragraph and ApplyListTemplate,
that paragraph is automatically numbered. Here's an example that shows this approach. The resulting list is
shown in Figure 13.

#DEFINE CR CHR(13)

#DEFINE wdCollapseEnd 0

#DEFINE wdParagraph 4

#DEFINE wdListApplyToWholeList 0

* Start with an empty range
oDocument = oWord.Documents.Add()
oRange = oDocument.Range()

* Now create a string containing the items to list
oRange.Style = "Heading 1"
oRange.InsertAfter("First item" + CR +;
"Second item "+ CR)

oRange.Collapse(wdCollapseEnd )



oRange.Style = "Heading 2"

oRange.InsertAfter("first sub-item for item 2" + CR +;

"second sub-item for item 2" + CR)

oRange.Collapse(wdCollapseEnd )

oRange.Style = "Heading 1"

oRange.InsertAfter("Third item")

* Now make a range of the whole thing

oRange.MoveStart( wdParagraph, -4)

* Apply alist template that has linked styles
oRange.ListFormat.ApplyListTemplate( oWord.ListGalleries[3].ListTemplates[€], ;

.F., wdListApplyToWholeList )

38 Document? - Microsoft Word

]E\Ie Edit Miew Insert Format Tools Table Window Help
[DEEo(gly i tad oo eEOR=& BT 130%
| Heading 1 | Arial <15 H|mzulz==

4

kNS
===

Al
&3]
b
>

I. Firstitem

Il. Second item
A. first sub-item for item 2

B. second sub-item for item 2

. Third item

Figure 13. Using styles to create lists. By linking styles to list levels, you can have items indented
automatically when you apply the list template.

The ListFormat object has properties to describe the appearance and structure of the level number.
Table 15 describes those you're likely to want to use. A range may contain many different lists, but it
has only a single ListFormat object. The properties of ListFormat refer only to the first list in the
range. To look at all the different lists in a complex range, break the range down into smaller ranges.

ListFormat is primarily concerned with the value and formatting of the paragraph number, but it also
provides properties to access the list itself and the list template on which the list is based.

Table 15. ListFormat properties. The ListFormat object, referenced through Range, controls the
appearance of lists.

Property Type Description



ListType

Numeric

The kind of list.
wdListNoNumbering

0
wdListSimpleNumbering
3

wdListNumOnly

1
wdListOutlineNumbering
4

wdListBullet

wdListMixedNumbering

5

ListLevelNumber

Numeric

The indentation level for the first paragraph of this object.

ListValue

Numeric

The paragraph number without any formatting.

ListString

Character

The paragraph number with the specified formatting.

ListTemplate

Object

Reference to the ListTemplate with which the list was formatted.

List

Object

Reference to the first List contained in the ListFormat object.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved




Output

Producing attractive documents is a good start, but users usually want output of some sort, too. Word has a
number of methods for producing output. In the interactive product, they’re collected on the File menu in the
Print Preview and Print menu options.

Printing

The PrintOut method of the Document object automates printing. It accepts a huge array of parameters. (This
is one situation where named parameters start to look pretty good.)

Fortunately, all parameters are optional, and you won’t need most of those parameters for normal processing.
Unfortunately, the ones you're most likely to need are in the middle of the list rather than toward the front. The
key parameters are shown here:

oDocument.PrintOut( IBackground, , nPrintRangeType, cFileName, cFrom, cTo, ,

cCopies, cPageRange, , IPrintToFile)

IBackground Logical Indicates whether or not to print in the background, continuing with other code
while printing.

nPrintRangeType Numeric Which part of the document to print. (See the text.)

cFileName Character If printing to file, the filename, including path, of the destination file.

cFrom, cTo Character If nPrintRangeType is wdPrintFromTo, the beginning and end of the print range.

(See the text.)

cCopies Character The number of copies to print.
cPageRange Character If nPrintRangeType is wdPrintRangeOfPages, the print range. (See the text.)
IPrintToFile Logical Indicates whether to print to a file.

Incredibly, there are still eight more parameters after these. The syntax shown reflects two different
approaches to specifying the pages to be printed. The nPrintRangeType parameter determines which, if
either, is used. The valid constant values are wdPrintAllDocument (0), wdPrintSelection (1),
wdPrintCurrentPage (2), wdPrintFromTo (3), and wdPrintRangeOfPages (4). When wdPrintFromTo is
passed, pass values for cFrom and cTo as the fifth and sixth parameters, respectively. Note that, for reasons
known only to Microsoft, they're passed as characters. For example, to print three copies of pages 4-10 of a
document referenced by oDocument, use:



oDocument.PrintOut(, , wdPrintFromTo, , "4", "10", ,"3")

The wdPrintRangeOfPages choice lets you specify a single string and has more flexibility. In that case, pass
a value for cPageRange as the eighth parameter—it can include multiple comma-separated values, and each
may include a range. For example, you could pass something like "3, 4-6, 12".

To print to a file, you specify both the filename and a flag that you're printing to file, like this:
oDocument.PrintOut(, , , "fileoutput", ,,,,,,. t.)

The resulting file is ready to print, complete with printer codes. Keep in mind that the file is stored in Word'’s
current directory by default, so it's a good idea to provide the full path.

Be forewarned that printing to file sets the Print to File check box in the Print dialog and leaves it set. Omitting
that parameter in a subsequent call to PrintOut defaults to .T.; you have to explicitly pass .F. to print to the
printer.

Creating envelopes

Word can also automatically create and print envelopes. To do so, use the document’s Envelope object. This
example assumes that oRange is a range containing the customer name and address in a mailing format. It
bookmarks the address (see the "Bookmarks" section earlier in this chapter for an introduction to this
technique for identifying part of a document) and asks Word to create and print the envelope.

oDocument.Bookmarks.Add("EnvelopeAddress", oRange)

oDocument.Envelope.PrintOut(.T., , ,.F., oWord.UserAddress)

First, we create a bookmark called EnvelopeAddress based on whatever is at oRange. The call to PrintOut
tells Word to use whatever is at the EnvelopeAddress bookmark for the address, and to include the user’'s
stored address (from the Tools|Options dialog’s User Information page) as the return address.

The parameters for the PrintOut method of the Envelope object are different from those for the Document
object. Here’s a shortened version of the syntax:

oDocument.Envelope.PrintOut( IExtractAddress, cAddress, , IOmitReturnAddress,

cReturnAddress )

IExtractAddress Logical Indicates whether to extract the address from the EnvelopeAddress bookmark.
cAddress Character The address to use on the envelope. Ignored if IExtractAddress is .T.
IOmitReturnAddress Logical Indicates whether to omit the return address from the envelope.
cReturnAddress Character The return address to use on the envelope.

Additional parameters let you set the type and size of the envelope, as well as the printing orientation.



Omitting those parameters uses the current settings.

Print preview

Perhaps all your users want is to see how the document will look when printed. That's easy. Just call the
Document object’s PrintPreview method. That switches Word to PrintPreview mode.

Of course, that’s only useful if Word is visible. If Word is hidden, it doesn’t do a bit of good. Making Word
visible is as easy as setting the Application’s Visible property to .T. Better yet, if you've been doing everything
in the background and now you're ready to show the user what you've been up to, call PrintPreview, make
Word visible, and then call Word’s Activate method. That will bring Word to the front. Try it like this:

oDocument.PrintPreview && Get the document ready for the user to see
oWord.Visible = .t. && Show Word

oWord.Activate() && Bring it to the front

Regardless of whether you're keeping Word hidden most of the time or showing it all along, when you’re done
with Print Preview, you turn it off by calling the ClosePrintPreview method of the Document object.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

Listing 3 shows a program (WordSamplel.PRG in the Developer Download files available at

Wwww.hentzenwerke.com) that creates a document that lists all of Tasmanian Traders’ customers, organized
by country. It demonstrates headers, footers, page numbers, shading, and borders. Figure 14 shows a
preview of the resulting document.

Listing 3. Tasmanian Traders customer report.
#DEFINE wdHeaderFooterPrimary 1

#DEFINE wdGray25 16

#DEFINE wdStyleTypeParagraph 1

#DEFINE wdCaptionNumberStyleArabic 0

#DEFINE wdAlignPageNumberCenter 1

#DEFINE wdAlignParagraphCenter 1

#DEFINE wdCollapseEnd 0

#DEFINE wdLineStyleSingle 1

#DEFINE wdLineStyleNone 0

#DEFINE wdLineWidth050Point 4

#DEFINE CR CHR(13)

RELEASE ALL LIKE o*

PUBLIC oWord

LOCAL oDoc, oRange, cText, oHeaderStyle

oWord = CreateObject("Word.Application™)
oWord.Visible =.T.

oDoc = oWord.Documents.Add()

* Create a style for the header text

oHeaderStyle = oDoc.Styles.Add("CenteredHeader", wdStyleTypeParagraph)

WITH oHeaderStyle


http://www.hentzenwerke.com/

.BaseStyle = oDoc.Styles["Heading 1"]

.ParagraphFormat.Alignment = wdAlignParagraphCenter

ENDWITH

* Add a header

WITH oDoc.Sections[1].Headers[ wdHeaderFooterPrimary ]

oRange = .Range()

WITH oRange

.Text ="Tasmanian Traders"

.Style = oHeaderStyle

.Shading.BackgroundPatternColorindex = wdGray?25

ENDWITH

ENDWITH

* Add a centered page number in the footer

WITH oDoc.Sections[1].Footers[ wdHeaderFooterPrimary ].PageNumbers

Add()

.NumberStyle = wdCaptionNumberStyleArabic

ENDWITH

oDoc.Sections[1].Footers[ wdHeaderFooterPrimary ].PageNumbers[1].Alignment =

wdAlignPageNumberCenter

* Now create some content for the document.

* Get a list of customers organized by country.

* Sort alphabetically within countries.

SELECT Company_Name, Country ;

FROM _SAMPLES+"\TasTrade\Data\Customer" ;

ORDER BY Country, Company_Name ;

INTO CURSOR CustomerByCountry



* Title for document

oRange = oDoc.Range()

oRange.InsertAfter("Customers By Country" + CR)

oRange.Style = oDoc.Styles("Heading 1")

oRange.Collapse(wdCollapseEnd )

* Loop through cursor. Put each country name bordered in heading 2 style.

* Then list each customer in that country.

LOCAL cCurrentCountry

nwn

cCurrentCountry =

nn

cText =

SCAN

IF NOT (Country==cCurrentCountry)

* New country.

oRange.InsertAfter( cText + CR)

oRange.Style = oDoc.Styles("Normal")

nn

cText =

oRange.Collapse( wdCollapseEnd)

WITH oRange

.InsertAfter( Country + CR)

.Style = oDoc.Styles("Heading 2")

.Borders.OutsideLineStyle = wdLineStyleSingle

.Borders.OutsideLineWidth = wdLineWidth050Point

ENDWITH

oRange.Collapse(wdCollapseEnd )

oRange.InsertAfter( CR)

oRange.Borders.OutsideLineStyle = wdLineStyleNone



ENDIF

cText = cText + Company_Name + CR
cCurrentCountry = Country
ENDSCAN

oRange.InsertAfter( cText )
oRange.Style = oDoc.Styles("Normal")
USE IN CustomerByCountry

USE IN Customer

oDoc.PrintPreview()

This chapter covered an incredible amount of material, and we’re only warming up. Word has much more to
offer. Stay tuned.

"l Document8 {Preview) - Microsoft VWord
JEiIe Edit ¥iew Ingent Format Tools Table Window Help
|@|em @ s0% ~ |75 & )| Close K2 .

| £ n 2 s e s SR

I Tasmanian Traders

Customers By Country

| »

- [Argentina

Cactus Comidas para llewar
Ocdanc hrléntico Leda.
Bancho grande

Austria

Ernst Handel
Piccolo und mehr

z [ Beigium

Maison Dewey
Suprémes délices

Brazii

Comércio Mineira
Fawiliz Arguibaldo
Gourmet Lanchonetes
Hanari Carnes

Que Delicia

Queen Cozinha

Ricards hdocicados
Tradigao Hipermercados
N Wellington Importadora

[N [ canada

- Bottom-Dollar Markets
Laughing Bacchus Wine Cellars
Mére Faillarde

[Denmark

Bimons bistro

Page 1 Sec 1 14 [[at22t In5  coldt | |REC [iRk B Rl OE y



Figure 14. The customer report. The list of Tasmanian Traders’ customers demonstrates borders, shading,
headers, footers, page numbers, and more.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 5 - Intermediate Word

Word offers many options for making documents more attractive and more uniform, as well as for working with existing
documents.

Once you get the basics of automating Word down, there are a multitude of possibilities. This chapter looks at
a variety of ways you can make Word work harder so you don’t have to, including creating and using
document templates, working with tables, creating multi-column documents, adding footnotes and endnotes,
adding graphics to documents, automating macros, using search and replace, and auditing documents.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Document templates

Word’s templates offer a way to provide standard formatting and styles for documents. Like a form class in
Visual FoxPro, a template lets you specify common elements like the page setup, headers and footers, and
even boilerplate text so that every new document you create contains the same things. But in other ways,
templates are more like class libraries because they contain styles that can be used in the document.

Every document you create in Word is based on a template, a file with an extension of DOT. If you don't
specify which template to use, the Normal template is used. By default, Normal is an empty document
containing a standard set of styles. It's installed when Word is installed, along with a number of other
templates. To see the available templates, choose File|New from the menu. The New dialog (shown in
Figure 1) appears. The Normal template is shown as "Blank Document."

New
Reports I \Wieh Pages I advisor I DieviCor I hackfox | letters
General I Legal Pleadings | Letters & Faxes | Memos I Other Dacuments | Publications

5 o & &

Wieh Page E-mail  agenda.dot minutes.dot A
Massage

Presvign not awvailable,

—Create Maw
& Document  © Template

of | Cancel

Figure 1. Available templates. Choosing File|New from Word’s menu lets you choose from among all
the stored templates.

What goes into a template?

A template can contain anything that's in a document, from the simple blank document of the Normal
template to a complex legal document, complete except for the names of the parties involved. Most templates
fall somewhere in between, containing some text and formatting and some custom styles.

Templates can also contain macros, including one that runs automatically when you create a document
based on the template. Templates can also include bookmarks that can be filled in, either by prompting the
user or by Automation. In short, templates can be as much or as little as you choose to make of them.

Finding templates



Templates are stored in several different places. The templates (and wizards) installed by Word are put into a
Templates subdirectory of the Office installation. In Word 2000, they then go down one level into a
subdirectory named with the numeric code for the language you're using (1033 for American English). In
Word 97, there’s a set of subdirectories under Templates that contains the various supplied templates and
wizards. (In both cases, wizards have a WIZ extension.)

In addition, each user can set a user template directory and a workgroup template directory. The user
template directory is for templates specific to the individual, while the workgroup template directory is meant
for templates shared by the user’s entire team. The default location for user templates varies according to the
version of Word and Windows, but it isn’'t always in the Office directory tree. In some cases, templates are
stored as part of the user’s profiles in the Windows directory tree. No matter where the user template
directory is, the templates in that directory appear on the General page of the New dialog. Templates in
subdirectories of that directory are placed on additional pages of the dialog—the pages are labeled with the
subdirectory names. Creating new subdirectories creates additional pages, as you can see in Figure 1.

The Workgroup templates setting is empty by default. When it's set, the same two-level structure applies.
Templates in the directory itself appear on the General page, while subdirectories have their own pages in
the New dialog.

Both can be set on the File Locations page of Word’s Tools|Options dialog (see Figure 2).

From the Automation point of view, you can determine (or specify) the user and workgroup template locations
by checking the DefaultFilePath property of the Options object (which is a member of the Word Application
object). Pass wdUserTemplatesPath (2) to find the user’s own templates and wdWorkgroupTemplatesPath
(3) for the workgroup’s templates. (The NewDocument method of the cusWord class in the Developer

Download files available at Wwww.hentzenwerke.cont accepts a template with or without a path and attempts
to locate the template file before creating a new document. The cusWord class is discussed in Chapter 15,
"Wrapping Up the Servers.")

Options |

Wisw | General | Edit | Print | Save | Spelling & Grammar |
Track Changes | User Information Compatibility File Locations
Eile types! Location:
Documents D yadvisoryediting ;I

Clipart pictures Oy

iting PookstALtDYERNOriging|

Lser options

AutoRecover files Ty AZApplication DataiMicrosofth,. ..
Tools  vapps\Office2k O ice
Startup S AMlicrosoftyword S TAR TUP

=



http://www.hentzenwerke.com/

Ok Cancel

Figure 2. Pointing to templates. Word’s Options dialog lets you indicate where user and workgroup
templates are stored.

Using templates

You can use templates in several ways when automating Word. The simplest is to create new documents
based on existing templates. To do so, specify a template, including the path, as the first parameter of the
Documents.Add method. For example, to create a new document based on the agenda template shown in
Figure 1, you would use the following code. (Unlike other examples in this book, you can't work along with
this one because you don’t have agenda.DOT on your machine. We'll return to this example later with one
you can actually try.)

#DEFINE wdUserTemplatesPath 2
cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath )
* AddBS() adds a trailing backslash - before VFP 6, you need FoxTools loaded.

oDocument = oWord.Documents.Add( AddBS(cTemplatePath) + "agenda.DOT" )

Once you create a new document based on a template, you can treat that document just like any other new
document. However, you have the advantage that it contains whatever special text, formatting, and styles
were stored in the template.

Creating templates

You can also create templates with Automation. Any document can be saved as a template by passing the
appropriate parameter to the SaveAs method. To create a new template, create a document, format it as
desired, create any styles you want the template to have, then call SaveAs, like this:

#DEFINE wdFormatTemplate 1
#DEFINE wdUserTemplatesPath 2
cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath )

oDocument.SaveAs( AddBS(cTemplatePath) + "MyNewTemplate.DOT", wdFormatTemplate)

Now that we've created a custom template, we can create a new document based on it. Here's the example
from the previous section, but using the new template rather than agenda.DOT:

#DEFINE wdUserTemplatesPath 2

cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath )



* AddBS() adds a trailing backslash - before VFP 6, you need FoxTools loaded.

oDocument = oWord.Documents.Add( AddBS(cTemplatePath) + "MyNewTemplate.DOT" )

As in interactive Word, you can store the template in a subdirectory to have it appear on a different page in
the File|New dialog. Of course, if you're working with it through Automation, you don’t really care where it
appears. In fact, with Automation, it doesn’'t matter where you store templates because you can specify
where Word should look for them. However, keeping them together with other templates means that
interactive users can find them, as well. On the other hand, for an automated process, you may prefer to
keep your templates well hidden so that users can’t find them and delete them or use them in ignorance.

You can also specify that new documents you create are intended to be templates. Pass .T. as the second
parameter to the Documents collection’s Add method to indicate that the new document is a template rather
than a regular document. Then, when you save it, it gets a DOT extension instead of DOC and the default
location for it is the user templates directory. In that case, you don’t need to pass the second parameter to
SaveAs.

Putting templates to work

We both use templates extensively in our work to provide a uniform appearance for documents and to save
time and effort. We’d no more use Word without templates than we would use VFP without classes.
Especially when combined with the ability to define custom styles, templates provide a way to streamline
document creation.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Tables

Word’s tables seem like a natural fit for representing VFP data. A row can represent a record, with each
column representing a field. What Word buys you is the ability to format the data and the table itself in
sophisticated ways, well beyond the capabilities of FoxPro’s Report Designer, as well as let users manipulate
the results or produce output in alternative formats. A table can be formatted as a whole, but individual cells
can be separately formatted, as well. Borders of tables and cells can be visible or invisible, and they can take
on a range of sizes and styles. (See the section "Borders and shading" in Chapter 4 for details on formatting
borders.) Both columns and rows can be individually sized.

The object hierarchy for tables is a little confusing. Each document has a Tables collection, which, in turn,
contains individual Table objects. The Table object contains both Rows and Columns collections, which
contain Row and Column objects, respectively. Those objects each have a Cells collection that references
the individual cells in the row or column, each represented by a Cell object. While the Table object doesn’t
have a Cells collection, the individual Cell objects can be accessed by using the Cell method, which accepts
row and column number parameters. Here are several ways to refer to the cell in the third row and fourth
column of the first table in the active document:

oWord.ActiveDocument.Tables[1].Rows[3].Cells[4]
oWord.ActiveDocument.Tables[1].Columns[4].Cells[3]

oWord.ActiveDocument.Tables[1].Cell[3,4]

Interactively, you can add a table by choosing Table|Insert|Table from the menu, which brings up the dialog
shown in Figure 3.

Insert Table HE|

Table size

Mumber of columns: |§ E‘
Murmber of rows: I2 EA

AutoFit behawior

& Fived colurmn width: ALItD —
" AutoFit to contents
" autoFit o window

Table farmat {hone) AutoFarmat..., |

™ Set as default for new tables

Ok Cancel

Figure 3. Adding a table. To add a table interactively, you specify the number of columns and rows
and, if you want, whether the columns should resize automatically to fit their contents. You can also



specify a predefined format for the table.

With Automation, since Tables is a collection, it's not surprising that the way to add a table to a document is
to call the Add method of that collection. It takes several parameters:

oDocument.Tables.Add( oRange, nRows, nColumns, nTableBehavior, nAutoFit )

oRange Object Reference to a range that indicates where to insert the new table.
nRows Numeric The number of rows in the new table.
nColumns Numeric The number of columns in the new table.

. . A constant that indicates whether the table automatically resizes to fit its contents.
nTableBehavior Numeric

wdWord8TableBehavior

Don’t resize automatically.

wdWord9TableBehavior

Resize automatically.

If nTableBehavior is wdWord9TableBehavior, indicates which algorithm is used to
resize the cells.

nAutoFit Numeric

wdAutoFitFixed

Fixed column width.

wdAutoFitContent

Size cells to content.

wdAutoFitWindow

Size table to full width of window.



The last two parameters are optional. If you omit them, you get the older, Word 97 behavior of a table that
doesn't resize as you fill it. However, you can change that behavior. The AllowAutoFit property and
AutoFitBehavior method control this resizing capability.

Even if you're not allowing automatic resizing of columns, the AutoFit method of the Column object lets you
resize individual columns based on their content. Rather than having cells change size as data is entered,
you apply the changes once you've put something into the table. Column’s SetWidth method lets you set a

column to a specific width, in points.

Once you've added a table interactively, the Table Properties dialog on the Table menu allows you to adjust
various characteristics of the table as a whole and of the individual rows, columns, and cells. Figure 4 shows
the Row page of that dialog.

Table Properties HE|
wobie [ Row || coum | can |
Size
Ry 1.
™ Specify height: m Row height is: Im
Options

IV allows row to break across pages

™ Repeat as header row at the top of each page

< Previous Row Mexwt Row ¥

Ok I Cancel

Figure 4. Formatting a table. The Table Properties dialog lets you resize rows and columns, as
well as specify other characteristics of tables and their components.

Table 1 shows the most commonly used properties of the Table object.

Table 1. Defining tables. These properties of the Table object are the ones you're most likely to
work with.

Property Type Description



Rows Object Pointer to the Rows collection for the table.

Columns Object Pointer to the Columns collection for the table.

Uniform Logical Indicates whether every row has the same number of columns.
(Read-only)

Borders Object Pointer to the Borders collection for the table.

Shading Object Pointer to the Shading object for the table.

AllowAutoFit Logical Indicates whether columns are automatically resized as data is added to
the table. Corresponds to the nTableBehavior parameter of the
Tables.Add method.

AllowPageBreaks Logical Indicates whether the table can be split over multiple pages in the
document.

. A constant indicating which, if any, of a set of predefined formats has
AutoFormatType Numeric 9 Y P

been applied to the table. AutoFormats are applied with the AutoFormat
method. Here's a sampling:

wdTableFormatNone

0
wdTableFormatSimplel
1
wdTableFormatClassicl
4

wdTableFormatColorfull

wdTableFormatContemporary
35
wdTableFormatElegant

36




wdTableFormatGridl

16

Spacing Numeric Indicates the space between cells, in points. This is the space that
actually separates the cells, not the boundary between the cell border
and the text.

Row and Column, not surprisingly, have a number of properties in common, including Cells to point
to a Cells collection and Shading to reference a Shading object. Row also has a Borders property that
references a Borders collection, though Column does not. Both objects have logical IsFirst and
IsLast properties that, as their names suggest, indicate whether the particular row or column is the
first or last in the collection.

At this point, the two objects part company, though there are still similarities. The size of a Row is
determined by HeightRule and Height, as indicated in Table 2. Column width also uses two
properties—PreferredWidth and PreferredWidthType, shown in Table 3.

Row has one other size-related property, SpaceBetweenColumns. It indicates the distance between
the cell boundaries and the text. The value of the property is half what you set in Word itself because
that one is measured from the text in one cell to the text in the next cell.

Row’s AllowBreakAcrossRows property determines what happens when the contents of a row don’t
fit on the current page. If it's .T., the row can be split over two pages; if .F., a page break occurs
before the row.

When a table is split over multiple pages, rows whose HeadingFormat property is set to .T. are
repeated.

One big difference between Row and Column is that a Row can be a Range while a Column cannot.

Table 2. Determining row size. Two Row properties combine to let you indicate the height of

the row.
Property Type Description
. . Indicates the logic used to determine the height of this row. Use one of the
HeightRule Numeric

following constants:
wdRowHeightAuto

0




wdRowHeightAtLeast
1
wdRowHeightExactly

2

Height

Numeric

The height for the row, if HeightRule is wdRowHeightExactly. The minimum
height for the row, if HeightRule is wdRowHeightAtLeast. Ignored (and
uninformative when queried) if HeightRule is wdRowHeightAuto; in that case,
the row height is based on the row’s contents.

Table 3. Specify column width. As with rows, two properties combine to indicate the size of a

column.
Property Type Description
PreferredWidth Numeric Desired width for this column, either in points or as a percentage of the overall
window width. Interpretation is determined by PreferredWidthType.
PreferredWidthType NUmeric Indicates whether PreferredWidth is measured in points or percent, or is

ignored.
wdPreferredWidthAuto

0

Size column by contents.

wdPreferredWidthPoints

Size column in points.

wdPreferredWidthPercent

Size column as percentage of total window.

Cell shares a number of properties with Table, Row, and Column, including Borders, Shading,




HeightRule, Height, PreferredWidth, and PreferredWidthType. Table 4 shows some other properties

that are unique to Cell.

Table 4. Cell holdings. At the bottom of the table hierarchy, cells have quite a few properties.
Here are some you’re likely to deal with.

Property Type Description

Width Numeric The width of the cell, in points.

WordWrap Logical Indicates whether the text is wrapped into multiple lines and the cell height is
increased to fit the entire contents.

FitText Logical Indicates whether the display size of the text (but not the actual font size) is
reduced in order to make the entire contents of the cell fit onto a single line.

VerticalAlignment Numeric Indicates the vertical position of the text in the cell.

wdAlignVerticalTop

wdAlignVerticalCenter
1
wdAlignVerticalBottom

3

Table, Row, and Cell all have Range properties, so an entire table, row, or cell can be easily

converted to a range. This means that the same techniques work for inserting text into a table as for

other parts of a document. However, a Range that’s created from a cell contains a special end-of-cell

marker. To access only the text in a cell, move the end of the range back one character. Either of the

following does the trick:

oRange.End = oRange.End -

1

oRange.MoveEnd( wdCharacter, -1)




The program shown in Listing 1 opens TasTrade’s Order History view and creates a Word table that

shows the order history for the current customer. It demonstrates a variety of features, including

borders, shading, and auto-sizing of columns. The

Download files available at www.hentzenwerke.com,.

rogram is OrderTblFormat.PRG in the Developer

Listing 1. Creating a table. This program generates a table that contains a customer’s order

history.

* Create a Word table with order information for one customer

* Set up the table with two rows, formatting the second row for

*the data. Then add rows as needed for each record.

#DEFINE wdStory 6

#DEFINE wdCollapseEnd 0

#DEFINE CR CHR(13)

#DEFINE wdBorderTop -1

#DEFINE wdLineStyleDouble 7

#DEFINE wdAlignParagraphLeft O

#DEFINE wdAlignParagraphCenter 1

#DEFINE wdAlignParagraphRight 2

RELEASE ALL LIKE o*

PUBLIC oWord

LOCAL oRange, oTable, nRecCount, nTotalOrders
LOCAL nRow

oWord = CreateObject("Word.Application™)
oWord.Documents.Add()

OPEN DATABASE (_SAMPLES + "Tastrade\Data\Tastrade")
USE CUSTOMER

GO RAND()*RECCOUNT() && pick a customer at random
* Open the Order History view, which contains

*a summary of orders for one customer.

SELECT O

USE "Order History" ALIAS OrderHistory

* Find out how many records.

nRecCount =_TALLY


http://www.hentzenwerke.com/

oRange = oWord.ActiveDocument.Range()

* Set up a font for the table

oRange.Font.Name ="Arial"

oRange.Font.Size = 12

* Move to the end of the document

* Leave two empty lines

oRange.MoveEnd( wdStory )

oRange.Collapse(wdCollapseEnd )

oRange.InsertAfter(CR + CR)

oRange.Collapse(wdCollapseEnd )

* Add a table with two rows

oTable = oWord.ActiveDocument.Tables.Add( oRange, 2, 4)

WITH oTable

* Set up borders and shading.

* First, remove all borders

.Borders.InsideLineStyle = .F.

.Borders.OutsideLineStyle = .F.

* Shade first row for headings

.Rows[1].Shading.Texture = 100

* Put heading text in and set alignment
.Cell[1,1].Range.ParagraphFormat.Alignment = wdAlignParagraphRight
.Cell[1,1].Range.InsertAfter(*Order Number")
.Cell[1,2].Range.ParagraphFormat.Alignment = wdAlignParagraphLeft
.Cell[1,2].Range.InsertAfter("Date")
.Cell[1,3].Range.ParagraphFormat.Alignment = wdAlignParagraphRight
.Cell[1,3].Range.InsertAfter(" Total")
.Cell[1,4].Range.ParagraphFormat.Alignment = wdAlignParagraphCenter
.Cell[1,4].Range.InsertAfter("Paid?")

* Format data cells

.Cell[2,1].Range.ParagraphFormat.Alignment = wdAlignParagraphRight
.Cell[2,3].Range.ParagraphFormat.Alignment = wdAlignParagraphRight

.Cell[2,4].Range.ParagraphFormat.Alignment = wdAlignParagraphCenter



* Add data and format

* Compute total along the way

nTotalOrders =0

FOR nRow =1 TO nRecCount

WITH .Rows[nRow + 1]

.Cells[1].Range.InsertAfter( Order_Id )

.Cells[2].Range.InsertAfter( TRANSFORM(Order_Date, "@D") )
.Cells[3].Range.InsertAfter( TRANSFORM(Ord_Total, "$$$$$$$$$9.99") )
* Put an X in fourth column, if paid; blank otherwise

IF Paid

.Cells[4].Range.InsertAfter("X")

ENDIF

ENDWITH

* Add a new row

.Rows.Add()

* Running Total

nTotalOrders = nTotalOrders + Ord_Total

SKIP

ENDFOR

* Add a double line before the totals

.Rows[nRecCount + 2].Borders[ wdBorderTop ].LineStyle = wdLineStyleDouble
* Put total row in

WITH .Rows[ nRecCount + 2]

.Cells[1].Range.InsertAfter("Total")
.Cells[3].Range.InsertAfter(TRANSFORM(nTotalOrders, "$$$$$$$$$9.99"))
ENDWITH

* Size columns. For simplicity, let Word

*do the work.

.Columns.Autofit

ENDWITH

RETURN

The results are shown in Figure 5.



Order Number Date Total Paid?

891 01/10/95 $806.85 X
684 08/20/94 $67.40 X
610 06/17/94 $404.65 X
312 08/14/93 $280.05 X
204 04/01/93 $884.06 X
183 03/05/93 $278.46 X
139 12/26/92 $277.05 X
101 10/24/92 $1801.16 X
Total $4799.68

Figure 5. Using tables for data. A customer’s order history looks good when poured into a
Word table.

The code creates a two-row table, inserts the headings, then formats the cells in the second row. The
loop then inserts the data and adds a new row. Each new row picks up the formatting of the previous
one, so the formats only have to be applied once.

You can combine the code (removing the part that chooses a customer record) with Styles.PRG from
Chapter 4, "Word Basics" (you can see the result in Figure 7 in that chapter), and you have a
reasonably attractive order history report for a customer. Wrap that in a loop with a few more
commands (such as InsertBreak to add page breaks), and you can produce order histories for all
customers or a selected set.

Irregular tables

Tables don’t have to consist of simple grids. Not every row has to have the same number of columns.
The Merge and Split methods of Cell and Cells let you combine and take apart groups of cells to
create irregular tables. The Uniform property of Table indicates whether a table is regular or not; be
sure to check it before using nested FOR EACH loops to try to process every row and column in a
table.

The Merge method works in two ways. You can either call it for one cell and pass it another to have
those two merged, or you can call it with arange of cells to have those cells merged. Here are the two
syntax formats:

oFirstCell.Merge( 0SecondcCell )

oCells.Merge()

For example, to combine the second and third cells in row 1 of table oTable, you can use this code
(all of the following assume that oTable is a reference to the table you're working with):

oTable.Cell(1,2).Merge( oTable.Cell(1,3) )

To change the fourth row of a table into a single cell, use code like this:

oRange = oTable.Rows[4].Range()

oRange.Cells.Merge()



Figure 6 shows a table (that started out with five rows and seven columns) after making those two
changes.

JNormaI | - (IlourierNeW | < 11 ~ B I QHEE

111
nty

]
k|

(]
(]

4

4

b

Figure 6. Irregular table. Tables don’t have to have the same number of columns in each row.
The Merge and Split methods let you create irregular tables.

Split takes a cell or collection of cells and divides it into one or more cells. It can optionally merge the
cells before splitting them. Again, there are two different forms for the method, depending on whether
you call it from a single cell or from a collection of cells:

oCell.Split( nRows, nColumns)

oCells.Split( nRows, nColumns [, IMergeFirst])
For example, to divide the first cell in row 3 into two cells in the same row, use this command:
oTable.Cell(3,1).Split(1,2)

This code takes the cells in the second row of a table, combines them, then splits them into three,
resulting in just three cells in that row:

oTable.Rows[2].Cells.Split( 1, 3, .t.)

If you omit the third parameter from that call (.t.), each cell in the row would be split into three. If you
pass something other than 1 as the first parameter, the single row would become multiple rows in the
table.

Using Merge and Split, you can create extremely complex tables. While this provides for an attractive
way to display data, keep in mind that it does make it harder to process the document. Simple FOR
EACH loops through the Rows and Columns collections don’t work when Uniform is .F.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Creating multi-column documents

Maybe tables are overkill for what you need. Perhaps you just need to lay out your text in multiple columns.
Interactively, you do that through the Format menu by choosing Columns. That brings up the Columns dialog
shown in Figure 7. You can specify the number of columns, the width of each, and the spacing between

them.

Columns

resefs
4

Cancel

Three

Murmber of colurmns: ™ Line between

Width and spacing ~Preview
Col #:  Width: Spacing ! -

o fue FH s E
[ 20 e Hps
ERCaE

¥ Equal colurmn wicth

Apply to: IWhDIe document j I” Start new column

Figure 7. Specifying columns. This Word dialog lets you indicate how many columns you want, their width,

and how far apart they are.

In Automation, columns are specified by a TextColumns collection, which is a member of a PageSetup
object. (See the section "Setting up pages" in Chapter 4 for more on the PageSetup object.) In addition to the
usual collection properties, TextColumns has several properties specific to its role, shown in Table 5.

Table 5. Setting up columns. The TextColumns collection contains TextColumn objects, but it has several
properties that apply to the collection as a whole.

Property Type Description
EvenlySpaced Logical or Numeric Indicates whether the columns are evenly spaced.
Width Numeric Width of the columns in points, if they're evenly spaced.

Spacing Numeric Distance between columns in points, if they're evenly spaced.




LineBetween Logical Indicates whether a vertical line appears between columns. Not
visible in the Normal view; use the Print Layout or Print Preview views
to display them. Additionally, the lines are only displayed when text is
contained in the columns.

As with other collections, the Add method adds new columns. But TextColumns has a special method,
SetCount, which can be used to set the number of columns. Think of SetCount as a shortcut—a way to avoid

having to call Add repeatedly.

The TextColumn object is a little simpler than the TextColumns collection. It has only two properties worth
noting: Width and SpaceAfter. Width serves the same role here as it does for the collection, except that it
affects only a single column. SpaceAfter corresponds to the collection’s Spacing property. Beware: setting
either Width or SpaceAfter for any column changes Width and Spacing for the collection to wdUndefined
(9999999) and sets the collection’s EvenlySpaced property to .F., even if the value you assign is the same as
the collection-level value. To restore the collection-level values, set EvenlySpaced to .T. for the collection.

Here’s the code to set up a new document with three columns—the first two equally spaced, the third
wider—with a vertical line between them:

oDocument = oWord.Documents.Add()

WITH oDocument.PageSetup

.TextColumns.SetCount(3)

.TextColumns[1].Width = oWord.InchesToPoints(1.5)
.TextColumns[1].SpaceAfter = oWord.InchesToPoints(.25)
.TextColumns[2].Width = oWord.InchesToPoints(1.5)
.TextColumns[2].SpaceAfter = oWord.InchesToPoints(.25)
.TextColumns[3].Width = oWord.InchesToPoints(2.5)
.TextColumns.LineBetween =.T. && Put in some text to see the lines.

ENDWITH

When sending code to fill the columns, you move from one column to the next with the InsertBreak method.
This method takes a single parameter indicating the type of break. There’s a set of constants for the
breaks—for a column break, it's wdColumnBreak, with a value of 8. So, to move to the next column, use this:

#DEFINE wdColumnBreak 8

oRange.InsertBreak( wdColumnBreak )

Be sure to collapse the range (see the section "Moving in a range or selection" in Chapter 4) before inserting
the column break; otherwise, the column break replaces the range.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Footnotes and endnotes

Footnotes and endnotes have been the bane of students for generations, but Word makes them reasonably
easy to manage. To add either a footnote or an endnote interactively, choose Insert|Footnote from the menu.
The dialog shown in Figure 8 appears. As the dialog indicates, by default, footnotes are placed at the bottom
of the current page (or, if there’s not enough room, at the bottom of the next page). Endnotes appear at the
end of the document by default, but they can appear at the end of each section instead.

21x]

Footnote and Endnote

Insert

O EDDtnDte Bottom of page

" Endnote End of docurment
Murbering

= putoMumber 1,2 3, ..

" Custarn mark: I

Syrbal... |
oK, Cancel | options. .. |

Figure 8. Adding notes. Both footnotes and endnotes are added using this dialog. It also lets you specify
numbering and placement.

For Automation, you work with two collections, Footnotes and Endnotes, and their contained objects,
Footnote and Endnote. Document and Range have Footnotes and Endnotes properties that provide access
to the two collections. Although accessing the collections through a range lets you look at only the footnotes
or endnotes in that range, watch out. Changing properties of the collection there affects all the footnotes or
endnotes in the document, not just the ones in that range. The range just grabs a subset of the notes in the
collection.

With one exception, the set of properties and methods in the Footnote and Endnote objects is identical, as is
the set in the Footnotes and Endnotes collections. You can think of each case as being a subclass of the
same parent class. The only difference between them is in the way that they're rendered. In fact, it's possible
to convert footnotes to endnotes and endnotes to footnotes. Several methods support the switch.

The only property of Footnote and Endnote worth mentioning is Reference. It provides an object reference to
a range containing the number, letter, or other symbol in the main document that points to the note. You can
use it to make changes to that symbol, such as enlarging the font size or underlining. (Whether such changes
are a good idea is a separate issue.)

Table 6 shows significant properties of the Footnotes and Endnotes collections, while their important methods
are listed in Table 7.

Table 6. Specifying footnotes and endnotes. The two collections are structurally identical—only their



rendering is different.

Property

Type

Description

Location

Numeric

Indicates where the notes appear. For footnotes, use one of
these constants:

wdBottomOfPage
0

wdBeneathText

For endnotes, use one of these constants:

wdEndOfDocument

wdEndOfSection

0

NumberingRule

Numeric

Indicates how notes are numbered with respect to page and
section breaks.

wdRestartContinuous

Number continuously.

wdRestartSection

Restart numbers at each section break.
wdRestartPage
2

Restart numbers on each new page.

NumberStyle

Numeric

The type of numbering used for the notes. In Word 2000, about
20 styles are provided, but only a few are shown in the Footnote




dialog. Others can be set through code, though not all show up
properly in all versions of Word.

wdNoteNumberStyleArabic

wdNoteNumberStyleLowercaselLetter
4
wdNoteNumberStyleUppercaseLetter
3
wdNoteNumberStyleLowercaseRoman
2
wdNoteNumberStyleUppercaseRoman
1

wdNoteNumberStyleSymbol

9

wdNoteNumberStyleHebrewLetterl

45

StartingNumber

Numeric

The number for the first note.

Separator

Object

Pointer to a range containing the separator between the main
body of the document and the notes. The separator is usually a
short line, but you can add text to it, remove the line, add
borders, and even add graphics.

ContinuationSeparatorText

Object

Pointer to a range containing the separator between the main

body of the document and the continuation of notes. Appears

when notes overflow onto another page. Is usually just a short
line, but as with Separator, you can remove the line, add text,

add borders, and add graphics.

ContinuationNotice

Object

Pointer to a range containing a message that's displayed when
notes overflow onto another page. This message is displayed at
the end of the filled page. This is usually empty, but it doesn’t
have to be. Like the others, you can add text, borders, graphics,
and so forth.




Table 7. Manipulating footnotes and endnotes. Collection-level methods let you manage the properties that
separate notes from the main body of the document and change note types.

Method

Description

ResetSeparator

Restores the default separator.

ResetContinuationSeparator

Restores the default continuation separator.

ResetContinuationNotice

Restores the default continuation notice.

Convert

Converts all notes in the specified range or document to the other type. That is, if
the method is called from a Footnotes collection, it converts the notes to
endnotes and adds them to the document’s Endnotes collection; if it's called
from an Endnotes collection, it converts them to footnotes and adds them to the
Footnotes collection. In either case, they're correctly interspersed with existing
notes of the other type.

SwapWithEndnotes

Converts all footnotes to endnotes and endnotes to footnotes. This method must
be called from a Footnotes collection.

As with other collections, the key to adding new members is the Add method. For footnotes and endnotes,

three parameters are required, as follows:

oNotes.Add( oRange [, oReferenceMark [, cText]])

oRange Object
oReferenceMark Object
cText Character

A range where the note number or symbol is inserted.

A range that contains a custom symbol to be used to mark the footnote or

endnote. If this parameter is omitted, the note is numbered in accordance with the

rule established by NumberingRule and StartingNumber.

The text for the footnote or endnote.

This code creates a range from the first sentence in an existing range, and adds an endnote to it.

#DEFINE wdCharacter 1

oNoteRange = oRange.Sentences[1]

* Back up one character to eliminate the trailing blank




oNoteRange.MoveEnd( wdCharacter, -1)
* Allow note to be auto-numbered

oRange.Endnotes.Add( oNoteRange, , "This is the new endnote")

In the next example, a footnote is added, and it's given a special marker—an asterisk (*)—rather than using
the default numbering. The note is attached to text that's just been inserted.

#DEFINE wdCollapseEnd 0

oRange.InsertAfter("Be sure to check out WhirlyGig 2000!")
oRange.Collapse(wdCollapseEnd )
oDocument.Footnotes.Add( oRange, "*", ;

"WhirlyGig 2000 is a trademark of MonsterMega Corporation, Ltd.")

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Adding graphics to documents

They say a picture’s worth a thousand words. Certainly a document with pictures is a lot more pleasant to
look at and easier to read than one without. Word provides several ways to add graphical objects to
documents. All of them begin by choosing Insert|Picture from the menu. At that point, the next step depends
on the type of graphical object you want to add.

Let’s start with graphics that you have sitting in a file somewhere, such as a BMP or JPG or GIF. For those,
you choose From File, and the Insert Picture dialog shown in Figure 9 appears. This dialog is a specialized
version of the normal Open File dialog. The Open button is labeled "Insert,” and if you drop it open, there are
a couple of extra choices. These options hark back to the traditional meaning of OLE—object linking and
embedding. Choosing Insert makes a copy of the picture in the document with no connection back to the
original file; that is, it embeds the picture in the document. Link to File creates a connection between the
picture file and the document; that is, it links the picture to the document—changes to the picture are
reflected in the document. Insert and Link does both—it embeds the picture in the document, but also
maintains a link to the file so that the document is updated by changes to the picture file. Each of these
options has its place—choose the right one for your situation, based on factors such as whether you expect
the picture to change, whether you want changes in the picture to be reflected in your document, the size of
the picture file, whether users can be trusted not to delete the picture, and so forth.

Insert Picture
Lok n: | coos ~le®m @& X CiE - Took -
ADDS-01 tif

B A005-02 tif

B A005-03 tif

B Ann5-04 tif

B A005-05 tif

B A005-06 tif

B AD0S-07 tif e e

B A00S-08 tif ' o

@ ﬁ.DOS—DQtIf : e | mewes | mewees | Treves S|
.
[l - R A
[ hzz e ®ave
Csare: =
FF_'::. T ETE

Favorites

. ﬁ File name: I ﬂ Insert |~

F-EIII]EEFE;

Files of type: IAII Pictures (*.emf;*.wmf;*.jpg;*.jpeg;*.jﬁf;*.jpe;*.pnj Ingert
Linkto File
Insert and Link

Figure 9. Adding pictures. Graphics can be linked, embedded, or both. When a picture is linked,
changes to the graphic file are reflected in the document.



The list of graphical objects you can add also includes various kinds of drawings, like AutoShapes and
WordArt. To add an AutoShape to your document, choose Insert|Picture|AutoShapes from the menu. This
opens the AutoShapes toolbar (shown in Figure 10). When you click on one of the buttons, a menu of
shapes of that type appears (see Figure 11). Choose one, and Word switches to Page Layout view if
necessary and puts the chosen shape wherever you click. The AutoShapes toolbar stays open so you can
add as many shapes as you want.

AutoShapes x|

XSS @

Figure 10. The AutoShapes toolbar. This toolbar appears whenever you choose
Insert|Picture|AutoShapes from the menu.

AutoShapes E

2B D B

Figure 11. Choosing an AutoShape. The items on the AutoShapes toolbar look like buttons, but each
opens a menu of shape items.

Each of the other kinds of graphic objects has its own approach. None of them are really native to Word; they
all call on other applications (such as Microsoft Clip Gallery and Microsoft Graph) to supply the data to be
displayed.

The two faces of graphics

Graphics in Word can be placed on two different layers of the document. Pictures that come from files
normally live on the same layer as the text in the document. AutoShapes and other drawing objects are
positioned as free-floating objects on a separate layer above the text. This means that they can cover the text
and graphics in the main layer. Two different collections are used to manage the two types of graphic objects.
Objects in the text layer are stored in the InlineShapes collection, while those that float over the text layer are
controlled by the Shapes collection. Each contains a corresponding object type: InlineShape and Shape,
respectively.

Working with InlineShapes

Instead of a single Add method, the InlineShapes collection has several different methods for adding different
kinds of objects.



Perhaps the most important of the Add methods for the InlineShapes collection is AddPicture, which lets you
add a graphic from a file. This is the programmatic equivalent of the Insert Picture dialog, shown in Figure 9.
The syntax for AddPicture is as follows:

oDocument.InlineShapes.AddPicture( cPictureFile, ILinkToFile,

ISaveWithDocument, oRange )

cPictureFile Character The name, including the path, of the file that contains the graphic to be added
to the document.

ILinkToFile Logical Indicates whether a link to the original field should be maintained—in OLE
terms, whether the picture is linked.

ISaveWithDocument Logical Indicates whether the picture is saved in the document or only linked—in OLE
terms, whether the picture is embedded.

oRange Object Pointer to the location where the picture should be inserted.

For example, to add the TasTrade bitmap to the beginning of a document, use code like this:

oRange = oDocument.Paragraphs[1].Range()

* Add picture, don't link, do embed
oDocument.InlineShapes.AddPicture( ;

_SAMPLES + "TASTRADE\BITMAPS\TTRADESM.BMP ", ;

.F.,.T., 0oRange)

The results for a new document are shown in Figure 12.

JEiIe Edit ¥iew |nsert Format ITools Table Window Help
Dema s8Ry 2B - PO =E S8 1 100%

Mormal - Courier Mew -~ 11 v| B I U ||5§

4
LE]

i
il
[
I11
nam
I11
o
L]
(Tha]
i

Figure 12. Adding a graphic. To add a picture with Automation, you specify the filename,
whether to link, whether to embed, and where to put it.



The other methods add other kinds of objects to the collection, like horizontal lines, bullets made

from pictures, and OLE objects. See the Help file for details.

The InlineShape object itself is a container for the picture or other object. It doesn’t hold the actual

graphic or OLE object, but like VFP’'s OLE Container control, it provides a place for it to hang its hat.

InlineShape has information about the format of the object it represents, as well as what type of

object it is. The information that’s available varies, depending on the type of object and whether it's

linked or embedded. Table 8 lists the key properties of InlineShape and the constant values relevant

for adding graphics.

Table 8. Adding graphics and other objects on the text layer. The InlineShape object contains
format and other information about objects that move with the document text.

Property Type Description
Type Numeric The kind of graphic or other object.
wdlnlineShapePicture
3
Not linked
wdlnlineShapeLinkedPicture
4
Linked
Height, Width Numeric The size of the inline shape, in points. This is the actual space used for
the shape in the document—it's unrelated to the size of the underlying
graphic. LockAspectRatio determines whether these can be changed
independently.
ScaleHeight, Numeric Percentage of the original height and width at which the object should be
ScaleWidth displayed. When these are changed, Height and Width also change.
LockAspectRatio determines whether these can change independently.
LockAspectRatio Logical Indicates whether Height and Width must stay in the same relative
proportions. When .T., changing Height also changes Width, and
changing ScaleHeight also changes ScaleWidth.
PictureFormat Object For picture objects, reference to a PictureFormat object, which controls




those items managed interactively through the Format Picture item on
Word's menu (either Format|Picture from the main menu or Format
Picture from the context menu for a picture). These include cropping,
brightness, and contrast. See Help for more information.

LinkFormat Object For linked objects, reference to a LinkFormat object, which contains
information about the linked object, including the name of the file and the
type of object. See Help for more information.

Borders Object Reference to a Borders collection for the InlineShape.

There are a number of other properties, many of them specific to particular types of objects or
situations.

When processing the InlineShapes collection, be sure to check Type before assuming that properties
like PictureFormat or LinkFormat are available. Different object types use different subsets of the
properties, and accessing properties that aren’t in use is a good way to cause an error.

Working with Shapes

Like InlineShapes, the Shapes collection doesn’t have a method called simply Add. It has a number of
specific methods for adding various types of objects. Shapes has its own version of AddPicture, with
a somewhat different parameter list:

oDocument.Shapes.AddPicture( cPictureFile, ILink, ISaveWithDocument,

nLeft, nTop, nWidth, nHeight, oAnchor)

nLeft, nTop Numeric The position of the picture relative to the object referenced by oAnchor. Both
default to 0. (Optional)

nWidth, nHeight Numeric The size of the picture. Defaults to the actual size of the picture. (Optional)

oAnchor Object A Range object that indicates where the picture is to be "anchored" in the document.

The other parameters have the same meaning here as they do for the InlineShapes collection’s
AddPicture method.

wole
S ‘%
oY
N\ i
Vaivt” The anchor parameter to Shapes.AddPicture is a position in the document

from which the picture is allowed to float. This gives Word the flexibility to move the
picture around and put it where there’s room for it. In addition, pictures added through



Shapes can have text wrapped around them, in a number of different ways.
InlineShapes pictures cannot, as they always occupy the entire width of the page or
column, even if that leaves considerable white space.

There are a couple of downsides to using Shapes for adding graphics. The first is
minor. The graphics don’t show up in Word’s Normal view; you have to switch to Print
Layout or Web Layout (in Word 97, use Page Layout view) to see them. That can be
misleading when you’re editing a document, but is less of an issue for Automation.

The other issue is more serious. Because Word can move these graphics around, it
does. Controlling where a picture added through the Shapes collection appears is
difficult. As the document changes, the pictures can jump around the document.

Choosing the right way to add graphics requires evaluation of the pros and cons of
each approach. Different documents may call for different choices.

The AddShape method lets you add AutoShapes. Here's the syntax:

oDocument.Shapes.AddShape( nShape, nLeft, nTop, nWidth, nHeight, oAnchor )

The parameters are the same as for the Shapes collection’s AddPicture method, except for the
additional nShape parameter. This is a numeric value that indicates which AutoShape to add. As
you’'d expect, there's a set of constants available for these. Look up AutoShapeType in Help to see
the list, or, for a more useful list of them, check out the msoAutoShapeType constants in the Object
Browser. The list corresponds to the shapes available on the AutoShapes toolbar.

Shapes supports a number of other objects and has corresponding Add methods for those, as well.
See Help for details.

The Shape object is the analogue to InlineShape and contains information about the picture or other
object once you've added it to the document. Shape has some of the same properties as InlineShape,
but it also has additional properties that address specific issues of floating graphics.

As elsewhere, Type identifies the kind of item the Shape contains. However, it references a different
set of constants. In this case, they come from Office itself. Table 9 lists a few of the permitted values.

Table 9. What kind of shape am I? The Type property of Shape accepts values from Office’s
msoShapeType set of constants.

Constant Value Constant Value

msoPicture 13 msoAutoShape 1




msoLinkedPicture 11 msoChart 3

Height, Width, PictureFormat, and LinkFormat are the same for Shape as for InlineShape. ScaleHeight
and ScaleWidth are methods rather than properties here (check Help for the parameters).

This example adds the TasTrade bitmap as a floating graphic attached to the first paragraph of the
document:

oRange = oDocument.Paragraphs[1].Range()

* Add picture, don't link, do embed.

* By omitting the size, it defaults to the size of the graphic.
oDocument.Shapes.AddPicture(;

_SAMPLES + "TASTRADE\BITMAPS\TTRADESM.BMP ", ;

.F.,.T., 100, 100, ,, oRange)

In order to see this picture, you have to be in a view other than Normal. Set the Type property of the
View object of the Document’s ActiveWindow to wdPrintView (3) or wdWebView (6). To return to the
Normal view, set the property to wdNormalView (1).

#DEFINE wdPrintView 3

oDocument.ActiveWindow.View.Type = wdPrintView

With Shape objects, you can decide whether text is wrapped around the graphic and, if so, how
wrapping works. Several properties and methods control this ability. The WrapFormat property
references a WrapFormat object. That object’s Type property offers the first level of settings for
wrapping. Set it to wdWrapNone (3) to prevent text from wrapping around a graphic; in that case, the
graphic appears in front of the text. The default is wdWrapSquare (0), which draws an imaginary
square around the graphic (regardless of its actual shape) and puts text up to the edges of that
square. There are several other choices, as well.

WrapFormat's Side property determines whether text appears on both sides of a graphic, if that's a
possibility. The possible values are wdWrapBoth (0), wdWrapLargest (3), wdWrapLeft (1),
wdWrapRight (2). The trickiest option here involves allowing text and graphics to occupy the same
space, but making both of them visible. Figure 13 shows an AutoShape with text superimposed.

Figure 13. Combining graphics and text. By manipulating the Shape object’s ZOrder method,



you can put text on top.

The secret to creating this kind of effect is to call the Shape’s ZOrder method and pass
msoSendBehindText (5) as a parameter. ZOrder has more options for Shape than it does in Visual
FoxPro. In addition to bringing an object to front (msoBringToFront, or 0) or sending it to back
(msoSendToBack, or 1), you can send it behind text as in Figure 13 or bring it in front of text
(msoBringInFrontOfText, or 4), and a couple of other choices, as well.

Here's the code to create Figure 13 at the beginning of a document:

#DEFINE msoShapel6PointStar 94

#DEFINE msoSendBehindText 5

#DEFINE wdWrapNone 3

#DEFINE wdWrapBoth 0

#DEFINE CR CHR(13)

LOCAL oDocument, oRange, oShape

oDocument = oWord.Documents.Add()

oRange = oDocument.Range()

* Add the text

oRange.Font.Name = "Calligrapher" && or choose your favorite
oRange.Font.Size = 18

oRange.InsertAfter(CR + " Gold" + CR + " Medal")

* Now add the shape

oShape = oDocument.Shapes.AddShape( msoShapel6PointStar, 0, 0, 81, 81, oRange)
oShape.WrapFormat.Type = wdWrapNone
oShape.WrapFormat.Side = wdWrapBoth

oShape.ZOrder( msoSendBehindText )

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Working with existing documents

Once you've created documents, there are various reasons why you might want to go through them to make
changes or simply look at their contents. Word contains a number of tools that make it easy to go through a
document and look inside. It's possible to examine both the contents of a document and the structure.

Search and replace

Search and replace is one of the killer features that made word processors a success when they were first
introduced. The ability to go through a document and change every occurrence of "Big Company" to
"MegaMonster Corporation” with just a few keystrokes made friends of secretaries throughout the civilized
world. Word takes this ability much, much further.

You can search for either text or formatting, or some combination of the two. Searching can be case-sensitive
or case-insensitive. You can search just to locate the search phrase, or find it and replace it with another
phrase. When you replace, you can choose to replace all occurrences or check each occurrence as it's found
and replace it or not. Figure 14 shows the Find and Replace dialog, accessed through the Edit menu in
Word.

Find and Replace
Find Replace | Go Ta |
Find what: IF_'.ig Cormpany LI
Replace with: IMegaMDnster Corpor ation| -

Legs 2 | Replace | Replace All || Eind Mext I Cancel |

Search: all -
[~ Match case
I™ Find whole waords anly
™ Use wildzards
™ Sounds like
" Find all word forms
Replace

Search Options

Format ™ Special ~ Mo Formatting

Figure 14. Find and Replace. Word'’s version of search and replace is extremely powerful. You can search
for text only, formatting only, or text and formatting. You can replace all instances or check them out one at a
time.

Searching is handled by the Find object, which is accessed through the Find property of a Range object. It
has an assortment of properties, such as Text, MatchCase and MatchWholeWord, that determine what it's
searching for. Some properties, like Font and ParagraphFormat, are references to other objects. The Format



property determines whether formatting is considered in the search. Set it to .F. to search for the string
specified by Text, regardless of format. Table 10 lists some commonly used properties of Find.

The Execute method actually performs the search. In its simplest form, it uses the current settings of the Find
object. It can also accept a number of parameters, most of which duplicate properties of the Find object.
More about that later.

Table 10. Setting up a search. The Find object’s properties determine what to look for.

Property Type Description

Text Character The string to search for. If it's empty and Format is .T., the search is
based on formatting only.

MatchCase Logical Indicates whether the search is case-sensitive. Defaults to .F.
(case-insensitive).

MatchWholeWord Logical Indicates whether the search looks only for whole word matches.
Defaults to .F. (matches within words).

MatchSoundsLike Logical Indicates whether the search looks for matches that sound like the
search string. Defaults to .F. (actual matches only).

MatchWildcards Logical Indicates whether the search string contains wildcards that should be
matched appropriately. This is an incredibly powerful setting that is, in
our opinion, vastly underused by Word users (ourselves included).
Defaults to .F. (no wildcards).

MatchAllWordForms Logical Indicates whether other forms of the search string should be replaced
with corresponding forms of the replacement string. For example, if the
search and replacement strings are singular nouns, and this setting is .T.,
plural versions of the search string would be replaced by plural versions
of the replacement string. Defaults to .F. (match the string only as
provided).

Format Logical Indicates whether to include formatting in the search. If .F., ignore the
format-related properties of this object in the search.

Font Object Reference to a Font object, indicating the font to match if Format is .T.




ParagraphFormat Object Reference to a ParagraphFormat object, indicating the paragraph
formatting to match if Format is .T.

Style Object Reference to a Style object, indicating the style to match if Format is .T.

Forward Logical Indicates the direction of the search. Set to .T. to search toward the end
of the document, .F. to search toward the beginning.

Specifies what happens when a search begins in the middle of a
document and reaches the end.

Wrap Numeric
wdFindStop
0

Stop the search.

wdFindContinue

Continue the search at the other end of the document.

wdFindAsk

Ask the user what to do.

Found Logical Indicates the result of the last search.

Replacement Object Reference to a replacement object with information for replace. (See the
text.)

As noted previously, Find is a member of Range (and Selection), but not of Document. The search begins at
the beginning of the range, unless Forward is .F., in which case it starts at the end. The Wrap property
determines what happens when it reaches the end (or beginning, when searching backward) of the range.

To search the whole document, create a range at the beginning of the document. When Execute finds a
match, the range’s boundaries are changed to cover only the matched item.

For example, to search for the first occurrence of the string "Visual FoxPro", regardless of case, in the current
document, use the following code:

oRange = oWord.ActiveDocument.Range(0,0) && Start of document



WITH oRange.Find
.Text ="Visual FoxPro"
.MatchCase = .F.
.Format = .F.

IFound = .Execute()

ENDWITH
When this code is done, if IFound is .T., a match was found and oRange contains the matching text.

Things get a little more complex when you want to replace the found text. There are two ways to go about it.
The last two parameters of Find’s Execute method let you specify a replacement string and the number of
replacements to perform (none, one, or all). Here’s the syntax for Execute:

oRange.Execute( cText, IMatchCase, IMatchWholeWord, IMatchWildcards,
IMatchSoundsLike, IMatchAllWordForms, IForward, nWrap, IFormat,

cReplaceWith, nReplace)

cText Character Corresponds to the Text property.

IMatchCase Logical Corresponds to the MatchCase property.
IMatchWholeWord Logical Corresponds to the MatchWholeWord property.
IMatchWildcards Logical Corresponds to the MatchWildcards property.
IMatchSoundsLike Logical Corresponds to the MatchSoundsLike property.
IMatchAllWordForms Logical Corresponds to the MatchAllWordForms property.
IForward Logical Corresponds to the Forward property.

nWrap Numeric Corresponds to the Wrap property.

IFormat Logical Corresponds to the Format property.

cReplaceWith Character The replacement string.



Indicates whether to replace the search string with cReplaceWith every
time it's found, just once, or not at all. Use these constants:

nReplace Numeric

wdReplaceNone
0
wdReplaceOne
1

wdReplaceAll

2

Technically, cReplaceWith and nReplace aren’t really the last two parameters. There are several more that
may be accepted, depending on what language you're using. They relate to language-specific features.
Check Help if you're working in a language other than English.

Going back to the previous example, we can replace every instance of "Visual FoxPro" with "Visual FoxPro!"
by changing the Execute line to:

#DEFINE wdReplaceAll 2

IFound = .Execute(,,,,,,,,, Visual FoxPro!", wdReplaceAll )

The alternative approach uses a Replacement object referenced through the Find object’'s Replacement
property. Replacement is like a simpler version of Find—it can format the Text property with Font,
ParagraphFormat, and Style properties, among others. You can fill in Replacement’s properties to specify
exactly what should replace the found item, like this:

#DEFINE wdReplaceAll 2

WITH oRange.Find

*what to look for

.Text ="Visual FoxPro"

.MatchCase = .F.

.Format = .F.

*what to replace it with

.Replacement.Text = "Visual FoxPro!"
.Replacement.Font.Bold = .T.
.Replacement.ParagraphFormat.Leftindent = 12

* go!



IFound = .Execute(,,,,,,,,,, wWdReplaceAll )

ENDWITH

It's also possible to search for and replace only formatting. Both Find and Replacement have a method called
ClearFormatting that resets all format-related properties to their defaults, so you can start from scratch.

To change every occurrence of 12-point Arial to 16-point Times New Roman, use code like this:
#DEFINE wdReplaceAll 2

oRange = oWord.ActiveDocument.Range(0,0)

WITH oRange.Find

* make sure to clean up from last search

.ClearFormatting

*what to look for

.Text =""

.Format =.T.
.Font.Name = "Arial"
.Font.Size =12

*what to replace it with
WITH .Replacement
.ClearFormatting
Text=""

.Font.Name ="Times New Roman

.Font.Size = 16

ENDWITH

*go!

IFound = .Execute(,,,,,,,,,, wWdReplaceAll )
ENDWITH

Of course, with styles, you shouldn't often have to change fonts like that, but it's easy to search for and
replace styles, too. Just use the Style property of the Find and Replacement objects.

With a little creativity, it's possible to find and replace pretty much anything you want in a document. You can



also combine VFP’s data-handling strength with VBA for power searching. Imagine putting a collection of
search and replacement strings in a table, then using Automation to make all the changes without
intervention.

Exploring document structure

Several properties and methods let you find out about such things as the number of words and pages in a
document or range, the author of the document, its title, the template on which it's based, and so forth. You
can also provide some of this information and other data about the document.

Statistics like the number of words and pages are available interactively through the Word Count item on the
Tools menu. Choosing that option displays the dialog shown in Figure 15.

Word Count

Statistics:
Pages 28
Words 2,190
Characters (ho spaces) 44,285
Characters {with spaces) 52,519
Paragraphs 812
Lines 1,271

™ Include footnotes and endnotes

Figure 15. It's in there. The Word Count dialog actually shows a variety of statistics about the document or
range. The same information is available through the ComputeStatistics method.

With Automation, you access the same information by using the ComputeStatistics method of the Document
and Range objects. It accepts a parameter that indicates what statistic to compute and returns the
appropriate value. Table 11 shows constants for the items you're most likely to want to compute.

Table 11. What do you want to compute today? The ComputeStatistics method takes one of these constants
and tells you how many of the specified objects are in the document or range.

Constant Value Constant Value
wdStatisticWords 0 wdStatisticCharacters 3
wdStatisticLines 1 wdStatisticParagraphs 4

wdStatisticPages 2 wdStatisticCharactersWithSpaces 5




For example, to see how many words are in the current document, use:

#DEFINE wdStatisticWords 0

nWords = oWord.ActiveDocument.ComputeStatistics( wdStatisticWords )

Note that some of these values are also available by checking the Count property of the appropriate
collection. For example, you can determine the number of paragraphs in a range like this:

nParagraphs = oRange.Paragraphs.Count

Be forewarned. Calling ComputeStatistics sets the document’s Saved property to .F. That's right—even if you
make no other changes to a document, computing the number of words or pages or whatever is enough for
the document to think it's been changed.

Additional information about a document is available through the Properties dialog on the File menu. This
multi-page dialog (shown in Figure 16) includes some of the same information as the Word Count dialog, but
it also contains document properties like the author, title, subject, and many more. In addition to the
properties built into the dialog, you can specify custom properties and provide values for them (using the
Custom page). File properties can be displayed in the File|Open dialog and can be used to search for
documents.

PRODUCTS.DOC Propetties

General Surnmary |Statistin:s | Contents | Custom |

Title:

Subject: I

Authar I Microsaft Corporation

Manager I

Company: I Microsaft Corporation

Category: I

Keywords: I

Comments:

Hyperlink:
baze: I

Template:  MNormal.dot

[ Sawe preview picture

Ik, | Cancel

Figure 16. Document properties. This dialog shows you the information stored with a document. In
addition to the pre-defined properties, you can add your own custom properties.

Two DocumentProperties collections contain all the properties. They're accessed through two
properties of Document: BuiltinDocumentProperties and CustomDocumentProperties.
DocumentProperties and DocumentProperty are Office objects, not Word-specific objects.

To check the value of a specific document property, you can look it up by name, then check its Value



property. For example, to see the author of the active document:
? oWord.ActiveDocument.BuiltinDocumentProperties[ "Author" ].Value
See the DocumentProperty object in Help for a list of the built-in properties.

To add custom properties, use the Add method of the DocumentProperties collection. Here's the
syntax:

oDocument.CustomDocumentProperties.Add( cPropertyName, ILinked, nPropertyType,

uValue)

cPropertyName Character The name for the new custom property.

ILinked Logical Indicates whether the new custom property is linked to the contents of the
document. Pass .F. to simply provide a value. If .T., must pass the optional
fifth parameter (not discussed here).

nPropertyType Numeric The data type for the new custom property. Use one of these constants:
msoProperty TypeNumber
1
msoPropertyTypeBoolean
2

msoPropertyTypeDate

3

msoProperty TypeString

4

msoProperty TypeFloat

5

uValue Depends on The value to assign the new custom property.
nPropertyType

This code adds a property called VFPVersion to the document and sets it to the version of Visual
FoxPro used to create the document:
#DEFINE msoPropertyTypeString 4

oDocument.CustomDocumentProperties.Add( "VFPVersion", .F., ;

msoPropertyTypeString, VERSION() )



Before adding a custom property, check the list of built-in properties carefully. There are quite a few
of them.

Traversing a document with the collections

It's possible to "walk" through a document in a number of different ways by using the collections of
the Document object along with VFP’'s FOR EACH loop structure. While it can be slow, for some
tasks, traversing a collection is the best approach.

We don’t recommend using the collections as a replacement for Find. Searching for text or formatting
is much faster with Word’s native search mechanism. Nor is it better to measure the size of a
document by manually counting its lines, paragraphs, or words (though the Count property of the
collections can be quite informative). However, looping through a collection like InlineShapes or
Tables shouldn’t break the efficiency bank.

The routine in Listing 2 example checks every graphic in a document and checks whether it's linked,
but not embedded. It creates a cursor listing those that break the rule. You'll find it as

FindGraphics.PRG in the Developer Download files available at www.hentzenwerke.con.

Listing 2. Finding graphics. This program traverse the InlineShapes and Shapes to find every graphic
in the active document and check whether it's linked or embedded.

#DEFINE wdInlineShapePicture 3
#DEFINE wdInlineShapeLinkedPicture 4
#DEFINE msoPicture 13

#DEFINE msoLinkedPicture 11

* Create the log file

IF NOT USED("Graphics")

CREATE CURSOR Graphics (cDocument C(100), cGraphic C(100), ;
ILinked L, IEmbedded L, tWhen T)

ENDIF

* Now find the graphics.

WITH oWord.ActiveDocument

* Do graphics in the text layer first.

FOR EACH oShape IN .InLineShapes

DO CASE

CASE oShape.Type = wdlInlineShapeLinkedPicture

* Linked, may or may not be embedded


http://www.hentzenwerke.com/

IF oShape.LinkFormat.SavePictureWithDocument

* |t's embedded, so log it

INSERT INTO Graphics ;

VALUES (.FullName, oShape.LinkFormat.SourceFullName, ;
T.,.T., DATETIME()

ENDIF

CASE oShape.Type = wdlInlineShapePicture

* Embedded!

INSERT INTO Graphics VALUES (.FullName, "", .F., .T., DATETIME())
OTHERWISE

&& Not interested in these

ENDCASE

ENDFOR

* Now free-floating graphics

FOR EACH oShape in .Shapes

DO CASE

CASE oShape.Type = msoLinkedPicture

* Linked, may or may not be embedded

IF oShape.LinkFormat.SavePictureWithDocument

* |t's embedded, so log it

INSERT INTO Graphics ;

VALUES (.FullName, oShape.LinkFormat.SourceFullName, ;
T.,.T., DATETIME()

ENDIF

CASE oShape.Type = msoPicture

* Embedded!

INSERT INTO Graphics VALUES (.FullName, "", .F., .T., DATETIME())
OTHERWISE

&& Not interested in these

ENDCASE

ENDFOR

ENDWITH



RETURN

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Automating macros

Although you can perform pretty much any Word action through Automation, if you already have a Word
macro to do a particular thing, it might make more sense to use the existing macro than to rewrite it in VFP.
This is especially true if the macro doesn't involve transferring information between the two applications, or if
it's part of a pre-packaged set of macros.

The Application object’s Run method allows you to execute Word macros. You pass the name of the macro
and up to 30 parameters. For example, AcceptAllRevisions is a custom macro that accepts all revisions and
turns off revision tracking. This line executes it:

oWord.Run("AcceptAllRevisions")

In this case, it wouldn't be hard to create the same functionality through Automation since the macro has just
two lines, but there are situations where rewriting an existing macro as Automation code would present a
problem. In those cases, Run provides an easy solution.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

Listing 3 (WordSample2.PRG in the Developer Download files available at www.hentzenwerke.con) shows
a program that creates an employee list for Tasmanian Traders. The list uses a table organized by country,

with a heading for each country centered in the table. For each employee, it includes name, birth date, date

of hire, and a photo. The notes stored for each employee are listed as endnotes to the document. Figure 17
and Figure 18 show two pages of the resulting document.

Listing 3. Building a complete document. This program creates an employee listing, using a table,
endnotes, and graphics. The results are shown in Figure 17 and Figure 18.
* This is the "putting it all together" example for Chapter 5.

* |t demonstrates the use of tables, graphics, and endnotes.

* The program creates a document that shows all the TasTrade

* employees in a table organized by country.

#DEFINE CR CHR(13)

#DEFINE wdHeaderFooterPrimary 1

#DEFINE wdGray25 16

#DEFINE wdAlignParagraphCenter 1

#DEFINE wdCollapseEnd 0

#DEFINE wdWord9TableBehavior 1

#DEFINE wdAutoFitContent 1

#DEFINE wdTableFormatList7 30

#DEFINE wdCellAlignVerticalCenter 1

RELEASE ALL LIKE o*

PUBLIC oWord

LOCAL oDocument, oRange, oTable, oRow, nRow

LOCAL nCountries, nEmployees, cCountry

oWord = CreateObject("Word.Application")
oWord.Visible = .t.

oDocument = oWord.Documents.Add()

* Set font for Normal style

WITH oDocument.Styles["Normal"].Font

.Name ="Arial"


http://www.hentzenwerke.com/

.Size =12
ENDWITH
* Add a header
WITH oDocument.Sections[1].Headers[ wdHeaderFooterPrimary ]
oRange = .Range()
WITH oRange
.Text = "Tasmanian Traders"
.Style = oDocument.Styles["Heading 1"]
.ParagraphFormat.Alignment = wdAlignParagraphCenter
.Shading.BackgroundPatternColorindex = wdGray?25
ENDWITH
ENDWITH
* Open the data
OPEN DATA _SAMPLES + "TasTrade\Data\TasTrade"
* Run a query to collect the right data in the right order
SELECT Country, Title, First_Name, Last_Name, Birth_Date, ;
Hire_Date, Notes, Photo_File ;
FROM Employee ;
ORDER BY Country, Title, Last_Name, First_Name;
INTO CURSOR Emps
nEmployees = _TALLY
* Add a heading
oRange = oDocument.Range()
WITH oRange
.Style = oDocument.Styles["Heading 1"]
.ParagraphFormat.Alignment = wdAlignParagraphCenter
InsertAfter("Employees" + CR + CR)
.Collapse( wdCollapseEnd )
.Style = oDocument.Styles["Normal"]
ENDWITH
* Figure out the number of different countries

SELECT Country, COUNT(*);



FROM Emps ;

GROUP BY Country ;

INTO CURSOR Countries

nCountries = _TALLY

* Now add the table, with one Row for each Employee plus one for each Country
* Set up the table to resize itself based on the content of the cells.
oTable = oDocument.Tables.Add( oRange, nEmployees + nCountries + 1, 6, ;
wdWord9TableBehavior, wdAutoFitContent )

* Apply one of the built-in formats

oTable.AutoFormat( wdTableFormatList7, .T., .T., .T., .T., .T., .F.,;
F.,.F.,.F)

* Set up table heading row

WITH oTable.Rows[1]

.Range.Style = oDocument.Styles[ "Heading 2" ]
.Cells[1].Range.InsertAfter(" Title")
.Cells[2].Range.InsertAfter("First Name")
.Cells[3].Range.InsertAfter("Last Name")
.Cells[4].Range.InsertAfter("Birthdate")
.Cells[5].Range.InsertAfter("Hired")

* Set up this row to be repeated on subsequent pages
.HeadingFormat = .T.

ENDWITH

* Now loop through the employee data, sending it to the table.

* Keep track of the current country. For each new country,

* create a "header" row in the table.

cCountry =""

nRow =1

SELECT Emps

SCAN

* Grab the current row

nRow = nRow + 1

oRow = oTable.Rows[ nRow ].Range()



IF NOT (Country == cCountry)

* Change of country

oRow.Cells.Merge()

oRow.Style = oDocument.Styles[ "Heading 3" ]
oRow.ParagraphFormat.Alignment = wdAlignParagraphCenter
oRow.InsertAfter( Country )

cCountry = Country

nRow = nRow + 1

oRow = oTable.Rows[ nRow ].Range()

ENDIF

* Now insert the data for this employee

WITH oRow

.Cells.VerticalAlignment = wdCellAlignVerticalCenter
.Cells[1].Range.InsertAfter( Title)
.Cells[2].Range.InsertAfter( First_Name)
.Cells[3].Range.InsertAfter( TRIM(Last_Name) )

* Add an endnote for the memo information
oDocument.EndNotes.Add(.Cells[3].Range(), , Notes )
.Cells[4].Range.InsertAfter( Birth_Date)
.Cells[5].Range.InsertAfter( Hire_Date )

* Add the picture in the last cell

oPicture = oDocument.InlineShapes.AddPicture (;
_SAMPLES + "TasTrade\" + Photo_File, ;

t., .f., .Cells[6].Range() )

ENDWITH

WITH oPicture

.ScaleHeight =50

.ScaleWidth = 50

ENDWITH

ENDSCAN

oDocument.PrintPreview()

RETURN




Tasmanian Traders

Employees

Title First Last Birthdayx Hired

Name Name

France
Advertizing i
Specialist Laurent  Fereira 1219/65 2134
Marketing : _
EaE T Havier hartin 11530060 11 5/94
Marketing : <l
Directar Justin Brid 1008062 11194
UK

Inside 5ales | .0 callaha /958 1/30/93
Coordinatar
Sales Manager Steven Bucharart  3r4ms 91 3592

Figure 17. Tasmanian Traders employee report. The first page includes a heading then jumps right
into the table. You can put graphics in a table as well as text, and not every row has to have the same
number of columns.

Tasmanian Traders

Title First Last Birthdale Hired

Mama Mama




A LL LTS

Entry Clerk Andrewe  Fullef! 2119542 Ti1291

Mail Clerk Tim Srmith! BIGIT 3 1115/93

Receptionist Caroline Pattersorf® 911572 aM593

Sales Manager Margaret Peacocld 9 953y ara0iaz

"'Laurent Pereira graduated from the Ecole Supéneune des Sciences Economiques et
Commerciales in 1933, He plans to continue his studies in 1994 at the University of Bochum.

I xaviertdartn iz a graduate of the University of Chicago (BA) and the ESC Borde aux (Ecale
Supérieurs de Commerce de Bordeau:). hir. hartin has travelled widely in Eastarn Eumope, most
recentlyinthe Czech Republic, Foland, and Hungary for purposes of establishing a netak of
cantacts for fulure sales activities. hir. bartin is completely luent in German and French (he is a
natve spaaker of both languages); he also speaks English and understands Polish.

" Justin Brid graduated from HEC Faris (Hautes Etudes Commerciales de Pais) in 1935 with
high hanars. W Bid attended the Amercan Graduate School of Internation al b anagement

(T hunderbird) in Glendale, Arizona. Priorto his employment with Tasmanian Traders, he held
positions with several ImpoExport companies (Culinany Spedalties) in emany, Switzerland,
and Austria. br. Brid is equallyfluent in French and German; he also speaks English and reads
Spanish.

"Laura receivad 8 B& in psychaology from the University of Washington. She has also completed
a course in business French. She reads and writes French.

U Steven Buchanan graduated from S5t Andrews University, Scofland, with a BSC degree in 1576,
Upan jaining the company as a sales representative in 1992, he spant& manths in an onentation
program at the Seate office and then returned to his permanent postin London. He was
promoted to sales manager in March 12992, hr. Buchanan has completed courses in Successful
Telemadketing and International Sales Management He isfluentin French.

Figure 18. Using endnotes for additional information. Although the information from the employee
notes field could have been placed in the table, putting it in endnotes gives the table an uncluttered
look.

With the material in this chapter and the preceding one, you can handle most everyday word processing
tasks. Now we move on to the more unusual tasks—the things you don'’t see every day but still might be
asked to make Word do.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 6 - Advanced Word

Word can produce some very complicated documents. Several features help bring order to longer documents: outlines, tables
of contents, and indexes. Our look at Word finishes with the prototypical blend of word processing and databases: mail merge.

Several of Word’s more complex abilities can provide the finishing touches to documents you create via
Automation. This chapter looks at outlines, tables of contents, and indexes. In addition, it explores perhaps
the most sought after of Word's capabilities from the database point of view: mail merge.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Organizing a document using styles

Both outlines and tables of contents are based on styles. In each case, you associate a style with each
heading level, and Word does the rest. (In fact, Word can use this approach for multi-level lists, as well. See
"Organizing text with lists" in Chapter 4.) The first step in creating either an outline or a table of contents is to
use styles for each heading level in your document. You can use the built-in styles or create your own set of
styles. As an extra benefit, this makes it easy to ensure that headings at the same level look the same
throughout.

Word recognizes nine heading levels. Not coincidentally, the Normal template includes nine styles, named
"Heading 1" through "Heading 9," that are linked to those nine heading levels. The easiest way to prepare for
outlines and tables of contents is to use those built-in heading styles in your own documents. Figure 1 shows
them in outline view.

e s » 2%+ -|123456 7/a=a0pae .

¢ Heading 1
¢ Heading 2
¢ Heading 3
+ Heading 4
& Heading 5
7 Heading 6
& Heading 7
& Heading 8
= Heading 9

Figure 1. Built-in heading styles. You can use these styles for your headings to simplify creation of outlines
and tables of contents, or you can set up your own.

You can use other styles, if you prefer. Set the heading level for a style through the OutlineLevel property of
the Style object’s ParagraphFormat object. The OutlineLevel property uses a set of constants with names like
wdOutlineLevell—the value of each is its outline level.

To demonstrate this use of styles, Listing 1 is a program that creates a report of TasTrade sales organized
by country. Within each country, customers are listed alphabetically. The report’s title uses the Heading 1
style. Country names use Heading 2, and company names use Heading 3. The sales by year for each
company (rounded to the nearest dollar) make up the body of the report and use the Body Text style. This
program is included as MultiLevel.PRG in the Developer Download files available at www.hentzenwerke.comnj.

Listing 1. Using heading styles. This program creates a document that makes both outlining and table of
contents creation simple.

* Create a multi-level document using built-in
* heading styles.

#DEFINE wdCollapseEnd 0


http://www.hentzenwerke.com/

#DEFINE CR CHR(13)

LOCAL oDocument, oRange

LOCAL cCountry, cCompany, nYear

* Create an instance of Word.

* Make it public for demonstration purposes and so

* that you can use oWord in the following examples.

RELEASE ALL LIKE o*

PUBLIC oWord

oWord = CreateObject("Word.Application")

* Make Word visible.

oWord.Visible = .T.

oDocument = oWord.Documents.Add()

OPEN DATA _SAMPLES + "TasTrade\Data\TasTrade"

* Collect customer/order information. Result contains one record per
* company per year, order by country, then company,

*then year in descending order

SELECT Company_Name, Country, YEAR(Order_Date) AS Order_Year, ;
ROUND(SUM(Order_Line_Items.Unit_Price*Order_Line_Items.Quantity - ;
(0.01 * Orders.Discount * Order_Line_Items.Unit_Price *;
Order_Line_ltems.Quantity)) + Orders.Freight, 0) AS OrderTotal ; FROM Customer ;
JOIN Orders ;

ON Customer.Customer_Id = Orders.Customer_Id ;

JOIN Order_Line_ltems ;

ON Orders.Order_ld = Order_Line_ltems.Order_Id ;

GROUPBY 3,2,1;

ORDERBY 2,1, 3DESC;

INTO CURSOR Companylinfo

* Send data to document, as follows:

* Country is Heading 2

* Company is Heading 3

* Total with some text is Body Text

oRange = oDocument.Range()



WITH oRange
.Style = oDocument.Styles[ "Heading 1" ]

InsertAfter("Tasmanian Traders Sales by Country and Company" + CR)
.Collapse( wdCollapseEnd )

ENDWITH
cCountry =""

cCompany =""

nYear =0

SCAN

WITH oRange

.Collapse( wdCollapseEnd )

IF NOT (Country == cCountry)

.Style = oDocument.Styles[ "Heading 2" ]
.InsertAfter( Country + CR)

.Collapse( wdCollapseEnd )

cCountry = Country

cCompany =""

nYear =0

ENDIF

IF NOT (Company_Name == cCompany)

.Style = oDocument.Styles[ "Heading 3" ]

.InsertAfter( Company_Name + CR)

.Collapse( wdCollapseEnd )

cCompany = Company_Name

nYear =0

ENDIF

.Style = oDocument.Styles[ "Body Text" ]

InsertAfter( "Total Sales for " + TRANSFORM(Order_Year,"9999") + ;
" =" + TRANSFORM(OrderTotal," @B, $$ 99,999,999") + CR)
.Collapse( wdCollapseEnd )

ENDWITH

ENDSCAN



Figure 2 shows a portion of the resulting document.

Working with outlines

Outlines in Word are more a state of mind than a separate entity. They allow you to hide the details of a
document while still showing its structure. Because different portions of an outline can be expanded different
amounts, Word'’s outlines also provide you with the effect of a drill-down report.

Once you use appropriate styles to create the headings in a document, you've outlined the document. To see
the outline, all you have to do is switch to Outline View by choosing View|Outline from the menu. As Figure 1
shows, Outline View includes a special toolbar for working with outlines. It allows interactive users to expand
and collapse the outline, to determine which heading levels are visible, to decide whether to show all body
text or just the first line, and to manipulate items in the outline, changing their level. When a document is
displayed in Outline View, printing it prints the displayed outline, not the entire document. We suppose this is
what you should get from a WYSIWYG word processor, but it's something of a surprise, since other views
don't affect printing.

Tasmanian Traders Sales by Country and Company
Argentina

Cactus Comidas para llevar
Total Sales for 1995 = $1,012 |

Total Sales for 1994 = $599
Total Sales for 1992 = $17,738

QOcéano Atlantico Ltda.
Total Sales for 1995 = §$2,948

Total Sales for 1994 = §112
Total Sales for 1993 = §$2,133
Total Sales for 1992 = $367

Rancho grande
Total Sales for 1995 = $697

Total Sales for 1994 = $1,086
Austria

Ernst Handel
Total Sales for 1995 = $31.221

Total Sales for 1994 = §47.050
Total Sales for 19923 = §24 476
Total Sales for 1992 = §5,372

Piccolo und mehr
Total Sales for 1995 = $3,345

Total Sales for 1994 = §5 816
Total Sales for 1993 = §12.072

Figure 2. Multi-level document. The headings in this document, created by the program in Listing 1, use the
built-in heading styles.

As Views are a visual issue and Automation is usually performed behind the scenes, what does all this mean



for Automation? You probably won't need to display an outline in an Automation setting, but you may need to
print it, requiring a switch to Outline View. Fortunately, this switch to Outline View and subsequent outline
manipulation can be done even when Word is hidden.

The key object for working with outlines is the View object, accessible through the View property of the
Window object. The Window object is accessed using the ActiveWindow property of Document. So, to set the
ActiveDocument to OutlineView, use code like:

#DEFINE wdOutlineView 2

oWord.ActiveDocument.ActiveWindow.View.Type = wdOutlineView

Figure 3 shows the results of issuing this code against the multi-level document from Figure 2. Other values
for View’s Type property include wdNormalView (1) and wdPrintPreview (4).

e s »|e8(+-|1234a5067a=falUsBRBEEF.

¢ Tasmanian Traders Sales by Country and Company
¢ Argentina
& Cactus Comidas para llevar
s Total Sales for 19%%5 = 51,012
o Total Saleg for 18%4 = 5653
o Total Sales for 18%2 = 517,738
¢ Oceano Atlantico Ltda.
o Total Zales for 1935 = 52,248
o Total Sales for 1%%4 = 5112
o Total Sales for 1393 = $2,133
o Total Sales for 18%2 = S$367
& Rancho grande
o Total Sales for 1985 = 5657
o Total ZSales for 1%%4 = 51,3886
¢ Austria
¢ Ernst Handel
o Total Zales for 1985 = 531,221
o Total #Fales for 1%%4 = 547,050
o Total Sales for 18%3 = 524,476
o Total 3ales for 1%%2 = 35,372
% Piccolo und mehr
o Total Zales for 1925 = 53,345
o Total Fales for 1%%4 = S§,816
o Total Sales for 1893 = 512,072
s Total Sales for 1932 = 51,612
o Belgium
% Maison Dewey
o Total %Fales for 1985 = 54,331
o Total 2ales for 1%%4 = 535,271
o Total Zales for 1923 = 51,546
% Suprémes délices
o Total #Fales for 1%%5 = 55,382
o Total Sales for 18%4 = 510,945
o Total ZSales for 1933 = 58,248
o Total Zaleszs for 1922 = 55,321

Figure 3. Document outline. If a document’s headings use the right styles, creating an outline is as easy as
switching to Outline View.

Once you're in Outline View, you can expand and collapse the outline, either as a whole or parts of it, using
View's ExpandOutline and CollapseOutline methods. Each accepts a single, optional, parameter—the range
to be expanded or collapsed. If the parameter is omitted, the current selection/insertion point determines
what is expanded or collapsed. For example, to collapse the detail for the vendor "Cactus Comidas para
llevar" in Figure 3, issue this code:



oRange = oWord.ActiveDocument.Paragraphs[3].Range()

oWord.ActiveDocument.ActiveWindow.View.CollapseOutline( oRange )

i alﬂﬂ@ ExpandOutline has a bug (acknowledged by Microsoft). When you pass it a range
consisting of a heading paragraph that has body text both above and below it, it expands that
paragraph, showing the body text below it, but it also shows the body text above it. This expansion
error causes problems when you attempt to collapse this part of the outline. In order to do so, you
have to collapse a much larger portion of the outline than you should.

The ShowHeading method lets you determine how many levels of headings are displayed overall. You pass
it a number—all headings up to and including the specified level are displayed, while all headings below that
level, plus body text, are hidden. For example, to display headings up to level 3, use this code:

oWord.ActiveDocument.ActiveWindow.View.ShowHeading( 3)

If you want to display all headings, call the ShowAllHeadings method:

oWord.ActiveDocument.ActiveWindow.View.ShowAllHeadings()

To show only the first line of body text, set the ShowFirstLineOnly property to .T.; this is a good way to get a
summary of the document without showing just the headings. (In the example shown in Figure 3, changing
this property doesn’t make a difference because each paragraph has only a single line.) If you're showing all
levels, it gives you the first line of each paragraph. Unfortunately, this property works only on screen; it
doesn't affect printed output.

Notwithstanding the inability to use ShowFirstLineOnly, once you've arranged the outline the way you want it,
call Document’s PrintOut method (described in the "Printing" section in Chapter 4) to print your outline.

Creating a table of contents

When you have a document with headings that use heading level styles, creating a table of contents is a
piece of cake. One call to the Add method of the document’s TablesOfContents collection and you're done.
All you need to know is where to put the table of contents (a range) and which heading levels you want to
include. This code adds a table of contents right at the beginning of the document. It includes headings
through level 3.

#DEFINE wdNormalView 1
oWord.ActiveDocument.ActiveWindow.View.Type = wdNormalView
oRange = oWord.ActiveDocument.Range(0,0)

oWord.ActiveDocument.TablesOfContents.Add( oRange, .T., 1, 3)
Figure 4 shows one page of the results for the document in Figure 2.

TablesOfContents is a collection of TableOfContents objects. (Note the plural "Tables" in the collection



name.) Each TableOfContents object represents one table of contents in the document. Why would you have
more than one? Because you might have a separate table of contents for each chapter or each major section
in a document.

QUICKE-Stop
Toms Spezialititen

Hungry Owl All-Hight Grocers

Franchi S.op. . e e e a
Magazzini Alimertari Biuaniti
Pegyiani Caseifici

Ava Trajilleo Emparedados v helados
Antonio Moreno Tacueria

Centro comercial Moctemama
Pericles Comidas clésicas

Tortuga Pestaurante

Furia Bacalhan e Frutos do Mar
Irincesa Isabel Winhos

Eolido Comidas preparadas

FIZ3A Fabrica Inter. Salchichas 5 A
Galeria del gastrinomo

Godos Cocina Tipica

RPomero v tomillo

EBerglinds snabbkdp
Folk och f£& HE
Switzerland
Chop-=uaey Chinese
Richter Supermarkt

B'=s Beverages
Consolidated Holdings
Eastem Commection
I=sland Trading
North/South

Sewven Seas Imports

Great Lakes Food Market
Hungry Coyote Import Stors
Lazy K Hountry Score

Let's Stop N Shop

Lonesome Pine Restaurant
01ld World Delicatessen
Rattlesnake Canyon Groocery,
Save-a-lot Markets

Split Bail Beesr £ Ale

The Big Chesse

Figure 4. Table of contents. Using built-in heading styles makes it a breeze to create a table of contents.

The Add method takes quite a few parameters. Here's the syntax, listing the ones you're most likely to use:

oDocument.TablesOfContents.Add( oRange, IUseHeadingStyles, nFirstHeadingLevel,
nLastHeadingLevel, IUseFields, ,

IRightAlignPageNums, lincludePageNums,



cAddedStyles )

oRange Object Range where the table of contents should be placed.

IlUseHeadingStyles Logical Indicates whether the table of contents should be created based on built-in
heading styles. Defaults to .T.

nFirstHeadingLevel Numeric The lowest numbered heading style to be included in the table of contents.
Defaults to 1.

nLastHeadingLevel Numeric The highest numbered heading style to be included in the table of
contents. Defaults to 9.

IUseFields Logical Indicates whether items marked as table of contents fields are included in
the table of contents. See Help for more information. Defaults to .F.

IRightAlignPageNums Logical Indicates whether page numbers are right-aligned on the page. Defaults to
.T.
lIncludePageNums Logical Indicates whether page numbers are included in the table of contents.

Defaults to .T.

cAddedStyles Character A comma-separated list of styles other than the built-in heading styles that
should also be used in creating the table of contents.

Once you create the table of contents, you can set the character that fills the space between the entries and
the page numbers on each line by using the TabLeader property of the TableOfContents object (not the
collection). Table 1 shows constant values for TabLeader.

Table 1. Filling the space. The TabLeader property determines how the space between the headings
and the page numbers in a table of contents is filled.

Constant Value Constant Value

wdTabLeaderSpaces 0 wdTabLeaderLines 3

wdTabLeaderDots 1 wdTabLeaderHeavy 4




wdTablLeaderDashes 2 wdTablLeaderMiddleDot 5

Several other properties of TableOfContents let you change parameters set by Add, such as
IncludePageNumbers, RightAlignPageNumbers, LowerHeadingLevel (corresponds to
nFirstHeadingLevel) and UpperHeadingLevel (corresponds to nLastHeadingLevel).

As you may have guessed from our comments on the IlUseFields parameter, there is another
approach to creating a table of contents. It involves marking each item you want listed with a code.
For details, see the topic "Use field codes for indexes, tables of contents, or other tables" in the
regular Word Help.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Creating indexes

Long documents are far more useful when they’re indexed. Unfortunately, the best way to produce a
high-quality index is still the old-fashioned way—by having a person do it. That's because no automated
technique can read the contents of a manuscript and decide whether a particular use of a word or phrase
deserves to be mentioned in the index. In fact, this problem is the reason that so many search engines
produce irrelevant results so much of the time.

Nonetheless, Word offers a couple of ways to create indexes. Only one of the techniques is really suited to
Automation, however, as the other involves a great deal of human intervention. The easily automated
technique uses a concordance table listing all the words to be indexed and the index entries for them.

Deciding what to index

The concordance table is a separate document containing a standard Word table with two columns. You can
create it interactively or through Automation. Table 2 is part of a concordance table for Chapter 3 of this book,
"Visual FoxPro as an Automation Client" (though not the one actually used to index the book).

Table 2. Creating an index. One way to index a document is by using a table that lists the terms to be
indexed together with the index entries.

1426 error:1426
1429 error:1429
Activate Activate
Application Application
client client
collection collection
collections collection




Command Window Command Window
CreateObject() CreateObiject()
CreateObjectEx() CreateObjectEx()
DCOM DCOM

debugger debugger
debugging debugging

The table shows several items worth noting. First, if a word appears in several forms in the document, you
need to list all those forms in the table. (Notice "collection" and "collections" in the first column, both being
indexed to "collection.")

Second, you can handle multiple levels in the index within the table by separating them with a colon in the
second column. Note the entries for 1426 and 1429. In the index, these will both be part of a general entry for
"error," but sub-divided into "1426" and "1429."

Third, most rows in the table have the same thing in the two columns. If you're creating the table interactively,
this is a great place to take advantage of a Word feature that’s usually an annoyance. In Word, the
Edit|Repeat Typing menu option (the shortcut is Ctrl-Y) is almost always available. When you're creating a
concordance table, you can use it to cut your typing almost in half. Type the string into the first column, then
hit Ctrl-Y to repeat it in the second column.

Finally, Word is unfortunately not smart enough to notice when one index phrase is contained in another. For
example, Table 2 contains the word "client." If we added "client application" to the table, when the index is
created, a phrase like "Using VFP as our client application” would be indexed twice—once for "client" and
once for "client application." Beware of this issue as you decide what to put in the table.

Marking items for the index

Once you have the concordance table, the next step is to get the relevant items in the document marked.
This is the part where the concordance table gets put to work and actually saves time. Interactively, choose
Insert|Index and Tables from the menu. This displays the dialog shown in Figure 5. Choose AutoMark and
select your concordance file.

Index and Tables |



Table of Contents | Table of Eigures | Table of authorities |

Print Prewvigw:
Aristotle, 2 | Type: & Indented " Run-in
Asteroid belt. See Jupiter

Atmosphere Colurnis: |2 E‘

Earth
Language: Englisth (.5,
exosphere, 4 - IHEI ish (L.5.) ﬂ

ionosphere, 3
mesosphere, 34 J
-w

tratrenhetrs 3

" Right align page numbers

Farmats: IFrDmtempIatej

Mark Enfry... | AgbjMark...l Modify... |

DK | Cancel |

Figure 5. Creating an index. To mark items in a document based on the concordance table,
choose AutoMark from this dialog.

Word goes through the document and adds special fields to the document everywhere it finds an
item from the left column of the concordance table.

To automate this process, you use the AutoMarkEntries method of the document’s Indexes

collection, like this:

oDocument.Indexes.AutoMarkEntries( "d:\autovfp\chapter3\wordlist.DOC" )

Generating the index

After the items are marked, creating the index itself is simple. Interactively, you position the cursor
where the index is to be placed, then bring up the Index and Tables dialog (shown in Figure 5) again,
choose a format from the Formats dropdown, check Right align page numbers, if you want, and
choose OK. Figure 6 shows part of the index generated for Chapter 3, "Visual FoxPro as an
Automation Client," based on the concordance in Table 2.

BOITVALE (e 4 ohiject reference . 2,8.7
Lpplication........covis 1,4, 3,4 OFRICE 1,2,6,8 03
SOOI e 4.6,7 Cntlonk. e 2
Cormmand Window .. 7 PATATETETY 1.2 8
CreateChject() .o 1.4, 5 PirelsToPoirts ... 3
DoMWL 2 pobraorphiso. 1
BEbMEZING e 2 PowerPoint ... 1,24
Developer Download files ... 3 PRIt ]
error LA26 A SETVEY 1,2, 5,6, 80



Figure 6. Generated index. Applying the concordance table in Table 2 to Chapter 3 results in
this index.

To produce the index with Automation, you use the Add method of Indexes, passing it the range
where the index is to be placed and several other parameters. This example creates the same index
as in Figure 6, positioning it at the end of the document.

#DEFINE wdCollapseEnd 0

#DEFINE wdHeadingSeparatorNone 0

#DEFINE wdIndexIndent O

#DEFINE wdTabLeaderDots 1

oRange = oDocument.Range()

oRange.Collapse(wdCollapseEnd )

olndex = oDocument.Indexes.Add( oRange, wdHeadingSeparatorNone, .T., ;
wdIndexIndent, 2, .F.)

* Change leader to dots

olndex.TabLeader = wdTabLeaderDots

olndex.Update()

The Add method has a number of parameters. In the example, following the range, we specify that no
punctuation is needed to separate entries for each letter of the alphabet in the index. Other choices
include wdHeadingSeparatorBlankLine (1) and wdHeadingSeparatorLetter (2). The Index object’s
HeadingSeparator property matches up to this parameter.

The third parameter corresponds to the RightAlignPageNumbers property of the Index object and
determines whether the page numbers immediately follow the entry or are right-justified.

The fourth parameter determines how the index handles sub-entries. The default value,
wdIndexIndent (0), lists each sub-entry indented on a separate line beneath the main heading. The
alternative option, wdindexRunIn (1), separates the sub-entries with semi-colons on the same line
with the main heading. Don’t use it when you're right-aligning the page numbers—it looks terrible in
that case.

The fifth parameter specifies the number of columns in the index, two in the example. It corresponds
to the NumberOfColumns property of the Index object.

The final parameter shown in the example indicates that accented letters should be combined with
the basic letters. Pass .T. to separate accented letters into separate index listings. This parameter
corresponds to Index’s AccentedLetters property.

Add has several additional parameters, but they’re fairly obscure. See Help for details.

Formatting indexes



As with tables of contents, once you've added an index, you can use its properties to change its
appearance. The Index object has a number of properties that affect its look—a number of them
correspond to parameters of the Indexes collection’s Add method, as noted previously. In addition,
as with TableOfContents, the TabLeader property lets you vary the character that appears between
the entry and the page number(s). The constants are the same as for TableOfContents—see Table 1.

The Update method (used in the example in the previous section), as its name suggests, updates the
index. It's useful both when the marked index entries change and when you’ve changed formatting.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Merging documents with data

Mail merge is another of the killer functions that put word processors on everybody’s desk. The ability to write
a document once, then merge it with data repeatedly to produce personalized documents made sense to
businesses, academics, and home users, too.

Word offers a variety of ways to merge data and documents. The best known is the most complex—using the
built-in mail merge ability. However, it's also possible to merge documents by using Find and Replace and by
combining the built-in mail merge capabilities with some manual labor. We’'ll take a look at each of these
approaches here and tell you why we think the third approach is the best suited to Automation.

Word’s mail merge structure

Mail merge has been included in Word for many versions. Interactively, there’s a wizard called the Mail
Merge Helper (see Figure 7) that guides users through the process. Even with this tool, though, setting up a
new mail merge document, connecting it to data, and generating results is not simple. We've both spent
many hours on the phone walking relatives and friends through the process.

Behind the Mail Merge Helper, there are a number of objects. Help lists no fewer than eight different objects
whose names begin with "MailMerge." But it's not the complexity of the object model that leads us to
recommend alternative approaches; it’s the fragility of the connection between the document and the data.

When you indicate that a Word document is a mail merge document, you specify the data source for the
merge. It can be another Word document, a text file, or any of a variety of database files, including FoxPro, of
course. For most data sources, Word uses ODBC to read the data.

If the data file is deleted or moved or something happens to the ODBC driver, the merge stops working. Many
people using FoxPro 2.x tables in mail merge got a nasty surprise when they installed Service Pack 3 for VFP
6 (or anything else that installed ODBC 4.0) because it disabled the ODBC driver for FoxPro 2.x tables and
failed to automatically substitute the VFP driver for it. Mail merges that had been working for years failed.

Mail Merge Helper

The main document and data saurce are ready to merge. Choose the
Merge buthon to complete the merge.

=
1 Main docurment

Create ™ Edit ™

Merge type: Form Letters
Main document: Document2

2 Data soUrce

GetData ™ Edit ™

Data: 0YPersonaldocumenty, . \upgimembers. DEF

3
=l Merge the data with the document

| Merge. .. I Query Options. ..




Cptions in effect:
Suppress Blank Lines in Addresses
Merge to new document

Cancel |

Figure 7. Mail merge. This dialog walks interactive users through the steps needed to use Word’s built-in
mail merge facility.

The need to deal with ODBC drivers and connections makes this approach harder and, especially, riskier
than it needs to be. Unless you're dealing with extremely large tables, there are other, simpler ways to solve
this problem. If you are dealing with large tables, plan to control the ODBC aspects yourself rather than
relying on what's on the user’'s machine. (To learn about managing ODBC and connections, check out the
book’s sister volume in the Essentials series, Client-Server Applications with Visual FoxPro 6.0 and SQL
Server 7.0.) The key thing you'll need to do is pass the connection string to the OpenDataSource method of
the MailMerge object (discussed later in this chapter).

Substituting data with Find and Replace

One alternative to Word’s mail merge is to use the Find and Replace objects. Since these were discussed in
detail in Chapter 5 (see "Search and replace"), we’ll talk here only about the specific issues involved in using
them for merging documents and data.

The basic idea is to create a document that contains the desired result except for a set of strings that are to
be replaced by data from your database. Alternatively, you can use a template from which you create a
document, then replace the strings.

The main issue is making sure that you only replace what you mean to replace. When you're working
interactively, this isn’'t a problem because you can see each match before you agree to replace it. With
Automation, however, you need a better solution. One possibility is to enclose the strings with a special
character or characters. For example, you might surround the strings to be replaced with angle brackets (like
"<name>") or exclamation points ("!lname!"). Then, the code to replace the string would look something like
this:

#DEFINE wdReplaceAll 2

oRange = oDocument.Range(0,0)

WITH oRange.Find

.Text ="IName!"

.Replacement.Text = TRIM(Employee.First_Name) ;

-"" + TRIM(Employee.Last_Name)

Execute(,,,,,,:,, wdReplaceAll)

ENDWITH

The biggest problem with this approach is trying to find an appropriate special character to delimit your
strings. You really need to be sure it's something that won’'t appear elsewhere in the document. While it's



unlikely that a special character like an exclamation point would surround text, there’s always the off chance
that a user might choose to do something strange.

You can use a table to drive this approach. Consider putting the strings and formatting to be found and
substituted into a table, and having a single method to perform the search and replace. Nonetheless, while
searching for and replacing delimited strings is a viable solution to merging data into documents, we still think
there’s a better way.

Drop back 10 yards and punt

So what's a body to do? There’s Word with a perfectly good mail merge engine, but the need to use ODBC to
access FoxPro tables is a serious impediment. On the other hand, the rest of the mail merge facilities are
really useful. The solution is to avoid the ODBC aspects while taking advantage of everything else Word has
to offer.

The way to do that is to create the data source for a mail merge on the fly, sending FoxPro data to Word, and
attaching it to the document just long enough to merge it. This strategy is appropriate when the amount of
data to be merged is small to moderate, but it may need to be reconsidered for extremely large data sets.
(However, realize that no matter what approach you use, the data has to be sent to Word somehow, so this
method may be as good as any other and it does afford you more control over the process and less
likelihood of trouble caused by end users than the traditional approach.)

The documents involved in mail merge

Once you take ODBC out of the picture, mail merge involves two or three documents. The first is what Word
calls the main document. That's the document that contains the text of the letter, envelope, labels, or
whatever it is you're trying to create. Most of this document looks like any other document. The exception is
that, in a few places, it contains fields—special markers that indicate that something is to be substituted at
that location. Word actually offers a wide range of fields, including such things as the date, time, and page
number. For mail merge, we're specifically interested in fields of the type MergeField.

The second document in a mail merge is the data source. This is the document that contains the data to be
substituted into the fields. It contains an ordinary Word table with one column for each MergeField. In the
strategy we describe, we’ll build this document on the fly.

The third document is optional. It's the result created by merging the main document with the data source.
We prefer to merge to a new document rather than directly to the printer, but there may be situations where
you choose to skip this step.

The objects involved in mail merge

The main object in mail merge is, in fact, called MailMerge—it's accessed through the MailMerge property of
Document. MailMerge’s Fields property references a MailMergeFields collection, made up of MailMergeField
objects—these objects represent the mail merge fields in the main document. When the document is
attached to a data source, the DataSource property of MailMerge accesses a MailMergeDataSource object.
Its DataFields property references a collection of MailMergeDataField objects that provide information about
the fields in the data source. MailMergeDataSource also has a FieldNames property that references a
MailMergeFieldNames collection with information about the field names for the data.



If this seems like a lot of objects, that's because it is, but in the strategy described here, you'll need to work
directly with only the MailMerge and MailMergeFields objects.

Creating a main document

The first step is creating a main document. There are several ways to do this, not all involving Automation.
Your users may simply create a main document using the Mail Merge Helper. The problem with that
approach, of course, is that such documents will have data sources attached, but there are some solutions
(discussed in the next section, "Attaching a data source").

Users can also create main documents manually by inserting mail merge fields by choosing Insert|Field from
the menu. The dialog shown in Figure 8 appears. To add a mail merge field, choose Mail Merge in the left
column and MergeField on the right, then type the field name in the Field codes box, as shown in the figure.

Field

Categories; Field names:

all fgh a
Date and Time Compare —
Document Automation Database

Document Information Fill-in

Equations and Formulas If

Index and Tables MergeField

Links and References MergeRec

Mail Merge MergeSeq e
Nurnber irg Mest

User Information MextIf ﬂ

Eield codes:  MERGEFIELD Fieldrame

MERGEFIELD Marne

Description
Insert & mail merge field

¥ Preserve formatting during updates

Cptions. .. | (0]14 I Cancel

Figure 8. Inserting mail merge fields. Users can build mail merge documents manually rather than using the
Mail Merge Helper.

Of course, you can build main documents with Automation just like other documents. In fact, you can also
use a hybrid approach, initially setting up the document with Automation, then allowing a user to edit it.

To add a mail merge field to a document, use the Add method of the MailMergeFields collection. It calls for
two parameters, as follows:

oDocument.MailMerge.Fields.Add( oRange, cField )

oRange Object Reference to a range where the mail merge field is to be added.

cField Character The mail merge field to be inserted.



Attaching a data source

One of the things that makes the Mail Merge Helper so helpful is that it provides a list of the fields in the data
source and lets you choose from that list as you create the main document. Figure 9 shows part of the Mail
Merge toolbar with the Insert Merge Field dropdown open, showing a list of the fields from TasTrade’s
Employee table.

Lol
HEL

| Insert Merge Field » | Insert Word Field -

' employee_id
last_name
first_name
title
birth_date
hire_date
address
City
region
postal_code
country
home _phone
extension
group_id
sales_region
password
photo_file
notes
photo

Figure 9. Adding fields interactively. When a main document is attached to a data source, you can
add fields by choosing them from the Mail Merge toolbar.

Using header sources for field lists

If we want users to be able to create and edit main documents, we need a way to provide them with a
list of fields, even though we don’t want to create permanent connections between main documents
and data sources. Several methods of the MailMerge object let us set up field lists.

In fact, there are two kinds of connections a main document can have to data. It can be connected to
an actual data source that contains records available for merging. However, a main document can
instead be connected to a header source, a document that provides only field names for the merge,
but no actual merge data.

The advantage of a header source is that it’'s small and easy to create. We can use a header source to
provide users with a list of fields while creating or editing the main document, but wait to create the
complete data source until the user is ready for the actual merge. We can also create the header
source and hide it from the user, when that’s an appropriate strategy. (That might be appropriate
where users are known to delete files when they shouldn’t.)

Listing 2 is a program that attaches a header source to a main document, based on the field list in a
table or view. (It's CreateHeaderSource.PRG in the Developer Download files available at

Wwww.hentzenwerke.conl.) The key to the whole process is the call to the CreateHeaderSource method



http://www.hentzenwerke.com/

of MailMerge—the rest is just typical FoxPro string manipulation. You might call this routine like this:

DO CreateHeaderSource WITH oDocument, SAMPLES+"TasTrade\Data\Employee", ;
"C:\Temp\EmployeeHeader.DOC"

Listing 2. Creating a header source. This program generates a header source on the fly from any table
or view and attaches it to a document.

* CreateHeaderSource.PRG

* Create a header source for the current document

* based on atable or view

* Assumes:

*Word is open.

LPARAMETERS oDocument, cCursor, cDocument

* oDocument = the document for which a header source is to be created.
* cCursor = the filename, including path, of the table or view.

* cDocument = the filename, including path, where the
* header source document is to be stored.

* Check parameters

IF PCOUNT()<3

MESSAGEBOX("Must provide table/view name and document name")
RETURN .F.

ENDIF

IF VarType(oDocument) <> "QO"

MESSAGEBOX("No document specified")

RETURN .F.

ENDIF

IF VarType(cCursor) <>"C" OR EMPTY(cCursor)
MESSAGEBOX("Table/View name must be character")
RETURN .F.

ENDIF

IF VarType(cDocument) <>"C" OR EMPTY(cDocument)

MESSAGEBOX("Document name must be character")



RETURN .F.

ENDIF

LOCAL nFieldCount, cFieldList, aFieldList[1], nField

* Open the table/view

USE (cCursor) AGAIN IN 0 ALIAS MergeCursor

SELECT MergeCursor

* Get a list of fields

nFieldCount = AFIELDS( aFieldList, "MergeCursor" )

* Go through the list, creating a comma-separated string
cFieldList =""

FOR nField =1 TO nFieldCount

IF aFieldList[ nField, 2] <>"G"

* Can't use General fields

cFieldList = cFieldList + aFieldList[ nField, 1] +","
ENDIF

ENDFOR

cFieldList = LEFT( cFieldList, LEN(cFieldList) - 1)

* Attach the header to the document
oDocument.MailMerge.CreateHeaderSource( cDocument, , , cFieldList)
USE IN MergeCursor

RETURN
The resulting header file is simply a one-row Word table, each column containing a fieldname.

When you open a main document interactively and the header source or data source is missing,
Word insists that you either find the missing source or take action. In Word 2000, when the same
thing happens with Automation, Word simply opens the file and detaches the header source or data
source itself.

B anl Unfortunately, in Word 97, when you open a main document with Automation
and the data source is missing, Word insists on your finding the missing data source, though
it's surprisingly inventive if you point to the wrong file.

The OpenHeaderSource method of MailMerge attaches an existing header source to a main
document. OpenDataSource attaches an existing data source to a main document. Both take long



lists of parameters, but in each case, only the first is required—it’s the name of the header/data
source file, including the path. Here's an example:

oDocument.MailMerge.OpenHeaderSource( "C:\Temp\EmployeeList.DOC" )

Using a data source at merge time

The header source allows your users to create their own main documents using a list of merge fields.
Header sources contain no data—you need the ability to create and attach a complete data source on
the fly. The CreateDataSource method lets you build a new data source. As with CreateHeaderSource,
you build a Word table, then attach it to the main document. Most of the work is pretty
straightforward. Listing 3, included as CreateDataSource.PRG in the Developer Download files

available at www.hentzenwerke.com, creates and attaches a data source to a document. It accepts

the same three parameters as CreateHeaderSource in Listing 2. Because the slowest part of the
process is sending the actual data from VFP to Word, be sure to create a cursor or view that contains
only the data you need for the mail merge before you call CreateDataSource. Do your filtering of both
fields and records on the VFP side. The EditDataSource method opens the DataSource associated
with a main document. If it's already open, it activates it.

Listing 3. Build a better data source. This program creates a data source on the fly. Rather than
dealing with ODBC, send just the records and fields you need to a Word data source when you're
actually ready to do a mail merge.

* CreateDataSource.PRG

* Create a data source for the current document

*based on atable or view

* Assumes:

*Word is open.

LPARAMETERS oDocument, cCursor, cDocument

* oDocument = the document for which a header source is to be created.

* cCursor = the filename, including path, of the table or view.

* Data should already be filtered and sorted.

* cDocument = the filename, including path, where the

* data source document is to be stored.

* Check parameters

IF PCOUNT()<3

MESSAGEBOX("Must provide table/view name and document name")


http://www.hentzenwerke.com/

RETURN .F.

ENDIF

IF VarType(oDocument) <> "Q"

MESSAGEBOX("No document specified")

RETURN .F.

ENDIF

IF VarType(cCursor) <>"C" OR EMPTY(cCursor)

MESSAGEBOX("Table/View name must be character")

RETURN .F.

ENDIF

IF VarType(cDocument) <> "C" OR EMPTY(cDocument)

MESSAGEBOX("Document name must be character")

RETURN .F.

ENDIF

LOCAL nFieldCount, cFieldList, aFieldList[1], nField

LOCAL oWord, oRange, oSourceDoc, oRow, oTable

* Get a reference to Word

oWord = oDocument.Application

* Open the table/view

USE (cCursor) AGAIN IN 0 ALIAS MergeCursor

SELECT MergeCursor

* Get a list of fields

nFieldCount = AFIELDS( aFieldList, "MergeCursor" )

* Go through the list, creating a comma-separated string

cFieldList =""

FOR nField =1 TO nFieldCount



IF aFieldList[ nField, 2] <>"G"

* Can't use General fields

cFieldList = cFieldList + aFieldList[ nField, 1] +","

ENDIF

ENDFOR

cFieldList = LEFT( cFieldList, LEN(cFieldList) - 1)

WITH oDocument.MailMerge

* Attach the data to the document

.CreateDataSource( cDocument, , , cFieldList)

.EditDataSource

oSourceDoc = oWord.ActiveDocument

oTable = oSourceDoc.Tables[1]

oRow = oTable.Rows[1]

* Now open the data source and put the data into the document

SCAN

WITH oRow

FOR nField =1 TO nFieldCount

DO CASE

CASE TYPE( FIELDS( nField )) ="C"

* Get rid of trailing blanks

.Cells[ nField ].Range.InsertAfter( ;

TRIM( EVAL(FIELDS( nField ))))

CASE TYPE( FIELDS( nField )) ="G"

* Do nothing

OTHERWISE

* Just send it as is



.Cells[ nField ].Range.InsertAfter( EVAL(FIELDS( nField )))
ENDCASE

ENDFOR

ENDWITH

oRow = oTable.Rows.Add()

ENDSCAN

oRow.Delete()

oSourceDoc.Save()

ENDWITH

USE IN MergeCursor

RETURN

Performing the mail merge

Once you've jumped through all the hoops to get the data there, actually performing the mail merge
is the easy part. Just call the MailMerge object’s Execute method and—poofl—the main document
and the data source are merged to a new document. This is all it takes:

oDocument.MailMerge.Execute()

Of course, you probably want to exercise more control than that over the merge. Various properties
of the MailMerge object let you set things up before you call Execute. The two you're most likely to
deal with are Destination and SuppressBlankLines. SuppressBlankLines is a logical that indicates
whether lines in the document that are totally empty should be eliminated. The default is .T.

Destination determines where the merge results are sent. The default is wdSendToNewDocument (0),
our preference. Our choices are wdSendToPrinter (1), wdSendToEmail (2), and wdSendToFax (3).
There are several properties, all of which begin with "Mail," dedicated to particulars of the case where
results are sent to e-mail.

Determining the document type

The MailMerge object has a couple of other important properties. State lets you check, for any
document, what role it plays in the mail merge process. Table 3 shows the possible values for State.

Table 3. What kind of a document am |1? MailMerge’s State property tells you what kind of document
you're dealing with.

Constant Value Constant Value



wdNormalDocument 0 wdMainAndHeader 3
wdMainDocumentOnly 1 wdMainAndSourceAndHeader 4
wdMainAndDataSource 2 wdDataSource 5

MainDocumentType tells what kind of main document you have. Table 4 shows the values this

property can take.

Table 4. Merge document types. The MainDocumentType property classifies documents into the

various kinds of merge documents you can create.

Constant Value Constant Value
wdNotAMergeDocument -1 wdEnvelopes 2
wdFormLetters 0 wdCatalog 3
wdMailingLabels 1

Rescuing abandoned mail merge documents
You may be faced with main documents that have been detached from their data sources and for
which you don’t have access to the appropriate tables. It turns out that it's quite easy to go through

these documents and build a header source or a data source for them, as well.

Listing 4 shows ExtractDataSource.PRG (also included in the Developer Download files available at

www.hentzenwerke.com), which traverses the MailMergeFields collection of the document to create a
list of fields, then uses that list to create a data source (albeit an empty one).

Listing 4. Restoring data sources. When main documents get detached from their data sources, this
program can create an empty data source that allows the document to be edited.

* ExtractDataSource.PRG
* Process an existing document and create a data source document

* based on the fields used on the document.


http://www.hentzenwerke.com/

LPARAMETERS oDocument, cSourceName

* oDocument = the existing mail merge document

* cSourceName = the filename, including path, for the data source

#DEFINE wdNotAMergeDocument -1

* Should check parameters here. Omitted for space reasons

WITH oDocument

IF .MailMerge.MainDocumentType = wdNotAMergeDocument OR ;

INLIST(.MailMerge.State, 0, 1)

* Need to create a data source

* Go through fields and create a list

LOCAL oField, cCode, cField, cFieldList, cHeaderName

cFieldList =""

FOR EACH oField IN .MailMerge.Fields

cCode = oField.Code.Text

* Parse out extraneous information

cField = ALLTRIM( STRTRAN(STRTRAN(cCode, ;

"MERGEFIELD",""), "\* MERGEFORMAT", ""))

IF NOT cField+"," $ cFieldList

cFieldList = cFieldList + cField +" "

ENDIF

ENDFOR

IF LEN(cFieldList) > 1

cFieldList = LEFT(cFieldList, LEN(cFieldList)-1) +""

ENDIF

* Now create a data source document.

.MailMerge.CreateDataSource( cSourceName, , , cFieldList)



ENDIF

ENDWITH

RETURN

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

To demonstrate this chapter's main lesson, we have a two-part process. Listing 5 shows a program

(WordSample3Pt1.PRG in the Developer Download files available at

) that creates a

Wwww.hentzenwerke.com

template for product information sheets for Tasmanian Traders. The template is a mail merge main document

attached to a header source only. The program runs a query that collects the data needed (in a real

application, you'd probably have a view for this data), then calls on CreateHeaderSource.PRG (see Listing 2)

to attach the header. It then populates and saves the template. Figure 10 shows the completed template.

Listing 5. Creating a mail merge template. This program generates both a header source and a main

document, in this case, a template for a main document.
* Create a main document for product sheets.

* The document is created as a template so that it can

*then be used with File|New.

#DEFINE CR CHR(13)

#DEFINE TAB CHR(9)

#DEFINE wdHeaderFooterPrimary 1

#DEFINE wdGray25 16

#DEFINE wdAlignParagraphCenter 1

#DEFINE wdCollapseEnd 0

#DEFINE wdParagraph 4

#DEFINE wdWord 2

#DEFINE wdLineStyleDouble 7

#DEFINE wdUserTemplatesPath 2

#DEFINE wdGoToBookmark -1

LOCAL oWord, oDocument, oRange, oBorderRange, cTemplatePath
* Open Word and create a new template document

oWord = CreateObject("Word.Application")

oWord.Visible = .T.


http://www.hentzenwerke.com/

oDocument = oWord.Documents.Add(, .T.)

* Create a cursor of all products

OPEN DATABASE _SAMPLES + "TasTrade\Data\TasTrade"

SELECT product_name, english_name, category_name, ;

guantity_in_unit, unit_price, ;

company_name, contact_name, contact _title, ;

address, city, region, postal_code, country, ;

phone, fax ;

FROM products ;

JOIN supplier ;

ON products.supplier_id = supplier.supplier_id ;

JOIN category ;

ON products.category_id = category.category_id ;

ORDER BY Category_Name, Product_Name;

INTO CURSOR ProductList

* Attach a header source to the template document

DO CreateHeaderSource WITH oDocument, DBF("ProductList"), ;

AddBs(SYS(2023)) +"ProdHeader.DOC"

USE IN ProductList

* Now set up the product sheet

* First, assign a font for Normal

WITH oDocument.Styles[*Normal"].Font

.Name ="Times New Roman"

.Size =12

ENDWITH

* Add a header



WITH oDocument.Sections[1].Headers[ wdHeaderFooterPrimary ]
oRange = .Range()
WITH oRange
.Text ="Tasmanian Traders"
.Style = oDocument.Styles[ "Heading 1" ]
.ParagraphFormat.Alighment = wdAlignParagraphCenter
.Shading.BackgroundPatternColorindex = wdGray?25
ENDWITH
ENDWITH
* Page heading
oRange = oDocument.Range(0,0)
WITH oRange
.Style = oDocument.Styles[ "Heading 2" ]
.ParagraphFormat.Alignment = wdAlignParagraphCenter
.InsertAfter( "Product Information" + CR + CR)
.Collapse( wdCollapseEnd )
* First, add fixed text and set up bookmarks where we want
*the merge fields to go.
* Add Product Category
.Style = oDocument.Styles[ "Heading 3" ]
.InsertAfter( "Product Category: ")
.Collapse( wdCollapseEnd )
oDocument.Bookmarks.Add( "ProductCategory", oRange)
InsertAfter(CR)
.Expand( wdParagraph)

.Borders.OutsideLineStyle = wdLineStyleDouble



.Collapse( wdCollapseEnd )

.InsertAfter(CR)

* Add Product Name

InsertAfter( "Product Name: ")

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "ProductName", oRange)

.Collapse( wdCollapseEnd )

InsertAfter(CR)

oBorderRange = oRange.Paragraphs[1].Range()

InsertAfter( "English Name: ")

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "EnglishName", oRange )

InsertAfter(CR)

.Collapse( wdCollapseEnd )

oBorderRange.MoveEnd( wdParagraph, 1)

oBorderRange.Borders.OutsideLineStyle = wdLineStyleDouble

* Now units and price

.Style = oDocument.Styles[ "Normal" ]

InsertAfter( CR + "Sold in units of: ")

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "Quantity", oRange)

InsertAfter(" at a price of: ")

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "UnitPrice", oRange)

InsertAfter(" per unit." + CR + CR)

.Collapse( wdCollapseEnd )



* Now supplier information

* To make things line up, we'll need a tab, so set it up.

WITH oDocument.Paragraphs.TabStops

.ClearAll()

.Add( oWord.InchesToPoints(1))

ENDWITH

InsertAfter( "Supplier: " + TAB )

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add("CompanyName", oRange)

.InsertAfter( CR + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "Address", oRange )

InsertAfter(CR + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "City", oRange)

InsertAfter(CR + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "Region", oRange)

InsertAfter(CR + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "PostalCode", oRange )

InsertAfter(CR + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "Country", oRange)

InsertAfter(CR)

.InsertAfter( "Contact: " + TAB)



.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "ContactName", oRange)

.InsertAfter( CR + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "ContactTitle", oRange)

.InsertAfter(CR)

InsertAfter( "Phone: " + TAB )

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "Phone", oRange)

InsertAfter( CR)

InsertAfter("Fax: " + TAB)

.Collapse( wdCollapseEnd )

oDocument.Bookmarks.Add( "Fax", oRange)

InsertAfter(CR)

* Now insert a mail merge field at each bookmark

oRange = oDocument.Bookmarks[ "ProductCategory" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Category_Name" )

oRange = oDocument.Bookmarks[ "ProductName" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Product_Name" )

oRange = oDocument.Bookmarks[ "EnglishName" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "English_Name" )

oRange = oDocument.Bookmarks[ "Quantity" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Quantity_In_Unit" )

oRange = oDocument.Bookmarks[ "UnitPrice" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Unit_Price")

oRange = oDocument.Bookmarks[ "CompanyName" ].Range()



oDocument.MailMerge.Fields.Add( oRange, "Company_Name" )

oRange = oDocument.Bookmarks[ "Address" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Address" )

oRange = oDocument.Bookmarks[ "City" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "City" )

oRange = oDocument.Bookmarks|[ "Region" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Region" )

oRange = oDocument.Bookmarks[ "PostalCode" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Postal_Code" )

oRange = oDocument.Bookmarks[ "Country" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Country" )

oRange = oDocument.Bookmarks[ "ContactName" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Contact_Name" )

oRange = oDocument.Bookmarks[ "ContactTitle" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Contact_Title")

oRange = oDocument.Bookmarks[ "Phone" ].Range()

oDocument.MailMerge.Fields.Add( oRange,"Phone" )

oRange = oDocument.Bookmarks[ "Fax" ].Range()

oDocument.MailMerge.Fields.Add( oRange, "Fax" )

ENDWITH

cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath )

oDocument.SaveAs( AddBs(cTemplatePath) + "ProdInfo")

RETURN

Product Information

|| Praduect Catannry «Catanory Namean “



ettt Al Sttt ~ Sl Sl I

Product Name: «Product_Name»

English Name: «English_Name»

Sold in units of: «Quantity In Unit» at a price of: «Unit Price» per unit.

Supplier: «Company_ Name»
«Address»
«City»
«Regiony
«Postal Code»
«Country»
Contact: «Contact Name»
«Contact Title»
Phone: «Phone»
Fax: «Fax»

Figure 10. Creating mail merge documents. This template was created by Listing 5. It has a header
source and is based on a query from the TasTrade database.

The second part of the process is to create an actual data source when you're ready to perform the malil
merge. Listing 6 shows the code (WordSample3Pt2.PRG in the Developer Download files available at

Wwww.hentzenwerke.cony) that creates the new document from the template, calls on CreateDataSource.PRG

(see Listing 3), then performs the merge and shows the result. Figure 11 shows part of the result.

Listing 6. Performing a merge. This code uses the template created by Listing 5 to generate a new
document, creates a data source, and executes the merge.

* Create the Product Information sheets based on the

* template, using mail merge

#DEFINE wdUserTemplatesPath 2

#DEFINE wdWindowStateMaximize 1

LOCAL cTemplatePath, oDocument, oMergedDocument
* Create an instance of Word.

* Make it public for demonstration purposes.

RELEASE ALL LIKE o*

PUBLIC oWord

oWord = CreateObject("Word.Application™)


http://www.hentzenwerke.com/

* Make Word visible.

oWord.Visible = .t.

* Create a new document based on the template

cTemplatePath = oWord.Options.DefaultFilePath( wdUserTemplatesPath )

oDocument = oWord.Documents.Add( AddBs(cTemplatePath) + "ProdInfo" )

* Run the query to create a cursor of all products

* Create a cursor of all products

OPEN DATABASE _SAMPLES + "TasTrade\Data\TasTrade"

SELECT product_name, english_name, category_name, ;

qguantity_in_unit, TRANSFORM(unit_price, "@$") AS unit_price, ;

company_name, contact_name, contact_title, ;

address, city, region, postal_code, country, ;

phone, fax ;

FROM products ;

JOIN supplier ;

ON products.supplier_id = supplier.supplier_id ;

JOIN category ;

ON products.category_id = category.category_id ;

ORDER BY Category_Name, Product_Name;

INTO CURSOR ProductList

* Now create and attach a data source

DO CreateDataSource WITH oDocument, DBF("ProductList"), ;

AddBs(SYS(2023)) + "ProdData"

USE IN ProductList

* Perform the mail merge

oDocument.MailMerge.Execute()



oMergedDocument = oWord.ActiveDocument

WITH oMergedDocument

IF .ActiveWindow.WindowState <> wdWindowStateMaximize

* Move it to make it visible - for some reason, it comes up

* way off screen

ActiveWindow.Left =0

ActiveWindow.Top =0

ENDIF

* Preview it

PrintPreview()

ENDWITH

RETURN

Tasmanian Traders

Product information

| Product Category: Beverages |

Product Name: Chang

English Name: Tibetan Barley Beer

Sold in units of: 24 - 12 oz bottles at a price of: $19.0000 per unit.
Supplier: Exotic Liquids
49 Gilbert St.
London
EC1 48D
UK
Contact: Charlotte Cooper
Purchasing Manager
Phone: (71) 555-2222
Fax:

Figure 11. Mail merge results. This is the product information sheet created by the programs in



Listings 5 and 6. There’s one sheet for each product.

We'd like to say, "That's all, folks!" But the truth is that, even with three full chapters devoted to it, there’s far
more to Word than we’ve been able to cover here. So, if there’s something you want to do in a document and
we haven't shown you the way, just dig in and try it. Remember the keys to figuring it out. First, try to do it
interactively. Try recording a macro. Use the Word VBA Help file and the Object Browser to find out what
objects, methods, and properties are involved. Word’s object model is extremely rich. If you can imagine it, it
can probably be done.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 7 - Excel Basics

Excel has some capabilities that aren’t found in FoxPro. Want a tabular report that the average end user can manipulate? Try
Excel. Need some mathematical calculations that FoxPro doesn’t provide? Excel can do it. Want some graphs? Excel has an
excellent graphing engine.

Working with Excel through Automation has a lot in common with automating Word—chalk one up for
polymorphism. Unfortunately, there are more differences than similarities, since the two servers have
different abilities and purposes.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



The object model

Like Word, Excel’s top-level object is the Application object, which has properties and methods that relate to
Excel as whole. A nhumber, like StartupPath, Version, and WindowState, are the same, while others, like
Calculation, which determines when calculations occur, are specific to Excel. The Application object also
provides access to all other objects in Excel.

The fundamental object in Excel is a Workbook. This corresponds to an XLS file. The Excel Application
object keeps track of all its open workbooks in a Workbooks collection, and uses the ActiveWorkbook
property to return a reference to the active Workbook object.

Each Workbook has two main collections, Worksheets and Charts, which represent the pages of the
workbook and the graphs it contains, respectively. Workbook has ActiveSheet and ActiveChart properties
containing references to the current Worksheet and Chart objects. Excel also provides a shortcut by offering
ActiveSheet, ActiveChart, and ActiveCell properties at the Application level.

As with Word, the Excel Visual Basic Help file contains a live diagram of the object model. Figure 1 shows
the portion of the object model diagram that describes the Worksheet object.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Déja vu

If you're reading this book from start to finish, as you read this chapter, you'll say to yourself, "Gosh, I've read

this before!" Office 2000 is object-oriented, and it's polymorphic. Polymorphism literally means "many forms,"

and when applied to OOP, it means that different objects have properties and methods that behave
consistently. To write a file to disk, you use the Save method, whether you are in Word, Excel, PowerPoint,
or Outlook. This does not mean that the Save commands do exactly the same thing—there are different
things that need to happen when a Word document is saved than when an Excel spreadsheet is saved.
There may even be different parameters for each. However, you can be sure that the Save command will

save your work to disk.

Microsoft Excel Objects {Worksheet)

See glso

| YWork zheets ['Worksheet]

Hames [Hame] |

Hange |
% Areas

% Borders [Border]

|
|
% Font |
|
|

ﬂ Intenor

— Characters

|—| Font |

ﬂ Hame |

% Style |
Borders [Border] |

Font |

Intenor |

ﬂ FormatConditions [FormatCondition]) |

% Hyperlinks [Hyperlink]

— Validation

% Phonetics [Phonetic]

|
|
ﬂ Comment |
|
|

% Shapesz [Shape]

4

Legend

|:| Chject and collection
Object only

P Click arrow to expand chart

4 Click arrow to return to previous chart

% Comments [Comment]

% HPageBreaks [HPageBreak]

% VYPageBreaks [VPageBreak]

% Hyperhnks [Hyperlink]

% Scenarios [Scenario]

—{OLEDbijects [OLE Object]

— Outline

% PageSetup

ﬂ QueryT ablez [QueryT able]

Parameters [Parameter]

— PivotT ables [PivotT able)

% PivotCache

ﬂ PivotFormulas [PivotFormulal

ﬂ PivotFields [PivolField]

L{Fivutltems [Fivotitem]

% CubeFieldz [CubeField]

ﬂ OLEDbjects [OLE Object]

H ChartDbjects (ChartObject)

Chart

PivotL apout

—| AutoFilter

|—|Filters [Filter]

F 3

Figure 1. The Excel object model. This diagram is available in the Help file and shows the hierarchy of



available objects.

The benefit of polymorphism is that once you know how to do something in one tool, you know how to do it in
the rest. In Office, this is usually true. However, polymorphism does include the ability for methods to accept
different parameters, because different objects are exactly that—different. So you need to be aware that
syntax can (and does) change between Office applications.

There are so many similarities between the Office applications that we could have written this chapter to say
things like, "Just use the CreateObject() function as explained in the Word chapter, but use
"Excel.Application" instead." We felt that it would be better to have a complete explanation for each
application to keep you from having to flip back and forth in the book. It also makes it easier to explain the
subtle syntax differences that exist between applications. After we get past the basics of opening and saving
files, we get into enough application-specific features that it will seem less repetitive.

The benefit of polymorphism is that once you know how to do something in one object, you know how to do it
in all of them. However, explaining similar concepts for each object makes for redundant text. Just think of
this redundant text as a "feature."

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Getting a handle on the application

To open Excel with Automation, use the following command (type along in the Command Window, if you
want to):

oExcel = CreateObject("Excel.Application")

Nothing happens! Check the task manager; Excel is up and running, but it's just not visible. Like the other
Office applications, Excel is hidden when it's instantiated through Automation, and it's up to you to tell it when
to become visible. This is a powerful feature—automating Excel without having to update the screen can
shave 10 percent to 30 percent off your run time! When you're ready to show Excel to your users, set the
Application’s Visible property:

oExcel.Visible = .T.
If you're following along in FoxPro’s Command Window, you’ll see that Excel is visible, but there’s no
spreadsheet; just a gray screen. When the user starts Excel interactively, it's assumed that the user wants to

jump right into a blank worksheet and begin typing. Automation does not assume anything! You have total
control.

@_ﬂﬂfe-
] g
LWL
&
P &
Va™ Al of the Excel examples assume that you've already created an Excel server
object, accessed by a variable called oExcel.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Managing workbooks and worksheets

Time for some clarification that seems to get new Automation programmers: a collection object is indicated by
a plural noun, and an object in the collection is the same noun in singular form. Workbooks (with an "s") is a
collection of all the open Workbook (no "s") objects. A Workbook (no "s") object corresponds to an XLS file.
Each Workbook has a collection called Worksheets (with an "s"). Each Worksheet (no "s") is displayed as a
tab, with the tab headings near the bottom of the window.

Opening a new workbook

Since Excel opens without an available workbook, you need to add a new one or open an existing one. To
create a new Workbook object, use the Add method of the Workbooks collection. The number of Worksheets
a Workbook contains when added is controlled by the Application object’'s SheetsinNewWorkbook property
(set manually in Excel by selecting Tools|Options from the menu, choosing the General tab, and using the
Sheets in New Workbook spinner). Setting this property affects all new workbooks added after the change (it
does not affect those already open). Issuing the following command before opening a new workbook gives it
four worksheets:

oExcel.SheetsinNewWorkbook = 4

Since users control this property, prepare your code to handle differences in this setting. Don’t assume that
the user hasn’t played with the defaults; use the SheetsinNewWorkbook property to ensure you have enough
worksheets.

Open a new worksheet using the Add method. It takes one optional parameter, which specifies a template
file.

oWorkbook = oExcel.Workbooks.Add()

The variable oWorkbook points to your new workbook. There are several other ways to reference this
Workbook object. One is to use the Application’s ActiveWorkbook property: oExcel.ActiveWorkbook. Any time
you add a new Workbook, it automatically becomes the active workbook. Another way to access this
Workbook is through its index in the Workbooks collection. It is the first workbook opened, so it can be
accessed as oExcel.Workbooks[1]. The Workbooks collection provides an alternate reference, which is the
workbook name (appropriately stored in the Name property of a Workbook object).

The default name of a workbook is "Book" concatenated with the number corresponding to the order in which
it was opened. "Book1" is the first Workbook object's Name property. The Name property is read-only. The
only way to set it is to use the SaveAs method (see the section "Saving the workbook" later in this chapter).

Opening an existing workbook

There are two ways to open an existing workbook. The Open method assumes you already have a reference
to the Excel Application object and will open an existing file. Visual FoxPro's GetObject() function gives you
greater control over the visibility of the Workbook and does not require an Excel Application object reference.

The Open method of the Workbooks collection opens an existing workbook, given the filename:



oWorkbook = oExcel.Workbooks.Open("c:\my documents\sample.x|s")

The filename is the only required parameter for the Open method. There are 12 other parameters
(fortunately, all optional) to control whether links should be updated, provide a password, describe the layout
of a text file to import, and other features. We invite you to check out the Help file for more information on
these features.

An alternative way to open a workbook is to use the GetObject() function. GetObject() has two forms. In the
first, you pass it the filename to open:

oWorkbook = GetObject("c:\my documents\sample.x|s")

GetObject() returns a reference to the Workbook object (not the Application object, as with CreateObject()). If
Excel was not running (or was running but not visible), you need to make the application visible to see it. To
get to the Application object, use the Workbook’s Application property, which references the Application
object:

oWorkbook.Application.Visible = .T.

The new workbook is still not visible. Remember, Automation doesn’'t assume anything! The Workbook object
is available to automate; its window is hidden. Again, there’s a performance advantage to running all the
Automation commands and then displaying it. To see the window, use the Window’s Activate method (the
example assumes that the window you're activating is the first window opened):

oWorkbook.Windows[1].Activate()

There are times when you want to hide the window while your Workbook is building. Assuming it is the active
window, issue the oWorkbook.ActiveWindow.Close method.

The GetObject() function has an alternate syntax that allows you to prevent multiple occurrences of an object.
If you are programming Office 97, this may be an important issue. You may want to use an already open
instance of Excel to avoid using more memory to open another instance. In Office 2000, one of the new
features is that there is only one instance of the application; the Office application itself provides better
memory management. However, the GetObject() syntax still works for Excel 2000 (and opens it if it is not
already open). Issuing the following opens Excel and returns a reference to the Application:

oExcel = GetObject("", 'Excel.Application")

Note that the syntax to open a filename returns a reference to the Workbook.

VS
N
0
oy “\,
@‘&t‘a\ég
5 =rY  If there are no instances of Excel 97 running, issuing GetObject(, 'Excel.Application")

produces the following error: "OLE error code 0x800401e3: Operation unavailable." See the "Print
Preview" section later in this chapter for an example of detecting if Excel is already running.

Saving the workbook

As you look through the list of methods for the Workbook object, you find references to Save and SaveAs.



You would think that the Save method would be used to save any old workbook, and SaveAs would save it in
a different format. However, in Excel (and PowerPoint, but not Word), the Save method takes no parameters.
It uses a default filename consisting of the following:

® The default file location
. Users can change this from the Tools|Options menu item, using the General Tab, by specifying the
Default File Location. In Automation code, you check (or set) the DefaultFilePath property of the
Application object. This setting is saved when you close Excel; be sure to restore the user’s settings
if you change it.

® The Workbook’'s Name property
. Remember, this defaults to "BookX" and is read-only.

® The XLS extension

So, by default, the Save method saves the spreadsheet as something like "C:\My Documents\Book1.XLS."
To name it something meaningful, use the SaveAs method, which allows you to specify a fully qualified
filename. SaveAs also sets the Name property to the name part of the filename (not the path or the
extension). SaveAs takes many optional parameters for such things as passwords, adding the file to the Most
Recently Used list, backups, and so on. See the Help file for those parameters.

The most important parameter is the first one, which specifies the filename. Remember to fully qualify the
path; if you don't, the default file location is used.

oWorkbook.SaveAs('c:\ExcelData\FirstTest.XLS")

An optional second parameter is the file format. If it's not specified, the default is the version of Excel in use
(or, if the file was saved previously, the format in which the file was saved). The Help file lists 41 types (for
Office 2000), including multiple versions for Lotus, dBASE, and Excel; HTML; DIF, SYLK and CSV, and
others. These files require converters installed with Office; if the user elected not to install a particular
converter, your error handler should be ready to deal with the resulting error. Some file formats save only the
current worksheet; others save the entire workbook. The Excel Help file has excellent information if you look
up the keyword "Save_As." In particular, the topic "File format converters supplied with Microsoft Excel" has
valuable information about each of the file formats. In the VBA Excel Help file, there’s a particularly good
topic, "Saving Documents as Web Pages."

Avoiding Excel’s user dialogs

When using SaveAs, saving to a file that already exists raises a user dialog, shown in Figure 2 (of course, if
the user has the Office Assistant on, it will explain the error). If the application is not Visible, the message box
will pop up. If there is a visible window, both the window title bar and the button on the taskbar will flash.
When the Excel window is minimized (or obscured) and the taskbar is in AutoHide mode (where you have to
run the mouse down to the bottom of the screen), it appears to the user that you have a hang. If the user
does see the flashing and selects Excel, then presses either "No" or "Cancel," the following error will result:
"OLE IDispatch exception code 0 from Microsoft Excel: Unable to get the SaveAs property of the Workbook
class." Be prepared to handle this error (#1428). Better yet, prevent this error from happening.



\;{ L T L O T L L T Ly N T T R Y Lo R R TPy (S R LR TR S e R R R T (R Ry T TR LS (R

Cancel |

Figure 2. The dialog that’s raised when overwriting a file. Note that the user has three choices, and only
"Yes" lets your program proceed without errors.

There are a couple of steps you can take to thwart this error. First, check to see whether oWorkbook.Name is
different from the first name of the file (no path, no extension). Use VFP’s JUSTSTEM() function to return the
first name of the file. If the two differ, use the SaveAs property to set the filename (and the Name property is
then set to the first name of the file). If they are the same, use the Save command, which assumes you want
to overwrite the file. Second, before you use the SaveAs feature, be sure that the filename in question
doesn’t exist:

MyFile = "c:\ExcelData\MyFile.XLS"

* Use JUSTFNAME() to calculate this in VFP 6.0;

* or the FoxTools function in previous versions
MyFileJustName = JustFName(MyFile)

* Determine whether to use SaveAs or Save

IF oWorkbook.Name <> MyFileJustName

* |F the file already exists, delete it

IF FILE(MyFile)

*Warning: you may be deleting a file that doesn't

* have anything to do with the situation at hand. Be
* sure your app is aware of this.

ERASE (MyFile)

ENDIF

* Save it without fear of the user dialog box
oWorkbook.SaveAs(MyFile)

ELSE

* Save it, since it's already been saved with SaveAs
oWorkbook.Save()

ENDIF
Working with worksheets
Each Workbook can contain many Worksheets in the Workbook’s Worksheets collection. Worksheets store

the data. The Worksheets collection object (it's plural, so it's a collection) stores as many Worksheet
(singular) objects as Excel can handle (in Excel 2000, the number of worksheets is limited by available



memory). Just as with the other objects in collections, there are a number of ways to return a reference to a
worksheet (there must be at least one Worksheet in a Workbook). There’s the ActiveSheet property of the
Workbook: oWorkbook.ActiveSheet. There’s the index in the collection: oWorkbook.Worksheets[1]. Then
there’s the worksheet name, which defaults to "Sheet" plus the number corresponding to its index when
opened: oWorkbook.Worksheets['Sheetl"]. The Name property of the worksheet is read/write, so you can set
the name to something that the users will appreciate, as the name shows on the tab at the bottom of the
sheet.

You can also grab a reference as you add a worksheet. Polymorphism is hard at work here; I'm sure you've
guessed that you use the Add method. The syntax is a little different:

oWorksheet = oWorkbook.Worksheets.Add([oBefore |, 0After], [nCount], [nType])

oBefore Object The object reference to the worksheet before which the new sheet is added. (Optional)
OAfter Object The object reference to the worksheet after which the new sheet is added. (Optional)
nCount Numeric The number of sheets to be added. (Default = 1) (Optional)

nType Numeric One of the sheet type constants. Unless you're writing Excel 4 macros, the only

applicable constant is xIWorksheet (-4167), which is the default. (Optional)

If no parameters are passed, the new sheet is placed just before the ActiveSheet. You cannot specify both an
oBefore object and an oAfter object, so just pass a blank parameter for the one you're not using. VBA allows
named parameters, which make this kind of syntax much easier to use, where the parameter looks something
like this: Before:=oMySheet. This syntax makes it easy to remember to pass only one of the parameters. But
VFP does not support named parameters, so we must give them in the order listed. The following code
sample shows how to add one worksheet before sheet one, then another after sheet one:

* Get a reference to the first worksheet

* oWorkbook is assumed to point to a workbook
oWorksheetl = oWorkbook.Worksheets[1]

* Add a sheet before sheet one.

oWorksheet2 = oWorkbook.Worksheets.Add(oWorksheet1)
* Add a sheet after sheet one. Note the use of an empty

* first parameter.

oWorksheet3 = oWorkbook.Worksheets.Add(,oWorksheet1)

Adding a third parameter tells how many sheets you want added. If you want three sheets added before
sheet one, then give the following command:

oWorkbook.Worksheets.Add(oWorksheetl, , 3)



Note that the second parameter is empty. The fourth parameter, nType, is really for backward compatibility.
Leave out the fourth parameter, for simplicity.

Rows, columns, cells, and ranges

A worksheet is composed of cells, which have addresses in the form X9, where X is one or two letters
indicating the column, and 9 is one or more digits indicating the row. The top left cell in a worksheet is Al.

The 29" cell in the 32" column is AF29.

A group of cells is called a range. Generally, a range is a rectangular group of contiguous cells, such as from
D2 to F8. A range can also be a single cell. Using the Union method, you can concatenate ranges. A range is
actually an object, and is accessed through the worksheet’s Range property.

To specify a range, you use the Range property to specify the addresses for the range boundaries. For
example, to access the data in cell C5, use:

? oExcel.ActiveSheet.Range("C5").Value

To create a range containing a rectangular range of cells from D12 to F19, use:

oRange = oExcel.ActiveSheet.Range("D12:F19")

Another way to access cells is by using the Rows, Columns, and Cells properties of Worksheet and Range.
These properties takes appropriate index values and return a range containing the specified cells. To check
the value of all cells in the third row of a range, you can write:

FOR nColumn = 1 TO oRange.Columns.Count
? oRange.Cells[3, nColumn].Value

ENDFOR

To see the contents of all cells in a range, use:

FOR nRow =1 TO oRange.Rows.Count

FOR nColumn =1 TO oRange.Columns.Count
? oRange.Cells[nRow, nColumn].Value
ENDFOR

ENDFOR

Note that the indexes for Cells list the row, then the column (just as arrays in VFP do), but the addresses of
cells list the column first.

Relatively speaking

So far, we've used absolute addresses, meaning that the cell’'s address is relative to the first cell on the
spreadsheet. We can also use relative addressing, which is based on a distance from the specified starting
point. To create a range relative to another range, use the Offset property. This example creates a range 20
rows down and 30 rows to the left of oRange. The new range has the same size and shape:



oRange2 = oRange.Offset(20, 30)
Lots of ranges

Ranges don’t have to consist of a single rectangle, either. Multiple groups can be listed when creating a
range:

oRangeMixed = oExcel.ActiveSheet.Range("F21:F30, H21:H30")

The Union method combines several ranges into one. Here, the two ranges oRange and oRange2 are
consolidated into a single range referenced by oBigRange:

oBigRange = oExcel.Union(oRange, oRange2)

Traversing a range with a loop like the preceding one doesn’t work for a range composed of non-contiguous
cells. The Areas collection has an entry for each rectangular portion (called an area) of the range, so to
traverse all of the cells in a range, whether or not it's rectangular, you can use code like this:

FOR nArea =1 TO oRange.Areas.Count

FOR nRow = 1 TO oRange.Areas[nArea].Rows.Count

FOR nColumn =1 TO oRange.Areas[nArea].Columns.Count
? oRange.Areas[nArea].Cells[nRow, nColumn].Value
ENDFOR

ENDFOR

ENDFOR

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Handling values and formulas

As the previous examples indicate, you can access the contents of a cell through its Value property. But,
when working with spreadsheets, it's not always the value of a cell we're interested in. To access the formula
contained in a cell, use the Formula property:

? oExcel.ActiveSheet.Range("C22").Formula

If a cell contains only a value, Formula returns the value as a string, while Value returns numbers as
numbers. If there’s a real formula in the cell, it's returned in the format you’d use to enter it in Excel, beginning
with "=".

You can set values and formulas by assigning them to the appropriate cells:
oExcel.ActiveSheet.Range("C13").Value = 100

oExcel.ActiveSheet.Range("C22").Formula = "=SUM(C5:C20)"

Adding, copying, and moving data (including formulas)

While it?s possible to copy VFP tables and views to XLS format using the COPY TO or EXPORT command,
Automation provides more flexibility in the process, including the ability to put data from more than one table
into a worksheet.

Populating the worksheet cell by cell

Automation allows data values to be input cell by cell. The usual method is to set up a SCAN loop, and set
the values for each cell that correspond to the data in each record. Set a Range object to just the cells to be
populated for the first record, and use the Columns collection to set the values of the cells. Just before the
SCAN loops, use the Offset method to move the range down one row. The Offset method lets you move the
Range for each iteration, without having to keep track of the row, like this:

SCAN

* Do your processing and formatting here?

* Move range down one row

oRange = oRange.Offset(1,0)

ENDSCAN

Plugging in data using this method is extremely flexible, since you can populate the spreadsheet without

having to create a master cursor or table, as you would to COPY TO or EXPORT. You have complete control
of the cells and can conditionally decide on the cell values based upon the data. This is an excellent



replacement for that report you need that requires four different conditional detail bands (when the report
writer supports only one), or multiple columns that list the child records from different child tables (since we
can?t SET SKIP TO several tables at once).

When you have Excel pull in an XLS generated from a table or view, the column headers are automatically
set to the field names. The users might appreciate "Order Num," "Date," and "Amount," instead of "cOrd_ID,"
"dOrd_Date," and "nOrd_Total." Explicitly setting the column headers (using the Value property of each cell)
is necessary whether you pull in an XLS or add the data cell by cell.

Formulas are easy to program, as long as you are familiar with Excel?s formulas. Whatever you type into the
cell is what you generate in a character string. For example, to sum cells C6 to C11, set the value of a cell to
"=SUM(C6:C11)". Just like using Excel interactively, if you forget the equal sign, the formula becomes a
character string.

The example shown in Listing 1 demonstrates creating a spreadsheet by entering the data cell by cell. It
uses the TasTrade Order History view and adds data for one customer?s orders. This example is available as

XLAddData.PRG in the Developer Download files available at www.hentzenwerke.con.

Listing 1. Adding data to a spreadsheet. This sample uses TasTrade’s Order History view to create a simple
spreadsheet for one customer’s orders.

* Put order information for one customer into an Excel worksheet
* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.

RELEASE ALL LIKE o*

* For demonstration purposes, make oExcel available after
*this program executes.

PUBLIC oExcel

LOCAL oBook, oRange

* Open the Order History view, which contains

*a summary of orders for one customer.

OPEN DATABASE _SAMPLES + "\TASTRADE\DATA\Tastrade"
USE CUSTOMER IN O

SELECT O

USE "Order History" ALIAS OrderHistory

* Add a workbook, using default settings

oExcel = CREATEOBJECT("Excel.Application™)
oExcel.Visible = .T.

oBook = oExcel.Workbooks.Add()


http://www.hentzenwerke.com/

WITH oExcel.ActiveSheet

* Put customer name at top

.Range("B2").Value = Customer.Company_Name

* Put column headings in Row 5

.Range("A5").Value ="Order Number"
.Range("B5").Value = "Date"

.Range("C5").Value = "Amount"

oRange = .Range("A6:C6")

ENDWITH

* Loop through orders and send data

SCAN

WITH oRange

.Columns[1].Value = Order_Id

.Columns[2].Value = Order_Date

.Columns[3].Value = Ord_Total

ENDWITH

* Move range down one row

oRange = oRange.Offset(1,0)

ENDSCAN

* Now add total row

nLastRow = oRange.Row && Row property always give first row of range
&& This range has only one row

nTotalRow = nLastRow + 2

WITH oExcel.ActiveSheet

.Cells(nTotalRow, 1) ="Total"

* Need to convert nLastRow to char to use in formula for sum
oExcel.ActiveSheet.Cells( nTotalRow, 3 ).Formula =;
"=SUM( C6:C" + LTRIM(STR(nLastRow)) + " )"
ENDWITH

USE IN OrderHistory

USE IN Customer

Figure 3 shows the results. The spreadsheet is successfully populated. However, some formatting is called



for.

A B | ¢ |
1 [ |
2 Alfreds Futterkiste
3
4
5 |Crder Nurrm Date Amount
& 953 275 pal7 .06
7 gaE 129940 $835.43
5 03 9684 §357.44
g BY3  8527/94 §851.22
10 G444 T SR
11 B3 G/21/92) FB57.50
12
13
14 | Total T

Figure 3. Results of the code shown in Listing 1. Literal headings, data from tables, and formulas are all
successfully imported. A little formatting, discussed in subsequent sections, takes care of the display issues.

Pulling in a generated XLS

This method of populating the data cell by cell performs well on small data sets. Once the data gets lengthy
(say, more than 300 records), you are better off using EXPORT or COPY TO ... TYPE XL5, and pulling the
data in. The code to do this is straightforward:

m.DataFile = "C:\My Documents\MyWorksheet"
SELECT DataTable

COPY TO (m.DataFile) TYPE XL5

* Open the data worksheet created by COPY TO...

oDataBook = oExcel.Workbooks.Open(m.DataFile + " . XLS")
Moving worksheets

When you use the COPY TO command, you create a workbook with a single worksheet. If you run into a
need to combine several of these XLS files into a multi-sheet workbook, use the following trick: use the
Worksheet object’'s Move method to move the sheet between workbooks. The following example assumes
you want to move the first (only) worksheet from the oDataBook object (the one created from the XLS file)
into the oOtherWorkBook object:

oDataBook.Worksheets(1).Move(oOtherWorkBook.ActiveSheet)

RELEASE oDataBook

This little trick moves the only worksheet from oDataBook to oOtherWorkBook. Since that leaves oDataBook
with no worksheets, Excel automatically closes the workbook. All you need to do is delete the XLS file, and
release the oDataBook variable to ensure that the reference to the object is released so the Application
object closes gracefully.



Fill 'er up

There are times when you want to take a number or formula and replicate that formula a specific number of
times. For example, you may want to copy a formula from the first cell to all of the cells in a column. The
FillDown, FillUp, FillLeft, and FillRight methods of the Range object automatically copy the cell contents. For
example, the FillDown method takes the cell at the top of the range and copies its contents down. The
following code sets the first cell to a value of 1, then uses the FillDown method to copy the top cell of the
range to every other cell in the range:

oExcel.ActiveSheet.Range("Al").Value = 1

oSheet.Range("A1:A10").FillDown

After running this code, the first 10 rows in column A are filled with the number 1. "Not so impressive, just
copying a number," you say? Well, imagine if that cell were a complex formula, and you had to replicate that
formula down a column. The FillDown command begins to look pretty good.

Excel has a feature that allows you to fill up ranges with automatically generated data. For example, you can
number a list (say, from 1 to 50), or make a column of dates that represent Fridays for the next 12 weeks.
The Range object’'s DataSeries method calculates the values of cells, according to the parameters of the
series. The syntax is as follows:

oExcel.ActiveSheet.Range("Al").DataSeries(hnRowCol, nType, nDate, nStep,

xStop, xTrend)

A value indicating whether the data series is entered in Rows or Columns. If omitted, it
uses the shape of the specified range. (Optional)

nRowCol Numeric

xIRows

xIColumns

nType Numeric A value indicating the type of series. (Optional)
xIDataSeriesLinear
-4132

xIGrowth

xIChronological
3

xIAutoFill



Used only if nType is xIChronological (3). A value indicating the kind of chronological
series. (Optional)

nDate Numeric

xIDay (default)
1

xIWeekDay

2

xIMonth

xlYear

nStep Numeric A value representing the increment between each value in the series. The default is 1.
(Optional)

xStop Numeric or A value representing the value at which to stop. The type can be numeric or a date (or
date whatever type of series you are building). The default is the end of the range. (Optional)

xTrend Logical or True (or -1) to set a linear trend line (regression analysis) to forecast future trends, False
Numeric (or 0) to create a standard series. The default is False (or 0). (Optional)

The following code creates a simple series, numbering the rows from 1 to 50. Note that if you don't fill in a
value in the first cell of the series, there is nothing with which to start the series, and the command will appear
to execute without error, but the resulting range is blank.

#DEFINE xIColumns 2

#DEFINE x|DataSeriesLinear -4132

#DEFINE xIDay 1

oExcel.ActiveSheet.Range("Al1").Value = 1
oExcel.ActiveSheet.Range("A1:A100").DataSeries(xIColumns, ;

x|DataSeriesLinear, xIDay, 1, 50, .F.)

This next code example shows how to format a series of dates. This example shows a greater step value,
calculating dates that are a week apart (actually, it's a list of Fridays between the starting date, a Friday, and
the end of the year).



#DEFINE xIColumns 2

#DEFINE xIChronological 3

#DEFINE xIDay 1

oExcel.ActiveSheet.Range("B1").Value = "10/22/1999"
oExcel.ActiveSheet.Range("B1:B100").DataSeries(xIColumns, ;

xIChronological, xIDay, 7, "12/31/99", .F.)

v a,m‘” Excel interprets the "12/31/99" string as a date data type. You could also use hyphens,
too. Excel does some conversion on dates, as they are stored as a numeric value, called a "serial
value." This value represents the number of days since December 31, 1899. Therefore, a value of 1
is January 1, 1900.

Excel uses formatting to display the cell as a date value, or you can select a numeric format to see
the serial value. Additionally, time values are stored as a fraction of a day; a value of 1.5 is 12 PM on
1/1/1900. Again, you'd use Excel’s formatting features to display the date, time, or both. See the
section "Formatting values" later in this chapter for the details on formatting dates and times.

Note that this method calculates the dates and enters them as a value, not as a formula. If you change one
date, don't expect the others to change.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Formatting

Getting FoxPro data into Excel is pretty cool. But it's even cooler to make it look good. Excel has a rich range
of formatting options for a cell, including changing font attributes, formatting the way a value looks (such as

percentages or negative numbers), and setting borders and shading.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Column widths and alignment

Let's revisit the spreadsheet we created in Figure 3, using the XLAddData.PRG in the Developer Download
files available at www.hentzenwerke.con]. The formatting issue that first jumps out at us is the series of cells

filled with pound signs, indicating that the column width is too small.

One really cool method is AutoFit, which works on the columns within a given range. In Figure 3, we can
AutoFit the column widths for the first three columns. If, however, we ask for the whole range, the title in cell
B2, "Alfreds Futterkiste" causes column B to be much wider than necessary, making it hard to read across
each row. While the AutoFit method affects all columns in the range, it only calculates the maximum width for
those cells actually contained in the calling range. By specifying A5:C14, it calculates the maximum width for
columns A, B, and C, but only using those cells in rows 5 through 14. The AutoFit method takes no
parameters. Here’s an example of using AutoFit:

oSheet.Range("A5:C14").Columns.AutoFit()

As Figure 4 shows, it looks a bit better. While AutoFit generates a column width to fit the longest cell, it's just
barely wide enough for the longest cell. You may want to explicitly set a column or two.

A | B | © |
1
2 Alfreds Futterkiste
3
4
5 Order Mumber |Date  Armount
B 953 7S5 FR07.08
7 g3 129594 $335.43
g J030 9%54 §337.44
g BY3 8227/94 0 e51 .2
10 B4 719594 51 ,006.86
11 b3 82192  §B57 .58
12
13
14 | Total f4,395.59
15

Figure 4. AutoFit works wonders on columns. But there’s still a lot of formatting left to do!

Set the column width manually through the Columns collection’s ColumnWidth property. The units used in
the ColumnWidth property are in characters, where one character is equal to the average width of all
characters in the default font. The property can be set to fractional characters; in fact, the default column
width is 8.43 characters. The following code shows how to add two characters to the width of column B.

WITH oExcel.ActiveSheet.Columns|[2]
.ColumnWidth =.ColumnWidth + 2

ENDWITH


http://www.hentzenwerke.com/

Alighment

By default, character data is left-aligned, while numeric and date/time data is right-aligned, and all are aligned
at the bottom of the cell. Range’s HorizontalAlignment and VerticalAlignment properties store the values for
the alignment settings. As with most Office properties, there are a series of constants. Figure 5 shows the
constant names, values, and an example cell formatted with the alignment. Both HorizontalAlignment and
VerticalAlignment act on the same cell, which allows a large number of possibilities for aligning the text in

cells.
A | BE |G| D | E | F G
_1 |HORIZONTAL ALIGNMENT CONSTANTS:
.2 |xIHAlignCenter -4108 Test
|3 |xlHAlignCenterAcrossSelection 7 Test (D-F)
A [xIHAlignFill 5 TestTestTest
L8 |xIHAlignGeneral 1 Test
Test. This is a
test. It is only
_ B |xIHAlignJustify -4130 a test.
L7 [xIHAlgnLeft -4131 Test
i K|H.ﬂ.|lgﬂglght -4152 Test JUSTif‘_I.I' works DT'I|}" far
=N ward-wrapped cells,
10 |VYERTICAL ALIGNMENT CONSTANTS: It has no effect on 3
_ single line.
L1 | xMAlignBottom -4107 Test
12 |xvAlignCenter o e
13 | xMWAlignDistributed -A117 Test
Thiz is a test.
It is anly a
4 | Aligndustify -4130 test.
Test
a8 | AlignTop -4160
16

Figure 5. Alignment constants. Column A shows the name of the constant, column B shows the value,
and column D shows a formatted cell containing the word "Test" (except for the Justify constants,
which require a word-wrapped cell to show an effect). Note that the Center Across Selection alignment
is centered over three columns.

You'll see that xIHAlignGeneral and xIHAlignLeft look similar; that's because the cell contains text. The
General format is the default format, which left-aligns text but right-aligns numbers and dates. xIHAlignLeft
and xIHAlignRight force the alignment to the left or right, regardless of the datatype contained in the cell.

Looking again at the TasTrade example, we can center the client name over the first three columns, and then
format the column headings using the following code:

#DEFINE xIHAlignCenterAcrossSelection 7
#DEFINE xIHAlignCenter -4108

* Center the client name across the first three columns.



oSheet.Range("A2:C2").HorizontalAlignment = xIHAlignCenterAcrossSelection
* Center each of the column titles.

oSheet.Range("A5:C5").HorizontalAlignment = xIHAlignCenter

If you want to explore using the Justify alignment, the text must wrap within the cell (otherwise, it will simply
left-justify the text). Use the WrapText property to set the cell to wrap words:

oSheet.Range("A5").WrapText = .T.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Fonts

Excel's Font object is much like Word’s, with properties for Name, Size, Bold, Italic, and so forth. In Excel,
fonts are controlled through the Font tab on the Format Cells dialog (see Figure 6). If we compare this dialog
to Word’s dialog box, we find that Excel has a subset of the Font properties that Word has. Fortunately, most
of the properties that Excel’'s Font object has are found in Word, and are named similarly.

Format Cells EHE3 |

Mumber I Alignrent | Border | Patterns I Prokection I
Eont: Font skyle: Size:
I.ﬁ.rial IReguIar I 10

" dgency FE 3 g8 -

T algerian 9

Andale Mono Bold
2ol =

Lnderline: Color:
INune j I Ao atic j ¥ tormal font

ffects g

™ strikethrough

™ Superscript AaBbCoYyiz

™ subscript

This is a TrueType font, The same Font will be used on bath wour prinker
and your screen.

(8] 4 I Cancel

Figure 6. The Excel Font tab on the Format Cells dialog. Excel provides a wide variety of font formatting
features.

To access the Font object, use the Range object’'s Font property (quite a few other objects, such as the
various text objects on a chart, use the Font property, too). To set a range (in this example, the range is cell
B2) to 14-point bold Times New Roman, use the following:

WITH oSheet.Range("B2").Font

.Name ="Times New Roman"

.Size =14

.Bold =.T.

ENDWITH

Table 1 shows the font properties most commonly used in Excel. There are a few others available, though

not nearly as many as there are in Word’s Font object. Look in the Help file under "Font Object" for more

properties.

Table 1. Font properties. The Font object controls the appearance of the font from the font face to its size,



style, and much more. This table shows the more common properties. Check Help for additional settings.

Property Type Description

Name Character The name of the font.

Size Numeric The size of the font in points.
Color RGB Color The color of the font.

Bold Numeric or Logical Indicates whether the text is bold.
Italic Numeric or Logical Indicates whether the text is italic.

Underline Numeric The type of underline.
xlUnderlineStyleDouble

-4119
xlUnderlineStyleDoubleAccounting
5

xlUnderlineStyleNone

-4142

xlUnderlineStyleSingle

2

xlUnderlineStyleSingleAccounting

4

Superscript, Subscript Numeric or Logical Indicates whether the text is superscript or subscript,
respectively.

e}
Vat”  Excel has some properties that we list as "Numeric or Logical." These properties can



be set with VFP’s logical values of .T. and .F., or -1 (for true) and O (for false). However, when you
query these properties, Excel returns a numeric value. So while you can turn on italics with
oRange.Font.ltalic = .T. or oRange.Font.ltalic = -1, you must remember that it returns a numeric, as
in IF oRange.Font.ltalic = -1...ENDIF.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Formatting values

Excel offers a feature to format numbers that acts like FoxPro’s InputMask property on steroids. It's found on
the Format Cells dialog, pictured in Figure 7. There are 12 categories, with each category having as many as
31 predefined codes. Plus, if you can't find one that meets your needs, you can define your own.

You're probably expecting to see a long list of properties with a long list of constants representing each
number format. Nope, not this time. There’s only one property, and that's the Range’s NumberFormat
property. It gets set to a string representing the format, much like the way VFP’s InputMask property works.
You can see some sample strings if you select the Custom category on the Number tab in the Format Cells
dialog box (see Figure 7).

The most commonly used codes for format strings are shown in Table 2. As in VFP’s InputMask codes, the
pound sign (#) displays a number, and a comma puts in a thousands separator. Many symbols, such as %, $,
and (the Euro symbol), are literals; you still need to put in placeholders to display the numbers. Codes that
pertain to the same data type can be mixed and matched to precisely set the formatting of a cell.

Format Cells EE3 |

Murnber | Aligrment | Fonk | Border | Patterns I Proteckion I
Cakegory: ample

|General “I

Currency Decimal places; IZ 5‘
Accounting

Date

Tirne [ Use 1000 Separator {,)
F'ern:e_ntage Megative nurmbers:

Fraction

Scientific

Text 1234.10

Special (123410

Custom Hl |izz4a0 | -

Murmber is used for general display of numbers, Currency and Accounting
offer specialized formatting for monekary value,

(8] 4 I Cancel

Figure 7. The Number tab on the Format Cells dialog in Excel. Like FoxPro’s InputMask property on
steroids, Excel offers seemingly unlimited ways to format the way the data looks.

Table 2. Commonly used codes for formatting numbers. There are many more available; see the Help topic
"About number formats" in the regular Excel Help file.

Example Example Example
Code Description value string output



"General" Resets to the default format. 12345 "General" 12345

# Displays a number (blank if a leading or trailing 0). 1234.5 R A 1234.5

0 Displays a number, including leading or trailing 0’s. 1234.5 "00000.00" 01234.50

, Adds a Thousands separator. 12345 A HHHE 1,234.5

% Displays numbers as a percentage. .08 "#H#%" 8%

$ Inserts the dollar sign. 1.25 "$#4#.00" $1.25

€ Ivaepto TnE Evpo oPHPBOA. 3.00 XHP(128) + 8.00

O#4.000

M Displays the month as a number from 1-12. 10/22/99 "M" 10

Mmm Displays the month as a three-character 10/22/99 "Mmm" Oct
abbreviation.

D Displays the day as a number from 1-31. 10/22/99 "D" 22

Ddd Displays the day as a three-character day of week. 10/22/99 "Ddd" Fri

Yy Displays a two-digit year. 10/22/99 "Yy" 99

Let's look at some numeric examples. These examples assume you have a blank sheet, referenced by

oSheet. The results of all the numeric code examples are shown in Figure 8, at the end of the numeric

examples. For our first example, let's format 1234.5 to appear as 1,234.50:

oSheet.Range("Al").Value = "Format a Cell"

oSheet.Columns[1].ColumnWidth = 15

oSheet.Range("A2").Value = 1234.5

oSheet.Range("A2").NumberFormat = "## ###.#0"




If it should be currency, with a thousands separator—like $1,234.50—try the following NumberFormat:

oSheet.Range("A3").Value = 1234.5

oSheet.Range("A3").NumberFormat = " $## ###.#0"

For those of you who use different currencies, use the ASCII code representing your currency symbol: is
CHR(128), £ is CHR(163), and ¥ is CHR(162).

Excel allows four sections of codes, sort of like an inline case statement, which are: positive numbers,
negative numbers, zero values, and text. Specify a string for each section, separated by a semi-colon. Here’s
an example of how to format negative numbers with parentheses in lieu of a minus sign, using column B:

oSheet.Range("B1").Value = "Format +/-"
oSheet.Columns[2].ColumnWidth = 15
oSheet.Range("B2").Value = 1234.5
oSheet.Range("B3").Value =0
oSheet.Range("B4").Value = -1234.5

oSheet.Range("B2:B4").NumberFormat = "## ### #0; (## #H#H #0)"

Cell B2 displays 1,234.50, and B4 displays (1,234.50). One of the issues we’ve encountered a lot is how to
handle zeroes—in this case, the zero displays as ".0," but in many cases, we want the cell left blank. Using
the same sequence of numbers, this time in column C, try this:

oSheet.Range("C1").Value = "Format +/-/0"
oSheet.Columns[3].ColumnWidth =15
oSheet.Range("C2").Value = 1234.5
oSheet.Range("C3").Value =0
oSheet.Range('C4").Value = -1234.5

oSheet.Range("C2:C4").NumberFormat = "## ### #0; (##,### #0);;"

If you look at Figure 8, you'll see the results of leaving the third section of the NumberFormat string blank:
nothing displays for zeroes. What if you want to set a zero-value cell to show "N/A"? Not hard at all. Change
the format string to this:

[F#2 142 HO; (4 . H0); "NIA™;]

Beware: Excel needs literal strings delimited in double quotes only, so be sure to delimit the whole FoxPro
string with square brackets or single quotes. Should you forget, you'll get an error indicating that Excel is
"unable to set the NumberFormat property."

The fourth section of NumberFormat allows you to format text cells. Text formats a bit differently; the entire
value of the cell's text string is denoted by the @ sign, and you can place literal text (delimited by double
guotes only) on either side of the @ sign. Why would you want to add to text? Perhaps your data holds only
the client name, and it should say "Client Totals." Here’s an example that includes formatting the text (see
Figure 8 for the results):



* Enter some data

oSheet.Range("A6").Value = "January"
oSheet.Range("A7").Value = 102
oSheet.Range("B7").Value = "Widget"
oSheet.Range("A8").Value = -24

oSheet.Range("B8").Value = "Whatzit"
oSheet.Range("A9").Value =0

oSheet.Range("B9").Value = "Whatnot"
oSheet.Range("A10").Value = "February"
oSheet.Range("Al11").Value = 123
oSheet.Range("B11").Value = "Widget"
oSheet.Range("Al12").Value =0
oSheet.Range("B12").Value = "Whatzit"
oSheet.Range("A13").Value = 332
oSheet.Range("B13").Value = "Whatnot"

* Format the first column, using all four sections.
oSheet.Range("A6:A13").NumberFormat = [$###; ($###4);"No"; @" Totals"]
* Format the second column for text only. Literal

* strings are placed on both sides of the cell's actual value.

oSheet.Range("B6:B13").NumberFormat = ["Total "@" Sales"]

A | E | C |

_ 1 |Format a Cell Farmat +- Format +~0
2 1,234.50 1,234.50 1,234.50
3 $1,234.50 0
4 (1,234.50) (1234.50)
5 |
_ B | January Totals
7 $102 Total Widget Sales
- ($24) Total YWhatzit Sales
= Mo Total Whatnot Sales
10| February Totals
s $123 Total Widget Sales
12 Mo Total Whatzit Sales
mEl $332 Total Whatnot Sales

14

12

Figure 8. The combined results of the numeric formatting examples. Cell A2 shows basic formatting;
A3 shows currency; B2:B4 format positive and negative numbers differently; and C2:C4 differentiate
positive, zero, and negative values. A6:B13 show the use of all four formatting sections in column A,
and column B’s text is formatted, too.



Dates also have a number of formats. By using "D" for day, "M" for month, and "Yy" for year, along
with any literals, you can conjure up nearly any format. When D and M are used, the day and month
are displayed as a number, without a leading zero. Use Dd or Mm to provide a leading zero. Three
characters, as in Ddd or Mmm, provide a three-character abbreviation, as in "Fri" or "Jan." Four
characters, as in Dddd or Mmmm, display the full name, as in "Friday" or "January." A string of Yyyy
gives a Y2K-compliant, four-digit year. If you want a military format date, try the following:

oSheet.Range("Al").Value = "01/01/2000"

oSheet.Range("Al").NumberFormat = "Dd-Mmm-Yyyy"

The cell displays "01-Jan-2000." What if you wanted it to read, "Saturday, January 1, 2000"? Change
the format string to "Dddd, Mmmm D, Yyyy" to display the desired format.

There are many combinations and permutations for formatting cells. Rather than boring you for the
next several pages by attempting to explain every detail, we'll just point you to the Excel Help file (the
regular Excel Help, not the VBA Help), which covers this in detail. Search for the topic "About number
formats," which will explain everything you've ever wanted to know about NumberFormat strings.

Borders

The Borders collection contains Border objects, with each object representing the eight borders of
the cell. This collection wouldn’t be complete without a series of constants describing the eight
different borders: xIDiagonalDown (5), xIDiagonalUp (6), xIEdgeBottom (9), xIEdgeLeft (7),
x|IEdgeRight (10), xIEdgeTop (8), xlinsideHorizontal (12), and xlinsideVertical (11). The xIEdge borders
represent the outer perimeter of a range of cells. The xlinside borders are those that are on the
interior of a multi-cell range. If the range is a single cell, the xlinside borders are ignored.

Table 3 shows the properties for each border. The LineStyle and Weight properties are set through
constant values.

Table 3. Border properties. Borders can be placed around any range, and their appearance can be
altered with these properties.

Property Type Description

Color RGB Color The color of the border.




LineStyle

Numeric

The numeric value corresponding to a preset line style.

xIContinuous

xIDot
-4118
xIDash
-4115
xlDouble

-4119

xIDashDot

xILineStyleNone

-4142

xIDashDotDot
5
xISlantDashDot

13

Weight

Numeric

The width of the line. This uses constants, not points.

xIHairline

xIMedium

-4138

xIThin

xIThick

4




If you want to put a dotted border on the bottom of a range of cells, use this code:

#DEFINE xIEdgeBottom 9
#DEFINE xIDot -4118

oSheet.Range("A2:C2").Borders(xlIEdgeBottom).LineStyle = xIDot

There are a few situations we’'ve found with this process. For the most part, you can set any LineStyle
you want. When you set the width, the results become unpredictable, usually resulting in a
continuous line, and occasionally in arandom color. For example, the following code produces a
thick solid line, rather than a thick dash-dot line:

#DEFINE xIEdgeBottom 9

#DEFINE xIDashDot 4

#DEFINE xIThick 4
oSheet.Range("A2:C2").Borders(xIEdgeBottom).LineStyle = xIDashDot

oSheet.Range("A2:C2").Borders(xIEdgeBottom).Weight = xIThick

What seems to work is any Weight with a continuous line, or any LineStyle without setting the Weight
property. In VFP, setting the BorderWidth property to anything greater than 1 implies a single-line
border. What we’ve found with Excel’s borders may parallel VFP’'s design. We've not found any
documentation one way or the other on Excel’'s design.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Shading

Shading a range of cells is accomplished with the Interior object. Note that in Word, a Shading object is used,
and in PowerPoint, a Fill object is used.

Table 4 shows the properties of the Interior object. Basically, you select a pattern, then apply a PatternColor
to the pattern, and the Color property becomes the background color. However, it’s tricky to predict the
outcome. Just because the Color property is the background color does not mean that it is the less
predominant color. Figure 9 illustrates this situation. White (actually, the automatic color) is the Color setting,
and the PatternColor setting is black. Looking at the samples of the available patterns, you can see that some
are predominantly white, and some are predominantly black.

It's obvious that Excel gives us lots of control over the patterning a cell. Here's a design caution: if you
attempt to pattern a cell with anything other than a solid color, any text that's under about 36 points and
appears on that pattern is difficult to read. We haven’t found a terrific business need for patterns other than
solid.

Actually, to shade a cell, you don’t need to do anything other than change the Interior.Color property. Since it
functions as a background color, and there’s no pattern to display, the cell is shaded, and it only takes one
line of code (rather than setting the Pattern to xIPatternSolid, and then setting the PatternColor). Shading is
accomplished like this:

oSheet.Range("Al14:C14").Interior.Color = RGB(192,192,192) && Light Gray

Table 4. Interior decorating. The Interior object has several properties to change the display of the
cell.

Property Type Description

Color RGB Color The background color that shows through the pattern. If the pattern is a fine
pattern (like the xIPatternLight patterns), this color becomes the predominant
color, as the pattern itself does not dominate the cell.

InvertlfNegative Logical or Whether the pattern is inverted if the value of the shaded cell is negative. True (.T.
Numeric or 1) to invert if negative, False (.F. or 0) to remain the same when negative.

Pattern Numeric Patterns the range with one of 20 predefined patterns.
xIPatternAutomatic

-4105

xIPatternHorizontal




-4128

xIPatternChecker

xIPatternLightDown
13
xIPatternCrissCross
16
xlPatternLightHorizontal
11

xIPatternDown

-4121
xIPatternLightUp

14

xIPatternGray8

18
xIPatternLightVertical
12

xIPatternGray16

17

xIPatternNone

-4142
xIPatternGray25
-4124
xIPatternSemiGray75
10

xIPatternGray50
-4125

xIPatternSolid

xIPatternGray75

-4126




xIPatternUp
-4162
xIPatternGrid

15
x|PatternVertical

-4166

PatternColor RGB Color The foreground color of the pattern. The Color property provides the background
color.

I T

Mumber I . E "" @%ﬁ ﬁ Patterns | Prateckion I
Gl el

|| | .l!'.l_n:-:ln'.al:i-:g—rl:l

EEEE

HEOE m

BEE N

BCOC m

O H

BN B

HE[C

mel
u
2L
(=TS
o
=
3

L %
estes [~ Z

(04 | Cancel |

Figure 9. The Format Cells dialog, with the Diagonal Stripe pattern selected. Note that the
PatternColor is black, and the Color is Automatic, or white (it's obscured by the pattern window).
Looking at all the pattern samples, it's easy to see the effect of the Color and PatternColor properties.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Styles

Like Word, Excel has the ability to work with styles. Styles are quite useful to standardize the look of your
spreadsheet. By assigning all the formatting properties—including fonts, alignment, numeric formatting, color,
borders, and shading—to a single Style, you don’t have to spend time cutting and pasting code over and over
again (and hoping that you cut and pasted the right formatting code).

The Workbook object has a Styles property, which returns a Styles collection object. The Styles collection
starts out with a few default styles, called Normal, Comma, Commal0], Currency, Currency[0], and Percent.
The styles with the "[0]" suffix omit the two decimal places after the number. You can also define your own
styles. The Normal style is the default style. Use this to return to the default. Use the others to quickly set the
most common numeric formatting.

While the default styles are helpful, they're rather plain. Our clients demand pizzazz, so we want something a
little more sophisticated than just commas in our numbers. Since Office is polymorphic, and the Style object
belongs to the Styles collection, we know to look for an Add method. Once the Style is added, we can
change its attributes. All of the formatting discussed in this chapter has been illustrated with the Range
object, but it also works on the Style object.

The following code creates a Style suitable for a title. The style uses 14-point Times New Roman, makes it
bold, centers it, and shades it in light gray.

#DEFINE xIHAlignCenter -4108
#DEFINE xIVAlignCenter -4108
#DEFINE xIEdgeBottom 9
#DEFINE xIEdgeTop 10

#DEFINE xIEdgeRight 8

#DEFINE xIEdgeLeft 7

#DEFINE xIDouble -4119

#DEFINE xIMedium -4138

* Add the new style
oSheet.Parent.Styles.Add(" Title")
* Change the attribute of the style
WITH oSheet.Parent.Styles("Title")
* Font

.Font.Name ="Times New Roman"
.Font.Size = 14

.Font.Bold =.T.

* Alignment



.HorizontalAlignment = xIHAlignCenter
VerticalAlignment = xIVAlignCenter

* Shading

.Interior.Color = RGB(220, 220, 220) && Light Gray
ENDWITH

* Set cell Al to have a value, then apply the style.
oSheet.Range("Al").Value = "Testing"

oSheet.Range("Al").Style = "Title"

The only aspect that seems radically different between Styles and Ranges is the Border object. The whole
series of constants changes, and it's not documented in the Help file. The only way to find out about it is to
run the macro recorder and verify that the constants it's recording for Styles are very different from those
used for Ranges. The constants needed for the Border object are: xlILeft (-4131), xITop (-4160), xIBottom
(-4107), xIRight (-4152), xIDiagonalUp (6), and xIDiagonalDown (5). Note that the inside borders are missing;
we're not sure where they've gone.

If it's any consolation, there is a bit of consistency with borders. The same bug that affects the Weight
property also happens with Styles, too.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Output

Once you have a good-looking spreadsheet, inevitably, your users will want it printed.

Page Setup

Excel has a robust set of features used to print out a page, as evidenced by Figure 10, the Page Setup

dialog. Excel's Page Setup dialog corresponds to its PageSetup object. Each worksheet (and each chart) has

its own PageSetup object.

Page Setup EH |

Orientation
[ I

A

Scaling

| Margins | Header [Footer | Sheet I

& Portrait " Landscape Prink Prewview |

Prink. .. |

opkions. .. |

& adjustto;  [100 =3 % normal size

" Fit ko |1 5‘ pagels) wide by |1 5‘ Eall

Faper size:

ILetter (8.5% 11 in)

Prink guality: ISE-III dpi

First page number:

IF'.utl:-

[
[

(o] 4 I Cancel

Figure 10. Setting up the pages. This is one of four tabs of properties used when printing.

The PageSetup has 35 properties and one method...that's robust! Quite a number of them are useful for

everyday tasks. Table 5 shows most of the properties—they are grouped by the tab on which they’re found

on the Page Setup dialog (a helpful order if you're using the macro recorder to help you).

Table 5. The PageSetup object’s properties. Reminder: the properties listed as Logical or Numeric can be set
with either logical or numeric values, but they should be tested against numeric values only.

Property

Type

Description

Orientation

Numeric

The orientation of printing on the paper.

xIPortrait




xlLandscape

2

Zoom Numeric or If numeric, applies the percentage (between 10 and 400) to scale the
Logical worksheet. If set to False (.F. or 0), FitToPagesTall and/or FitToPagesWide
are used to scale the worksheet.
FitToPagesTall Numeric or Scales the vertical print area to fit this many pages. If False (.F. or 0), no
Logical vertical scaling occurs. Ignored if the Zoom property is numeric and not zero.
FitToPagesWide Numeric or Scales the horizontal print area to fit this many pages. If False (.F. or 0), no
Logical horizontal scaling occurs. Ignored if the Zoom property is numeric and not
zero.
P . . One of about 45 preset paper sizes. Some of the most common are:
aperSize Numeric
xIPaperLetter
1
xIPaperLegal
5
xIPaperA4
9
xIEnvelope9
19
FirstPageNumber Numeric The page number used to start numbering pages. The default is 1.
TopMargin Numeric The distance from the top of the page to the top of the first line of text, in points.
HeaderMargin Numeric The distance from the top of the page to the top of the first line of text in the

header, in points.




LeftMargin Numeric The distance from the left edge of the page to the left edge of the text, in points.
RightMargin Numeric The distance from the right edge of the page to the right edge of the text, in
points.
BottomMargin Numeric The distance from the bottom edge of the page to the bottom line of text, in
points.
FooterMargin Numeric The distance from the bottom edge of the page to the bottom line of the footer
text, in points.
CenterHorizontally Logical or True (.T. or -1) to center the text horizontally on the page; False (.F. or 0) to
Numeric start printing at the left margin.
CenterVertically Logical or True (.T. or -1) to center the text vertically on the page; False (.F. or 0) to start
Numeric printing at the top margin.




LeftHeader Character
CenterHeader Character
RightHeader Character
LeftFooter Character
CenterFooter Character
RightFooter Character

These properties set the left, center, or right portions of the header or footer,
as indicated. They can be set to a character string or codes, or a combination
of the two. A complete set of codes is in the Excel VBA Help file under the
topic "Formatting Codes for Headers and Footers."

Prints the current date

&D

Prints the name of the file

&F

Prints the name of the active worksheet
&A

Prints the current page number

&P

Prints the ampersand character

&&

Prints the total number of pages in the document

&N




PrintArea

Character

The range of cells to print—for example, "A1:Z40". If blank, it will print them all.

PrintGridlines Logical or True (.T. or -1) to print the cells’ gridlines, False (.F. or 0) to omit them.
Numeric
BlackAndWhite Logical or True (.T. or -1) to print colors in high-contrast shades of gray for the best
Numeric possible printing on a black and white printer; False (.F. or 0) to print in color,
or to let the colors print in whatever shades of gray the printer is programmed
for.
Draft Logical or True (.T. or -1) to print the data without graphics; False (.F. or 0) prints
Numeric everything.
. The order in which pages are printed and numbered when a worksheet is too
Order Numeric

big to fit on one page.

xIDownThenOver

xlOverThenDown

These properties are pretty straightforward. Here’s some sample code that ensures that the spreadsheet will

print on one sheet, with half-inch margins, in landscape orientation, with page numbers in the upper-left

header.

#DEFINE xILandscape 2

#DEFINE autoln2Pts 72

oSheet.PageSetup.Orientation = xlLandscape

oSheet.PageSetup.FitToPagesTall = 1

oSheet.PageSetup.FitToPagesWide = 1

oSheet.PageSetup.TopMargin = .5 * autoIn2Pts

oSheet.PageSetup.BottomMargin = .5 * autoIln2Pts




oSheet.PageSetup.LeftMargin = .5 * autoIn2Pts
oSheet.PageSetup.RightMargin = .5 * autoln2Pts

oSheet.PageSetup.LeftHeader = "Page &P"

Print Preview

In some of our Automation applications, we display the final document in Print Preview mode. This lets the
user analyze the data, then decide whether it's important enough to print, or if the data needs more review.
Excel's printing is based on the worksheets, not the workbooks. You'll invoke the PrintPreview method from
the Sheet object. This also means that you will see one sheet in the PrintPreview; you cannot scroll between
sheets in a workbook (while Excel users are quite used to this, it comes as a shock to VFP developers, who
can scroll through the whole report, and Word users, who can scroll through the whole document).

To invoke the Print Preview mode, use the sheet’s PrintPreview method:
oSheet.PrintPreview()

However, this puts FoxPro in a wait state; the user needs to click on either the flashing window title or the
flashing button on the menu bar. Once the user has done so, the PrintPreview window is displayed. But
FoxPro cannot continue until the PrintPreview window is closed. Be sure that the Excel Application object’s
window is in a Normal state before issuing the PrintPreview command, and even then, the user may not see
any of the flashing items and assume that the app has hung.

An alternative syntax, using the PrintOut method and the PrintPreview parameter, still suffers from the same
problem.

oSheet.PrintOut(,,,.T.)

There is a way to display the PrintPreview screen, but it requires the user to close the PrintPreview window
before your FoxPro app can continue. It uses some API calls to manipulate the windows. The FindWindowA
function obtains a window handle to the application based on its class and its window name. Table 6 shows
the classes of the Office applications (valid for 97 and 2000), as well as the various versions of FoxPro. The
SetWindowPos function sets the window to be the topmost window (or not) based on the window handle. You
must remember to set the window back to NoTopMost, to ensure that other apps can be brought forward.

Table 6. Class names used in FindWindowA. Passed to the APl along with the window caption, it
returns a valid window handle, which you can use to manipulate the window with other APIs.

Application Class

Excel 97 and 2000 XLMAIN

Outlook 97 and 2000 rctrl_renwnd32




PowerPoint 97 PP97FrameClass
PowerPoint 2000 PP9FramecClass
Word 97 and 2000 OpusApp

VFP 3.0 and 5.0 Fox4000001
VFP 6.0 VFP66400000

#DEFINE swp_nosize 1

#DEFINE swp_nomove 2

#DEFINE hwnd_topmost -1

#DEFINE hwnd_notopmost -2

* FindWindowaA returns the window handle from the window's caption
DECLARE LONG FindWindowA IN WIN32API STRING class, STRING title

* SetWindowPos moves the window to the top, using the window handle
DECLARE SetWindowPos IN WIN32API LONG HWND, LONG hwndafter, ;

LONG x, LONG Y, LONG cx, LONG cy, LONG flags

* Capture the window handles for both Excel and VFP.

hWndXL = FindWindowA("XLMAIN", oExcel.Caption)

hWndVFP = FindWindowA(" VFP66400000", VFP.Caption)

*Bring VFP to the top, and instruct the user to

* close PrintPreview

= SetWindowPos(hWndVFP, hwnd_topmost, 0,0,0,0, swp_nosize + swp_nomove)
= MessageBox("Close this MessageBox, and then Excel will come forward." +;
CHR(13) + "Close Print Preview when ready to return to FoxPro.")

* Now bring the Excel window to the top

= SetWindowPos(hWndVFP, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)
= SetWindowPos(hwndXL, hwnd_topmost, 0,0,0,0, swp_nosize + swp_nhomove)
* [ssue the PrintPreview method. Make sure your code

* can tolerate a wait state, and that the user knows



*to close the PrintPreview window to continue

oSheet.PrintPreview()

* Now put the Excel window to NoTopMost, so VFP can come forward

= SetWindowPos(hwndXL, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)
* Bring the VFP window forward, then set it NoTopMost so other

* applications can be brought forward.

= SetWindowPos(hwWndVFP, hwnd_topmost, 0,0,0,0, swp_nosize + swp_nomove)

= SetWindowPos(hwWndVFP, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)

This may work for many applications, especially if you put up a message box explaining what to do
just before you call this routine.

Printing

A little less problematic than PrintPreview is printing the spreadsheet. The bulk of the properties that
control printing are set in the PageSetup object. Once you're ready to print, the PrintOut method is
called. While it has some parameters to control the start and end page numbers, the number of
copies, and the device to which the output is sent (printer name, preview, or filename), it does its job
just fine without any parameters. It assumes you want it all printed to the default printer.

oSheet.Printout()

The Excel VBA Help file does a fine job of explaining the parameters; see the "PrintOut Method"
topic.

Saving the data in different formats

Excel 2000 has constants defined for 41 different formats (though all might not be available,
depending on several factors, like the language [such as U.S. English], or whether the user has
installed them, and so on). Quite a number of these formats are variations on the spreadsheet theme,
including eight versions of Excel, and seven WK* versions. Also available are formats for CSV, SYLK,
DBF, DIF, text, and HTML, among others.

The SaveAs method takes many parameters, though the most useful are the first two. The first
parameter is the new filename. The filename must be fully qualified; Excel has no knowledge of VFP’s
SET DEFAULT setting. The second parameter is a numeric value that represents the format. Of
course, we need the table of constants, shown in Table 7. We’ll show a few—you can find the rest in
the Object Browser.

You'll notice the xIWorkbookNormal value. Use this to save a copy of the file in the current version’s
format.

Table 7. File format constants for Excel. Excel supports saving in many different formats. Here are a
few of the 41 in Excel 2000.



Constant Value Constant Value
XICSV 6 XISYLK 2
xIDBF3 8 xITextWindows 20
xIDIF 9 xIWK4 38
xIExcel9795 43 xIWorkbookNormal -4143

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved




Putting it all together

Listing 2 shows a program (XLSamplel.PRG in the Developer Download files available at

www.hentzenwerke.com) that creates a workbook with worksheets for the order history of the first three
clients (the first three is just a number chosen from the air; you can play around with the loop counter, if you
desire). This example covers entering data, adding a totaling formula, formatting cells, setting up the sheets
to print, viewing the PrintPreview, and finally saving the spreadsheet (also see Figure 11).

Listing 2. Tasmanian Traders customer history workbook. This example covers many of the topics in
this chapter, including adding data and formulas, formatting cells, saving the spreadsheet, previewing,
and others.

* Put order information for several customers into an Excel worksheet

* Change the LoopCounter constant to change the number of customers
* entered into Excel.

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.

RELEASE ALL LIKE o*

#DEFINE xIEdgeBottom 9

#DEFINE xIEdgeTop 8

#DEFINE xIContinuous 1

#DEFINE xIMedium -4138

#DEFINE xIHAlignCenter -4108

#DEFINE xIHAlignCenterAcrossSelection 7

#DEFINE xIVAlignBottom -4107

#DEFINE xIAutomatic -4105

#DEFINE xIPortrait 1

#DEFINE autoIn2Pts 72

#DEFINE swp_nosize 1

#DEFINE swp_nomove 2

#DEFINE hwnd_topmost -1

#DEFINE hwnd_notopmost -2

#DEFINE LoopCounter 3

LOCAL oBook, oRange, oSheet

* Open the Order History view, which contains


http://www.hentzenwerke.com/

*a summary of orders for one customer.
CLOSE DATA

OPEN DATABASE _SAMPLES + "\TASTRADE\DATA\Tastrade"
USE CUSTOMER IN 0

SELECT O

USE "Order History" ALIAS OrderHistory
* Add a workbook, using default settings
0Excel = CREATEOBJECT("Excel.Application")
oExcel.Visible = .T.

oBook = oExcel.Workbooks.Add()
oSheet = oBook.ActiveSheet

* Add styles to the workbook

WITH oBook

.Styles.Add("Bold")

WITH .Styles["Bold"]

.Font.Bold =.T.

.Font.Size =12

.HorizontalAlignment = xIHAlignCenter
VerticalAlignment = xIVAlignBottom
WrapText =.T.

ENDWITH

ENDWITH

FOR 1 =1TO LoopCounter

REQUERY()

WITH oSheet

* Name the sheet with the Customer ID
.Name = Customer.Customer_ID
.Select()

* Put customer name at top
.Range("A2").Value = Customer.Company_Name
* Put column headings in Row 5

.Range("A5").Value = "Order Number"



.Range("B5").Value = "Date"

.Range("C5").Value = "Amount"

oRange = .Range("A6:C6")

ENDWITH

* Loop through orders and send data

SCAN

WITH oRange

.Columns[1].Value = Order_Id

.Columns[2].Value = Order_Date
.Columns[3].Value = Ord_Total

ENDWITH

* Move range down one row

oRange = oRange.Offset(1,0)

ENDSCAN

* Now add total row

nLastRow = oRange.Row && Row property always give first row of range
&& This range has only one row

cLastRow = ALLTRIM(STR(nLastRow))

WITH oSheet

.Cells[ nLastRow , 1] ="Total"

* Need to convert nLastRow to char to use in formula for sum
.Cells[ nLastRow , 3].Formula =;

"=SUM( C6:C" + LTRIM(STR(nLastRow - 1)) +" )"
ENDWITH

* Start Formatting the sheet

WITH oSheet

* Apply the Bold Style to column headers

WITH .Range("A5:C5")

.Style ="Bold"
.Borders[x|IEdgeBottom].LineStyle = xIContinuous
ENDWITH

* Apply Bold Style to Total label



.Range("A" + cLastRow).Style = "Bold"

.Range("A" + cLastRow + ":C" + cLastRow).Borders[xIEdgeTop].LineStyle =;
xIContinuous

* Apply Bold Style to client name, then override

*the horizontal alignment to spread it across columns

.Range("A2").Style ="Bold"

.Range("A2:C2").HorizontalAlignment = xIHAlignCenterAcrossSelection

* Change the format of the date column

.Range("B6:B" + cLastRow).NumberFormat = "Dd-Mmm-YYY"

* Fix the column width

.Range("A5:C" + cLastRow).Columns.AutoFit()

* For some reason, the first column doesn't expand enough

* without the column header wrapping one character of the

* last word. Add another character to the column width
.Range("A5").Columns.ColumnWidth = .Range("A5").Columns.ColumnWidth + 1
* AutoFit ensures that the largest value just barely fits.

* We prefer alittle more space between the last two columns, so

* add another character to each of these columns, too
.Range("B5").Columns.ColumnWidth = .Range("B5").Columns.ColumnWidth + 1
.Range("C5").Columns.ColumnWidth = .Range("C5").Columns.ColumnWidth + 1
* Now set up the page to print

WITH .PageSetup

* Don't assume that these are the defaults;

* these are things users can change!

.Orientation = x|Portrait

FitToPagesTall = 1

FitToPagesWide = 1

.CenterHorizontally = .T.

.CenterVertically = .T.

.TopMargin = 1.0 * autoIn2Pts

.BottomMargin = 1.0 * autoIn2Pts

.LeftMargin = 1.5 * autoIn2Pts



.RightMargin = 1.5 * autoIn2Pts

.HeaderMargin = 0.5 * autoIn2Pts

.FooterMargin = 0.5 * autoIn2Pts

.LeftHeader = "TasTrade Client ID &A"

.RightHeader = "Page &P of &N"

.RightFooter ="Printed On &D"

ENDWITH

ENDWITH

* Add another sheet for the next client

IF | <> LoopCounter

oSheet = oBook.Worksheets.Add()

ENDIF

* Get next client

SKIP IN Customer

ENDFOR

* PrintPreview the workbook.

* Declare the APIs...

* FindWindowA returns the window handle from the window's caption
DECLARE LONG FindWindowA IN WIN32API STRING class, STRING title
* SetWindowPos moves the window to the top, using the window handle
DECLARE SetWindowPos IN WIN32API LONG HWND, LONG hwndafter, ;
LONG x, LONG Y, LONG cx, LONG cy, LONG flags

* Capture the window handles for both Excel and VFP.

hwWndXL = FindWindowA("XLMAIN", oExcel.Caption)

hWndVFP = FindWindowA("VFP66400000", VFP.Caption)

* Bring VFP to the top, and instruct the user to

* close PrintPreview

= SetWindowPos(hwWndVFP, hwnd_topmost, 0,0,0,0, swp_nosize + swp_nomove)
= MessageBox("Close this MessageBox, and then Excel will come forward." +;
CHR(13) + "Close Print Preview when ready to return to FoxPro.")

* Now bring the Excel window to the top

= SetWindowPos(hwWndVFP, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)



= SetWindowPos(hwndXL, hwnd_topmost, 0,0,0,0, swp_nosize + swp_nhomove)

* |ssue the PrintPreview method to show the first client.

* Make sure your code can tolerate a wait state, and that the

* user knows to close the PrintPreview window to continue

oSheet.PrintPreview()

*When the user closes PrintPreview, it returns to here.

* Bring VFP to the top, then notify user.

= SetWindowPos(hwWndXL, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)
= SetWindowPos(hwndVFP, hwnd_topmost, 0,0,0,0, swp_nosize + swp_nomove)
= MessageBox("Building the Excel file is complete." + CHR(13) + ;

"Ready to save the Excel file.")

* Reset Excel and VFP to NoTopMost

= SetWindowPos(hwWndXL, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)

= SetWindowPos(hwWndVFP, hwnd_notopmost, 0,0,0,0, swp_nosize + swp_nomove)

* Save the file.

* Set up the file name

XLFile = FULLPATH(CURDIR()) + "XLSamplel.XLS"
XLFileJustName = JUSTSTEM(XLFile)

* Determine whether to use SaveAs or Save

IF oBook.Name <> XLFileJustName

* If the file already exists, delete it

IF FILE(XLFile)

ERASE (XLFile)

ENDIF

* Save it without fear of the user dialog box
oBook.SaveAs(XLFile)

ELSE

* Save it, since it's already been saved with SaveAs
oBook.Save()

ENDIF

=MessageBox("Excel file saved as:" + CHR(13) + XLFile)



oExcel.Quit()

RELEASE oExcel

USE IN OrderHistory

USE IN Customer

fd Microsoft Excel - XLSamplel_XL5S
J File Edit Wiew Insert Format Tools Data Window Help == x|
DEE &S ads - @@= L8 ma7A-?
Al - =

A B | ¢ | D | =
1 1 —
2 | Antonio Moreno Tagueria
3
4

Order

5 | Number Date Amount
B 953 O7-Feb-1995  $a07.06
7 Gin  09-Dec-1954 535 43
(o] 703 Ob-Sep-1994  §337.44
g BY3|  27-Aug-1994) 35122
10 E44 18-Jul-1994 | §1 005 86
11 B3 21-Aug-1932 §B57 .58
12| Total §4 39559 —
13
14
15
16

44 [ anTON fanatr Farer £ |«

JDLE"-'\" [:3 G,

Aukoshapes ~ ™., \DG‘|@ %

Ol

Re.{ | |

UM |

s

Figure 11. The finished Tasmanian Traders customer history workbook This example covers entering
data, adding a total formula, formatting cells, setting up the sheets to print, viewing the PrintPreview,
and finally saving the spreadsheet.

We've covered a lot in this chapter, yet Excel has even more to offer. We've worked on the mechanics of
building a workbook with standard spreadsheet features; in the next chapter, we’'ll cover the more advanced

Excel features that help your users analyze their data.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 8 - Advanced Excel Features

Excel has many advanced features for analyzing data, standardizing worksheets, and adding pictures and shapes.

Excel's analysis features are very powerful. The PivotTable is awesome in its ability to analyze and format
cross-tabbed data. What-if analysis is made easier with data tables, allowing you to see multiple results
using several inputs. Goal Seek is a way to solve for one of the parameters in a function. Excel has even
more analytical tools, and these will get you started.

Also included in the advanced category are using templates and automating macros. These help standardize

your spreadsheets.
Finally, you can add shapes and graphics to make your worksheets really stand out.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



PivotTables

PivotTables are cool. They're cross-tabs on steroids, created from a simple list of data that contains the
cross-tab categories in the data within each column—the same list you'd have to SCAN and conditionally set
a slew of variables, or write a complicated SQL statement to build a cross-tab. VFP does have Cross-Tab
and PivotTable Wizards, but they are much more limited than Excel’'s engine.

On the surface, simple PivotTables can cross-tab data, such as totaling the quantity of items for each product
category sold in each month. PivotTables sound even better when you find that they can summarize multiple
fields for the cross-tabs—summarize the total items sold and the total sales price by each product by month
sold. They’'ll also do pages—summarize the total items and sales price by each product by month sold,
showing a "page" for each year. You can change your mind, too: instead of showing the totals for each
product by month, you can change one property to show the products sold by the buyer’s country. If that
weren't cool enough, it's interactive for the user—you pass Excel the data and get the PivotTable set up, and
your users can slice and dice the data to their hearts’ content. Less code for the developer, more features for
the user—it doesn’t get any better than this!

PivotTables are so cool that VFP 6.0 has a PivotTable Wizard—but it requires Excel and Microsoft Query to
be installed before it can be used. We've found Query to be temperamental in terms of programmatically
ensuring that it is properly installed and configured on a user’'s machine; if your application can't verify that
Query’s going to work, your users can (and will) get nasty error messages, prompting them to make irate
tech support calls. We can solve this whole problem, though, by putting the data into Excel directly from
FoxPro using Automation rather than Query, then accessing Excel directly to create and manipulate a
PivotTable.

@ﬂo&iﬁ
WLk
D\ WS

v alﬂﬂ@ Excel has several sources of data for PivotTables: a range of data in a
worksheet, several ranges that the PivotTable will consolidate, another PivotTable report, or
an external data source. The external data source is accessed through On-Line Analytical
Processing (OLAP), ODBC, ADO, or DAO technologies, depending on the data source. Since
it's so easy to COPY TO ... TYPE XL5 and automate Excel to open the file generated by
FoxPro as a worksheet, the only data source for PivotTables that we’'ll cover is the range in a
worksheet. We won't attempt to cover the complexities of automating OLAP, ODBC, ADO, or
DAO through Excel. While it is technically feasible to use these approaches (we have
successfully implemented some of these technologies in our own apps), detailing the
intricacies of these complex technologies is really a separate subject from the focus of this
book.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



PivotTable data

The first step in defining a PivotTable is to set up the data in a worksheet using a row and column format that
Excel calls a list or database. Have no fear; it looks just like what FoxPro developers call a database, too.
There’s only one difference: the first row of a list is reserved for column labels, which are used to label the
PivotTable, and is used like a field name for accessing the data in the columns.

When programming a cross-tab report, a list of the unique data items in one field becomes the labels for the
columns, and a list of the unique data items in another field becomes the labels for the rows. The intersection
of these rows and columns reflects a summary of the numeric data, such as a total, average, count, or some
other numeric function. Just like the cross-tab report, a PivotTable uses one field each for the RowFields and
ColumnFields properties and summarizes the numeric data contained in the DataFields property. We'll come
back to the properties later; right now, we need to set up the data. So we know we need at least three
columns (and later we’ll see that we can use many more).

The TasTrade database is perfect for illustrating PivotTables. We'll illustrate the PivotTable examples with a
table containing a list of all the order line items. We could almost take the Order_Line_ltems table as is,
except that it contains a lot of codes, for which we’d like the text descriptions. Listing 1 (XLData.PRG in the

Developer Download files available at www.hentzenwerke.con]) shows how to create the cursor, copy it to an
XLS file, open the XLS file in Excel, then fit the columns so we can read it better. Figure 1 shows a portion of
the resulting worksheet.

Listing 1. Creating an example cursor to use for PivotTables.

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make oExcel and oBook
* available after this program executes.

PUBLIC oExcel, oBook

OPEN DATABASE (_SAMPLES + "\TasTrade\Data\TasTrade")
SELECT Customer.Company_Name, ;
Customer.Country, ;

CMONTH(Orders.Order_Date) AS Order_Month, ;
YEAR(Orders.Order_Date) AS Order_Year, ;
Category.Category_Name,;

Products.Product_Name, ;

Order_Line_ltems.Quantity, ;

Order_Line_ltems.Unit_Price * Order_Line_ltems.Quantity ;


http://www.hentzenwerke.com/

AS Total_Price;

FROM Orders, Order_Line_Items, Customer, Products, Category ;

WHERE Order_Line_Items.Order_ID = Orders.Order_ID ;
AND Orders.Customer_ID = Customer.Customer_ID ;
AND Order_Line_Items.Product_ID = Products.Product_ID ;
AND Products.Category_ID = Category.Category_ID;
INTO CURSOR Pivot

LastLine = ALLTRIM(STR(_TALLY + 1))

COPY TO (CURDIR() + "Pivot") TYPE XL5

oBook = GETOBJECT(CURDIR() + "Pivot.XLS")

* Open the workbook, and best-fit all the columns.
WITH oBook

oExcel = .Application

Application.Visible = .T.

Windows[1].Activate()

.Sheets[1].Range("Al:H" + LastLine).Columns.AutoFit()

ENDWITH
A | B [ C I E | F 5 [ H |
| 1 [company_narne country order_monttorder_yearcategory_name product_name guantity [total_price
| 2 |B's Bewerages UK LEY 1992 Seafood Ikura il 1465
| 3 |Cactus Comidas para llevar Argentina  May 1992 Seafood Boston Crab Meat 998 18363.2
| 4 |Cactus Comidas para llevar Argentina  hay 1992 Dairy Products Raclette Courdavault 24 9263
| & |Cactus Comidas para llevar Argentina  hay 1992 Grains/Cereals Wimmers gute Semmelknddel 10 3325
| B |Folkochfa HB Sweden LEW 1992 Dairy Products | Gorgonzola Telino 14 120
| 7 |Folkochfs HB Sweden e 1992 Beverages Chartreuse verte 19 238.4
| 8 |Folkochfa HB Sweden LEW 1992 Dairy Products Flotemysost 148 2148
| 8 |Simons bistro Denmark  hiay 19492 Seafood Carnarion Tigers 12 524.4
| 10 |Vaffeljernet Denmark  May 1992 MeattPoultry  Thiringer Rosthratwurst 34a 0o
| 11 |Vaffeljernet Denmark | Way 1992 Condiments  Vegie-spread f 1842
| 12 [wiartian Herkku Finland LEY 19492 Confections  Tarte au sucre 10 340
| 13 |Franchi S.p.A. [taly LEW 1992 Seafood Kanhu 10 42
| 14 [Franchi 5.p.A. [taky LEW 1992 Confections  Yalkoinen suklaa 4 452
| 16 |Margenstern Gesundkost Germany  May 1992 Dairy Products Queso Manchego La Pastora 4 104
| 16 |Morgenstern Gesundkost Germany  hiay 1992 meatPoultry  Perth Pasties 30 GaY
| 17 [Morgenstern Gesundkost Garrmarny  May 1892 Condiments  Vegie-spraad 20 B14
| 18 |Furia Bacalhau e Frutos do Mar Portugal  hay 19492 Produce Tofu 20 324
| 19 |Furia Bacalhau & Frutos do Mar Paortugal LEW 1992 Confections Sir Rodney's Scanes 14 1048
| 20 |Furia Bacalhau & Frutos do Mar Portugal  hiay 19492 Produce Manjirmup Dried Apples 20 742
| 21 |Seven Seas Imports UK ILEW 1992 GrainsiCergals Tunnbrad 70 420
| 22 |Seven Seas Imports UK LEY 19492 Produce Wanjirmup Dried Apples 10 370
| 23 |Simons bistro Denmark  May 1992 Beverages Ipoh Coffer 10 320
| 24 |Simons bistro Denmark by 1992 Dairy Products Floterysost 10 1450
| 26 [Wiellington Importadora Brazil LEW 1992 Seafood Carnarvon Tigers 12 h24.4
| 26 [Wellington Importadora Brazil e 1992 Confections  Teatime Chocolate Biscuits 14 =1
27 Wiellington Importadora Brazil LEW 1992 Seafood Inlagd Sill 10 133

Figure 1. The sample worksheet for the PivotTable examples. This worksheet contains 2,822 rows.
Most columns have repeating data, and when used as a row or column field, the unique values within

the column become the headings.

This worksheet has 2,822 rows, and plenty of fields to use as PivotTable rows and columns. A gentle



reminder here: unlike FoxPro's tables with an unlimited number of records, Excel has a limit of 65,536 rows.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Creating a PivotTable

Once you have a list in a worksheet, you can create a PivotTable. To do so, use the Worksheet's
PivotTableWizard method. The PivotTableWizard method is extremely flexible (and therefore complex).
However, to use data contained on a worksheet, only the first six parameters are necessary. The
PivotTableWizard’s pertinent syntax is as follows:

oSheet.PivotTableWizard( nSourceType, oSourceData, oTableDestination,
cTableName, IRowGrandTotals,

IColumnGrandTotals )

nSourceType Numeric A numeric value that represents the kind of source data. The constant we’ll
discuss here is xIDatabase (1). Other constants are xIConsolidation (3),
xIPivotTable (-4148), and xIExternal (2).

oSourceData Object A Range object that contains the data for the PivotTable.

oTableDestination Object A Range object that contains the location of the PivotTable (you can specify
just the upper-left cell; you don't have to figure out the size).

cTableName Character The name of the table.

IRowGrandTotals Logical Indicates whether grand totals for rows should be included (most useful only if
multiple row fields are used).

IColumnGrandTotals Logical Indicates whether grand totals for columns should be included (most useful
only if multiple column fields are used).

Here’s the source to add a PivotTable to the preceding spreadsheet, beginning at cell J1:

#DEFINE xIDatabase 1

oSourceData = oBook.Sheets[1].Range("A1:H2822")

oDestination = oBook.Sheets[1].Range("J1")

oPivotTable = oBook.Sheets[1].PivotTableWizard(xIDatabase, oSourceData, ;

oDestination, "SalesAnalysis", .T., .T.)

After the PivotTableWizard method is run, the range J1:K2 is highlighted by bold, blue borders. What has
been accomplished is that a PivotTable object has been created. Unlike most Wizard methods that produce a

finished object, the PivotTableWizard method generates a blank object, which needs more programming to
finish it.



The PivotTableWizard doesn’t contain parameters for populating the PivotFields collection, which is the
collection of all the fields used in the PivotTable. That's okay by us, as we can’t imagine how complex the
syntax would be! Use the AddFields method of the PivotTable object, which has the following syntax:

oPivotTable.AddFields( cRowField, cColumnField, cPageField, IAddFields )

cRowField Character The name of the field used to generate the rows of the PivotTable. The field name is a
character string that matches the column label in the first row of the list. (Optional)

cColumnField Character The name of the field used to generate the columns of the PivotTable. (Optional)

cPageField Character The name of the field used to generate the pages of the PivotTable. Think of pages as
a filtered view rather than a tabbed page. Pages are selected from a drop-down list at
the top of the PivotTable. (Optional)

IAddFields Logical Indicates whether to add the fields to any existing fields (.T.) or replace the fields that
are contained in the PivotTable (.F.). The default is false. (Optional)

As an example, set the rows to the country field and the columns to the category name with the following
code:

oPivotTable.AddFields("country”, "category_name")

This command sets the RowField and ColumnField to the country and category_name fields. A data field to
summarize has not been set. This is accomplished by accessing the appropriate PivotField object directly.
The PivotFields collection is generated when the PivotTableWizard method is run, and it contains one object
for each field. The PivotTable’s AddFields method uses the listed field names, and sets certain properties of
the appropriate PivotField objects to indicate that the fields are used for RowFields or ColumnFields. One of
the more than 50 properties for a PivotField object is the Orientation property, which determines the location
of the field within the PivotTable. Set the Orientation property to one of the following values: xIColumnField
(2), xIDataField (4), xIHidden (0), xIPageField (3), or xIRowField (1). To summarize the quantity field, give the
following commands:

#DEFINE xIDataField 4

oPivotTable.PivotFields["Quantity"].Orientation = x|DataField

The resulting PivotTable is shown in Figure 2. It only took about a second and a half to create it on Della’s
test machine (after the data was built). Note that the row and column field labels are dropdowns. This
interactive feature lets your users select which columns or rows to display. For example, they can choose
only the Beverages and Confections categories for USA, Canada, and Mexico. To do so, the user clicks on
the dropdown and then checks those items in the list he’'d like to see.

You can accomplish this in code, by manipulating the PivotField object’s Pivotitems collection. Each
PivotField has a collection of Pivotltems, each correlating to a row or column. The heading labels are used as
the index name. One of the 19 properties of the Pivotltem object is the Visible property. Setting Visible to .F.



removes it from the view. The following code leaves visible only the Beverages and Confections columns for

North American countries.

WITH oPivotTable.PivotFields("category_name")

.Pivotltems("Condiments").Visible = .F.

.Pivotltems("Dairy Products").Visible = .F.

.Pivotltems("Grains/Cereals").Visible = .F.

.Pivotitems("Meat/Poultry").Visible = .F.

.Pivotltems("Produce").Visible
.Pivotltems("Seafood").Visible

ENDWITH

.F.

.F.

WITH oPivotTable.PivotFields("country")

.Pivotltems("Argentina").Visible = .F.

.Pivotitems("Austria").Visible = .F.

.Pivotltems("Belgium").Visible = .F.

.Pivotltems("Brazil").Visible = .F.

.Pivotltems("Denmark").Visible = .F.

.Pivotltems("Finland").Visible = .F.

.Pivotltems("France").Visible = .F.

.Pivotitems("Germany").Visible = .F.

.Pivotitems("Ireland").Visible = .F.

.Pivotltems("Italy").Visible = .F.

.Pivotltems("Norway").Visible = .F.

.Pivotltems("Poland").Visible = .F.

.Pivotltems("Portugal").Visible = .F.

.Pivotitems("Spain").Visible = .F.

.Pivotltems("Sweden").Visible = .F.

.Pivotltems("Switzerland").Visible = .F.

.Pivotlitems("UK").Visible = .F.

.Pivotltems("Venezuela").Visible = .F.

ENDWITH
J K L [ m ] M | o | F | Q R 5
1 |Sum of quantity |category -
2 |country = |Beverages |Condiments| Confections Dairy Produd Grains/Cere: Meat/Poultry Produce Seafood Srand Total
| 3 |Argenting 118 g0 a7 7a B4 33 1052 1452
4 |Austria 1055 1010 B00 807 B55 362 473 876 5541




| 3 |Belgium 423 206 358 411 178 g3 204 227 2086
| B |Brazil 1282 770 /BB 505 5 285 194 724 4843
| ¢ |Canada 364 a06 550 373 311 ey 154 276 2785
| 8 |Denmark 339 261 22 99 20 240 161 294 1645
| 9 |Finland 200 84 159 204 140 116 93 143 1149
|10 |France 808 374 a30 453 3k 312 351 B35 4222
| 11 |Germany 1632 1380 1854 1495 gs0 727 72 1855 10815
| 12 |Ireland 37 216 19 459 172 316 161 787 2817
| 13 |ltaly 247 12 174 174 158 72 105 166 1208
| 14 |Mexica 1002853 83 146 297 93 101 126 156 101292
| 15 |Marway 54 s 26 34 a] 18 58 237
| 16 |Foland B5 42 27 35 3 28 14 215
|17 |Portugal 145 189 112 19 104 70 73 44 758
| 18 |Spain 226 122 166 a3 187 129 a0 277 1210
| 19 | Sweden 743 274 408 288 235 304 292 B11 3155
| 20 | Switzerland 314 160 176 162 232 183 161 374 1763
| 21 UK B2/ 431 431 B53 445 324 318 E00 3829
| 22 | LISA, 2072 1206 1837 1657 9593 1453 783 1885 11862

23 Menezuela 71 271 721 495 269 302 264 961 4064

24 |Grand Total 112316 7785 9774 8785 5799 5624 4820 12053 166959

Figure 2. A simple PivotTable. In just a few lines of code, a simple cross-tab has been generated. Note the
dropdowns for the Country and Category Name—your users can have a great time customizing the data.

As you can see, you need to address every item individually, which means you need to know your data well.

But because the resulting PivotTable is completely interactive, perhaps your users may want to manipulate

the fields in Excel, rather than having you write a major front end to the PivotTable.

Using a FOR EACH loop to spin through all the Pivotltems can make life a bit easier. Check the value of the

Pivotitem’s Name field to determine whether to set the Visible property. The following code produces the

same results as the preceding sample code:

FOR EACH oltem IN oPivotTable.PivotFields("category_name").Pivotltems

IF NOT oltem.Name $ ("Beverages Confections")

oltem.Visible = .F.

ENDIF

ENDFOR

FOR EACH oltem IN oPivotTable.PivotFields("country").Pivotltems

IF NOT oltem.Name $ ("Canada Mexico USA")

oltem.Visible = .F.

ENDIF

ENDFOR

Let’s get a little more complicated with the PivotTable. To make this PivotTable summarize the Total_Price

field, use the following:

#DEFINE xIDataField 4

oPivotTable.PivotFields["Total_Price"].Orientation = x|DataField

Figure 3 shows the results (now you can see why we removed a lot of the rows and columns...so we can




show a reasonably sized example!). In fact, you can have any number of DataFields. Setting the Orientation
property for a PivotField does not affect any other PivotField’s status.

J | K L M | M
category name -
country ~|Data ~ |Beverages Caonfections Grand Total
Canada Sum of quantity 64 A80 H44
=um of total price 13829.8 133161 2714589
hlexico Surm of guantity 100233 146 100434
=um of total price 19079757 228295 1910255 65
LISA, =um of quantity 2072 1837 3909
Sum of tatal_price 7a447 15 4267475 1181169
Total Sum of quantity 102724 2R3 105287
Total Sum of total_price 1957247 .65 50273.8] 2055521.45

Figure 3. Things get a little more complex. We’ve turned Visible off for a number of rows and columns and
added a second DataField.

Those Total_Price values need a little formatting to look like currency. You can set the formatting for an
entire PivotField using the PivotField object’'s NumberFormat property (this is covered in Chapter 7, "Excel
Basics"—the codes you need are listed in Table 2 in that chapter). Changing the numeric format to currency
works like this:

oPivotTable.PivotFields["Sum of Total_Price"].NumberFormat = " $### ##H# ##H# #0"

Note that the field name changes for a summary value. This is because you might have two different
calculations for the same field. For example, we can add an average total price field. First we’ll set the
orientation of the Total_Price field again—this adds a second instance of a summary data field. Its default
name is "Sum of Total_Price2." Changing the name also changes the display label, so that should be the
next step, then actually setting the function is the last step. Set the Function property to one of the constants
shown in Table 1.

Table 1. Function property values. The Function property controls how the DataField is calculated.

Constant Value Constant Value
xlAverage -4106 xIStDev -4155
xICount -4112 xIStDevP -4156
xICountNums -4113 XISum -4157
xIMax -4136 xlVar -4164




xIMin -4139 xlvVarP -4165

xIProduct -4149

The code to add a third summary field and set it to the average of the Total_Price field is as follows:

#DEFINE xIDataField 4

#DEFINE xIAverage -4106

* Add another Total_Price summary field

oPivotTable.PivotFields["Total_Price"].Orientation = x|DataField

* Change its name

oPivotTable.PivotFields["Sum of Total_Price2"].Name ="Average Total Sale"

* Set the formula to average the data, rather than sum the data
oPivotTable.PivotFields["Average Total Sale"].Function = x|Average
* Format it so the numbers look like currency

oPivotTable.PivotFields["Average Total Sale"].NumberFormat = " $###, #HH, #HH . #0"

Now, to really see the power of PivotTables, you can add a second RowField. What's the purpose of a
second field? To see each country’s sales broken down by year. A picture’s worth a thousand words here;
the next line of code adds the Order_Year field as another RowField and combines with the previous
examples to produce Figure 4.

#DEFINE xIRowField 1

oPivotTable.PivotFields["Order_Year"].Orientation = xIRowField

We've just barely scratched the surface of PivotTables here. PivotTables are so complex, even Excel's VBA
Help file has this remark in the "PivotTable Object" topic: "Because PivotTable report programming can be
complex, it's generally easiest to record PivotTable report actions and then revise the recorded code." We
concur; this is the only way to dive further into the complexities of this extremely rich feature of Excel.

| category_nam - |

| country [ Dlata x |order_yea = | Beverages Confections Grand Total
Canada Sum of quantity 13452 E1 a6 146
1333 213 201 420
1934 26 171 20
1335 43 123 172
Sum of total_pric [EEH FRE2.10 $1.871.0 243310
1392 F12421.20 F4E2250[ 1711470
1334 F210.0 $2.24330 $2453.30
1335 FEZE.50 $4.515.20 £5,144.50
Byerage Total S4 19492 F187.37 FEZAET $4058.52
1932 207187 $F290.29 fan0.a2
1944 rnn 3N 4T +24R 33



1935 $203.83 £1,506.10 $357 47

Canada Sum of gquantity 264 aan 44
Canada Sum of tatal price F13,829.80 1331610 2714530
Canada Average Total Sale £921.99 $532.64 $ETE.6E
Fexico Sum of quantity 1952 27 27
1993 EE 40 106

1994 182 [ 264

1945 40 7 47

19435 100000 100000

Sum of total_pric 13452 $216.0 F216.0

1893 F7a6.20 HE0.0 $1,356.20

15934 FE6,729.50 144255 F8.172.08

1945 450.0 64 40 $514.40

19495 $1,300,000.0 $1,300,000.0

Average Total Sa 19452 #1020 £102.0

1933 £159.24 2200 £193.74

1934 FE72.95 F360.64 F5E3.TE

1935 F225.0 64 40 17147

1935 $1,900,000.0 $1,300,000.0

Mezico Sum of quantity 100238 146 100434
Pegico Sum of total price $1,907 37570 $2,282.95) $1,910, 25565
Plegico Auerage Total Sale F105,933.65 $2573 .65 £70,750.32
LSA, Sum of quantity 1992 11 1480 331
1933 E15 30 925

1994 736 233 1635

1935 470 438 a0g

Sum of total_pric 1932 70700 $2,813.20 $9,889.20

1943 £14,599.40 $2,852.60 F23452.0

1994 $£31,604.75 #21,474 .55 £53,079.20

1935 F22,168.0 £3.,522.40 331,696 40

Byerage Total 54 [EEE $1,178.33 +281.92 $618.08

1933 F511.08 F653.29 $E59.TE

1934 $329.55 FE31.60 #7E0.58

1935 F1.477.87 62060 £1.092.98

IS4 Sum of quantity 2072 1837 309
154, Sum of tatal price F75,442.15 F4267475)  F113,116.90
IS8, Average Total Sale $1,033.45 $h7EEY F803 .52
Tokal Sum of quantity 102724 2563 105237
Total Sum of batal_price 1,997,247 65 $558,273.80( $£2055521.45
Total Average Tokal Sale 18,841,368 Fh3a6T F3606.24

Figure 4. A complex PivotTable, with three DataFields and two RowFields. This only scratches the surface of
what PivotTables can do.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



What-if analysis using data tables

The easiest form of what-if analysis is to add some data cells to your spreadsheet along with a formula that
uses those data cells, and then change the value of the data cells to see how the formula changes. This
simple analysis feature keeps many Excel users happy.

The drawback to this approach is that you see only one result at a time. Sometimes it would be nice to see
the results of a series of values for one of the data cells all at the same time. For example, it's easier to figure
out how much to sell an item for if you can see the retail prices for a variety of markup values. You might be
looking at a widget that has a cost of $5.96. You'd like to see the sale price for this item with markups of 15,
20, 25, 30, and 35 percent. Using a data table, you can develop a chart like the one shown in Figure 5. A
data table is built from a range containing a formula and the values to plug into the formula in a column (or

row).
A B | ¢ ]
1 |Widget Cost 596
2
3 015 o565
4 0.2 19
] 0.25 B .45
b 0.3 .75
7 0.35 F5.05
!

Figure 5. A simple data table. Data tables show multiple values of one (or two) of the cells used in a
formula. In this case, the formula, =C1 * (1 + A3), is stored in cell B3. Successive lines in the table
replace cell A3 in the formula with the value in column A.

Let's look at how this table is set up. First, we have the Widget Cost in cell C1. The markup values to analyze
are in A3:A7. The formula to use is "=C1 * (1 + A3)", and it's in cell B3. Here’s the code to get the data set up.
If you're following along in FoxPro with the book, be sure to close the last spreadsheet and start a new sheet

with the first three lines of the code:

RELEASE oPivotTable, oBook, oSourceData, oDestination
oBook = oExcel.Workbooks.Add

oSheet = oBook.Sheets[1]

* Set up and format the Widget Cost row
oSheet.Range("Al") = "Widget Cost"

oSheet.Range("C1") =5.96
oSheet.Range("C1").NumberFormat = "$#,###.#0"

* Add the markup values to analyze

oSheet.Range("A3") =".15"



oSheet.Range("A4") =".20"

oSheet.Range("A5") =".25"

oSheet.Range("A6") =".30"

oSheet.Range("A7") =".35"

* Put in the formula, and format the cells (including the data table

* results) to look like currency.

oSheet.Range("B3") ="=C1 * (1 + A3)"

oSheet.Range("B3:B7").NumberFormat = " $# ###.#0"

One way to fill in the rest of the values is to slightly modify this formula to "=$C$1 * (1 + A3)" and copy it
down the rest of the cells. Better yet, we could use one line to set up a data table. Use the Table method of
the Range object. The layout of the data has been carefully set up to ensure that the data table will work. The
formula is one column to the right of and one row up from the topmost value in the column of values to
substitute into the formula. The value that we’re substituting, in A3, can be anywhere in the workbook.

However, because it's one of the values under consideration, it makes sense to make it look like the first
value in the table—this spot in the table could be blank if the value was somewhere else.

The Table method works on a range, which is the rectangular area including the formula and the values;
there should be at least two rows and two columns. In the case of this example, the range is A3:B7. The
method takes two parameters. Each is a range found in the formula—the first is the range to replace with the
values found in the rows in the data table range, and the second is the range to replace with the values found
in the columns of the data table. In this example, only columns are used. The following line produces the data
table shown in Figure 5:

oSheet.Range("A3:B7").Table("",0Sheet.Range("A3"))

So why set up a data table when you can copy the formula almost as easily? There are quite a number of
reasons. Perhaps the nicest reason is that you can change the formula in the data table (cell B3, in our
example), and the rest of the table will change. If you examine the contents of cells B4:B7, you see that they
contain the value {=TABLE(,A3)}. This means that the value of each cell is calculated from the formula at the
top of the table (or the leftmost value, if using rows). No need to copy the formula to the rest of the cells if you
want to change the formula.

Another reason that data tables are useful is that you can include more formulae in successive columns of
the table. For example, say you'd also like to compare the Wadget costs at the same markups. Add the
Wadget data to the first row, and add the Wadget formula to C3, which is next to the Widget formula in B3:

* Set up and format the Wadget Cost row

oSheet.Range("E1") = "Wadget Cost"

oSheet.Range("G1") = 4.23

oSheet.Range("G1").NumberFormat = "$# ###.#0"

* Put in the formula, and format the cells (including the data table

* results) to look like currency.



oSheet.Range("C3") ="=G1 * (1 + A3)"

oSheet.Range("C3:C7").NumberFormat = " $# ###.#0"

Now you're ready to add the data table. Expand the range to include the columns for the values, the Widget
formula, and the Wadget formula.

oSheet.Range("A3:C7").Table("",0Sheet.Range("A3"))

Figure 6 shows the results. No extra effort is expended to copy formulae, and you can still change either (or
both) formulae and affect the respective columns in the table.

A B | ¢ | o | E | F | & |
1 [Wyidget Cost $5.96 WWadget Cost 423
2
3 0.15 BE.85 $4.56
4 a2 5715 $5.05
5 0.25 B .45 $0.29
B 03 775 $5.50
! 0.35 F5.05 5,71

Figure 6. A data table with two calculated columns. Column B shows the Widgets and column C
shows the Wadgets, with costs calculated from column A. You can have many formulae in row 3 to
include in the data table—just include the columns in the Range object.

Yet another way to construct a data table is to allow changes in two cells in the formula. In this case, the
values for the first cell go in the first column of the table, and the values for the second cell go in the first row
of the table (starting in column 2). The cell at the first row and column contains the formula. Listing 2

(XLData2.PRG in the Developer Download files available at www.hentzenwerke.cony) shows the code to set

up the data table shown in Figure 7. This data table depicts the cost to purchase up to four Widgets and
includes the shipping cost (which is a flat cost, regardless of the number of Widgets purchased). The
Quantity variable is placed in a column, and the Shipping Costs variable is placed in a row.

Listing 2. Setting up a data table with two variables.

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make oExcel and oBook
*and oSheet available after this program executes.
PUBLIC oExcel, oBook, oSheet

#DEFINE xIEdgeBottom 9

#DEFINE xIEdgeRight 10

#DEFINE xIContinuous 1


http://www.hentzenwerke.com/

oExcel = CREATEOBJECT("Excel.Application™)
oExcel.Visible = .T.

oBook = oExcel.Workbooks.Add()

oSheet = oBook.Sheets[1]

* Set up the variables for the formula
oSheet.Range("Al").Value = "Widget Cost"
oSheet.Range("C1").Value = 7.00
oSheet.Range("C1").NumberFormat = " $###.00"
oSheet.Range("C1").Name = "Cost"
oSheet.Range("A2").Value = "Widget Quantity"
oSheet.Range("C2").Value =1
oSheet.Range("C2").Name = "Quantity"
oSheet.Range("A3").Value = "Shipping"
oSheet.Range("C3").Value = 2.00
oSheet.Range("C3").NumberFormat = " $###.00"
oSheet.Range("C3").Name = "Shipping"

* Set up the row headings
oSheet.Range("C5").Value = "Shipping Costs"
oSheet.Range("C6").Value = "Ground"
oSheet.Range("D6").Value = "Overnight"
oSheet.Range("E6").Value = "2-Day"

* Set up the row values
oSheet.Range("C7").Value = 2
oSheet.Range("D7").Value = 16
oSheet.Range("E7").Value = 8

* Set up the column headings
oSheet.Range("A8").Value = "Widget"
oSheet.Range("A9").Value = "Quantity"

* Set up the column values
oSheet.Range("'B8").Value =1
oSheet.Range("B9").Value = 2

oSheet.Range("B10").Value = 3



oSheet.Range("B11").Value = 4

* Add the formula

oSheet.Range("B7").Value = "=(Cost * Quantity) + Shipping"

* Create the table

oSheet.Range("B7:E11").Table(oSheet.Range("Shipping"), oSheet.Range(" Cost"))
* Format the cells for currency

oSheet.Range("C7:E11").NumberFormat = " $###.00"

* Put in the cell borders for clarity
oSheet.Range("A7:E7").Borders(xIEdgeBottom).LineStyle = xIContinuous

oSheet.Range("B5:B11").Borders(xIEdgeRight).LineStyle = xIContinuous

Try changing the values in the formula cells—the widget cost (C1), the shipping costs (C7:E7), and the
widget quantity (B8:B11). You can also change the formula in B7. Instead of a flat shipping cost, you could

change it to a per-item shipping cost by changing the formula to "=(Cost * Quantity) + (Quantity * Shipping).
Watch how the appropriate parts of the table change without having to copy formulae. It’s pretty cool.

A | B | ¢ | b | E |
1 |WWidget Cost F7.00
2 |Widget Cluantity 1
3 |[Shipping $2.00
4
T =hipping Costs
b Ground  Owernight 2-Day
7 §.00 $2.00 $16.00 $5.00
8 |YWidyet 1 $9.00 $23.00 $15.00
89 | Quantity 2 $16.00 $30.00 $22.00
10 3 $23.00 ¥37.00 $25.00
11 4 $30.00 w4400 bab.00

Figure 7. A two-variable data table. The formula is "=(Cost * Quantity) + Shipping" (without range
names, it's "=(C1*C2) + C3)"), and it's contained in cell B7. The table range is B7:E11. The values in
the column substitute for C2 in the formula, while the values in the row substitute for C3. If you change
the widget cost (C1), the shipping costs (C7:E7), or the quantities (B8:B11), the entire table is
recalculated to reflect the values.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Goal Seek

Goal Seek is a feature that allows you to set up a formula and specify the result and all but one of the values
in the formula, then have Excel solve for that value. While our simple example can be solved entirely with
FoxPro functions, it illustrates how the Goal Seek function works. There are many kinds of problems that can
use Goal Seek; the most popular example is the PMT() function, which takes three parameters (loan amount,
term in months, and the interest rate) and determines the payment. Most of us, when applying for a loan,
know the loan amount, the desired term, and a desired payment. Goal Seek allows us to provide the solution
to the PMT function, and then find the value of one of the parameters—the interest rate—to achieve the
desired payment.

We need a simple spreadsheet with three data cells, and another cell for the payment function. Let's assume
our mortgage is a $150,000, 30-year loan (360 months), and we'd like a payment of $975. All we need to find
is an interest rate. First, we set up the spreadsheet with the three values (use any interest rate you want) to
set up the payment, like this:

oSheet.Range("Al").Value = "Amount"
oSheet.Range("B1").Value = 150000
oSheet.Range("B1").NumberFormat = " $### ##"
oSheet.Range("A2").Value = "Term"
oSheet.Range("B2").Value = 360
oSheet.Range('C2").Value = "months"
oSheet.Range("A3").Value = "Rate"
oSheet.Range("B3").Value = .075
oSheet.Range("B3").NumberFormat = "0.00%"
oSheet.Range("A4").Value = "Payment"
oSheet.Range("B4").Value = "=PMT(B3/12, B2, B1)"

oSheet.Range("B4").NumberFormat = " $### ###"

The payment shown in cell B4 is $1,048.82 (well, technically, it's -1,048.82; it's a negative number because
you owe it, so be sure to set your goal to a negative number). To get it to $975, use the GoalSeek method to
solve for the interest rate. GoalSeek is a method of the Range object. The specified range is the cell
containing the goal that is to be sought. The method takes two parameters: the first is the goal, or the answer
for the range, and the second is the range (a cell) to change in order to solve the problem. To get the interest
rate, give the following:

oSheet.Range("B4").GoalSeek(-975, oSheet.Range("B3"))

And, voila, you have the result: 6.77% (see Figure 8). Did you notice that the numbers flashed and
recalculated? That's because Excel uses an iterative process: it changes the value of the variable’s cell, then
checks the result. If the result is incorrect, it gets a new value for the variable and repeats the process.



Generally, this runs very quickly, although complex equations or an initial value that’s drastically different

from the result can slow it down. Now comes the hard part—trying to find a bank that will lend you the money
at 6.77% interest.

A | B e
1 |Amount $150 000
2 | Term ab0 months
3 |Rate B.77%
4 |Payment ($975.00)
5

Figure 8. The results of the GoalSeek method. The desired payment is $975, and the amount and
term are fixed; GoalSeek found the necessary interest rate.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Protection

When you're creating spreadsheets for other users to use, you don’t want them to inadvertently delete
formulae and data that you've gone to great lengths to place into the worksheet. Excel has a number of ways
to protect the data:

® Require passwords to open, edit, close, and/or save a workbook;

® Recommend that the workbook be opened as "read-only";

® Hide a cell's formula, which leaves the cell visible but hides the formula on the formula bar;
® | ock a workbook, worksheet, or cells, which leaves them visible but unchangeable.

To lock or hide cells, first set the cells’ Hidden and/or Locked properties as needed, and then turn on the
Worksheet's protection. If you want to protect all cells on the worksheet, do not specify Hidden or Locked; just
set the worksheet'’s protection.

Protecting a cell

All cells are locked and visible by default. However, locking a cell only matters when a worksheet is
protected, and worksheets are not protected by default. Essentially, you need to unlock the cells that the user
needs to change. The Range object has a Locked property that defaults to .T. To unlock a range, issue a
command like this:

oSheet.Range("A1l:F30").Locked = .F.

You hide a formula by using the FormulaHidden property (the formula’s result is still displayed in the cell, but
the formula itself is not displayed):

oSheet.Range("Al:F30").FormulaHidden = .T.

If the Worksheet is already locked, an error is generated stating that Excel is unable to set the Locked (or
FormulaHidden) property. Be sure that you are protecting cells in an unlocked worksheet. The worksheet has
several logical properties that you can check: ProtectContents and ProtectData are two properties that check
for data; others check for protection on different kinds of objects.

Protecting a worksheet

Once you have the Locked and FormulaHidden properties set the way you want them, you can protect the
worksheet with the Worksheet object’'s Protect method. It takes several parameters. The firstis a
case-sensitive character string to use as the worksheet’s password. The remaining parameters are logical
values pertaining to what is to be protected. In order, they are: drawing objects, contents (all the cells of a
worksheet), scenarios (an analytical tool), and user interface (if true, it doesn't protect the macros).

To set the protection of just the worksheet'’s cells, pass .T. as the third parameter:

oSheet.Protect(,,.T.)



To protect the worksheet with a password, pass the password string as the first parameter:
oSheet.Protect("ThePassword", , .T.)

Warning: if you forget the password of a locked document, there is no way to determine the password (with
Excel or Automation) to unlock the worksheet. You have to key in the exact, case-sensitive password, or you
can't unlock the worksheet. Period. Use passwords at your own risk.

To unlock the worksheet, pass .F. as the third parameter. If a password was used, you must give the exact,
case-sensitive string. If you do not pass a password string, Excel will prompt the user for the password; be
sure your application can handle this wait state.

Protecting a workbook

Workbooks can also be protected. The structure of a workbook, meaning the position of the sheets within the
workbook, can be protected, as can the windows of the workbook. In addition, the workbook can have its own
password. The Workbook’s Protect method takes three parameters: the first is the case-sensitive password
string, the second is a logical indicator of whether to protect the structure of the workbook, and the third is a
logical indicator of whether to protect the workbook’s window positions. So either of these two syntaxes will
work:

oBook.Protect("ThePassword", .T., .T.)

oBook.Protect(,.T., .T.)

Again, the warning: if you forget the password of a locked workbook, there is no way to determine the
password (with Excel or Automation) to unlock the workbook. You have to key in the exact, case-sensitive
password, or you can’t unlock the workbook. Period. Use passwords at your own risk.

The procedure for unlocking a workbook is the same as that for unlocking a worksheet.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Templates

Excel's templates offer a way to provide standard formatting and styles for documents. If you've been reading
this book sequentially, you've already read about Word's templates in Chapter 5, "Intermediate Word," and
how they let you specify common elements like the page setup, headers and footers, and even boilerplate
text so that every new document contains the same things. Excel offers the same deal.

Every spreadsheet you create in Excel is based on a template—a file with an extension of XLT. If you don’t
specify which template to use, the default template is used. By default, this is an empty document containing
a standard set of styles. It's installed when Excel is installed, along with a number of other templates. To see
the available templates, choose File|New from the menu, just as you do in Word.

What goes into a template?

A template can contain anything that’s in a spreadsheet, from the simplest spreadsheet to a complex analysis
report that includes many formulae, PivotTables, and charts just waiting for a few pertinent data items to be
added. Templates can also contain macros, including one that runs automatically when you create a
worksheet based on the template. Just like templates in Word, Excel templates can be as much or as little as
you choose to make of them.

Finding templates

Templates are stored in several different places. The templates installed by Excel 2000 are put into a
Templates subdirectory of the Office installation, and then they go down one level into a subdirectory named
with the numeric code for the language you're using (1033 for American English). In addition, each user can
set a user template directory and a workgroup template directory.

Detailed information about how Excel stores user templates is contained in the "Finding templates" section in
Chapter 5. While it is a Word chapter, this is something that Office has standardized.

One thing that is slightly different is how to find the templates path. Two properties are available from the
Application object: TemplatesPath and NetworkTemplatesPath. TemplatesPath is the path to your local
machine’s templates, and the NetworkTemplatesPath lets you point to another set of templates on the
network.

Using templates

You can use templates in several ways when automating Excel. The simplest is to create new documents
based on existing templates. To do so, specify a template, including the path, as the first parameter of the
Workbooks.Add method. No templates are installed with the default installation of Office/Excel, so don’t
expect this template name to work:

oBook = oExcel.Workbooks.Add( oExcel.TemplatesPath + "MyTemplate. XLT" )

Once you create a new workbook based on a template, you can treat that workbook just like any other new



workbook. However, you have the advantage that it contains whatever special text, formatting, and styles
were stored in the template.

Creating templates

You can also create templates with Automation. Any workbook can be saved as a template by passing the
appropriate parameter to the SaveAs method. To create a new template, create a workbook, format it as
desired, create any styles, charts, PivotTables, or other features you want the template to have, and then call
SaveAs like this:

#DEFINE xITemplate 17

oBook.SaveAs(oExcel.TemplatesPath + "MyNewTemplate. XLT", xITemplate)

As in interactive Excel, you can store the template in a subdirectory to have it appear on a different page in
the File|New dialog. Of course, if you're working with it through Automation, you don’t really care where it
appears. In fact, with Automation, it doesn’t matter where you store templates because you can specify
where Excel should look for them. However, keeping them together with other templates means that
interactive users can find them, as well.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Automating macros

Although you can perform pretty much any Excel action through Automation, if you already have an Excel
macro to do a particular thing, it may make more sense to use the existing macro than to rewrite it in VFP.
This is especially true if the macro doesn't involve transferring information between the two applications, or if
it's part of a pre-packaged set of macros. A benefit to running Excel macros rather than translating them into
Automation code is that macros run faster than the analogous Automation code.

The Application object’s Run method allows you to execute Excel macros. You pass the name of the macro
and any parameters needed to run the macro. For example, say Macrol is the default name for a recorded
macro. It may perform a variety of tasks. This line executes it:

oExcel.Run("Macro1")

In many cases, it wouldn’t be hard to create the same functionality through Automation. However, there are
situations where rewriting an existing macro as Automation would present a problem. In those cases, Run
provides an easy solution.

Another common situation is to write a macro using Automation code. For an example, you could write a
macro to save an Excel workbook. Writing an Excel macro to save the workbook allows you to take
advantage of the Excel Application’s DisplayAlerts property, which takes a logical value and works in a
manner similar to FoxPro’s SET SAFETY command. DisplayAlerts only works in the macro environment, and
it's reset to true at the end of the macro. Using the following macro allows you to save a file without all of the
workarounds discussed in Chapter 7, "Excel Basics."

We’'re assuming that you know how to write Excel macros. Determine the code you need, and put it into a file.
This example uses low-level file functions to create the file, though there are many other ways to accomplish
this task in FoxPro. (In VFP 6, the StrToFile() function provides a more readable way to create files.)

* Open the file and put in the lines of Excel Code
m.MacroFileName = "C:\Temp\SaveMacro.Txt"
m.MFHandle = FCREATE(m.MacroFileName)

* Add the body of the macro

= FPUTS(m.MFHandle, "' QuietSave Macro")

= FPUTS(m.MFHandle, "' ")

= FPUTS(m.MFHandle, "Sub QuietSave()")

= FPUTS(m.MFHandle, "' ")

= FPUTS(m.MFHandle, " Application.DisplayAlerts = False")
= FPUTS(m.MFHandle, " ActiveWorkbook.Save")
= FPUTS(m.MFHandle, "End Sub")

* Close the open LL file.



=FCLOSE(m.MFHandle)

Once you have the macro code written to a file, you're ready to bring it into Excel. Use the Modules collection
object’s Add method to add a blank macro module. Then use the new Module object’s InsertFile method to
import the macro code. Name the Macro object, and you're ready to run it

* Add a new Module to the Modules collection
oMacroModule = oExcelObject.Modules.Add()
* Pull in the file containing the macro code
oMacroModule.InsertFile(m.MacroFileName)
* Name the macro

oMacroModule.Name = "MacroSave"

* Run the macro

oExcel.Application.Run("QuietSave")

This example is not necessarily an endorsement of using the QuietSave macro instead of the workarounds
described in Chapter 7, "Excel Basics." It's an alternate method that may or may not work for your
application’s environment. But it does illustrate how to generate macros using Automation.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Adding shapes

Like Word and PowerPoint, Excel can add graphics to the worksheet. Excel (well, actually Office) has a
robust set of Shape objects that's available to any Office application. Chapter 5, "Intermediate Word,"
covered how Word deals with the Shape object, and Chapter 10, "PowerPoint Basics," goes into immense
detail on the Shape object for PowerPoint. We'll cover the basics of adding a Shape object here, and point
you to the PowerPoint chapter for the details.

The available shapes, called AutoShapes, provide much more than just basic drawing shapes like rectangles
and circles. There are many decorative shapes, such as arrows, stars, and banners. Flowchart symbols are
also available, as are many kinds of callouts. Any of these shapes can be added to a worksheet using the
AddShape method of the Shapes collection. AutoShapes are used to create diagrams and illustrations, or just
spruce up your worksheet.

To interactively add a shape to your worksheet, select Insert|Picture|AutoShapes from the menu to activate
the AutoShapes toolbar, shown in Figure 9. The buttons represent the main categories of shapes, and
clicking on each one opens another menu of buttons that shows the available shapes for that main category
of shapes.

autoshapes

SRR

Figure 9. The AutoShapes toolbar. This toolbar appears whenever you choose Insert|Picture|AutoShapes
from the menu.

To add a shape programmatically, use the AddShape method of the Shapes collection. This is the syntax for

adding an AutoShape:

oShape = oSheet.Shapes.AddShape( nType, nLeft, nTop, nWidth, nHeight )

The first parameter is a numeric constant that indicates one of the 140 shapes available. Table 2 lists some
of the available constants. Note that their prefix is "mso," which denotes that they are available to all Office
applications, not just PowerPoint. The next two parameters specify the upper-left corner of the rectangular
box that contains the shape (in points, of course). The final two parameters determine the width and height of
the object, in points. This rectangular box, which contains the shape, is called the bounding box.

The following lines of code add an arrow to the current spreadsheet. It is located half an inch from the top
and left, and it's one inch long and one-half inch high. See Figure 10 for the results.

#DEFINE msoShapeRightArrow 33

oSheet.Shapes.AddShape(msoShapeRightArrow, 36, 36, 72, 36)

Each Shape object has a number of properties, some of which contain formatting objects. Table 3 shows the
most important Shape properties.

Table 2. A sampling of AutoShape constants and their values.



Shape constant Value
msoShape5PointStar 92
msoShapeArc 25
msoShapeBalloon 137
msoShapeCube 14
msoShapeDownArrow 36
msoShapeLeftArrow 34
msoShapeLineCalloutl 109
msoShapeNoSymbol 19
msoShapeOval 9
msoShapeParallelogram 2
msoShapeRectangle 1
msoShapeRightArrow 33
msoShapeRoundedRectangle 5
msoShapeUpArrow 35

Table 3. Shape properties and objects.




Property Type Description

AutoShapeType Numeric One of the AutoShape constants, some of which are listed in Table 2.

Height Numeric The height of the shape, in pixels.

Width Numeric The width of the shape, in pixels

Left Numeric The position of the left side of the shape, from the left side of the worksheet, in pixels

Top Numeric The position of the top of the shape, from the top of the worksheet, in pixels.

TextFrame Object Reference to a TextFrame object. Among its properties and methods is the
Character property, which points to a Character object. The Character object’s Text
property contains the text in the frame, and its Font property references a Font
object to control the look of the text.

HorizontalFlip Logical True if the shape is flipped horizontally.

VerticalFlip Logical True if the shape is flipped vertically.

Fill Object Reference to a FillFormat object.

Line Object Reference to a LineFormat object.

A B C

1

2

3

4

=]

b

7

8

Figure 10. Adding an AutoShape. The Shape collection’s AddShape method adds one of more than




140 Office AutoShapes to your worksheet.

The TextFrame object contains properties to format text (if any) in the shape. The most important
property is the Character property, which references a Character object. The Character object’s Text
property contains the text, and its Font property accesses a Font object to control the look of the
text. The following code adds a text string and formats the font:

WITH oSheet.Shapes[1].TextFrame.Characters
.Text ="HERE"

WITH .Font

.Color = RGB(255, 0, 0) &&Red

.Name ="Times New Roman"

.Size ="12"

ENDWITH

ENDWITH

Here's an interesting situation: for formatting cell borders, Chart objects, and other items in Excel,
the Border object controls the border lines, and the Interior object controls the fill properties.
However, Shapes are Office objects, and they use the LineFormat and FillFormat objects instead.
Happily, they are similar. Sadly, they aren’t the same.

Line objects store properties for color, style, transparency, pattern, weight, and arrowheads in the
LineFormat object. Use the Shape object’s Line property to access the LineFormat object. Table 4
shows many of the available properties for the LineFormat object.

The colors of the line are set by using the ForeColor and BackColor properties. These properties
point to a ColorFormat object. A ColorFormat object has only two properties—the one needed here is
the RGB property (the other is the SchemeColor property; it's covered later). See "Formatting the
Shape’s border” in Chapter 10 for examples of how to use these properties.

The FillFormat object has many properties and is quite complex. To fill the shape with a color, use
the FillFormat’s ForeColor object. (Reminder: the FillFormat object is referenced by the Shape
object’s Fill property.)

oSheet.Shapes[1].Fill.ForeColor.RGB = RGB(192,192,192) && Light Gray

For more information on the FillFormat object, see the "Backgrounds" section in Chapter 11, where
the FillFormat object is discussed in detail.

Table 4. LineFormat object properties.



Property Type Description

ForeColor Object The color of the line using a ColorFormat object.

BackColor Object The backcolor of a patterned line using a ColorFormat object. This is the secondary
color of a patterned line, and is ignored if patterns are not used.

DashStyle Numeric The dash style of the line. Uses one of the following contants:
msoLineDash 4 msoLineDashDot
msoLineDashDotDot 6 msoLineLongDash
msoLineLongDashDot 8 msoLineRoundDot
msoLineSolid 1 msoLineSquareDot

Pattern Numeric The pattern applied to the line. The background of color is used as the background of

the pattern. Use one of the many patterned constants, a few of which are listed here:

msoPattern50Percent 7

msoPatternLargeConfetti 33
msoPatternLargeGrid 34
msoPatternLightDownwardDiagonal 21
msoPatternLightHorizontal 19
msoPatternLightUpwardDiagonal 22
msoPatternLightVertical 20
msoPatternSmallGrid 23
msoPatternWideDownwardDiagonal 25




msoPatternZigZag 38

Style Numeric The style of the line, which can give the appearance of multiple lines.
msoLineSingle 1 msoLineThickBetweenThin 5
msoLineThickThin 4 msoLineThinThick 3
msoLineThinThin 2

Transparency Numeric The degree of transparency of the line. The value ranges between 0.0 (opaque) and
1.0 (completely clear).

Weight Numeric The thickness of the line, in points.

Visible Logical Indicates whether the line is visible.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved




Adding pictures

Pictures are added to the Shapes collection with the AddPicture method. The syntax is as follows:

oSheet.Shapes.AddPicture(cFileName, ILinkToFile, ISaveWithDocument,

nLeft, nTop, nWidth, nHeight)

cFileName Character The fully pathed filename of the picture.

ILinkToFile Logical Indicates whether to link the picture to the file from which it was created or to
create a copy inside the document.

ISaveWithDocument Logical Indicates whether to save the linked picture with the file or to store only the
link information in the document. This argument must be True if ILinkToFile is
False.

nLeft, Numeric The position (in points) of the upper-left corner of the picture, measured from

the upper-left corner of the spreadsheet.

nTop

nWidth, Numeric The width and height of the picture, in points.

nHeight

The following example adds the TasTrade logo to the worksheet. Be sure to fully qualify the path, as Excel
does not know anything about VFP’s defaults.

LogoFile = _SAMPLES + "TasTrade\Bitmaps\TTradeSm.bmp"

oSheet.Shapes.AddPicture(LogoFile, .T., .T., 32, 32, 72, 72)

A little playing is required when you're trying to determine the width and height of the graphic. None of the
parameters are optional, so you need to know the width and height of any graphic you're adding.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

Listing 3 shows an example program for Tasmanian Traders’ purchasing department. They would like to sell
Mama’s Raspberry Syrup, but Mama’s Megacorp wants a $500 "marketing fee" before Tasmanian Traders
can sell Mama'’s product. So the purchasing department has asked for an analysis of the situation. They want
to know how many units of Mama’s Raspberry Syrup they need to sell before they break even, and they want
to see a breakdown of the sales of all condiments by year, so they can figure out whether the number
required to break even is within the normal sales of all condiments. It has to look good, because Tasmanian
Traders’ VP of Purchasing will take this report with her when she meets with representatives of Mama'’s
Megacorp to finalize the deal.

Here’s a solution. Use a PivotTable to provide the sales breakdown, and then use the GoalSeek method to
find the break-even number. Once the number is calculated, annotate it with a striking star shape to draw
attention to the quantity required. Then add the TasTrade logo. Figure 11 shows a report that will not only
satisfy the requirements for the needed information, but also has visual appeal.

Listing 3 is available as XLSample2.PRG in the Developer Download files available at

www.hentzenwerke.comn.

Listing 3. Tasmanian Traders’ analysis worksheet for a new product. This sample
demonstrates creating a PivotTable, using Goal Seek, and adding pictures and shapes. Figure
11 shows the results.

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make certain objects
* available after this program executes.

PUBLIC oExcel, oBook, oSheet2, oPivotTable
#DEFINE xIDatabase 1

#DEFINE xIDataField 4

#DEFINE xIEdgeBottom 9

#DEFINE xIContinuous 1

#DEFINE msoShape24PointStar 95


http://www.hentzenwerke.com/

#DEFINE autoln2Pts 72

#DEFINE xIHAlignCenter -4108

#DEFINE xIVAlignCenter -4108

CLOSE DATA

OPEN DATABASE (_SAMPLES + "\TasTrade\Data\TasTrade")

SELECT Customer.Company_Name, ;

Customer.Country, ;

CMONTH(Orders.Order_Date) AS Order_Month, ;

YEAR(Orders.Order_Date) AS Order_Year, ;

Products.Product_Name, ;

Order_Line_ltems.Quantity, ;

Order_Line_Items.Unit_Price * Order_Line_Items.Quantity ;

AS Total_Price;

FROM Orders, Order_Line_Items, Customer, Products ;

WHERE Order_Line_ltems.Order_|D = Orders.Order_ID ;

AND Orders.Customer_ID = Customer.Customer_ID ;

AND Order_Line_Items.Product_ID = Products.Product_ID ;

AND Products.Category_ID =" 2" ;

INTO CURSOR Pivot

COPY TO (CURDIR() + "Pivot") TYPE XL5

oBook = GETOBJECT(CURDIR() + "Pivot.XLS")

* Open the workbook, and best-fit all the columns.

* Ensure there are two sheets: Pivot for the data

*and another for the "presentation”

WITH oBook

oExcel = .Application



Application.Visible = .T.

Windows[1].Activate()

.Sheets[1].Range("A1:G310").Columns.AutoFit()

oSheet2 = .Sheets.Add()

ENDWITH

* On the presentation worksheet, add the logo and title

WITH oSheet2

* Add the TasTrade Logo

LogoFile = _SAMPLES + "\TasTrade\Bitmaps\TTradeSm.bmp"

.Shapes.AddPicture(LogoFile, .T., .T.,;

0.25 * autoln2Pts, 0.25 * autoln2Pts, ;

1.00 * autoIn2Pts, 1.00 * autoIln2Pts)

* Title the worksheet

WITH .Range["C2"]

Value = "Analysis for Mama's Raspberry Syrup"

.Font.Size = 18
.Font.Bold =.T.
ENDWITH
ENDWITH

* Create a new PivotTable

oSourceData = oBook.Sheets[2].Range["Al:G" +;

ALLTRIM(STR(RECCOUNT(" Pivot") + 1))]

oDestination = oSheet2.Range["C4"]

oPivotTable = oBook.Sheets[1].PivotTableWizard(xIDatabase, ;

oSourceData, oDestination, "Analysis", .T., .T.)

WITH oPivotTable



AddFields("Product_Name", "Order_Year")

.PivotFields["Quantity"].Orientation = x|DataField

* Make the headings look nice

.PivotFields["Product_Name"].Name = "Product Name"

.PivotFields["Order_Year"].Name = "Year"

.PivotFields["Sum of quantity"].Name = "Quantity Sold"

ENDWITH

WITH oSheet2

* Format the columns a bit wider

.Columns[4].ColumnWidth = 9

.Columns[5].ColumnWidth = 9

.Columns[6].ColumnWidth =9

.Columns[7].ColumnWidth = 9

.Columns[8].ColumnWidth = 9

* Find the break-even point with Goal Seek

* Title

.Range["C21"].Value = "Break-Even Analysis"

.Range["C21"].Font.Bold = .T.

* Revenue

.Range["C22"].Value = "Price per Unit"

.Range["D22"].Name = "UnitPrice"

.Range["D22"].Value = 10

.Range["D22"].NumberFormat = " $###.00"

.Range["C23"].Value = "Units Sold"

.Range["'D23"].Name = "UnitsSold"

.Range["D23"].Value = 100



.Range["'D23"].NumberFormat = "###.0"

.Range("C23:D23").Borders(xIEdgeBottom).LineStyle = xIContinuous

.Range["C24"].Value = "Total Revenue"

.Range["D24"].Name = "TotalRevenue"

.Range["D24"].Value = "= UnitPrice * UnitsSold"

.Range["'D24"].NumberFormat = " $##,###.00"

* Costs

.Range["C26"].Value = "Cost per Unit"

.Range["D26"].Name = "UnitCost"

.Range["D26"].Value = 7.23

.Range["C27"].Value = "Marketing Fee"

.Range["D27"].Name = "MarketingFee"

.Range["D27"].Value = 500

.Range("C27:D27").Borders(xIEdgeBottom).LineStyle = xIContinuous

.Range["C28"].Value = "Total Costs"

.Range["D28"].Name = "TotalCost"

.Range["D28"].Value = "= (UnitCost * UnitsSold) + MarketingFee"

.Range["'D26:D30"].NumberFormat = " $##,###.00"

* Profit

.Range["C30"].Value = "Profit"

.Range["D30"].Name = "Profit"

.Range["D30"].Value = "= TotalRevenue - TotalCost"

* Perform the Goal Seek

.Range["Profit"].GoalSeek(0, .Range("UnitsSold"))

* Add the shape with text indicating how many need

*to be sold to break even.



oShape = .Shapes.AddShape(msoShape24PointStar, ;

4.8 * autoIn2Pts, 3.5 * autoln2Pts,;

2.0 * autoln2Pts, 2.0 * autoIn2Pts)

cQuantity = ALLTRIM(STR(.Range["UnitsSold"].Value))

WITH oShape.TextFrame

WITH .Characters

.Text ="Sell " + cQuantity + " units to break even"

.Font.Color = RGB(255, 0, 0) && Red

.Font.Size =12
.Font.Bold = .T.
ENDWITH

.HorizontalAlignment = xIHAlignCenter

VerticalAlignment = xIVAlignCenter

ENDWITH
ENDWITH
A [ B ] C [ o | E | F | & H |

1

2 Analysis for Mama's Raspberry Syrup

3
E [Quantity Sold I¥ear  ~| |
= Product Name - 1932 1933 1994 1995 | Grand Total
| B | Aniseed Syrup 43 120 219 34 4N
| 7 Camembert Pierrot 303 543 761 356 1993
= Chef Anton's Gumbo Mix 35 169 49 120 376
| 9 Genen Shouyu 10 /8 97 185
|10 Grandma's Boysenberry Spread 23 36 156 109 324
|11 Gula talacca 50 260 372 o1 733
|12 | Louisiana Fiery Hot Pepper Sauce a0 195 506 G4 855
|13 Louisiana Hat Spiced Okra 24 30 205 1 263
| 14 | Morthwoods Cranberry Sauce g2 152 134 95 476
| 15 | Criginal Frankfurter grine Solie 62 235 433 244 980
| 16 | Sirop d'érable 55 3 410 177 G50
|17 ‘Yegie-spread 34 229 89 147 493
| 18 Grand Total 829 2085 3440 1431 7785
|19
|20
| 21| Break-Even Analysis
| 22 | Price per Unit #10.00

23 Units Sald 150.5
|24 Total Revenue §1 605.05 Sell 181
| 26 | units to
| 26 | Cost per Unit $7.23 break even
| 27 Marketing Fes $500.00
| 23 | Total Costs §1.,805.04
|29 AAa oA




30 Profit 5.00 SRVAVANE
v

Figure 11. TasTrade’s analysis worksheet for a new product. The Goal Seek feature provides a
break-even analysis, the results of which are highlighted in the shape. The number of units
required can be compared to the PivotTable that contains the past sales history of all
condiments. And the bitmap makes it look nice.

This chapter covers a few of the major analysis tools available in Excel. We've touched on the more
commonly used analysis tools to give you a taste of the techniques for working in Excel via
Automation. There are additional tools available, which require similar techniques. The next chapter
covers another kind of analysis tool: charting. Excel has a powerful charting engine to graph the
results of the data analysis done in Excel.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 9 - Excel’s Graphing Engine

Since FoxPro lacks native graphing capabilities, Excel can step in and provide a terrific graphing engine.

Much has been written about using Microsoft Graph in VFP applications. Excel's graphing engine is based on
Microsoft Graph, but it has one perk that Graph lacks: documentation. (Actually, almost any Excel graphing
code also works in Graph, but this is one of those undocumented secrets you can't count on.) What you can't
find out in the printed or on-line documentation and Help, you can usually find out by recording a macro.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



The object model

Each Workbook has a Charts collection, which contains all of the charts in the active workbook. The Chart
object contains properties that control the format and data within the chart. The SeriesCollection object stores
a number of Series objects, one for each data series (a single set of data to graph) in the chart. Each Series
object has a Values property, which stores the Range containing the values to plot. The Series object also
has many properties to control the look of the series on the graph, such as chart type (one series can be a
bar chart, while the next can be a line chart), color, borders, and so on.

The Chart object has properties to access objects that are global to the chart. For example, there are objects
to format the several Axis objects, and the Floor and Walls of the PlotArea. The ChartArea (the area
surrounding the chart) is formatted separately from the PlotArea (the interior of the chart, bordered on the
outside by the axes). Finally, there are properties to access the Legend and ChartTitle objects.

Is it a chart or a sheet?

Excel offers two ways to place charts in a workbook. You can store the chart as an object in a worksheet, or
you can store the chart as a separate worksheet (also known as a chart sheet). While the two kinds are each
stored as Chart objects, they are stored in different collections, and each collection belongs to a different
object.

Chart sheets are accessed through the Charts collection, and since they’re worksheets, too, they can also be
accessed through the Sheets collection (we recommend always using the Charts collection, because
changing chart formatting on what appears to be a Sheet is quite confusing). The Charts collection is
accessible through both the Application object and the Workbook object.

Embedded charts have their own collection, called ChartObjects. This collection belongs to the Worksheet
object.

It is important to understand that chart sheets belong to the Workbook while embedded charts belong to the
Worksheet. However, both kinds of charts are stored as the same Chart object and have the same properties
and methods available for formatting the chart.

Regardless of whether it's an embedded chart or a chart sheet, if it's selected (either the chart sheet is the
ActiveSheet or the embedded chart has "resize" handles), the Workbook object’s ActiveChart property
references the chart.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Setting up the data

To graph your data, the data must reside in an Excel worksheet (or series of worksheets). The section
"Handling values and formulas" in Chapter 7 discusses the mechanics of adding data to worksheets. We
won’t cover that again here, but we will tell you how to set up the worksheet so your data easily translates
into a graph.

First, we need to examine how Excel works with data. Excel charts work with sequences of data called data
series. Each data series is a sequence of points that are plotted with the same attributes (such as color,
pattern, symbol, line style, bar style—whatever is relevant to the chosen chart style). On a line chart, many
lines can be plotted on a single chart; each line is a data series. On a bar chart with a three groups of
color-coded bars, each color is a data series. A pie chart can graph only one data series.

Excel also uses ranges to label the category axis, and to label the data series in the legend. You can specify
each data series separately, which is useful when one worksheet of data is used to create many graphs.
However, Excel can accept a single rectangular range and use it to build a chart. If you're familiar with
Excel's Chart Wizard, you probably already know that it defaults to using the first row and column for the
headings, and then uses the remaining columns (or rows) for the data series. Understanding how Excel uses
a single range for a chart makes life much easier for you; passing a single range is much easier than
explicitly setting half a dozen ranges.

Setting up this single range is easy. Use column A for the category labels. The contents of each cell are the
actual labels used on the X-axis, so be sure they aren’t too cryptic or too long. Use subsequent columns for
data series. Put the label for each series in row 1; start the data in row 2. The category headings in column A
should also start in row 2. Figure 1 shows a sample spreadsheet, ready to graph. The code to generate this
spreadsheet is shown in Listing 1 (XLGDataSetup.PRG in the Developer Download files available at

www.hentzenwerke.comny).
A E | C | D | E | F |
1 1992 1993 1994 1995 1996
2 |January $1.028.10 $1,632.30 $3,530.98
3 |February #050.40 #1.506.50 $4,723.80
4 |March $1,383.20 52 ,581.42 $5,351.584
g | Aptil 5142470 52 B67.65
E_|May $730.10 F925.00 §1,693.97 $19.00
7 |June wa2.20 51,361.10 52,042,928
g | July $308.00 $1.485.20 52 46244
9 | August §736.30 5125470 §2,860.28
10 | Septernber #0710 $1,633.80 52,497 .63
11 |October $1,808.40 $2.223.60 $2,210.94
12 |Navember $915.50 3167320 §4,123.10
13 |December ha6s. 30 $1,924.80 h4,548.48
14

Figure 1. A spreadsheet formatted to graph as a single range. The values in column A become the
X-axis labels; the text in row 1 becomes the text to label each series in the legend for the data series
stored in the column.

Listing 1. Code to populate the graphing data shown in Figure 1. This code uses monthly sales


http://www.hentzenwerke.com/

figures from the TasTrade sample database.
* Sets up the monthly sales data by year to graph.

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make oExcel and oBook
* available after this program executes.

PUBLIC oExcel, oBook

#DEFINE xIColumns 2

#DEFINE xIAutoFill 4

CLOSE ALL

* Open the Sales Summary view, which contains

*a summary of unit prices for each month and year.
OPEN DATABASE _SAMPLES + "\TASTRADE\DATA\Tastrade"
USE Customer IN O

SELECT O

USE "Sales Summary" ALIAS SalesSummary

* Add a workbook, using default settings

oExcel = CREATEOBJECT("Excel.Application")
oExcel.Visible = .T.

oBook = oExcel.Workbooks.Add()

WITH oBook.Sheets[1]

* Put the months down Column A. These are the

* category (x) axis labels.

.Range("A2").Value = "January"

.Range("A2:A13").DataSeries(xIColumns, xIAutoFill, 1, 1)



* Loop through the view. Make each year a column, and

* ensure that there's a header.

CurrentColumn ="A"

CurrentYear =" X"

SCAN

IF CurrentYear <> LEFT(SalesSummary.Exp_1, 4)

* Store the Current Year

CurrentYear = LEFT(SalesSummary.Exp_1, 4)

* Increment the column letter (note: don't exceed

* 25 years with this logic!)

CurrentColumn = CHR(ASC(CurrentColumn) + 1)

* Set the header

.Range(CurrentColumn + "1").Value = CurrentYear

ENDIF

* Calculate the current row (add 1 to the value of the month);

* make sure it's a string

CurrentRow = ALLTRIM(STR(VAL(RIGHT(SalesSummary.Exp_1, 2)) + 1))

* Set the value of the cell.

.Range(CurrentColumn + CurrentRow).Value = SalesSummary.Sum_Unit_Price

ENDSCAN

*Widen the columns so all values are seen

* Convert CurrentColumn from the alpha character to a numeric

FOR | =1 TO ASC(CurrentColumn) - 63

.Columns[l].ColumnWidth =12

NEXT |

ENDWITH



What if you want the categories in each column, and each row is a series? You can do that. When you create
the graph with the ChartWizard method (see the section "Creating a graph" later in this chapter), there’s a

parameter to denote whether the series are in rows or in columns.

Range names are your friend

It won't take long until your client requests a series of graphs built from the same data. Using the example
data shown in Figure 1, the client may want a graph for each year, then one comparing all years on one
graph. While you can build a separate worksheet with only the necessary data for the graph (which leads to
redundant data), the easiest way is to put all the data on one worksheet, and then use range names for each
series and for the category axis labels. Why range names? It's easier to read and debug "CategoryNames"
and "Year1994" than "Sheet1!A2:A13" and "Sheet1!D2:D13."

Names are stored in the Names collection, which is accessible from the Application, Workbook, and
Worksheet objects. Use the Range object’'s Name property to name a range. Using the data shown in Figure
1, the following code shows sample names along with their ranges. Like VFP's field names, range names
must start with a letter; hence the name "Year1992" rather than "1992."

WITH oExcel.Sheets[1]
.Range("A1:A13").Name = "CategoryNames"
.Range("B1:B13").Name = "Year1992"
.Range("C1:C13").Name = "Year1993"
.Range("D1:D13").Name = "Year1994"
.Range("E1:E13").Name = "Year1995"
.Range("F1:F13").Name = "Year1996"

ENDWITH

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Creating a graph

Polymorphism is hard at work here: use the Add method to add a chart. This time, there is a bit of a

twist—you must decide which collection’s Add method to use.

If you want to add an embedded chart, use the Add method of the ChartObjects collection. It takes four

parameters, which are the left, top, height, and width (in points) of the chart. Issuing the following inserts a

chart object below the sample data:

oChart = oExcel.Sheets[1].ChartObjects.Add(45.7, 173.2, 319.5, 190.5)

Figure 2 shows the placement of the empty ChartObject container. Don’t worry—it's really a chart. The

ChartWizard method can easily set the most common properties in one method call, or you can manually set

them yourself. We suppose you can consider this blank graph a "feature," as it made no decisions for you

about the kind of graph—so there’s nothing to undo.

A B C | D | E | F | G
1 1992 1993 1994 1995 1996
2 [January $1,038.10 $1,632.30 $3,530.96
3 |February $850.40 $1 506.90 $4 723,80
4 |March $1,353.90 52 581.42 $5,381.84
& | April §1.424.70 52 BE7 .85
(B |May $730.10 $929.00 §1,693.97 $19.00
7 |June $762.20 $1,361.10 §2,042.98
LA |duly $908.00 §1,465 20 52 462 44
19 |August $736.30 §1,254 70 §2 56028
10 | Septemnber $907.10 $1,633.80 §2 497 63
11 |October $1,.808.40 $2,223.60 $2,210.94
12 |Movemnber $919.90 $1,673.20 §4.123.10
13 |December $865.30 §1,994 80 54 548.48
14
15
1B
17
18
19
20
21
22
23
24
25
26 |
27
28
29
14 4 [» [p1]Sheet / 14

Figure 2. Adding an embedded chart from the ChartObjects.Add method. The new chart is blank; Excel
made no assumptions about it. Use the ChartWizard method to fill it in easily, or set all of the properties

manually.

How did we settle on the values to pass? With a bit of brute force in the Command Window. We created a



public variable, oExcel, then ran the XLGDataSetup program. Next, we activated Excel (using Alt-Tab) and
added a chart using the Chart Wizard button, and then positioned the resulting graph where we wanted it.
Then we went back to VFP and queried the Left, Top, Height, and Width properties of the ChartObject object.
The following commands give you the numbers you need.

? oExcel.Sheets[1].ChartObjects[1].Left
? oExcel.Sheets[1].ChartObjects[1].Top
? oExcel.Sheets[1].ChartObjects[1].Height

? oExcel.Sheets[1].ChartObjects[1].Width

If you want to add a chart sheet, use the Add method of the Charts collection. This one needs no parameters.
It places the new chart sheet before the currently active worksheet. The chart sheet is named Chartn, where
n is the next available chart number.

oChart = oBook.Charts.Add()

Add can also take parameters to specifically place the new chart sheet. Pass a Worksheet object as the first
parameter to place the chart before the worksheet, or pass a Worksheet object as the second parameter to
place it after the specified worksheet. A note of caution: passing worksheet names as the first or second
parameter nets this error: "OLE IDispatch exception code 0 from Microsoft Excel: Unable to get the Add
property of the Sheets class." Be sure to pass the Worksheet object.

The ActiveChart property

When the Add method is used to add an embedded chart, the resulting chart is not selected. To make it
available through the Workbook’s ActiveChart property, you need to use the chart’s Activate method:

oChart.Activate()

Now the chart is active and available from the Workbook’s ActiveChart property.

We've sometimes found that Chart object methods, particularly those for embedded charts, fail with an
"Unknown name" error if called by the full ChartObject name (for example,
Excel.Workbooks[1].Sheets['Sheet1"].ChartObjects[1], or any variable set to the full reference), but they
appear to work just fine when called from the ActiveChart property when the same chart is definitely active
(for instance, oExcel.ActiveWorkbook.ActiveChart). We're not quite sure why this is, but we're glad to find a
workaround when some methods just don't want to work.

Off to see the wizard

There is a single method called ChartWizard that allows you to quickly format a chart. If you're familiar with
Excel's interactive method of building a chart, the parameters will be familiar, too, because they closely
parallel the tabs on the Chart Wizard’s dialog box.

oChart.ChartWizard( [oSourceRange], [nChartType], [nChartFormat],

[nPlotBy], [nCategoryLabels], [nSeriesLabels],



[I[HasLegend], [cTitle], [cCategoryTitle],

[cValueTitle], [cExtraTitle] )

oSourceRange Object The Range object that contains the source data for the chart.

nChartType Numeric The chart type. Use one of the following constants:

xlArea

xI3DArea
-4098

x|Bar

xI3DBar
-4099

xIColumn

xI3DColumn
-4100

xlLine

4

xI3DLine
-4101

xIPie

xI3DPie
-4102
xIRadar
-4151
xI3DSurface
-4103
xIXYScatter

-4169



nChartFormat

nPlotBy

nCategorylLabels

nSeriesLabels

IHasLegend

cTitle

cCategoryTitle

Numeric

Numeric

Numeric

Numeric

Logical

Character

Character

xIDoughnut
-4120
xICombination

-4111

See the text for more information.

The variation of the chart type to use (for example, if nChartType is xIBar, then you
could choose stacked bar vs. clustered bar). Use a number from 1 to however many
formats are available. See the text for more information.

Indicates whether data series are stored in rows or columns. Use one of these two
constants:

xIRows

xIColumns

The default is based on the shape of the range. If there are more rows than columns,
the default is xIRows. If there are more columns than rows, the default is xIColumns. If
there are an equal number of rows and columns, xIRows is used.

Indicates how many rows (if plotting by rows) or columns (if plotting by columns) to use
as the labels on the category (X) axis.

Indicates how many columns (if plotting by rows) or rows (if plotting by columns) to use
to label the series. Generally, the labels appear in the legend.

Indicates whether the chart has a legend (.T.) or not (.F.).

A character string used to title the chart. By default, it is centered just above the plot
area.

A character string used to title the category (X) axis.



cValueTitle Character A character string used to title the value (Y) axis.

cExtraTitle Character A character string used for a second value axis title in 2D charts (if two separate value
axes are used), or as the series (Z) axis title in 3D charts.

All this power in a single method comes with a price—it takes quite a few pages to explain all the parameters.
As we explain each of the parameters, we'll also tell you which Chart object properties are set by the
ChartWizard method, and whether any alternative methods are available to set these parameters. These
properties and methods are discussed in the remaining sections of this chapter, so we’ll note the section to
reference for a complete discussion of those properties.

The source range

This is the Range object where the data resides. For embedded charts, it can be—but doesn’t have to
be—on the same worksheet. For chart sheets, the data is obviously not on the same worksheet. To pass the
range used to populate the embedded chart shown in Figure 2, pass the following object as the
oSourceRange parameter:

oBook.Sheets["Sheetl1"].Range("ALl:F13")

Notice that in this range, we've included the cells that contain the category and value labels. If no other
parameters are passed to the ChartWizard, it assumes that no rows or columns are used as labels, so 13
categories are graphed, instead of 12 months, and six series are plotted instead of five years. If you choose
to include the category and value labels, be sure to include the nCategoryLabels and nSeriesLabels
parameters.

Non-contiguous ranges

It would be nice if all graphs could be graphed from contiguous ranges of data. However, you'll find that there
are times when you’d like to use one worksheet to develop multiple graphs, or put data from multiple
worksheets into a single graph. Either way, the series data is not contiguous.

Fortunately, Excel provides a way to use non-contiguous data. All that's necessary is to list the ranges
separated by commas. Be sure to include the category label row first. For our example, let’s build a graph
with the months as category names, and show the years 1993 and 1994 as data series. There are two ways
to do this. Using cell addresses, the code looks like this:

oBook.Sheets["Sheetl"].Range("Al:Al13, C1:C13, D1:D13")

Using range names (see the section "Range names are your friend" earlier in this chapter), you get this more
readable code:

oBook.Sheets["Sheet1"].Range(" CategoryNames, Year1993, Year1994")

{ T t



© = Be sure to name the ranges using the Range object’s Name property, instead of using
the Names collection’s Add method. We're not sure why, but a range that's added with Names.Add
doesn’t seem to be recognized by the ChartWizard method. You get an OLE error: 0x800a03ec,
Unknown COM status code. To be fair, this isn’t the only way to get that error. You can trigger this
error by passing a misspelled or non-existent range name, too.

Note that for each of the ranges (including the CategoryNames range), the range includes a row for the
series labels. When passing a range that includes headings, be sure that the nCategoryLabels and
nSeriesLabels parameters (the fifth and sixth parameters) have a value of 1 (or more, if more rows/columns
are used).

Other source properties and methods

Data series are stored in the SeriesCollection collection object, which stores a Series object for each data
series. The SeriesCollection’s Add method takes five parameters. They are the source range (just like the
ChartWizard), a PlotBy numeric value (just like the ChartWizard’s nPlotBy parameter), a logical value that's
true if the first row or column contains series labels, another logical value that’s true if the first column or row
contains category labels, and finally, a logical value that determines whether the category labels are replaced
or not. Issuing the following is similar to adding the source range through the ChartWizard (using the
oSourceRange, nPlotBy, nSeriesLabels, and nCategorylLabels parameters):

#DEFINE xIColumns 2

oExcel.ActiveChart.SeriesCollection.Add(" Sheet1!A1:F13", xIColumns, .T., .T.)

The Series objects store a lot of formatting information. This is covered in more detail in the "Formatting the
components"” section later in this chapter.

Another alternative that's new to Excel 2000 is the Chart object’'s SetDataSource method. This method takes
two parameters: the source range and the numeric PlotBy value. The following is equivalent to the
SeriesCollection.Add method and the ChartWizard method:

#DEFINE xIColumns 2
oExcel.ActiveChart.SetSourceData(oExcel.Sheets[1].Range("Sheet1!A1:F13"),;

xIColumns)
Chart Types and Formats

The ChartWizard’s second and third parameters work together. The first of these is nChartType, a numeric
value that corresponds to the type of chart, such as area chart, pie chart, line chart, or bar chart. The second
of these parameters, nChartFormat, is a sub-type, or a fine-tuning on the basic chart type. For example, a bar
chart can be a clustered bar or a stacked bar chart. Figure 3 shows how these two parameters work in the
interactive Chart Wizard. The list to the left shows the chart type (with a thumbnail to help you out), and the
chart sub-type is shown on the right, with larger icons to help you select precisely which chart to use.

Chart Wizard - Step 1 of 4 - Chart Type EHE

Standard Twpes | Custom Types |

Chart bvpe: Chart sub-type:

Al = (o=




E Bar

|ﬁ Line

(@ Fie

. B (Srakker)
by Frea

ig» DCoughnut
iy Radar

# Surface

@ Eubble

e Shock, -
|

il
iual

Cluskered Colurn, Compatres values across
categoties,

Press and Hold to Wiew Sample |

@l Cancel < Barck | Mext = I Finish |

Figure 3. Chart types and sub-types, as seen from Excel's Chart Wizard. This illustrates how the nChartType
(corresponds to the chart type list) and nChartFormat (corresponds to the sub-type buttons on the right)
parameters work together.

There’s only one problem with using Figure 3 as a reference: this is one of the few dialog boxes that does not
put the options in as they’re used in the corresponding method! We've shown Figure 3 to illustrate the
concept of Chart Type and Chart Format, but don’t rely on the dialog box to give you hints about the values
to use.

The nChartType parameter uses a series of values, each with its own VBA constant name. Unfortunately,
there are no constants available for the nChartFormat parameter. In fact, they don’t even really correspond to
the chart sub-types shown in Figure 3, because the ChartWizard method separates 3D from 2D graphs, and
it mixes and matches types. Appendix B shows a complete list of the available values; Table 1 shows the
most common values.

Table 1. Sample nChartType parameters.The Chart Format value is the column to use in the ChartWizard;
the Chart Type value is the resulting value in the Chart object’s ChartType property. Appendix B has the
complete listing.

Chart Format description Chart Format value Chart Type value
For Chart Type: xIArea 1
Stacked Area 1 76

Stacked Area with black grid lines 4 76




For Chart Type: xIBar 2

Clustered Bar 1 57
Stacked Bar 3 58
Clustered Bar with 0 overlap and 0 gap width 8 57
For Chart Type: xIColumn 3

Clustered Column with gap width set to 150 1 51
Clustered Column, 0 overlap and 0 gap width 8 51
100% Stacked Column with series lines 10 53
For Chart Type: xlLine 4

Line with markers 1 65
Line with no data markers 2 4
Data markers only (no connecting lines) 3 65
Smoothed line with no markers 10 4
For Chart Type: xIPie 5

Pie with no labels 1 5
Pie with labels, highlighting first wedge 2 5




Exploded pie 4 69
For Chart Type: xI3DArea -4098

Stacked 3D area 1 78
Stacked 3D area with series labels 2 78
Area 3D elevated, vertical grid lines 7 -4098
For Chart Type: xI3DBar -4099

Clustered 3D 1 60
Stacked 3D 2 61
For Chart Type: xI3DColumn -4100

Clustered 3D 1 54
Stacked 3D 2 55
100% Stacked 3D 3 56
For Chart Type: xI3DPie -4102

3D Pie with no labels 1 -4102
3D Exploded pie 4 70

Other chart type properties




The nChartType and nChartFormat parameters set the Chart object’'s ChartType property. Just to be sure
that life isn’'t too simple, Excel has 73 numeric values that don't relate well (mathematically, anyway) to the
combinations of nChartType and nChartFormat parameters. You can see the resulting values enumerated in
the Chart Format Value column of Table 1. We'll discuss them some more in the "Chart types" section later in
this chapter.

Not only do these two parameters set the ChartType property, they also set many properties of the various
Axis objects, including ScaleType, HasMajorGridlines, and HasRadarAxisLabels (if a Radar chart). Series
properties are set, too, including AxisGroup, ChartType, Explosion, HasDatalLabels, HasErrorBars, and
various Marker properties.

For more information on these and other related properties, see the appropriate sections under "Formatting
the components" later in this chapter.

PlotBy—selecting rows or columns

The nPlotBy parameter determines whether rows or columns are used as data series. Two values are
available: xIRows (1) and xIColumns (2). The default depends upon the shape of the range: if there are more
columns than rows, columns are the default; otherwise, the default is rows. Because of this "moving target"
nature of the default value, we choose to always provide this parameter, rather than assume anything.

Other PlotBy properties

This is a well-behaved parameter, as it sets only one property without any guesswork, and it even has the
same name! The Chart object’s PlotBy property uses the same two values, xIRows (1) and xIColumns (2).

The category and series labels

The nCategoryLabels and nSeriesLabels parameters control how many rows or columns are used within the
source range to label the categories and series. The nPlotBy parameter determines whether the category
labels are rows or columns. If nPlotBy is xIRows, then the category labels are in the first n rows, and the
series labels are in the first n columns. Conversely, if nPlotBy is xIColumns, then the category labels are in
the first n columns, and the series labels are in the first n rows.

Generally, the value of nCategoryLabels and nSeriesLabels is 0 or 1. You can, however, use two or more
columns/rows. You should experiment with the visual results; having two lines for each category may be too
busy if many categories are used. Depending on space, Excel may omit the second line, anyway.

Other label properties

Category labels are stored as a range in the Series object’'s XValues property. Series labels are stored in the
Series object’'s Name property. More on those in the "Data series" topic later in this chapter.

Does it have a legend?

The IHasLegend parameter determines whether the resulting chart has a legend (also known as a "key"). All
it does is make the legend visible (or not). Pass a logical value indicating whether the chart should have a
legend.

Other legend properties and objects



This parameter sets the Chart object’'s HasLegend property, which is a logical value. You can query this one
and get a Boolean value (unlike many seemingly Boolean values). If the value is true, legend values are set
through the Chart object’'s Legend object, which is discussed in detail in the "Legends" topic later in this
chapter.

Title parameters

The final four parameters—cTitle, cCategoryTitle, cValueTitle, and cExtraTitle—are simply character strings
that are placed in the chart as titles. The cTitle parameter is used as a chart title and is centered at the top of
the chart. The cCategoryTitle and cValueTitle parameters are axis titles and are centered on the respective
axis. The cExtraTitle is used only in two cases: if there is a second axis on a 2D chart, or if the chart is a 3D
chart, and a third axis needs a title. See the ChartWizard example in the next section for an example
showing where the titles are placed.

Other title properties

The cTitle parameter sets the Chart's HasTitle property to true and makes the ChartTitle object available
(through the ChartTitle property). The remaining title parameters are axis titles, which set the corresponding
Axis object’s HasTitle property to True, and makes the AxisTitle object available (through the AxisTitle
property). These are discussed in detail in the "Titles" topic later in this chapter.

Finally, an example of wizardry

After all the explanation of the various parameters, it's now time to see how this thing really works. For the
example, we'll build a clustered column chart from the whole range of example data, plotting series by
columns and using one column and row for labels. The legend is calculated, and we’ll use example titles to
show where the various titles go. Ready? Here goes:

#DEFINE xIColumn 3

#DEFINE xIColumns 2

#DEFINE autoColumnFormat 4

#DEFINE autoOneSeriesLabel 1

#DEFINE autoOneCategorylLabel 1

#DEFINE autoHasLegend .T.

oSourceRange = oExcel.Sheets[1].Range("Al:F13")

oExcel.ActiveChart.ChartWizard(oSourceRange, xIColumn, autoColumnFormat, ;

xIColumns, autoOneCategoryLabel, autoOneSeriesLabel, autoHasLegend, ;

"Chart Title", "Category Title", "Value Title", "Extra Title")

Figure 4 shows the results of the ChartWizard method. As you can see, there's a lot of power packed
into this method. As you examine the resulting graph, you see a lot of the features of the ChartWizard



method. There are titles, axis labels, and a legend on a nicely formatted chart. If there’s something
you want to enhance, you can certainly do so. There are many properties and methods to help you
refine the format—see the section "Formatting the components” later in this chapter.

Iy B | C | D | E | F
1 1992 1093 19594 1095 1995
2 [January $1,032.10 51 632.30 $3 530,98
3 |February $aa0.40 §1,506.90 §4,723.80
4 [March $1,353.90 52 551.42 $5,351.84
5 |April §1.424.70 52 GB7.85
B |May $730.10 $929.00 1 B93.97 $19.00
7 |Jure §782.20 $1.361.10 §2 042.95
B |July $902.00 1 465.20 52 462 44
9 |August $736.30 51 .254.70 §2 860.28
10 |September $907.10 $1533.80 52 497 B3
11 |October §1,808.40 52 22360 52 210.94
12 |Novernber $919.90 1 573.20 4,123.10
13 |December $865.30 $1,.994 80 54 848.45 |
14 m u u
% Chart Title
s 000
% =S 5000 1
18 = 4000 +
£ g 3000 T m 1992
% ] g mng 1 W 1995
B3 T e
125 iy = L = 5 . W 19595
2B o < 0
e Category Title
28
E m n |

Figure 4. The results of the ChartWizard method. Although its parameter list is long, the ChartWizard
method has alot of power to format a chart.

There is an alternative to using the ChartWizard. You can control each of the objects separately. It
takes more code, but you gain more control. We've found that a hybrid approach works best: use the
ChartWizard to get you close to what you want, and then refine the formatting from there. In the
following sections, we’ll discuss the various objects contained in a chart, and how to refine them.
Then we'll look at the code to manually create that chart without the ChartWizard.

The anatomy of a chart

Now that we have a chart to look at, we can talk about the pieces of the chart. So many objects make
up a chart that the terminology quickly gets confusing.

The chart area is the whole area of the chart. For embedded charts, it's the area enclosed by the
border. When selected, it has eight resize handles, as shown in Figure 4. For chart sheets, the chart
area is the whole sheet. The major difference between chart sheets and embedded charts is that the
chart area on an embedded chart can be moved and resized (via the Top, Left, Height, and Width
properties), while the size and position of a chart sheet is fixed to the bounds of a sheet. The chart



area is the only object affected by whether the chart is a chart sheet or an embedded chart. The Chart
object stores the ChartArea object in the ChartArea property.

The plot area is the area bounded by the axes. It's the gray area shown in Figure 4. The PlotArea
object is accessed from the Chart object’s PlotArea property.

There are several kinds of axes available in the charts. Figure 4 shows the two most common: the
category axis, also known as the X or horizontal axis, and the primary value axis, known as the Y or
vertical axis. Excel provides for two value axes; if the secondary value axis were used, it would be
shown on the right side of the graph. For some 3D charts, there is a series axis, also known as a
Z-axis. The Axes collection is accessed through the Chart object’s Axes method.

Thelegend is the box to the right of the plot area. It shows a sample of the formatting for each series
along with the series labels. The Legend object is accessed via the Chart object’s Legend property.

Data series are data points plotted with the same format. Each series is stored in an object in the
SeriesCollection object. The Series object stores the data ranges for the data to graph, the category
labels, and the series labels. It also stores all the formatting options, such as color options and
formatting specific to the chart type (high-low bars, data markers, bar types, and so on). Each series
can have its own chart type; for example, you can have one series as aline, the next as an area chart,
and the third as a column chart. As long as all series use the same kind of axes, you can mix and
match chart types. (In other words, a single chart can contain several different graph types, but don’t
plan on putting pie charts in the same chart as lines and columns.)

Within each series is a collection of data points. Each point can be labeled and/or formatted
separately. Formatting a point calls attention to that data item—for example, it could be used to
identify the high (or low) for a series. Warning: highlighting too many data points causes charts to
become very confusing to the viewer. If you're highlighting more than a couple of points in a chart,
be sure the points really need to be highlighted. Access the Points collection from the Series object’s
Points method.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Formatting the components

The GraphWizard method goes only so far in setting up a graph. Many clients are familiar with the graphs
that Excel can produce and ask for many of those features. They’'ll ask you to move the legend to the other
side, make the font bigger on the axis labels, add grid lines, change the colors (of everything—clients love to
insist on color changes), and so on.

The following topics generally are organized to correspond to objects and collections that are part of the
chart. Some objects, such as the SeriesCollection, are always available. Others, such as Title objects, are
only available if a particular property, such as HasTitle, is set to true.

Whether you are building the chart from scratch or are modifying one built by the ChartWizard, you'll find
what you need in the following topics. We've organized the rest of this chapter to start with a discussion of
the Chart object’s properties and methods, and then we’ll work through the Chart object’s subordinate
objects.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



The Chart object

We've covered many of the basics of the Chart object: how to add one, and how to use the ChartWizard
method. Now we can look at the object in more detail. Many of the Chart object’s properties and methods
reference other objects and collections. The ChartArea and PlotArea properties reference the ChartArea and
PlotArea objects, and are always available.

Some objects are not always available. Chart titles, legends, and axes are optional components. The Chart
object has properties to determine whether these objects are available. The three main properties that allow
access to the optional components are:

® HasAxis
. If true, the Axes method is available to access the Axes collection.
® Haslegend
. If true, the Legend property is available to access the Legend object.
® HasTitle
. If true, the ChartTitle property is available to access the ChartTitle object.

There are a few properties that don’t access objects. These global properties, shown in Table 2, affect the
whole chart.

Table 2. Chart object properties. These properties do not reference other objects; they affect the look of the
chart.

Property Type Description

ChartType Numeric See the next section, "Chart types," for more information.

. Determines the shape of the bars or columns in a 3D bar or 3D column chart.
BarShape Numeric

xIBox

xICylinder
3

xIConeToMax

xIPyramidToMax
2

xIConeToPoint




4
xIPyramidToPoint

1

See the next section, "Chart types," for more information.

DisplayBlanksAs

Numeric

Determines the way that blank cells plot on a chart. Uses the following values:

XINotPlotted

Do not plot data points (for example, a line series shows a gap for blank data).

xlinterpolated

Figure out the data point from the two data points on either side (for example, a
line series is drawn from the point before the blank value to the point after).

xlZero

Plot the data points as zero (for example, a line series drops to zero for the
blank data).

Name

Character

Provides the name of the chart. For chart sheets, this name is used to label the
sheet’s tab. For both chart sheets and embedded charts, the name is used to
access the Chart or ChartObject objects. The default for chart sheets is
"Chartn," where n is the next available chart number. The default for embedded
sheets is "<SheetName> Chart n" (note the spaces), where <SheetName> is the
name of the current worksheet (and is inherited—if the sheet name changes, so
does this part of the chart name) and n is the next available Chart object
number.

PlotVisibleOnly

Logical

Indicates whether visible and hidden cells are plotted. True to plot only visible
cells, false to plot both visible and hidden cells. This is only effective if the
worksheet has protection features turned on.

Visible

Logical

Indicates whether the chart is visible.




Several methods take care of some cool features; these are discussed in the appropriate sections toward the
end of this chapter. These are GetChartElement, PrintOut, PrintPreview, SaveAs, and Export. The
SetBackgroundPicture method is discussed with the ChartArea object, as it affects the formatting of the chart

area.

Chart types

We’'ve touched on chart types a bit in the ChartWizard section. The ChartWizard method uses two
parameters, a Chart Type and a Chart Format, which combine to determine how the chart looks. The results
of this combination are stored as a single number in the Chart object’s ChartType property (certain formats
also may set some properties of the Axis and Series objects, too).

Unfortunately, we know of no algorithm to convert from the ChartWizard parameters to the ChartType values,
which is why we’'ve enumerated the values in Table 1 and Appendix B.

For each of the values, Excel has a defined constant. To conserve space in Table 1, we listed only the value.
Check out the Object Browser for more information. Some of the constants are: xI3DColumn (-4100),
xI3DColumnClustered (54), xIBarClustered (57), xIConeBarClustered (102), xICylinderColClustered (92), and
xILineMarkers (65).

What are those cone and cylinder constants? Actually, you can add pyramid constants, too. These charts are
not readily available to the ChartWizard. Here’'s a case where you need to manually set the graph type, to
show the bars (or columns) as cones, cylinders, or pyramids, examples of which are shown in Figure 5. So,
to set a graph to a columned cluster of cylinders, issue the following:

#DEFINE xICylinderColClustered 92

oExcel.ActiveChart.ChartType = xICylinderColClustered

HCylinders
HCones

OPyramids

NN

Figure 5. Examples of different shapes for 3D bar and column charts. Cylinders, cones, and pyramids
are available to add interest to your presentations.

Actually, if you examine Appendix B, you'll find that only 33 of the 73 ChartType values are



represented. The ChartWizard is excellent for setting up the most common kinds of charts, but you
need to manually set the ChartType for some of the uncommon graphs.

Another way to get the cylinder, cone, and pyramid shapes in bar and column charts is to set the
ChartType as a 3D bar or column chart, and then set the BarShape property. When the BarShape
property is set, it updates the ChartType property to reflect the new ChartType value.

Chart object properties available only to 3D charts

Some objects and properties are available only if the chart has 3D properties. The Floor and Walls
properties reference Floor and Walls objects, respectively. The walls are the sides of the 3D chart,
and the floor is the bottom. These objects are similar and contain two main properties to format the
objects. The Border property and the Interior property—explained later in this chapter in "The Border
object” and "The Interior object" sections, respectively—control all of the formatting. Generally, you
will want to set these using the same properties as for PlotArea.

The DepthPercent property stores the depth of the chart (along the Z-axis) as a percentage of the
chart width. Valid values range from 20 to 2000. The HeightPercent property stores the height of the
chart as a percentage of the chart width. Valid values are between 5 and 500 percent.

Two properties set the angle at which you view the chart. The Elevation is the height at which you
view the chart, in degrees. Figure 6 shows two graphs—one with the elevation set to 10, and the
other with it set to the maximum value of 90. The default is 15 degrees for most chart types. The valid
range for the Elevation property is -90 to 90, except for bar charts, which can range from 0 to 44.

Elevation = 10 Elevation = 90

OFirst
B Second
O Third

OFirst
B Second
O Third

Figure 6. lllustrating the Elevation property. Elevation is the height at which you view the chart. The
chart on the left has the Elevation property set to 10, which is near eye-level. The chart on the right
shows the maximum elevation, or 90, which is looking down onto the chart. The minimum value is
-90, or looking from below the chart.

The Rotation property determines how far the chart is rotated left or right (around the Y-axis), in
degrees. Valid values range from 0 to 360, except for bar charts, which again can range from 0 to 44.
The default is 20 for all charts. Figure 7 shows two charts with different rotations.

Rotation = 20 Rotation = 40




OFirst
B Second
O Third

O First
B Second
O Thircd

Figure 7. Rotating the chart. The chart on the left shows the default rotation of 20 degrees, while the
chart on the right shows a rotation of 40 degrees.

The charts shown in Figure 7 are drawn in a style called isometric projection. This 3D drawing style is
used for construction drawings, because accurate measurements can be made from anywhere on the
chart. This is controlled by the RightAngleAxes logical property; when true, isometric projection is
used—it’'s characterized by putting the axes at right angles to each other. When it's false, you can set
the Perspective property, which takes a value between 0 and 100. Perspective is another 3D drawing
style where lines that are parallel in reality, like the horizontal grid lines, are not drawn parallel and
meet at a point called the vanishing point. This drawing method is used for illustration, and
measurements aren’t accurate because items in the foreground are necessarily larger than those in
the background. Perspective is the technique that makes 3D illustrations look more realistic. When
you set the value to 0, the vanishing point is far in the distance, making the lines look parallel. When
set to the maximum value of 100, the vanishing point is close to the graph, which greatly distorts the
graph and over-emphasizes the large end of the graph. The default value is 30. Figure 8 shows two
graphs—one has its Perspective property set to 25, and the other has it set to 100. Compare these

graphs to the graphs shown in Figure 7, which have the RightAngleAxes property set to true and use
the isometric projection.

Perspective = 23

Perspective = 100

oo

I

jaxl

DOFirst
B Second
O Third

[oul

OFirst
B Secaond
O Third

-

[=1 L !
O im o= th hy ot oW D

Figure 8. A difference in perspective. Using perspective enhances the 3D illusion, as in the chart on
the left (compare to the boxy look in Figure 7). The chart on the right shows the maximum
perspective, which gives a very different effect.

ChartArea

The ChartArea is the area containing the entire chart. As mentioned previously, if the chart is an
embedded chart, you have access to the Top, Left, Height, and Width properties to set the size and
location of the embedded chart. These properties are not available in chart sheets, because the chart



is sized to take up the whole sheet; these properties are meaningless in that situation.

There is one property that does not reference an object. This is the AutoScaleFont property. Set this
to false if you do not want the text to change size as the chart changes size. The default is true.

Three properties affect objects that format the entire chart area. These are the Border property
(references the Border object), the Interior property (references an Interior object), and the Font
property (references a Font object). These three objects are commonly used to format many chart
objects (like PlotArea), and the Font and Border objects are even used in other areas in Microsoft
Office.

The Border object

In Chapter 7, "Excel Basics," we looked at the Borders collection, which is used to format individual
sides of each cell in a Range. Ranges work with a collection of Borders objects, one for each of the
eight different borders. All other objects work with a single border, which affects all sides of the
object equally. ChartArea, PlotArea, and others typically have rectangular borders, with all four sides
formatted identically.

All Border objects have the same properties; these are listed in Table 3.

Table 3. Border properties. Borders can be placed around many objects, and their appearance can be
altered with these properties.

Property Type Description
Color RGB Color The color of the border.
LineStyle Numeric The numeric value corresponding to a preset line style.

xIContinuous

1

xIDot

-4118

xIDash

-4115

xIDouble

-4119

xIDashDot

4




xILineStyleNone
-4142

xIDashDotDot

xISlantDashDot

13

. . The width of the line. This uses constants, not points.
Weight Numeric P

xIHairline

xIMedium
-4138

xXIThin

xIThick

4

To remove the border around the chart, use the following code:
#DEFINE xINone -4142

oChart.ChartArea.Borders.LineStyle = xINone

Remember that you can choose a fancy line style, or you can choose a continuous line style and set
the weight. You cannot combine both.

The Interior object

The Interior object controls what the interior of the object looks like. To change the color, set the
Color property of the Interior object to the desired RGB color. In this example, a pastel blue is
chosen:

oExcel.ActiveChart.ChartArea.Interior.Color = RGB(192,192,255)



ROA®
O
,3":
Vae™ while you can specify an RGB value, Excel will select the closest color in its
palette (view this on the Format Data Series dialog, available by right-clicking any data series
and selecting Format Data Series... from the pop-up menu). Excel supports only 56 colors at
once; you can manipulate the palette by using the Workbook’s Colors collection and

changing one of the 56 colors to your RGB value. Only then can you set an object to the exact
RGB value.

The Interior object also has a Pattern property. Yes, you can pattern the chart area, the plot area, the
columns and bars, and so on, but please use this feature sparingly! Patterns can be visually
overwhelming, especially if each column uses a different pattern and color. If the chart is in color,
there should be plenty of colors to choose from. Okay, you could use a color and a pattern in the
same color to indicate pairs of series—for example, actual vs. forecast, where the actuals are solid
colors and the forecast bars are a pattern in the same color. Where patterns really excel is when you
need to print in black and white, and you just can’t rely on how a printer maps the colors to shades of

gray.

However, we really advise against patterning the plot area, and especially the chart area. The patterns
are just too small for large areas, and they tend to look ugly.

With those caveats in mind, if you want to pattern an object, here’'s how. Set the Color property to the
"background” color of the pattern. Set the PatternColor property to the color of the pattern. Some
patterns, like Checker and Gray50, use equal amounts of Color and PatternColor, so it doesn’t matter
which one you select. However, CrissCross is made up of thin lines, so setting PatternColor to red
and Color to white gives red lines on a white background. Reversing the colors gives the illusion of
red diamonds (white lines on a red background). After you've set the Color and PatternColor
properties, you can set the Pattern property to the desired pattern. Table 4 lists the pattern constants.

The following code sample sets the PlotArea to a red grid on a white background:

#DEFINE xIPatternGrid 15
oExcel.ActiveChart.PlotArea.Interior.Color = RGB(255,255,255) && White
oExcel.ActiveChart.PlotArea.Interior.PatternColor = RGB(255,0,0) && Red

oExcel.ActiveChart.PlotArea.Interior.Pattern = xIPatternGrid

This probably won’t win any visual awards, but it effectively illustrates patterning the Interior object.

Table 4. Excel Pattern constants. These can be used to pattern many objects. Be careful, though, and
keep the patterning to a minimum to prevent a visual "ransom note" effect.

Pattern constant Value Pattern constant Value

xIPatternAutomatic -4105 xIPatternHorizontal -4128




xIPatternChecker 9 xIPatternLightDown 13
xIPatternCrissCross 16 xIPatternLightHorizontal 11
xIPatternDown -4121 xIPatternLightUp 14
xIPatternGray16 17 xIPatternLightVertical 12
xIPatternGray25 -4124 xIPatternNone -4142
xIPatternGray50 -4125 xlPatternSemiGray75 10
xIPatternGray75 -4126 xIPatternSolid 1
xIPatternGray8 18 xIPatternUp -4162
x|PatternGrid 15 xIPatternVertical -4166

The Font object

If you've been reading this book sequentially, by now you're already quite familiar with the Font
object. It's discussed in the "Word Basics" chapter (Chapter 4), and again in the "Excel Basics"
chapter (Chapter 7). We’'ll hit the highlights here and send you to the "Fonts" topic in Chapter 7 for
details (Table 1 in Chapter 7 lists the commonly used Font properties in Excel).

When an object contains a Font object, the font properties are inherited by all child objects. For
example, when you set the ChartArea’s Font object properties, then all objects contained in the
ChartArea inherit the font, unless you explicitly set the child object’s font properties. Set the font
properties just like you set them anywhere else:

oExcel.ActiveChart.ChartArea.Font.Name = "Times New Roman"
oExcel.ActiveChart.ChartArea.Font.Bold = .T.
oExcel.ActiveChart.Legend.Font.Name = "Arial"

oExcel.ActiveChart.Legend.Font.Bold = .F.

This example sets all text on the chart to bold Times New Roman, except text within the legend,
which is set to unbolded Arial.



The PlotArea object

The PlotArea object is a child of the Chart object, and it represents the area bounded by the axes.
You can resize this area, making it (and the axes that bound it) larger or smaller. The PlotArea is
automatically optimized for that chart, and it usually doesn’t need to be changed. But if you are trying
to make the plot areas of two or more charts match in size, you need to play with the PlotArea size.

The PlotArea object has the standard Top, Left, Width, and Height properties. It also has properties
for the InsideTop, InsideLeft, InsideWidth, and InsideHeight. The PlotArea object actually has two
rectangular areas. The inside area is the area that defaults to gray, and it’'s bounded on the bottom by
the category axis, on the sides by the value axes, and at the top by the maximum value. The whole
plot area is the area bounded by a rectangle from the leftmost and topmost point of the primary value
axis text to the rightmost and bottommost point of the secondary value axis and category axis text.
Okay, a picture’s worth a thousand words here. If you interactively select the PlotArea then try to
move it, Excel indicates both areas with dashed lines when you move it, as shown in Figure 9.

m 1952
15993
01994
O 1455
| 1555

Figure 9. Moving the PlotArea, which shows the boundaries of the outside and inside areas. The
outside areas are controlled by the Top, Left, Height, and Width properties, while the inside areas are
controlled by the InsideTop, InsideLeft, InsideHeight, and InsideWidth properties. The inside area
properties are read-only.

Now, the only problem is that the Inside properties are read-only. To change any of the Inside values,
you need to increase or decrease the Height or Width properties, until the InsideHeight and/or
InsideWidth values are appropriate.

Fortunately, the default plot area size works for most charts, and you won’t have to mess with it.
What you want to change are the Interior and Border properties, which work just like their ChartArea
counterparts. See the "The Interior object" and "The Border object" sections earlier in this chapter.

Data series
Data series objects store the references to the data to graph, as well as the numerous properties for

each series. Each Series object is stored in the SeriesCollection collection object. Before we can get
to the cool part (playing with the colors and other formatting features), we need to understand how



the Series object stores and manages the data properties and objects.
How data and labels are stored

When the Series objects are set from the ChartWizard or from the SetSourceData method, each
column or row (depending on the nPlotBy parameter) becomes a Series object. You can also add
series (either to a new chart or to an existing chart, even if it was created with the ChartWizard) using
SeriesCollection’s Add method. The syntax is as follows:

oExcel.ActiveChart.SeriesCollection.Add( oSourceRange, [nPlotBy],

[ISeriesLabels], [ICategoryLabels], [IReplaceCategories] )

oSourceRange Object The Range object with the new data to add. You can add many series at once if the
source range contains multiple series.

Indicates whether data series are stored in rows or columns. Use one of the two

nPlotBy Numeric
constants:
xIRows
1
xIColumns
2
The default is xIColumns.

ISeriesLabels Logical Indicates whether the first row or column contains the series labels. If this argument
is omitted, Excel attempts to figure it out based on the contents of the first row or
column—a label is assumed to be any non-numeric data. Personally, we prefer to
pass this parameter.

ICategoryLabels Logical Indicates whether the first row or column contains the category labels. If this
argument is omitted, Excel attempts to figure it out based on the contents of the first
row or column. Character and date data become labels, while numeric data is
considered data to plot.

IReplaceCategories Logical Indicates whether the category labels that already exist in the chart should be

replaced by the category labels in the source range. The default is false.

For example, starting with the data in Figure 4, if we add a column of data representing 1997 in
Column G, we can update the chart with the following:

#DEFINE xIColumns 2
oExcel.ActiveChart.SeriesCollection.Add(oExcel.Sheets[1].Range("G1:G13"),;

xIColumns, .T., .F., .F.)



To use the Add method instead of the ChartWizard method to put data into a chart that was added
with ChartsObjects.Add, use the following:

oExcel.ActiveChart.SeriesCollection.Add(oExcel.Sheets[1].Range("A1:F13"))

The data portion of each series is stored in the Values property, from which you can change the
series’ range. From VFP, you need to set it to a Range object; from VB, you can set it to either a
Range object or an array of points. When you read this Values property from VFP, you get the
contents of the first cell, not a Range object or a character string representing a Range object. In all
likelihood, this is due to the incompatibility of arrays between VFP and VB.

The SeriesCollection’s XValues property stores the range used for the X-axis (category) values.
These aren’t stored in a normalized fashion, however. Each Series object in the collection stores an
XValues value. But only the value of the first object in the collection (oChart.SeriesCollection[1])
appears to be used. Like the Values property, XValues is set to a Range (from VFP; VB also allows an
array of points), but it returns only the first cell.

SeriesCollection’s Name property stores the value of the series label. You set this to a range
(generally representing a single cell) or a character string. This is a very handy command, because
you can format your chart to readable names, while your data in the spreadsheet is abbreviated to fit
in columns.

Formatting the Series

Now we're getting to the fun part. The intricacies of data storage pale in comparison to manipulating
how the data looks (at least, in our opinion).

Two properties are already familiar: ChartType and BarShape. The Chart object’s ChartType and
BarShape properties set the formatting for the whole chart, and the Series object’s properties change
the format for just that particular series. The next example shows how to change the properties for
each series. We'll set up some different series, so we can work on some of the other properties that
affect certain types of charts.

#DEFINE xlArea 1

#DEFINE xILineMarkers 65

oExcel.ActiveChart.SeriesCollection[1].ChartType = xlArea

oExcel.ActiveChart.SeriesCollection[4].ChartType = xILineMarkers

oExcel.ActiveChart.SeriesCollection[5].ChartType = xILineMarkers

Figure 10 shows the results of the code. Normally, you would not format this chart with different chart
types, because each of the series represents the same kind of data. You might use different chart

types if you were showing the profit, sales figures, and forecast goals. But we’ll work on
manipulating this data to illustrate the series concepts.

Chart Title



565,000.00
2 $5000.00 -
= $4,000.00 |
: 50 =
S §1'00000 - 1353
§0.00 A —11954
2 1
Q@ﬁ o & B F & 1995
¥ & gF —e— 15995
N
Category Title

Figure 10. Each series can be a different chart type. It doesn’'t make sense to format this particular
data set like this, but we can use the data to illustrate concepts.

There are two more objects that, by now, should be familiar. The Border and Interior objects format
every series. The linear objects, like the line, use the Border properties to format the line itself; the
Interior object is unavailable for lines. The other objects use the Border properties and the Interior
properties to set the border (by default, it's black) and the color and patterns of the bar. See the
sections "The Border object” and "The Interior object" earlier in this chapter for details.

Data labels

Data labels are text objects that label every point in the series. These properties and methods are
available to the Chart, Series, and Point objects. Turn them on with the HasDatal abels property:

oExcel.ActiveChart.SeriesCollection[3].HasDatalLabels = .T.

When HasDatalLabels is .T., Excel labels each point with the value of the data point. Excel does a
great job of centering the data label above the point, and setting the font size to something readable.
However, it does not attempt to do anything about overlapping labels (if it did, then the labels
wouldn’t be centered at a calculated distance above the point). Turning on the labels gives us a very
cluttered appearance, as shown in Figure 11. There are several ways to get around this problem,
though none are foolproof in an automated environment, as it is difficult to query the data labels to
determine whether they are overlapping.

Chart Title
2 $200000 o P e
s Hing [ REE R | =
£ $1,000.00 1993
B0 00 —— 1994
1955




w3 w =4 & - "
ETF & @uéﬁ _,-._{3-& —x— 19590
o

Category Title

Figure 11. Turning on data labels can give a very cluttered appearance. There are several
workarounds: make the label font smaller, or turn them on for only selected points.

One way is to change the font size. Smaller fonts won’t overlap as much. The problem here is that
you can get just so tiny before the font size becomes unreadable. The DatalLabels property allows
you to address the entire collection of data labels, or you can select individual labels to format.
Here’s an example of changing font properties for the entire series of data labels:

WITH oExcel.ActiveChart.SeriesCollection[3].DataLabels.Font
.Name ="Times New Roman"
.Size=6

ENDWITH

Selecting a single label from the collection is as easy as addressing it by its index. For example, this
sets the third data label to a font size of six:

oExcel.ActiveChart.SeriesCollection[3].DataLabels[3].Font.Size = 6

There are more options to labeling than just the point value. You can use the ApplyDatalLabels
method of the SeriesCollection object. It has four parameters, but the most important is the first one.
You can pass one of the values given in Table 5to set the text of the label.

Table 5. Values for the ApplyDatalLabels method. Note that some labels are available only for certain
types of charts.

Constant Value Notes

x|DatalLabelsShowNone -4142 No data labels.
xIDatalLabelsShowValue 2 Shows the value.
xIDataLabelsShowPercent 3 Only for pie and doughnut charts.
xIDatalLabelsShowLabel 4 Shows the category label.




xIDataLabelsShowLabelAndPercent 5 Only for pie and doughnut charts.

xIDataLabelsShowBubbleSizes 6 Only for bubble charts.

Just in case these options are not enough, you can set the text of individual labels by setting the
Datal abel object’s Text property to anything you desire;

oExcel.ActiveChart.SeriesCollection[3].DataLabels[1].Text =" Test"

The preceding code sets the label to "Test." Setting the text value to the empty string effectively
removes the label.

Error bars

Error bars show potential error amounts for each value in a series. They are available for 2D area,
bar, column, line, XY (scatter), and bubble charts. The Series object’s ErrorBar method is used to set
the values.

oExcel.ActiveChart.Series[n].ErrorBar( [nDirection], [ninclude],

[nType], [nErrorAmount], [nCustomNegAmount] )

nDirection Numeric The direction is always along the Y-axis, except in scatter charts, where you can
use either xIX (-4168) or xIY (1) to indicate the direction of the error bars.

A value that indicates which halves of the error bar to include. Choose from one of
the following:

ninclude Numeric

xIErrorBarincludePlusValues

x|ErrorBarincludeMinusValues

x|IErrorBarlncludeNone
-4142

xIErrorBarincludeBoth

The default is xIErrorBarIincludeBoth.

A value that indicates how the error bar values are calculated. Choose from one of
the following:

Numeric

nType xIErrorBarTypeFixedValue



x|ErrorBarTypePercent
2
x|ErrorBarTypeStDev
-4155
x|IErrorBarTypeStError
4
x|IErrorBarTypeCustom

-4114

The default is xIErrorBarTypeFixedValue.

nErrorAmount Numeric The amount of the error, in units expressed by nType. If the nType parameter is
x|ErrorBarTypeCustom, this is the value of the positive error, as a fixed value.

nCustomNegAmount Numeric Used only if the nType parameter is xIErrorBarTypeCustom. This is the value of
the negative error, as a fixed value.

The ErrorBars property (note that the method is singular, and the property is plural) references the
ErrorBar object, with properties for additional formatting. The first is the Border property; yes, it
references that same Border object to set the formatting of the error bar lines (see "The Border
object" topic earlier in this chapter).

The second ErrorBar object property is the EndStyle property, which determines whether the error
bars have a cap (perpendicular line at the end of the error bar) or not. It has two settings: xICap (1)
and xINoCap (2).

Formatting data markers (line, radar, and scatter charts)

Line, radar, and scatter charts can use certain symbols to plot the points, known in Excel lingo as
data markers. When you initially select a format with data markers, you get the default set of markers.
The first series gets a six-pointed star (like an x with an additional vertical line), the second series
gets an x, the third gets a triangle, the fourth gets a square, the fifth gets a diamond, and so on. Since
the lines differ only by colors, it may look too busy for some people’s taste. Personally, we think the
first two symbols look a bit like barbed wire; we prefer the other symbols.

The Series object (and the Points object, too) uses the MarkerStyle property to set the shape of the
marker. Shown in Table 6 is a list of all the marker constants, along with their values and shapes.

Table 6. The available marker styles. Markers are used on 2D line charts and scatter charts.



MarkerStyle constant Value Picture
xIMarkerStyleNone -4142

xIMarkerStyleAutomatic -4105 varies
xIMarkerStyleCircle 8

xIMarkerStyleDash -4115 -
xIMarkerStyleDiamond 2 u
xIMarkerStyleDot -4118 8
xIMarkerStylePlus 9 +
xIMarkerStyleSquare 1 n
xIMarkerStyleStar 5 U
xIMarkerStyleTriangle 3 p
xIMarkerStylexX -4168

You can change the size of the marker with the MarkerSize property. We like the fact that this
property sets the size in points, rather than relying on a series of constants!

You can change the marker color, too. You can separately set the foreground and background colors,
allowing you to come up with quite a number of effects. The MarkerForegroundColor controls the
border color, and the MarkerBackgroundColor controls the fill color. Set each to an RGB color value.
Setting these values does not change the color of the lines connecting the markers (if any). For an
example, let's change the marker of the 1995 data to an open dark blue diamond, and the lone marker
of the 1996 data to a red square.

#DEFINE xIMarkerStyleDiamond 2



#DEFINE xIMarkerStyleSquare 1

#DEFINE ColorRed RGB(255, 0, 0)

#DEFINE ColorWhite RGB(255,255,255)

#DEFINE ColorDkBlue RGB( 0, 0,128)

* Format the 1995 data to an open dark blue diamond:
WITH oExcel.ActiveChart.SeriesCollection[4]
.MarkerStyle = xIMarkerStyleDiamond
.MarkerForegroundColor = ColorDkBlue
.MarkerBackgroundColor = ColorWhite

ENDWITH

* Format the 1996 data to red square on white background:
WITH oExcel.ActiveChart.SeriesCollection[5]
.MarkerStyle = xIMarkerStyleSquare
.MarkerForegroundColor = ColorRed

ENDWITH

Figure 12 shows the results of formatting the markers. Though black and white in the book, you can
make out that the borders of the diamonds are darker than the line, and that the filled square is
visible and is a different color than the line.

Chart Title
%5,000.00
2 00000 4 o
= $4,000.00 1.,
: BOD =
S §100000 - 1593
§0.00 A —1994
& & @ N F o 1995
w3 & {3,_'3- - —=— 1995
of F
Category Title

Figure 12. The results of changing the data markers. Note that markers can be colored separately
from the line.

Smoothing lines on charts



By default, the lines on a chart are straight lines connecting each point. You can use the Series
object’s Smooth property to apply curve smoothing. Set this property to true to smooth the line, or
false to keep the lines straight. This property applies only to line charts and scatter charts.

Formatting pie charts

Pie charts have features unique to themselves. In this example, we create a pie chart right next to the
chart created for the previous examples, using the ChartWizard method.

#DEFINE xIPie 5

#DEFINE autoPieNoLabels 1

#DEFINE xIColumns 2

#DEFINE autoOneSeriesLabel 1

#DEFINE autoOneCategorylLabel 1

oRange = oExcel.Sheets[1].Range(" CategoryNames, Year1994")
oChart = oExcel.Sheets[1].ChartObjects.Add(372.7, 173.2, 319.5, 190.5)
oChart.Activate()

oExcel.ActiveChart.ChartWizard(oRange, xIPie, autoPieNoLabels, ;

xIColumns, autoOneSeriesLabel, autoOneCategoryLabel)

The resulting graph is shown in Figure 13. It’s a little plain-looking. The legend is bothersome too, as
it’s cut off part of the last entry. Fortunately, Excel gives us a range of formatting capabilities.

1954 @ January

B February
O March

O April

m May
@.June
m.uly

O August

B September
E October

O Movember

mMNorarmhbor

Figure 13. The default pie chart, as generated by the ChartWizard. Excel has a few formatting options
to spruce this chart up.

We've already covered adding data labels by using the Series object’s ApplyDatalLabels method (see
the topic "Data labels" earlier in this chapter). Let’s look at the values that are only available to pie



charts (and doughnuts): xIDatal abelsShowPercent (3) and xIDataLabelsShowLabelAndPercent (5).
Displaying both the label and the percent may cause the labels to overlap, as there are so many
slices to the pie in this case, so displaying only the percentage makes a good choice.

#DEFINE xIDataLabelsShowPercent 3
oExcel.ActiveChart.SeriesCollection[1].ApplyDatalLabels( ;

x|DatalLabelsShowPercent)

Another possibility is the explosion effect, where one (or all) slices of the pie move out from the
center of the pie. The Explosion property applies to the Series object (where all slices are exploded)
and the Points object (where only that slice is exploded). The Explosion property value is a number
representing the distance the slice moves from the center. Experiment a little to figure out the best
value, as the value is a relative amount. One is just a tiny bit, something in the range of 5-20 looks
good, and 50 separates the slices perhaps a bit too much (on this particular chart; your mileage may
vary).

oExcel.ActiveChart.SeriesCollection[1].Explosion = 15

The results of formatting the labels and the explosion are shown in Figure 14.

1994 @ January
B February
O March
6% 2% 5% 0 April

<I V,ﬁf/; Y i
=
muly

&

A% O August
g%

e W September
| Octaber
O Movernbetr

9% Ok

M MNorarmbor

Figure 14. The pie chart with some formatting added. Percentage labels are shown, and you could
add the category label, too (though it would overlap). Exploding all of the slices gives another look to
the pie chart.

Formatting individual points

In the previous sections, you've seen reference to the ability to format individual points. Nearly all of
the formatting features available to a Series object are available for a single point. Access the point
through the Series object’s Points method. You might use this feature to change the color and/or
style of a marker, bar, column, or slice, to call attention to that data point. You can also add data
labels to a point or two, again to draw attention to that point. You can manually set the values of the



data labels, which works especially well if you want to add labels that are not part of your data in the
spreadsheet.

On the example pie chart, perhaps the client wants to highlight December’s slice with the category
label, and to explode it (but not the rest). The following example first removes the explosion from the
series, then sets up the formatting for December’s slice:

#DEFINE xIDataLabelsShowLabelAndPercent 5

* Reset the Series explosion to 0
oExcel.ActiveChart.SeriesCollection[1].Explosion =0

* Format the single point

WITH oExcel.ActiveChart.SeriesCollection[1].Points[12]
ApplyDatalLabels(x|DataLabelsShowLabelAndPercent)
.Explosion =15

ENDWITH

Figure 15 shows the results of formatting a single point.

1994 O.Jdanuary
W February
. . 5oL OMarch
ecember -
" oy O April
a0, W hay
ul
O.June
u]
13% 8% m.July
7o “5% O August
a9, a9 \ 7% B September
i o | October
O Mavember
A Norarmhar

Figure 15. You can format a single point. Notice the December slice is exploded and has a different
data label style.

The Legend object

The pie chart’s legend has been bothering us since the first example. Access the Legend object
through the Chart object’s Legend property. The ChartObject also has a HasLegend property; if it's
set to false, the Legend property (and therefore the Legend object) is unavailable. To quickly turn off
the legend, simply set HasLegend to false:



oExcel.ActiveChart.HasLegend = .F.

This works, but it has the nasty habit of not recalculating the PlotArea to take advantage of the space
previously consumed by the legend. You can also use the ChartWizard method to turn off the legend
by restating the ChartFormat parameter (the second one) and the HasLegend parameter (the
seventh), as in the following:

#DEFINE xIPie 5

oExcel.ActiveChart.ChartWizard(,xIPie,,,,,.F.)

This generally forces arecalculation of the plot area. However, now there’s no legend, and the user is
left to figure out what all of those slices mean. Perhaps we should put the legend back and figure out
how to make it look better. Setting HasLegend to true recalculates the plot area, so we don’t have to
worry about remembering ChartWizard parameters.

oExcel.ActiveChart.HasLegend = .T.

You can change the font properties from the Legend’s Font property, which accesses the Font object
(explained in a previous topic in this chapter, "The Font object"). You can reduce the font a smidgen,
and then you can make them fit.

oExcel.ActiveChart.Legend.Font.Size =;
oExcel.ActiveChart.Legend.Font.Size - 2

Figure 16 shows that changing the font size worked. You can also control the font name, bold and
italic attributes, and so on. It's the same Font object used throughout the Excel model.

1994
O January
Eo H February
u}
Diecember OMarch
16% 5% 0 &pril
o [ JEE
O June
13% 8% u
| July
- ~5% O August
a% 7oL W September
a9 | October
Lu}
O Movember
O December

Figure 16. The effects of globally changing the font size of the legend. By reducing the size, we've
made it fit. The Legend object is as robust as the other chart objects and has many properties
available to alter its format.

What else can you do to the Legend? You can set its Border and Interior properties (see the topics



"The Border object" and "The Interior object" earlier in this chapter). You can manipulate the Top and
Left properties to move it around (Height and Width are calculated for you and are therefore
read-only). An easier way to move it around is to use the Position property, which takes one of the
following values: xILegendPositionBottom (-4107), xILegendPositionCorner (2), xILegendPositionLeft
(-4131), xlLegendPositionRight (-4152), or xILegendPositionTop (-4160). This also recalculates the
Height and Width, allowing the legend to stretch along the bottom.

You can also format the font properties of each legend entry separately by accessing the
LegendEntries property, which references the LegendEntries collection of LegendEntry objects. You
cannot change the text (you do that through the Series object or the cell with the label), but you can
access the font object, as in the following, which formats December’s legend entry to bold:

oExcel.ActiveChart.Legend.LegendEntries[12].Font.Bold = .T.

Each LegendEntry object has a LegendKey object, which is that little sample that identifies the
series. It has a Border object and an Interior object, as well as the other formatting properties used
by the Series object. We recommend setting the formatting in the Series object; however, there is one
exception. We ran into a problem formatting a Series object with an entirely blank data range. This
can happen if you generate data for a standard chart and no data comes up for a series—for example,
if you graph monthly sales by customer for each category of products, and a customer orders no
items in, say, the Beverage or Confections categories. Accessing the Series object gives an error, as
the data range is empty. You can safely format the LegendKey object to customize the look of the
legend key so the legend looks the same as other graphs.

Axes

The Chart object’s Axes method returns an Axis object from the Axes collection. Each Axis object in
the chart is contained in the Axes collection. The Axes method takes two parameters: the axis type
and the axis group. The axis type is one of the following values: xICategory (1), xISeriesAxis (3), or
xlValue (2). The axis group can be either xIPrimary (1) or xISecondary (2). Secondary axes are
available only on 2D charts, and only when a Series object’s AxisGroup property is setto 2. The
secondary axis allows two separate ranges of data to be graphed together. For example, the primary
axis might be the value of the sales, with the secondary axis showing the percent of the total. Table 7
shows the properties available for each Axis object.

The TickLabels object

The TickLabels object controls the format of the labels on the axis. It gives you nearly complete
control over the labels. Table 8 summarizes the important properties for the TickLabels object.

Table 7. Properties of an Axis object. These properties give a lot of flexibility for formatting axes.

Property Type Description

AxisBetweenCategories Logical Applies only to the category axis. True if the value axis crosses the category




axis between categories (best for column charts); False if it crosses at the
category (good for lines).

Crosses Numeric Determines the point where other axes cross this axis. Can be at the first
value using xIMinimum (4) or at the last value using xIMaximum (2).

CrossesAt Numeric Applies only to the value axis. An integer that represents the relative value
on the value axis where the category axis crosses.

Border Object References a Border object that takes care of the formatting of the axis line.
See "The Border object” earlier in this chapter.

ScaleType Numeric Applies only to the value axis. The values are either xILinear (-4132) or
xILogarithmic (-4133).

HasMajorGridlines, Logical True if the axis has major or minor gridlines, respectively. Only primary

HasMinorGridlines axes can have gridlines.

MajorGridlines, Object If the corresponding HasMajorGridlines or HasMinorGridlines property is
true, this property references a Gridlines object. See the section "Gridlines"

MinorGridlines later in this chapter.

MaximumsScalelsAuto, Logical Applies only to the value axis. A logical property that indicates whether the
number of minimum and maximum values is calculated by Excel. If false,

MinimumScalelsAuto set the MaximumScale or MinimumScale properties.

MaximumScale, Numeric Applies only to the value axis. If MaximumScalelsAuto or

MinimumScale MinimumScalelsAuto is false, these properties contain the value of the
largest/smallest values on the axis.

MajorUnitisAuto, Logical Applies only to the value axis. Indicates whether the number of units

MinorUnitlsAuto between tick marks is calculated by Excel. If false, set the
MajorUnit/MinorUnit properties.

MajorUnit, Numeric Applies only to the value axis. If MajorAxisIsAuto or MinorAxisIsAuto is

MinorUnit

false, these properties contain the value between major/minor tick marks;
otherwise, this property contains .T.




TickmarkSpacing Numeric Applies only to the series and category axes. Determines how many
categories or series are between tick marks. Use MajorUnit or MinorUnit
properties to set the value axis.

- . Indicates the location of the tick mark. Use one of the following:

MajorTickMark, Numeric g
xITickMarkNone

MinorTickMark
-4142
xITickMarkinside
2
xITickMarkOutside
3
xITickMarkCross
4

TickLabels Object References a TickLabels object. This object is where the text properties for
the tick mark are set. See the next topic, "The TickLabels object.”

Descri th ition of the labels on the axis. Val are:

TickLabelPosition NUmeric escribes the position o abels on the axis. Values are

xITickLabelPositionNone
-4142

Suppresses labels.
xITickLabelPositionLow

-4134

Nearest the axis.
xITickLabelPositionHigh

-4127

On the other side of the PlotArea.
xITickLabelPositionNextToAxis
4

Nearest the axis.




TickLabelSpacing Numeric Determines the number of categories or series between tick mark labels.
Cannot be set on the value axis.

Table 8. Properties for the TickLabels object. The TickLabels are the text that displays along the axis.

Property Type Description

Alignment Numeric A value that indicates how the label lines up with the axis. Choose from
xIHAlignCenter (-4108), xIHAlignLeft (-4131), or xIHAlignRight (-4152).

Font Object Property that accesses the Font object to format the text on the axis. See the topic
"The Font object" earlier in this chapter.

NumberFormat Character A string of codes that's used to format the numbers, much like VFP’s InputMask
property. See the section "Formatting values" in Chapter 7 for more information.

An integer value that represents the text orientation, ranging from -90 to 90.
Alternatively, a constant can be used:

Orientation Numeric

xITickLabelOrientationAutomatic
-4105
xITickLabelOrientationDownward
-4170
xITickLabelOrientationHorizontal
-4128
xITickLabelOrientationUpward
-4171
xITickLabelOrientationVertical

-4166

Gridlines

The Gridlines object is available only to primary axes. Its only relevant property is the Border
property, accessing a Border object (see the topic "The Border object" earlier in this chapter). The
Border object contains the formatting of the grid lines.



Titles

Charts have two kinds of title objects: ChartTitle objects and AxisTitle objects. Their structures are
similar. The ChartTitle object is accessed through the Chart object’s ChartTitle property, and it's used
only if the Chart object’s HasTitle property is true. The AxisTitle is accessed through the Axis
object’s AxisTitle property, and it's used only if the Axis object’s HasTitle property is true. Table 9
shows their properties.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

Listing 2 shows a program (XLSample3.PRG in the Developer Download files available at

www.hentzenwerke.com) that uses many of the features covered in this chapter. The first chart is a column
chart that uses the data generated in Listing 1. Because the data for 1996 is incomplete, the range omits this
data. To illustrate adding a Series to a graph, an Average column is created and populated using Excel’s
AVERAGE function. The Average series is then formatted as a Line chart. Each of the other columns is
formatted to a specific color, optimized for printing (that way, it looks good when printed in this book). The
axis labels are formatted, too. This chart is shown in Figure 17.

The second chart is a 3D pie chart, which is a chart sheet instead of an embedded chart. It uses some 3D
formatting properties, and changes the formatting of some titles and data labels, as well as the color of the

pie wedges. Gray was chosen as the color so it would print well. The pie chart is shown in Figure 18.

Table 9. Properties of the ChartTitle and AxisTitle objects.

Property Type Description

Border Object References a Border object. See "The Border object"” topic earlier in this
chapter. By default, Titles do not have borders.

Caption, Text Character These two identical properties contain the title text.

Font Object References a Font object. See "The Font object" topic earlier in this chapter.

HorizontalAlignment Numeric Determines the horizontal alignment for the title. Use one of the following:
xIHAlignCenter
-4108

XIHAlignLeft

-4131
xIHAlignDistributed
-4117
xIHAlignRight

-4152

xIHAlignJustify



http://www.hentzenwerke.com/

-4130

VerticalAlignment

Numeric

Determines the vertical alignment for the title. Use one of the following:
xIVAlignBottom

-4107

xIVAlignJustify

-4130

xIVAlignCenter

-4108

xIVAlignTop

-4160

xIVAlignDistributed

-4117

Left, Top

Numeric

Can be set to fine-tune the title’s location.

Orientation

Numeric

Determines the text orientation, ranging from -90 to 90. Or a constant can be
used:

xIDownward
-4170
xIHorizontal
-4128

xlUpward




-4171

xIVertical

-4166

Shadow

Logical

Indicates whether there is a drop-shadow on the title box.

Interior

Object

References an Interior object, which controls the color of the title box. See
"The Interior object" topic earlier in this chapter.

Listing 2. Tasmanian Traders Annual Sales graphs. This code covers many of the topics covered in
this chapter, such as creating graphs, working with multiple ChartTypes within a chart, adding

Series, formatting individual Series, and more.

* Sets up the monthly sales data by year to graph.
* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make certain objects
* available after this program executes.

PUBLIC oExcel, oBook, oSheet, oChart

#DEFINE xIColumn 3

#DEFINE xI3DPie -4102

#DEFINE xIColumns 2

#DEFINE xILegendPositionBottom -4107

#DEFINE xILineStyleNone -4142

#DEFINE xICategory 1

#DEFINE xIValue 2

#DEFINE xIPrimary 1

#DEFINE xIFillDefault 0

#DEFINE xILineMarkers 65

#DEFINE xIMarkerStyleDiamond 2

#DEFINE autoColumnFormat 4

#DEFINE autoPieFormat 7



#DEFINE autoOneSeriesLabel 1

#DEFINE autoOneCategorylLabel 1
#DEFINE autoHasLegend .T.

#DEFINE autoNotHasLegend .F.

#DEFINE rgbWhite RGB(255, 255, 255)
#DEFINE rgbLtGray RGB(192, 192, 192)
#DEFINE rgbMedGray RGB(128, 128, 128)
#DEFINE rgbDkGray RGB( 64, 64, 64)
#DEFINE rgbBlack RGB( 0, 0, 0)

* Create the workbook and add the data
DO XLGDataSetup && Listing 1

* Add the range names

WITH oExcel.Sheets[1]
.RANGE("A1:A13").NAME = "CategoryNames"
.RANGE("B1:B13").NAME = "Year1992"
.RANGE("C1:C13").NAME = "Year1993"
.RANGE("D1:D13").NAME = "Year1994"
.RANGE("E1:E13").NAME = "Year1995"
.RANGE("F1:F13").NAME = "Year1996"

ENDWITH

Annual Sales

$6 000
$5 000
$4 000
$3 000
$2 000
$1 000

Dollars

0

§ & & ¢

& 5 ¥ F

Sales by Month

E

&

C 1952 1995 o 1954 . 1995 —e— Average

ol

&

&

Figure 17. The Annual Sales graph. This chart demonstrates axis formatting, using different




ChartTypes by Series, moving the legend, and formatting each Series individually.
* Create the first chart

oChart = oExcel.Sheets[1].ChartObjects.ADD(0, 175, 400, 200)

oChart. ACTIVATE()

* Include only the category names and years through 1995

oSourceRange = oExcel.Sheets[1].Range("ALl:E13")
oExcel.ActiveChart.ChartWizard(oSourceRange, xIColumn, autoColumnFormat, ;
xIColumns, autoOneCategoryLabel, autoOneSeriesLabel, autoHasLegend, ;
"Annual Sales", "Sales by Month", "Dollars")

WITH oExcel.ActiveChart

* Move the legend to the bottom, and remove the border

.Legend.Position = xILegendPositionBottom

.Legend.Border.LineStyle = xILineStyleNone

* Format the axes.

* On the category axis, set the size a little smaller,

*and put the labels on a 45 degree slant.

Axes(xICategory, xIPrimary).TickLabels.Orientation = 45

Axes(xICategory, xIPrimary).TickLabels.Font.Size = 8

* On the value axis, set the size a bit smaller,

*format the values to currency, and turn on Gridlines

Axes(xIValue, xIPrimary).TickLabels.Font.Size =8

Axes(xIValue, xIPrimary).TickLabels.NumberFormat = " $# ###;;$0"
Axes(xIValue, xIPrimary).HasMajorGridlines = .T.

Axes(xIValue, xIPrimary).MajorGridlines.Border.Color = rgbLtGray
* Abbreviate the category labels to make more room for the chart
FORI1=1TO 12

WITH oExcel.ActiveSheet.Range("A" + ALLTRIM(STR(I + 1)))



Value = UPPER(LEFT(.Value, 3))

ENDWITH

ENDFOR

* Center the axis within the ChartArea

.Legend.Left = (.ChartArea.Width - .Legend.Width) / 2
ENDWITH

* Add an average column.

WITH oExcel.Sheets[1]

* Insert the Series label

.Range("G1").Value = "Average"

* Insert the AVERAGE formula into each cell
FOR1=2TO 13

cl = ALLTRIM(STR(1))

Range("G" + cl).Value = "=AVERAGE(B" +cl +":F" + cl +")"
ENDFOR

* Name the range

.Range("G1:G13").Name ="Average"

ENDWITH

WITH oExcel.ActiveChart

* Add the Average series, and format it to a black line
* with diamond markers (also black).
.SeriesCollection.Add( oExcel.Sheets[1].Range("G1:G13"), ;
xIColumns, .T., .F., .F.)

WITH .SeriesCollection[5]

.ChartType = xILineMarkers

.MarkerStyle = xIMarkerStyleDiamond
.MarkerForegroundColor = rghBlack
.MarkerBackgroundColor = rgbBlack

.Border.Color = rghBlack

ENDWITH

* Change the colors of the bars to shades of gray

.SeriesCollection[1].Interior.Color = rgbWhite



.SeriesCollection[2].Interior.Color = rgbhLtGray
.SeriesCollection[3].Interior.Color = rgbhMedGray
.SeriesCollection[4].Interior.Color = rghDkGray
* Format the interior color of the plot area

.PlotArea.Interior.Color = rgbhWhite

ENDWITH
1995 SALES
HOLIDAY
DEC
16%
UsS HOLIDAY
NOV
13%
MAR
8%
APR
9%
% JUN
JUL
83 T%
[« [» [mnchart1 (Shestl / | E1T I | F

Figure 18. The 1995 Sales 3D pie chart. This chart demonstrates some of the 3D chart features, such
as Explosion, Rotation, and Elevation, as well as working with non-contiguous data ranges, and
formatting titles and data labels.

* Create the second chart. This time it's a chart sheet.

oChart = oExcel.Charts.Add()

oChart. ACTIVATE()

* Use only the category names and 1994 data. Note that the chart

* sheet was added before the data worksheet, which bumps the data
*worksheet to the second instance in the collection of worksheets.
oSourceRange = oExcel.Sheets[2].Range("CategoryNames, Year1994")
WITH oExcel.ActiveChart

* Create a 3D pie chart




.ChartWizard(oSourceRange, xI3DPie, autoPieFormat, ;
xIColumns, autoOneCategoryLabel, autoOneSeriesLabel, ;
autoNotHasLegend, "1995 SALES")

* Set the elevation up alittle more than the default
.Elevation = 35

* Rotate the chart. Rotating a pie chart changes the angle
* of the first slice.

.Rotation = 30

* Increase the title's font size

.ChartTitle.Font.Size = 22

WITH .SeriesCollection[1]

* Make all DatalLabels bold

.DatalLabels.Font.Bold = .T.

* Format the November wedge by exploding it, adding

* a custom label, and changing the label's font size

WITH .Points[11]

.Explosion =15

.DatalLabel.Text ="US HOLIDAY" + CHR(13) + .DataLabel. Text
.DatalLabel.Font.Size = .DatalLabel.Font.Size + 4

ENDWITH

* Format the December wedge by exploding it, adding

*a custom label, and changing the label's font size

WITH .Points[12]

.Explosion =15

.DataLabel.Text = "HOLIDAY" + CHR(13) + .DataLabel.Text
.DatalLabel.Font.Size = .DatalLabel.Font.Size + 4

ENDWITH

ENDWITH

* |dentify each quarter: Q1 and Q3 are gray, Q2 and Q4 are white
FORI1=1TO 12

IF1<=30R (I>=7 AND | <=9)

.SeriesCollection[1].Points[l].Interior.Color = rgbLtGray



ELSE

.SeriesCollection[1].Points[l].Interior.Color = rgbWhite
ENDIF

NEXT |

ENDWITH

Excel’s charting engine is very robust, and it offers tons of formatting options. You’ll amaze your
clients (and yourself) with the number of options available.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 10 - PowerPoint Basics

While most people view PowerPoint as a tool to create powerful presentations, a savvy developer sees lots of possibilities for
visually appealing output options that aren’t available with the FoxPro report writer.

PowerPoint is an excellent tool for creating visual presentations comprised of slides, where each slide
contains elements of text, graphics, and even multimedia. Rich formatting features provide control over the
appearance of the slide. You can change the color, font, and size of text objects, even down to changing the
attributes for each character. Numerous shape elements are provided, with a myriad of formatting options,
such as gradient or textured background fills, a variety of borders, and the ability to include text within the
shape.

With the power and capability of computers today, and the population’s desire for high-tech visual
presentations, PowerPoint has the ability to add the bells and whistles that appeal to today’s audiences.
Objects can be set to flash, play sounds, navigate to other slides in the slide show, run macros, or even run
external programs when the user moves the mouse over them, or clicks on them. In fact, you can set
different actions for a mouse-over than a mouse-click. You'll feel like a Hollywood producer when you choose
one of a variety of wipes, fades, and sound effects to fire for each slide as it transitions from one to the next.

PowerPoint also has tools to assist the presenter, such as storing notes for each slide. These notes can be
geared for the speaker, or they can be printed to hand out to the audience. The slide show itself can be
printed out in a number of formats, from one on a page to nine thumbnails on a page. With a little
imagination, PowerPoint is a very valuable output alternative for FoxPro programs.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



The PowerPoint object model

Like the other Office programs, PowerPoint’s top-level object is the Application object, which stores the
application-wide settings and options (size of main window, active printer, and so on). The Application object
also provides access to all other objects in PowerPoint.

The primary object in PowerPoint is the Presentation object, which represents a single slide show
presentation. A Presentation object corresponds to a PowerPoint file (PPT); PowerPoint users also refer to
the PowerPoint file as a "presentation.” (The term "presentation” is used in several ways in the Help files and
other documentation; be sure you understand the context in which it's used, which can be difficult at 2:30 in
the morning!)

The PowerPoint Application object keeps track of all open Presentation objects in the Presentations
collection. Each Presentation object stores some default characteristics for the presentation. The SlideMaster
object controls the default appearance of each slide object, and it manages such features as the slide
background, color scheme, text styles, and headers and footers. Also available are objects that set the
defaults for the print formats for notes and handouts, appropriately called NotesMaster and HandoutMaster.
The SlideShowSettings object stores such information as what slide to start and end on, how to advance the
slides, and whether or not to run a continuous loop. The Application’s ActivePresentation property points to
the active Presentation object.

Within each presentation is a Slides collection, which contains a Slide object for each slide in the
presentation. Anything added to the slide—text, bitmaps, shapes, lines, and so forth—is stored in the Shapes
collection. This concept is a little awkward at first, since it doesn’t seem intuitive that text, lines, and bitmaps
should be stored in the same collection—wouldn’t the average database developer normalize these into
separate tables? It helps if you define a "shape" as something with size (height, width), colors (borders,
background, foreground; perhaps even a bitmap), and a text element (which isn’'t always used). So how do
you tell all these shapes apart? The Type property contains a number describing the shape. You can also
use the Name property to attach a meaningful name, much as you would name each control placed on a
FoxPro form.

There are several Range objects. You can group any number of slides into a SlideRange collection object,
and any number of shapes into a ShapeRange collection object. By referencing a collection of slides or
objects, you can easily set the properties of all elements in the collection.

PowerPoint Visual Basic Help contains a diagram of PowerPoint’s object model. (See Chapter 2, "The Office
Servers," for details on how to find this Help and what to do if you can't find it.) The figure is "live"—when you
click on an object, you're taken to the Help topic for that object. Figure 1 shows the portion of the object
model diagram that describes the Presentation object.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Déja vu

If you're reading this book from start to finish, as you read this chapter, you'll say to yourself, "Gosh, I've read
this before!" (especially since this is basically the same text as in Chapter 7, "Excel Basics"). Office 2000 is
object-oriented, and it's polymorphic. Polymorphism literally means "many forms," and when applied to OOP,
it means that different objects have properties and methods that behave consistently. To write a file to disk,
you use the Save method, whether you are in Word, Excel, PowerPoint, or Outlook. This does not mean that
the Save commands do exactly the same thing—there are different things that need to happen when a Word
document is saved than when an PowerPoint presentation is saved. There may even be different parameters
for each. However, you can be sure that the Save command will save your work to disk.

The benefit of polymorphism is that once you know how to do something in one tool, you know how to do it in
the rest. In Office, this is usually true. However, polymorphism does include the ability for methods to accept
different parameters, because different objects are exactly that—different. So you need to be aware that
syntax can (and does) change between Office applications.

There are so many similarities between the Office applications that we could have written this chapter to say
things like, "Just use the CreateObject() function as explained in the Word chapter, but use
"PowerPoint.Application" instead." We felt that it would be better to have a complete explanation for each
application to keep you from having to flip back and forth in the book. It also makes it easier to explain the
subtle syntax differences that exist between applications. After we get past the basics of opening and saving
files, we get into enough application-specific features that it will seem less repetitive.

Microsoft PowerPoint Objects

See Also

| Application
— Addins (Addin)

—{ File5earch |

—|AnswerWizard —{LanguageSettings |

— COMAddins [COMAddIn) — SlideShowWindows [SlideShowwindow) |

|
|
{ Asziztant | —{ Presentationz [Presentation] | ’
|
|

% CommandBars [CommandB ar) Presentation |

% DefaultwebOptions | ShideShowYiew |
% Documentwindows [Documentw indow) | —1 YBE |
ﬂ Fanez [Pane] |
) Legend

— Presentation . .
: |:|0|3_]ect and collection

ﬂSelecliun | i Ohject only

’—{Shapeﬂange [Shape] | P Click red arrow to expand chart
|—|Tahle |



b Border s [LineFormat) |

Shape |

SlideRange (Slide) |

TextRange |
% Yiew |

Figure 1. The PowerPoint object model. This diagram is available in the Help file and shows the
hierarchy of available PowerPoint objects.

The benefit of polymorphism is that once you know how to do something in one object, you know how to do it
in all of them. However, explaining similar concepts for each object makes for redundant text. Just think of

this redundant text as a "feature."

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Getting a handle on the application

Now that you have some background on PowerPoint’s object model, type the following command into the
Command Window to instantiate PowerPoint using Automation:

oPowerPoint = CreateObject("PowerPoint.Application™)

It takes a second for the cursor to come back (it's going to the disk to pull up PowerPoint...give it a
nanosecond!). PowerPoint is now instantiated. "Yeah, right," you say—check the Task List if you don't
believe us! Remember that the Office servers instantiate as not Visible. So, type in the following command to
see the instance:

oPowerPoint.Visible = .T.

You are now viewing the PowerPoint Application. The variable oPowerPoint is a handle to the PowerPoint
Application object. The Application object represents the entire instance of PowerPoint. It knows what
presentations are open through the Presentations collection, and it knows which one is active through the
ActivePresentation property.

Controlling the size and location of the PowerPoint window is easy with the Top, Left, Height, and Width
properties. These are all measured in points. The following code sets the top and left about 1" from the edge
of the desktop and makes it about 4" square (remember, there are 72 points to the inch). The inches used to
display the windows are virtual inches—meaning that they approximate a real inch. However, there are
differences in display sizes, which makes a difference in the size of the window. On a display larger than 20",
the window is about 5" square and 1.25" from the top and left. On a tiny laptop display, it may only be 3.5".
The resolution of the screen is taken into account for virtual inches, so the window should be the same size
on any display regardless of the resolution. In any case, the window takes up the same proportions on any
screen it's displayed on. If you're following along in the Command Window, be sure your PowerPoint window
is set to Normal (as opposed to minimized or maximized) before proceeding.

WITH oPowerPoint
Top=72

Left =72

Width = 288
.Height = 288

ENDWITH

If you're following along by typing these commands in the FoxPro Command Window and the PowerPoint
window was either minimized or maximized, you get the error: "OLE IDispatch error exception code 0..."
PowerPoint doesn’t allow you to set these properties if the application is minimized or maximized. When you
write your code, you need to check the WindowState property to ensure PowerPoint’s window is "normal”
(neither maximized nor minimized). The WindowState property uses the following intrinsic constants (see
Chapter 2, "The Office Servers," for an explanation of VBA constants): ppWindowNormal (1),
ppWindowMinimized (2), and ppWindowMaximized (3). Run the following code to make the window "normal*



before setting the height and width:

#DEFINE ppWindowNormal 1

WITH oPowerPoint

IF .WindowState <> ppWindowNormal
.WindowsState = ppWindowNormal
ENDIF

ENDWITH

A nice thing to do for your users is to change the caption on PowerPoint to let them know why the
PowerPoint window suddenly appeared. Use the Caption property to change the window’s title.

oPowerPoint.Caption = "Automated from The World's Greatest Application"

The Quit method closes down the PowerPoint instance. If there are any unsaved presentations open, the
user is prompted to deal with them and further processing is suspended until the user answers the prompts.
See the next section, "Managing presentations and slides," for information on how to save the presentations
before calling the Quit method. This method accepts no parameters. It's simply:

oPowerPoint.Quit

The Quit method works differently in the various Office applications. In Word, you can pass it a parameter to
automatically save changes, prompt the user for changes, or quit without saving changes. Excel behaves like
PowerPoint, and prompts the user if there are unsaved changes. Outlook just shuts down without saving any
changes. Be aware that, despite polymorphism, the Office object models are occasionally inconsistent!

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Managing presentations and slides

When you open PowerPoint through Automation, it doesn’t automatically pop open and ask the user whether
he wants to open an existing presentation or create a new presentation. That's your job. PowerPoint comes
up and sits there with a nice, gray screen (that is, if you've set the Visible property to true), until you tell it
what to do. First, you create a Presentation object (using the Add method of the Presentations collection),
and then you add Slide objects (using the Add method of the Slides collection).

Presenting: the Presentation object

The Presentations collection is an array of Presentation objects. Think of a Presentation object as a
reference to a single presentation file (PPT).

When you instantiate the PowerPoint Application object with CreateObject(), it opens without any active
presentations. Most often, you want to add a blank presentation. Use the Add method of the Presentations
collection:

oPresentation = oPowerPoint.Presentations.Add()

oPresentation is now a reference to a Presentation object. Add takes an optional parameter that determines
whether the window containing the new presentation is visible. The default is .T., so the window defaults to
visible, as long as the Application object is visible. There are several ways of accessing the new Presentation
object. First is the variable name that you set when you added the presentation—oPresentation. The
Application object has an ActivePresentation property; use oPowerPoint.ActivePresentation to return a
reference to the active presentation. Beware: if you try to access the ActivePresentation property when no
presentations are open or if the Application is not visible, an error occurs. Check the value of
oPowerPoint.Presentations.Count and oPowerPoint.Visible to ensure that it is greater than zero before
accessing ActivePresentation.

Like other collections, Presentations offers two ways of accessing its contents. The first uses an index
number corresponding to the order in which the presentations were opened—in this case,
oPowerPoint.Presentations[1]. The second uses the name of the presentation (found in the Name property).
For example, a presentation saved as "MyPresentation.PPT" can be referenced as
oPowerPoint.Presentations("MyPresentation.PPT"). The path is not included, and presentation names are
not case-sensitive.

Note that the Name property for presentations is read-only. When a presentation is added, the Name is
"PresentationX," where "X" is a numeral corresponding to the number of files created during this session but
not yet saved. Once the file is saved, the Name property reflects the filename and extension (but not the
path) of the file saved on the disk. (The FullName property provides the name plus path of the stored file, and
the Path property holds just the path.)

Opening an existing presentation

To open an existing presentation, use the Open method. The syntax of the Open method is as follows:

oPowerPoint.Presentations.Open( cFileName, [IReadOnly], [IUntitled],



[IWithwindow] )

cFileName Character The filename of the presentation. Be sure to include the full path.

IReadOnly Logical .T. to open read-only. Default is Read/Write (.F.). (Optional)

[Untitled Logical .T. to open without a title. Default is .F., and the title defaults to the filename. (Optional)

IWithwindow Logical .T. opens a visible window, which is the default. .F. hides the opened presentation.
(Optional)

So if you issue the command:
oWayCool = oPowerPoint.Presentations.Open("c:\My Documents\WayCool.PPT")

you open the WayCool.PPT presentation in a new window. The window title defaults to "WayCool.PPT," and
you can reference this presentation object as oPowerPoint.Presentations( "WayCool.PPT" ) or
oPowerPoint.ActivePresentation or oWayCool.

As noted in Chapter 3, "Visual FoxPro as an Automation Client," an alternative method to open a
presentation is with the GetObject() function. The following is the syntax:

oPresentation = GetObject("c:\My Documents\WayCool.PPT")

Used with only a filename as a parameter, GetObject() returns a reference to the Presentation object (not the
Application object, as CreateObject() does). If PowerPoint was not running (or was running but not visible),
you need to make the application visible to see it:

oPresentation.Application.Visible = .T.

The Presentation is open and available for editing. However, it does not yet have a window, and is therefore
not displayed. The document opened by GetObject() respects the setting of the Application’s Visible property
at the time the Document object is instantiated. If the Application was not Visible (which would be the case if
you use the GetObject() syntax to open a document without PowerPoint being active), you must make the
document visible by giving it a window. Incidentally, this same behavior occurs when you use the Open
method with the IWithwindow parameter set to False. You must use the NewWindow method to put the
presentation in a window:

oPresentation.NewWindow()

Opening Presentations without making them visible can be used to your advantage. If you build the
presentation when it is not visible, you see performance gains of about 30 percent. To close an open window
without closing the Presentation, issue the following code:

oPowerPoint.ActiveWindow.Close()

You still have access to the Presentation, but it is not displayed in a window, so your Presentation builds



significantly faster. The GetObject() function has an alternate syntax that allows you to prevent multiple
occurrences of an object. If you are programming Office 97, this may be an important issue. You may want to
use an open instance of PowerPoint to avoid using more memory for another instance. One of the changes
in Office 2000 is that there is only one instance of the application; the Office application itself provides better
memory management. However, the GetObject() syntax still works for PowerPoint 2000 (and opens the
application if it is not already open). Issuing:

oPowerPoint = GetObject(,'PowerPoint.Application’)

opens PowerPoint and returns a reference to the Application. Note that the syntax to open a filename returns
a reference to the Presentation.

For the rest of this section, we’ll assume that there is a reference to an open presentation, and that the
reference is called oPresentation.

Adding slides

A PowerPoint presentation is comprised of slides. Individual slides are Slide objects belonging to a Slides
collection (just like Presentation objects belonging to a Presentations collection). Add a Slide object to the
presentation with the Add method:

oSlide = oPresentation.Slides.Add(nIndex, nLayout)

nindex Numeric The index number of the slide.

nLayout Numeric One of the ppSlideLayout constants to choose one of the 29 predefined slide layout options.

Learning what options are available for the nLayout parameter is easy when you understand that the Layouts
correspond to the dialog box that appears when a slide is added manually in PowerPoint, as shown in Figure
2. As you click on the slide layout thumbnails, the name in the lower right corner changes, and it loosely
corresponds to the constant name.

New Slide HE|
Choaose an AukoLayauk: ak

| | | |

EI =t

— — — Tikle Slide
[T Don' show this dialog box again




Figure 2. The New Slide dialog box in PowerPoint. This dialog gives a visual reference to the
predefined slide layouts.

The constants for some of the most common styles are ppLayoutTitle (1), ppLayoutText (2),
ppLayoutTable (4), and ppLayoutBlank (12).

The slide index represents that slide’s position in the slide show. An index of 1 inserts the new slide
at the beginning of the presentation. An index of 5 inserts the new slide after slide 4 and increments
the indices of the following slides. Providing an index greater than one more than the total number of
slides generates an error. Use oPresentation.Slides.Count to ensure that the value you pass isn’t too
big.

#DEFINE ppLayoutTitle 1

* Add atitle slide to the beginning of the presentation.

oSlide = oPresentation.Slides.Add(1, ppLayoutTitle)

* Add a "blank" slide to the end of the presentation.

oSlide = oPresentation.Slides.Add(oPresentation.Slides.Count + 1,;

ppLayoutTitle)

Like the Presentation object, there are several ways to access a slide. You can use the variable
(oSlide, in the preceding example). You can also use the Slides property, passing either the index or
the slide name, as in oPresentation.Slides[1] or oPresentation.Slides["Slidel1"]. Note that there is no
ActiveSlide property. You can access the active slide object with
oPowerPoint.Windows[1].View.Slide, but only if the Application object is visible. There doesn’t seem
to be a way to determine the active slide if the Application object is invisible.

When you add a slide, its Name property defaults to the word "Slide" followed by an integer, which is
the next available slide number in the slide show. If you are writing an application that goes back and
edits the slides, it’s prudent to set the Name property to something that is easier to remember.

There is also a SlideRange collection object, which represents a range of slides. According to the
Help file, you can use the Slide collection’s Range method to select a series of slides. Help says the
Range method can accept an index number, a slide name, or a series of indices and slide names in a
VBA array. However, arrays from FoxPro are incompatible with VBA arrays, so they will not work.
You can pass a single index or a single character string representing the slide name to Range, and
work on one slide. However, the syntax:

oPresentation.Slides["Slide3"]
is easier to read (and executes a little faster) than:
oPresentation.Slides.Range("Slide3")

So why did we bring it up? Because the macro recorder generates lots of statements using the Range



method. There is a similar Range method for Shapes and Notes, too, and it is frequently used by the
macro recorder. So if you generate code from the macro recorder, be sure to remove any references
to multiple slides, and you can also remove the Range method keyword, too.

Saving the presentation

Looking quickly through the Presentation object methods, we come to Save. Instinct tells us to use
just oPresentation.Save, which works, but not like you think. Remember that the Presentation’s Name
defaults to "PresentationX." PowerPoint saves the file in the directory from which PowerPoint was
started, as "PresentationX.PPT." Perhaps not quite what you or your users wanted! The Save method
does not accept parameters.

The not-so-intuitive solution is to use the SaveAs method. Fortunately, this tidbit of information is
documented for the Save method, so when you forget it, you can find it in the Help file. The syntax of
the SaveAs method is:

oPresentation.SaveAs(cFileName, [nFileFormat], [[EmbedFonts])

cFileName Character The fully qualified filename for the presentation.

nFileFormat Numeric Use one of the ppSaveAs constants to choose one of the supported formats. If not
included, the presentation is saved in the format of the current presentation.
(Optional)

IEmbedFonts Logical Use .T. if you want to embed the font information in the file. The default is .F. (Optional)

Remember to use the fully qualified filename. Just because FoxPro’s default directories are set the
way you want them and you’'re issuing commands from VFP doesn’t mean that PowerPoint knows
about those defaults.

Be aware that PowerPoint does not know anything about FoxPro’s SET SAFETY setting. Issuing this
command will overwrite an existing file without any notice.

There are ppSaveAs constants for every supported format that appears in the interactive Save As
dialog box. Office 2000 supports 18 formats, including graphical formats (BMP, GIF, and JPG),
previous versions of PowerPoint, data exchange formats (RTF, MetaFile), HTML, and others (Office 97
supports seven formats, which are mostly previous versions or RTF). Commonly used constants and
their values are ppSaveAsPresentation (1), ppSaveAsHTML (12) (not available in Office 97),
ppSaveAsShow (7), and ppSaveAsTemplate (5). So how do you know when to use SaveAs instead of
Save? When you open a new document, its name is "PresentationX." Check the Name property to see
if it has the name you want to use, or if it resembles the default. You may want to compare the Name
property to your filename (without path) instead of the example shown:

#DEFINE ppSaveAsPresentation 1

IF LEFT(oPresentation.Name, 12) == "Presentation”



oPresentation.SaveAs("C:\MyDocs\MyPresentation.PPT", ppSaveAsPresentation)
ELSE
oPresentation.Save()

ENDIF
Closing presentations

You can close a presentation at any time, whether it's saved or not, by using the Close method. The
Close method takes no parameters.

oPresentation.Close()

There is no warning if you close an unsaved presentation. To check whether it's saved before you
close it, examine the Saved property, which contains 0 if the presentation has changed since it was
created or last saved, and 1 if it's unchanged.

#DEFINE ppSaveAsPresentation 1

* Check to see if the presentation is saved before closing it

IF oPresentation.Saved =0

* Better save this presentation. Be sure it's saved with the proper name

IF LEFT(oPresentation.Name, 12) == "Presentation"
oPresentation.SaveAs("C:\MyDocs\MyPresentation.PPT", ppSaveAsPresentation)
ELSE

oPresentation.Save()

ENDIF

ENDIF

oPresentation.Close()
Closing the application object

To shut down PowerPoint, call the Application object’s Quit method:

oPowerPoint.Quit()

This severs the connection with the PowerPoint Application object. All presentations are closed
(without saving) unless there are any variables pointing to object references in PowerPoint. If there is
such areference, none of the open presentations are closed, and the object references that exist are
valid. When you close the last presentation (or release all object references), all remaining
presentations are then closed.

TN
AR



& =x™"  This is one instance where PowerPoint 2000 has changed the object model
slightly. In PowerPoint 2000, there can be one and only one instance of a PowerPoint
Application object; CreateObject() references an already running instance of PowerPoint, and
creates another reference to it. In PowerPoint 97, each call to CreateObject() creates a new
instance of an Application. An additional difference is that PowerPoint 97 closes without
caring whether there are any open variables pointing to an instance of PowerPoint.

To examine PowerPoint 2000's Quit behavior, run the code shown in Listing 1. It is saved as

PPTQuIit.PRG in the Developer Download files available at www.hentzenwerke.coni.

Listing 1. The quirks of quitting PowerPoint 2000. As in Visual FoxPro, be sure to release all your
object references to successfully close the server application.

* Create the Application instance

oPowerPoint = CreateObject("PowerPoint.Application")
oPowerPoint.Visible =.T.

WITH oPowerPoint

* Create the first presentation

oPresentationl = .Presentations.Add()

* Create the second presentation

oPresentation2 = .Presentations.Add()

ENDWITH

= MESSAGEBOX("Alt-Tab to PowerPoint, and manually open a new presentation.")
*You might put in a SUSPEND here, to allow you to Alt-Tab

*to PowerPoint. Manually open a new presentation to see

*what happens to it if you don't have an object reference.

= MESSAGEBOX("Press OK to close Presentation2")
oPresentation2.Close()

= MESSAGEBOX("Press OK to close the Application Object." + CHR(13) +;
"Notice nothing happens.")

oPowerPoint.Quit()

= MESSAGEBOX("Press OK to close Presentation1")

oPresentation1.Close()


http://www.hentzenwerke.com/

= MESSAGEBOX("The Application, and any presentations you manually " +;
"opened are still there! Press OK to release oPowerPoint.")

RELEASE oPowerPoint && Office 97 successfully terminates here.

= MESSAGEBOX("It's still there! Now press OK to release oPresentation1.")
RELEASE oPresentationl

= MESSAGEBOX("It's still there! Now press OK to release oPresentation2.")
RELEASE oPresentation2

= MESSAGEBOX("It's gone--and so are the presentations you manually " +;
"opened." + CHR(13) +;

"Remember to release ALL your variables!")

Just as with FoxPro forms, you need to release all the references to objects before you can destroy
the instance of the main object (in PowerPoint 2000 only).

Making it look good for the users

Before moving on to adding content to the slides, let's explore some of the properties and methods
that allow us to make the process of building the presentation more attractive to the user. We've
already discussed Visible, Left, Top, Width, and Right. These control whether the user sees
PowerPoint, and where the PowerPoint window appears on the screen. If the position and size of the
window are not set in code, the PowerPoint window displays where and how the user last had it—it
could be maximized, minimized, or normal anywhere on the screen.

During development, we like to have FoxPro in a normal window the full height of the screen and
taking up about two-thirds of its width on one side, then forcing PowerPoint to come up two-thirds of
the width on the opposite side. This way, the results of code that runs are easy to see. Users also like
this arrangement for the first little while—it’s quite cool to watch. They soon tire of it, though, just
about the time they complain about performance (a sure sign that the novelty has worn off). Then you
can add the feature to give the user the option of not seeing the final presentation until the end. It
also runs approximately 30 percent faster (depending on hardware configuration and the types of
slides that are built), which makes you look like a hero for being so responsive to their needs.

While PowerPoint is visible, there are reasons to bring PowerPoint in front of your application,
especially if the users are attempting to watch it while it builds. This is accomplished through the
Presentation’s Activate method:

oPowerPoint.Activate()

This method brings the current presentation window to the top of all running Windows applications.
In this situation, you’'ll also want to display slides as you work on them. Use Slide’s Select method to
bring a slide to the front:



oPresentation.Slides[1].Select()
A note to PowerPoint 97 users: the preceding line will cause an error. Use the following line, instead:
oPresentation.ActiveWindow.View.GoToSlide(2)

Just when do you show that slide? Do you issue the Select method just after you add it? If users are
watching, it gives a very nice demonstration of exactly what’s going on. The users can really relate to
the "hard work" the computer is doing. However, after watching it a few times, users can get a little
bored and wish it would run faster. To gain some performance (generally about a 15-20 percent
increase), wait until the slide is completely drawn, then issue the Select method. Adding and
formatting shapes on a hidden slide avoids time-consuming redraws, and your slides appear to pop
up on the screen. If your users really complain, don’t make the Application object visible until the
end, and use a progress bar to indicate relative time remaining, instead.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Working with slide contents

Building presentations full of blank slides is straightforward. The next step is to add text and shapes to your
slides. Any object on a slide, whether it is a picture, a title, text, shape, an OLE object, or something else,
becomes one object in the Shapes collection. On the surface, this seems like an odd way to design a
collection, as many different kinds of items obviously require different sets of properties. Looking a bit deeper,
if you see each of those objects as something that takes up height and width, at a certain position, and
contains a certain type of content, with text optional, then each of these strange objects starts to look as if it
could belong to the same collection.

As in most COM collections, you can refer to a particular Shape object using its index in the collection (like
oSlide.Shapes[7]) or its name (oSlide.Shapes['Rectangle 2"]).

The shape’s name is generated when it is added to the slide. The default naming convention is the shape
type keyword, followed by a number representing the number of shapes on the slide at the time the shape
was added, plus one. Therefore, if a line, rectangle, text box, and AutoShape are added to a blank slide, their
default names are Line 2, Rectangle 3, Text Box 4 and AutoShape 5, respectively (complete with the
embedded blank). The Name property is read/write, so you have the option of changing them. If you are
building an application that edits a generated presentation, it's strongly advisable to change the names into
something more meaningful. However, if you are building a presentation from start to finish with no
opportunity to edit it, do not take the time to change the names. There is no facility for the user to see the
shape names in PowerPoint, so it seems silly to pay a minor performance penalty to change the names when
the names won't be used.

Using the slide layouts

There are 29 predefined slide layouts to choose from; you must choose one when you add a slide. Each
format has a predefined set of shapes, called Placeholders, ready to fill in. Depending on the format, there
are between zero and five placeholders (all rectangle Shapes) already preset with default properties. This
makes building slides pretty easy...just populate the properties and go!

Table 1 shows the various layouts, including the constant names and their values (so you can play with the
commands interactively in the Command Window), and the number and kind of shapes on the slide. You can
access the Shape objects through the Shapes collection, where they are the first several Shapes in the
collection. You can also use the Placeholders collection to access them. They have the same index number
as the Shapes collection, but any other shapes added to the slide do not appear in the Placeholders
collection, only in the Shapes collection. The shapes are listed in their index order on the slide—for example,
if you look at ppLayoutChartAndText, the title is Shapes[1] and Placeholders[1], the chart is Shapes[2] and
Placeholders[2], and the bulleted text is Shapes[3] and Placeholders[3]. The only difference between these
placeholders and shapes you add yourself is that these are predefined with commonly used default settings.
Unfortunately, there are no constants to denote the index of various placeholders. It's impossible to define
such constants, as bulleted text could be in the second or third position depending on the slide layout used.
Just be content to use this table to reference the index values you need.

Table 1. PowerPoint slide layouts. The predefined layouts contain a variety of shapes to make it easy to build



presentations without having to start from scratch.

Number of
Constant Value shapes Shapes provided
ppLayoutBlank 12 0 None
ppLayoutChart 8 2 Title, chart
ppLayoutChartAndText 6 3 Title, chart, bulleted text
ppLayoutClipartAndText 10 3 Title, clip art, bulleted text
ppLayoutClipartAndVerticalText 26 3 Title, clip art, and sideways bulleted
text
ppLayoutFourObjects 24 5 Title, two stacked objects next to two
stacked objects
ppLayoutLargeObject 15 1 OLE object (no title)
ppLayoutMediaClipAndText 18 3 Title, media clip, bulleted text
ppLayoutMixed -2 (Not a selectable format)
ppLayoutObject 16 2 Title, OLE object
ppLayoutObjectAndText 14 3 Title, OLE object, bulleted text
ppLayoutObjectOverText 19 3 Title, OLE object above bulleted text
ppLayoutOrgchart 7 2 Title, organization chart




ppLayoutTable 4 Title, table rectangle
ppLayoutText 2 Title, bulleted text
ppLayoutTextAndChart 5 Title, bulleted text, chart
ppLayoutTextAndClipart 9 Title, bulleted text, clip art
ppLayoutTextAndMediaClip 17 Title, bulleted text, media clip
ppLayoutTextAndObject 13 Title, bulleted text, OLE object
ppLayoutTextAndTwoObjects 21 Title, bulleted text next to two stacked
OLE objects
ppLayoutTextOverObject 20 Title, bulleted text above OLE object
ppLayoutTitle 1 Title, subtitle
ppLayoutTitleOnly 11 Title (leaves room for something
below it)
ppLayoutTwoColumnText 3 Title, two-column bulleted text
ppLayoutTwoObjectsAndText 22 Title, two stacked OLE objects next to
bulleted text
ppLayoutTwoObjectsOverText 23 Title, two side-by-side OLE objects
over bulleted text
ppLayoutVerticalText 25 Title, sideways bulleted text
ppLayoutVerticalTitleAndText 27 Sideways title and bulleted text




(portrait layout)

ppLayoutVerticalTitteAndTextOverChart 28 3 Sideways title, sideways text, chart
(portrait layout)

The wonderful thing about these default layouts is that the shapes are completely editable; PowerPoint
provides you with a great default, and you can enhance it as you see fit. That means that you can move,
resize, add, or delete any of these shapes.

@ﬂofaﬁ
oLk
\ Y
Vat™  powerPoint defines AutoLayouts that contain OLE objects. Adding OLE objects to the
placeholders works well for interactive PowerPoint users. It was not designed to automate the
placeholders to accept an OLE object (by macros or Automation). This is documented in the
Microsoft Knowledge Base Article #Q160252 for PowerPoint 97, and #Q222796 for PowerPoint
2000. You can still use the Layout objects to hold pictures or text, but you can’t change the
placeholders into OLE objects. You must add an OLE object with the AddMediaObject method of the

Shapes collection.
Shapes, shapes, and more shapes

Now comes the fun part: setting up the properties of the shapes to make this slide say something, and look
great! The obvious place to start is the title slide. Not only is it the first slide in the presentation, but it also has
the shapes that are the easiest to work with—both of them are text.

The following code opens a new presentation and adds a title slide. Figure 3 shows the result. You'll reap
the most benefits if you try this interactively in the Command Window, as you can play with the properties
and see how they change. Just remember to replace the constants with their numeric values, because the
Command Window doesn’t automatically use #DEFINES. (Except, of course, if you cut and paste the code
with the #DEFINES, highlight all of the commands, including the #DEFINES, and then Execute the selection.
See Chapter 2, "The Office Servers," for more tips on interactive testing.)

#DEFINE ppLayoutTitle 1

oPowerPoint = CreateObject("PowerPoint.Application™)
oPowerPoint.Visible = .T.

oPresentation = oPowerPoint.Presentations.Add()

oSlide = oPresentation.Slides.Add(1, ppLayoutTitle)

There are two objects on the title slide: the title and the subtitle. Table 1 tells us that the first shape is the title,
and the second is the subtitle. It's easy to think that we can just set the shape’s Caption property and move
on, but it's not quite that simple. Remember, not every shape has text (why would you want text on a sound
object?). So the Shape object model includes a TextFrame object for each Shape object. The TextFrame
object only exists if the Shape object’'s HasTextFrame property is true. In this case, the text is visible on the



slide, so it's obvious that the TextFrame object exists (with other kinds of objects, it's prudent to test
HasTextFrame). The TextFrame object contains a TextRange object, which actually has the Text property,
set thusly:

oSlide.Shapes[1].TextFrame.TextRange.Text = "PowerPoint Automation Demo"

oSlide.Shapes[2].TextFrame.TextRange.Text = "Hang on to your socks!"

Microsoft PowerPoint - [Presentationd]

J File Edit %iew Insert Format Tools Slide Show Window Help ;Iilil
JD @E‘§§|E‘n, %?IE|42% v‘@ "’JTimesNewRoman ~ | Comman Tasks « B
1 E I TN TR R TR R TE RN R CERT R IR Er SRR ERE- TR R IRk TRRN R ST e

Click to add notes —
EEoET L =
JDLBW'IEG} futashapes = ™. \DD‘@|£'£'£'_T_'.@'
| Slide 1 af 1 | Default Design Dash Stvlel =

Figure 3. Adding a title slide. Note the two shapes representing the title and subtitle.

Voila! A complete slide, and in only six lines of code! The next step is to dress up this plain slide. For that, a
better understanding of the Shape object is required.

The Shape object

The Shape object is the key object for a developer automating PowerPoint. It's more complicated than most,
but also more powerful.

The Shapes collection supports a number of different types of shapes. Each type of shape is added with a
different method. It's beyond the scope of this book to discuss all of them. Help does have some good
information on these, but it lacks a complete list (other than the "See Also" dropdown, which only shows a few
at a time). We provide the complete list in Table 2 and discuss the ones you're most likely to use. In order to
support so many kinds of objects, the Shape object uses related objects to describe the unique formatting
features of some of the shapes. These are listed in the "Unique format objects" column of Table 2.



Each Slide object has several standard formatting objects, too. Table 3 shows the formatting objects that
apply to all Shapes.

Table 2. Method names used to add shapes. Each kind of shape has its own special method. Some types
use additional objects for special formatting.

Method name Description Unique format objects
AddCallout Adds a Callout shape (a text box with a leader line, CalloutFormat

usually used to point to and explain something on the

slide).
AddComment Adds a rectangle with a colored background. Like a

Callout, but no leader line.
AddConnector Adds a line or curve that connects two other shapes. ConnectorFormat
AddCurve Adds a Bézier curve from a series of points. ShapeNodes
AddLabel Adds a text label (a rectangle with text but no border or fill).
AddLine Adds a line.
AddMediaObject Adds a multimedia object from a file. OLEFormat, LinkFormat
AddOLEObject Adds an OLE object from file, class name, or ProgID. OLEFormat, LinkFormat
AddPicture Adds a graphic from a file. OLEFormat, PictureFormat
AddPlaceholder Adds a Placeholder shape back if you delete one. PlaceholderFormat
AddPolyline Adds a series of line segments from a series of points. ShapeNodes
AddShape Adds one of 140 predefined AutoShapes.




AddTable Adds a table (PowerPoint 2000 only).

AddTextbox Adds a text box.
AddTextEffect Adds a WordArt object.
AddTitle Restores a title if you deleted the title Placeholder. PlaceholderFormat

Table 3. Formatting objects that pertain to each Shape object. The "Shape property" column is the name of
the Shape object’s property used to access the object. The "Object kind" column refers to the kind of object
the property references; in other words, the topic to look up in the Help file.

Shape property

Object kind

Description

ActionSettings

ActionSettings

Defines the action to occur when the mouse moves over the
shape during a slide show.

AnimationSettings

AnimationSettings

Defines the special effects for the shape during a slide show.

Fill FillFormat Defines the shape’s fill properties.
Line LineFormat Defines the shape’s border properties (or line properties if a line).
TextFrame TextFrame Contains the text properties and methods, if the shape contains

text.

These formatting objects have properties and methods that determine what the object looks like. These
objects, along with a few other Slide properties and methods, are discussed in detail in the following sections.

Adding lines

Lines are perhaps the easiest shape to add. The parameter list is simple: the beginning and ending
coordinates. Once the line is added, the LineFormat object’s properties must be set to format the line to
something other than the default. The LineFormat object is available to all Shapes.

The syntax for adding a Line object is:



oSlide.Shapes.AddLine(nBeginX, nBeginY, nEndX, nEndY)

The parameters represent the beginning and ending coordinates, in points. For example, to add a horizontal
line four inches from the top of the slide, starting one inch from the left side and ending nine inches from the
left side, use this command:

oLine = oSlide.Shapes.AddLine(72, 288, 648, 288)

Since a point is 1/72" of an inch, all the measurements are multiplied by 72. It's not very intuitive to look
at—imagine coming back to this line of code next month! The following code is much easier to understand,
and debug. You might add your own constant, perhaps called autoln2Pts, to make the code more intuitive.
(See the Note for more information.)

#DEFINE autoln2Pts 72

oLine = oSlide.Shapes.AddLine(1.00 * autoIn2Pts, 4.00 * autoIn2Pts, ;

9.00 * autoIn2Pts, 4.00 * autoln2Pts)

af,

&% -
e
' )
‘L gy Ca R nd . _ .

0w A pointis 1/72 " of an inch. Most of the placement of PowerPoint’s objects takes place

using points rather than inches or centimeters. To make your code more readable, you should
probably define a constant such as autoln2Pts to 72. If you work in the metric system, you might
choose a constant such as autoCm2Pts and set it to 28.35. Then you can write code using units you
are comfortable with, rather than using outrageously large numbers that don't relate to anything you
understand.

Points to ponder

While we're on the subject of points, you need to know that PowerPoint stores all measurements in points.
Remember that properties like Top, Left, Height, and Width don’t need to be multiplied by the constants. For
example, the following code draws a line the width of the title, and another one half an inch above it. The title
Shape has an index of 1 (unfortunately, there are no predefined constants for the Layout objects; see Table 1
for the index values for the various shapes):

#DEFINE autoln2Pts 72

WITH oSlide.Shapes[1]

oLine = oSlide.Shapes.AddLine(.Left, .Top - (.5 * autoIn2Pts), ;
.Left + .Width, .Top - (.5 * autoIn2Pts))

ENDWITH
Formatting lines

Thin, black lines can get just a bit boring. PowerPoint has so many formatting features that we need to do
some exploring! Line objects store properties for color, style, transparency, pattern, weight, and arrowheads
in the LineFormat object. Use the Line object’s Line property to access the LineFormat object. Table 4 shows
the properties of the LineFormat object.



Table 4. LineFormat object properties.



Property Type Description

ForeColor Object The color of the line using a ColorFormat object.

BackColor Object The backcolor of a patterned line using a ColorFormat object. This is the
secondary color of a patterned line, and it's ignored if patterns are not used.

DashStyle Numeric The dash style of the line. Uses one of the following contants:
msoLineDash 4
msoLineDashDot 5
msoLineDashDotDot 6
msoLineLongDash 7
msoLineLongDashDot 8
msoLineRoundDot 3
msoLineSolid 1
msoLineSquareDot 2
Pattern Numeric The pattern applied to the line. The background of color is used as the

background of the pattern. Use one of the many patterned constants. A few
are listed here:

msoPattern50Percent 7

msoPatternLargeConfetti 33




msoPatternLargeGrid 34
msoPatternLightDownwardDiagonal 21
msoPatternLightHorizontal 19
msoPatternLightUpwardDiagonal 22
msoPatternLightVertical 20
msoPatternPlaid 42
msoPatternSmallGrid 23
msoPatternSolidDiamond 39
msoPatternWideDownwardDiagonal 25
msoPatternWideUpwardDiagonal 26
msoPatternZigZag 38

Style

Numeric

The style of the line—which can give the appearance of multiple lines.

msoLineSingle 1
msoLineThickBetweenThin 5
msoLineThickThin 4

msoLineThinThick 3




Transparency Numeric The degree of transparency of the line. The value ranges between 0.0
(opaque) and 1.0 (completely clear).

Weight Numeric The thickness of the line, in points.

Visible Logical A logical value determining whether the line is visible.

BeginArrowheadLength Numeric The length of the arrowhead at the beginning of the line. Use one of the
following constants:
msoArrowheadLengthMedium 2 msoArrowheadlLong 3
msoArrowheadShort 1

BeginArrowheadStyle Numeric The shape of the arrowhead at the beginning of the line. Use one of the
following constants:
msoArrowheadDiamond 5 msoArrowheadNone 1
msoArrowheadOpen 3 msoArrowheadOval 6
msoArrowheadStealth 4 msoArrowheadTriangle 2

BeginArrowheadWidth Numeric The width of the arrowhead at the beginning of the line. Use one of the
following constants:
msoArrowheadNarrow 1 msoArrowheadWide 3
msoArrowheadWidthMedium 2

EndArrowheadLength Numeric The length of the arrowhead at the end of the line. Use one of the constants

listed in BeginArrowheadLength.




EndArrowheadStyle Numeric

The shape of the arrowhead at the end of the line. Use one of the constants
listed in BeginArrowheadStyle.

EndArrowheadWidth Numeric

The width of the arrowhead at the end of the line. Use one of the constants
listed in BeginArrowheadWidth.

The colors of the line are set using the ForeColor and BackColor properties. These properties point to a

ColorFormat object. A ColorFormat object has only two properties—the one needed here is the RGB

property (the other is the SchemeColor property; it's covered later).

To illustrate the use of these properties, the code in Listing 2 generates some lines on a PowerPoint slide

(the code is PPTLines.PRG in the Developer Download files available at www.hentzenwerke.cony). Figure 4

shows the results of the sample code.

Listing 2. Example code for formatting lines. There are many ways to format a line: patterns, width,
and arrowheads are shown in this example. See Figure 4 for the resulting slide.

#DEFINE autoIn2Pts 72

#DEFINE ppLayoutBlank 12

#DEFINE msoLineThickThin 4

#DEFINE msoPatternSmallGrid 23
#DEFINE msoLineDash 4

#DEFINE msoArrowheadlLengthMedium 2
#DEFINE msoArrowheadOval 6

#DEFINE msoArrowheadWidthMedium 2
#DEFINE msoArrowheadlLong 3
#DEFINE msoArrowheadTriangle 2

#DEFINE msoArrowheadWide 3

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.

RELEASE ALL LIKE o*

* For demonstration purposes, make oPowerPoint and oSlide

* available after this program executes.
PUBLIC oPowerPoint, oSlide

* Open the server and add a presentation

oPowerPoint = CreateObject("PowerPoint.Application")


http://www.hentzenwerke.com/

oPowerPoint.Visible = .T.
oPresentation = oPowerPoint.Presentations.Add()
* Get a new slide
oSlide = oPresentation.Slides.Add(1, ppLayoutBlank)
* Add a line, and format it to be blue, a weight of 5 points,
*and Thick Thin style
oLine = oSlide.Shapes.AddLine(;
1.00 * autoIn2Pts, 2.00 * autoIn2Pts, ;
9.00 * autoIn2Pts, 2.00 * autoln2Pts)
WITH oLine.Line && The .Line refers to the LineFormat object
.ForeColor.RGB = RGB(0, 0, 255)
Weight =5
.Style = msoLineThickThin
ENDWITH
* Add aline, and format it to be red on yellow,
* half an inch thick, and patterned with the small grid pattern.
oLine = oSlide.Shapes.AddLine(;
1.00 * autoIn2Pts, 3.00 * autoIn2Pts, ;
9.00 * autoIn2Pts, 3.00 * autoIn2Pts)
WITH oLine.Line && The .Line refers to the LineFormat object
.ForeColor.RGB = RGB(255, 0, 0)
.BackColor.RGB = RGB(255, 255, 0)
.Weight = .5 * autoIn2Pts
.Pattern = msoPatternSmallGrid
ENDWITH
* Add a line, and add an arrowhead to the beginning and end.
* Format the beginning arrowhead as a circle, and the ending
*arrowhead as a long, wide triangle. Make the line dashed.
oLine = oSlide.Shapes.AddLine(;
1.00 * autoIn2Pts, 4.00 * autoIn2Pts, ;
9.00 * autoIn2Pts, 4.00 * autoln2Pts)

WITH oLine.Line && The .Line refers to the LineFormat object



.DashStyle = msoLineDash

.BeginArrowheadLength = msoArrowheadLengthMedium
.BeginArrowheadStyle = msoArrowheadOval
.BeginArrowheadWidth = msoArrowheadWidthMedium
.EndArrowheadLength = msoArrowheadLong
.EndArrowheadStyle = msoArrowheadTriangle
.EndArrowheadWidth = msoArrowheadWide

ENDWITH

Listing 2 illustrates a few interesting nuances of formatting lines. The BackColor property is relevant
only when a pattern is used, and provides the background color to fill in the line. When using
arrowheads, the beginning arrowhead goes on the first X,Y coordinate passed to the AddLine
method; the ending arrowhead goes on the second coordinate.

Figure 4. Line-up time. A PowerPoint slide showing the formatted lines generated from Listing 2.

When the Shape is something other than aline, the LineFormat object referenced by Line describes
the shape’s borders. In that case, the LineFormat object has all the same properties, except for the
Arrowhead properties. Attempting to set the value of any arrowhead property to something other
than one results in the error: "OLE IDispatch exception code 0: The specified value is out of range..."

Adding AutoShapes

Office comes with more than 140 predefined shapes for use in its applications. The available shapes
provide much more than just the basic drawing shapes like rectangles and circles. There are many

decorative shapes, such as arrows, stars, and banners. Flowchart symbols are also available, as are
many kinds of callouts. Any of these shapes can be added to a slide using the AddShape method of
the Shapes collection. AutoShapes are used to create diagrams, illustrations, or just spruce up your



slides.

The syntax for adding an AutoShape is:

oShape = oSlide.Shapes.AddShape( nType, nLeft, nTop, nWidth, nHeight )

The first parameter is a numeric constant indicating one of the 140 shapes available. Table 5 shows a
sample of the available constants. Note that their prefix is "mso," which denotes that they are
available to all Office applications, not just PowerPoint. The next two parameters specify the upper
left corner of the rectangular box containing the shape (in points, of course). The final two
parameters determine the width and height of the object, in points. This is different from a line, which
requires an absolute endpoint rather than a width and height. This rectangular box, which contains
the shape, is called the bounding box.

Table 5. A sampling of AutoShape constants and their values.

Shape constant Value
msoShape5PointStar 92
msoShapeArc 25
msoShapeBalloon 137
msoShapeCube 14
msoShapeDownArrow 36
msoShapelLeftArrow 34
msoShapeLineCalloutl 109
msoShapeNoSymbol 19
msoShapeOval 9
msoShapeParallelogram 2




msoShapeRectangle 1

msoShapeRightArrow 33
msoShapeRoundedRectangle 5
msoShapeUpArrow 35

The shape is placed with the current AutoShape default settings. The built-in defaults are a distinctive
shade of seafoam green, with a thin black border. We'll discuss changing these lovely default colors
in the section "Filling the shape" later in this chapter. So issuing the following:

#DEFINE msoShape5PointStar 92

#DEFINE autoIn2Pts 72

oShape = oSlide.Shapes.AddShape(msoShape5PointStar, ;
1 *autoln2Pts, 1 * autoln2Pts, ;

4 * autoln2Pts, 4 * autoIn2Pts)

draws a 4" star, with the top left corner of its bounding box one inch from the top and side. See
Figure 5 for the result (on an otherwise blank slide).

Figure 5. Results of adding a star AutoShape. The shape is placed with the current AutoShape
defaults, which include fill color, border color, and border style.

Formatting the shape’s border

Since we know how to format lines, we can figure out how to format borders. A Shape’s Line property
(which references a LineFormat object) controls its border. So, if you really want, you can put a



5-point-wide dashed dark blue border around the star:

#DEFINE msoLineDash 4

WITH oShape.Line
.ForeColor.RGB = RGB(0, 0, 128)
Weight =5

.DashStyle = msoLineDash

ENDWITH
Of course, you can make the border disappear by setting its Visible property to false:
oShape.Line.Visible = .F.

Filling the shape

Now, to do something about that wonderful seafoam green color. That requires the Fill property,
which references a FillFormat object. The FillFormat object’s properties and methods make it
extremely powerful. Not only can you change the seafoam green color to any other displayable solid
color, but you can change it to a gradient fill, a texture, a pattern, a picture, or even make it
semi-transparent. The FillFormat object is covered in detail in the section "Achieving consistency
with Master Slides" in Chapter 11. But we do need to do something about that color...

Just like setting a line, the ForeColor property controls the color. Changing the color of the star is as
easy as:

oShape.Fill.ForeColor.RGB = RGB(255, 255, 0)

Now it’s yellow. If you care to pattern it, you need to set the BackColor property, then use the
Patterned method to apply the patterning, using the same pattern constants as for lines. This code
sets the back color to dark blue, and the pattern to msoPatternSmallGrid. The results are shown in
Figure 6.

WITH oShape.Fill
.BackColor.RGB = RGB(0, 0, 128)
.Patterned(msoPatternSmallGrid) && 23

ENDWITH

Okay, so that’s not the most attractive pattern. But it gives a great example of why we might need to
undo the patterning. The obvious approach is to use the Patterned method—of course, the obvious
isn't always the way to go. To remove the patterning, use the Solid method to set it back:

oShape.Fill.Solid()




Figure 6. The stellar results of patterning. The ForeColor is used as the color of the pattern itself,
while the BackColor fills in the area behind the pattern.

Beware! While the FillFormat and LineFormat objects have similar properties, the LineFormat object
doesn’t have a Solid method. To remove a pattern from a Line, set its DashStyle property to
msoLineSolid (a value of 1).

Adding and formatting text

Text can be added to any shape. There are properties to set the color and font of the text. Individual
characters, words, sentences, or even paragraphs can be formatted differently—for example, bolding
certain words, or highlighting certain lines. You can also format the text as a bulleted list, with a wide
variety of formats available for the bullets.

Adding text

Adding text to Shapes is the same as adding text to a title—especially since titles are really just
Rectangle Shapes. A quick review of the process reminds us that the Shape’s TextFrame property
contains a TextFrame object. The TextFrame object contains properties and methods to align and
anchor the text frame, and to store and format the text in the text frame.

Among the properties of the TextFrame object, the TextRange property is used to store a TextRange
object. The TextRange object contains the properties that store the text and the text’s formatting,
along with a series of methods to manipulate the text. We’ll come back to an explanation of the
TextFrame properties after we look at the TextRange object—it’s much easier to see how TextFrame
properties affect the text when there is actually text to view!

Within the TextRange object, the text string itself is stored in the Text property. The font formatting
information is stored in the TextRange’'s Font property, and the stored Font object is similar to the
Font objects encountered in Word and Excel. The following example adds an oval and shows how to
add a text string and use the basic font formatting to the shape:

#DEFINE msoShapeOval 9
#DEFINE autoln2Pts 72
oShape = 0Slide.Shapes.AddShape(msoShapeOval, ;

4.0 * autoln2Pts, 1.5 * autoln2Pts, ;



2.0 * autoln2Pts, 4 * autoln2Pts)
WITH oShape.TextFrame.TextRange
.Text ="This is atest." + CHR(13) + "It is only a test."

.Font.Name = "Arial"

.Font.Size = 36
.Font.Bold =.T.
ENDWITH

The Shape that is added is a tall, thin oval. Figure 7 shows the results of the code. Note that the
shape’s boundaries do not affect the size and width of the text. The text is far wider than the shape.
The TextFrame object has an AutoSize property that can resize the Shape to fit the text string. Setting
the AutoSize property to ppAutoSizeShapeToFitText (1) automatically resizes the Shape to fit the text.
Figure 8 shows how the example shape changes when AutoSize is set to fit the text. Even if AutoSize

is immediately set back to ppAutoSizeNone (0), the automatically generated size remains; it does not
revert to the previous size.

Figure 7. Results of the formatted text added to an oval shape.

Figure 8. Results of the AutoSize feature.



Fun with text segments

The TextRange object in Office gives us arich set of methods to work with segments of text. These
chunks are commonly known as Characters, Words, Lines, Sentences, Paragraphs, and Runs. By
selecting certain segments, such as a few words or a sentence, the selected text can be formatted
differently than the other text. While characters, words, sentences, and paragraphs seem obvious,
lines and runs need a bit more explanation. Lines correspond to the physical line in the text frame
(think MLINE() here). Runs correspond to text with identical formatting attributes.

Segments of text are selected with the TextRange methods called Characters, Words, Lines,
Sentences, Paragraphs, and Runs. Each method takes two optional parameters. The first is the
position of the starting chunk, and the second is the number of segments you want returned (the
default is 1). If you omit either parameter, you get them all. All of these methods return another
TextRange object to manipulate. To see the text, you need to reference the Text property of the
TextRange object. Here are a few examples, based on the text shown in Figure 8.

? oShape.TextFrame.TextRange.Lines[2].Text && "It is only a test."
? oShape.TextFrame.TextRange.Words[3].Text && "a " (note the space)
? oShape.TextFrame.TextRange.Words[5].Text && "." (Periods are words)

? oShape.TextFrame.TextRange.Characters[4,6].Text && "s is a"

Since these methods return TextRanges, you can string these methods together to get a very specific
segment, such as the third word in the second sentence:

? oShape.TextFrame.TextRange.Sentences[2].Words[3].Text && "only "

This is useful when a client has a company name displayed in a different font, or if words or
sentences should be highlighted. It’s useful for formatting paragraphs, too.

Formatting paragraphs

If you're saying, "There shouldn’t be paragraphs on a PowerPoint slide!" give yourself a pat on the
back! You understand good presentation layout! For those of you who are scratching your head
wondering why, the rule of thumb is "seven lines of seven words." This is generally considered to be
a maximum, too. The audience should not spend time reading lots of text on the screen, because if
they are, they’'re not listening to the presenter. (For that matter, the presenter shouldn’t read the slide
to the audience, either, but we digress.)

So why would PowerPoint include a ParagraphFormat object? Polymorphism. The name is consistent
with the object that performs similar functionality in other Office products, and it allows you to easily
format bulleted lists. (Think of each bullet as a paragraph.) Besides, it will format the paragraph, if
you (or your clients) insist on paragraphs of text.

The ParagraphFormat object has a few properties that contain the values for formatting the entire
text range. The Alignment property sets the alignment of the whole text range. Alignment constants
are ppAlignLeft (1), ppAlignCenter (2), ppAlignRight (3), ppAlignJustify (4), and ppAlignDistribute (5).
Also available is the WordWrap property, which is a logical value.



There are properties that set the vertical spacing for each paragraph within the TextFrame. Use the
SpaceBefore, SpaceAfter, and SpaceWithin numeric properties to set the spacing between lines of
text. The amount of space is set by a corresponding LineRule property: LineRuleBefore,
LineRuleAfter, and LineRuleWithin. The LineRule properties can be set with a logical or numeric
value denoting whether the units are in number of lines (.T., or 1) or in points (.F., or 0). Either logical
or numeric values may be used to set the value; however, these properties are numeric when
queried. Set the LineRule properties explicitly before changing the Space properties, as changing the
LineRule properties from points to lines properly converts the stored Space value, but changing from
lines to points sets the corresponding Space property to zero.

Bullets

The ParagraphFormat object uses the Bullet property to store the BulletFormat object. The
BulletFormat object sets all the formatting for the bullets. PowerPoint 2000 offers some nice updates
to the BulletFormat object, the most notable of which is the Type property. The Type object
determines what kinds of bullets are used. If no bullets should be used, set the Type property to
ppBulletNone (0). To display symbols for bullets, use the ppBulletUnnumbered (1) constant. To
display numbered bullets, use the ppBulletNumbered (2) constant. To display a graphic image, such
as a BMP, as a bullet, use the ppBulletPicture (3) constant.

5 =nY"  In PowerPoint 97, the BulletFormat object does not support numbered bullets or
pictures for bullets. That leaves symbol bullets, or no bullets. The 97 BulletFormat object
uses a Visible object to toggle the display of bullet symbols. The Visible property is still
available in PowerPoint 2000, but it is not specifically listed in the Help file under
"BulletFormat Properties” or the Applies To list in the Visible property (though it is included
in several examples in the Help file). This usually indicates that the property may not be
available in the next version of PowerPoint. Make sure your code uses the Type property
rather than the Visible property when running under PowerPoint 2000.

Controlling the size of the bullets is accomplished with the RelativeSize property. The numeric value
should be between .25 and 4. This number indicates the size as a percentage of the height of the text.
If you enter values larger or smaller than the expected range, no error occurs; instead, it displays the
symbol as if it were set to the minimum or maximum (whichever was exceeded). This property is
unchanged from PowerPoint 97.

The Character property sets the character used for the bullet. According to the Help file, this property
stores the Unicode value for the symbol. Use the Unicode value only for Unicode fonts, such as
Lucida Sans Unicode. If you set the Bullet object’s Font property to a regular ASCII font, such as
Wingdings, use the ASCII value of the character.

Numbered bullets

PowerPoint 2000 offers a series of properties to number the bullets. The Style property selects one of
the approximately 28 preset styles of numbering (not all are available in every language). The
numbering styles force the bulleted characters to a specific case, and with specified parentheses or



periods. Of course there are the series of constants (a few samples are shown in Table 6)—the Help
file has a complete listing (it's one of the few Help pages that shows the values of the constants, too).

Table 6. Constants for numbering bullets. Numbered bullets is a feature new in PowerPoint 2000.

Constant Value Example

ppBulletAlphalL CPeriod 0 a.

ppBulletAlphaUCPeriod 1 A.
ppBulletArabicParenRight 2 1)

ppBulletArabicPeriod 3 1.
ppBulletRomanLCParenBoth 4 @)
ppBulletAlphaUCParenRight 11 A)

ppBulletArabicPlain 13 1
ppBulletCircleNumWDWhitePlain 19 yy (Only available for 1-10)

The default value for the style is ppBulletAlphaUCPeriod (1), which is the uppercase alpha characters
followed by a period.

The StartValue property contains the number of the first bullet on the slide. This is particularly useful
if bulleted lists break across slides—for example, when the first three bullets are on Slide 1, and the
second three are on Slide 2. You may want to break numbered bullets into two columns on the same
slide, and have two text shapes numbered consecutively on the same slide. StartValue is a numeric
property. If the bullet Style shows numbers, the value directly corresponds to the number displayed
in the bullet. This includes Roman numerals. If the Style shows alpha characters, the value
corresponds to the position in the alphabet: 1 =A,2 =B, 26 =Z, 27 = AA, 28 = BB, and so forth. The
StartValue property has a range from 1 to 32767. The default is 1.

Setting the StartValue uses the currently stored style. Since the default is uppercase alpha
characters, don’t be surprised to set StartValue to 3 and get "C." instead of "3." Be sure to explicitly



set the Style property when you set the StartValue to avoid little surprises like that.

Kot

&
Vaond Setting the values for the Style or the StartValue automatically sets the Type

property to ppBulletNumbered (2). Use the Type property to test whether there are numbered
bullets; do not rely on the Style or the StartValue properties alone. These properties retain
their settings even if you select another type of bullet.

Picture bullets

PowerPoint 2000 includes a new feature to add a graphic file as the bullet character. This can really
dress up the presentations. Adding a graphic file as a bitmap uses the lone method of the
BulletFormat object—the Picture method. It accepts a single parameter, which is the fully qualified
path to the file (or at least a path relative to PowerPoint’s location; remember, PowerPoint does not
know what FoxPro’s current directories are). PowerPoint supports a wide variety of graphic formats;
see the "Picture Method" topic in the Help file for a complete list.

When the Picture method runs, it sets the Type property to ppBulletPicture (3). There does not
appear to be an exposed property to query what graphic file is used.

You can set the picture for each bullet individually—by using the TextRange's Paragraphs method.
While the following code is technically possible, do be sure that it is visually acceptable (this
particular example illustrates the technical methods, but is not recommended as an example of good
layout!).

WITH oShape.TextFrame.TextRange

* Make sure the shape has two paragraphs of text
.Text ="Test 1" + CHR(13) + "Test 2"

* Use some standard bitmaps that come with Windows
.Paragraphs(1).ParagraphFormat.Bullet.Picture( ;
GETENV("WINDIR") + "\Triangles.bmp")
.Paragraphs(2).ParagraphFormat.Bullet.Picture(;
GETENV("WINDIR") + "\Circles.bmp")

ENDWITH

Fun with fonts

If you've been developing apps for any length of time, you can probably relate to this: you've just
demonstrated your really awesome presentation that extracts the data from the tables, manipulates it
a dozen ways, drops it into an incredibly well-done presentation containing 20 slides in two seconds
flat—it’s utterly amazing. After viewing this incredible technological feat, the client/boss pauses
thoughtfully before saying, "Hmmm...can we change the font to something else?" After you pick up
your bruised and battered ego off the floor (after all, you were expecting a comment something like



"Wow!"), you can tell them with confidence that yes, there is a way to change the font. And the color,
too (try not to appear too sarcastic when you say this through gritted teeth!).

The BulletFormat and TextRange objects both have a Font property that stores a Font object. This
Font object is similar to the ones found in Word and Excel. Most of the properties are logical
properties that set properties such as bold, italic, underline, and so forth. There's also a Size property
that sets the size of the text in points. Figure 9 shows a slide of the various text attributes (using
Times New Roman font), and Listing 3 shows the code that created the slide. It is saved as

PPTFont.PRG in the Developer Download files available at www.hentzenwerke.com.

This code shows the various properties of the Font object, as well as how to manipulate text
segments and a few ParagraphFormat features.

« Regular
 Bold

o Jtalic

« Shadow
« Underline
¢ Subscript
. Superscript

Figure 9. Font object examples, using the code shown in Listing 3. These eight effects can also be
combined, if desired.

Listing 3. Manipulating the Font object.
#DEFINE ppLayoutBlank 12

#DEFINE msoShapeRectangle 1

#DEFINE ppAlignLeft 1

#DEFINE ppBulletUnnumbered 1

* ASSUMPTION: oPresentation is a variable pointing


http://www.hentzenwerke.com/

*to an open PowerPoint presentation.

* Add a new slide with a new shape

oSlide = oPresentation.Slides.Add(1, ppLayoutBlank)

oShape = o0Slide.Shapes.AddShape(msoShapeRectangle, 100,100,500,350)

* Remove the shape's border and fill color.

oShape.Line.Visible = .F.

oShape.Fill.ForeColor.RGB = RGB(255,255,255)

WITH oShape.TextFrame.TextRange

* Add the example text

.Text ="Regular" + CHR(13) +;

"Bold" + CHR(13) +;

"ltalic" + CHR(13) + ;

"Shadow" + CHR(13) +;

"Underline" + CHR(13) +;

"Subscript" + CHR(13) +;

"Superscript" + CHR(13) +;

"Emboss"

* Make the font larger, left align the text,

*and set the bullet format to default symbols.
.Font.Size = 32

.ParagraphFormat.Alignment = ppAlignLeft
.ParagraphFormat.Bullet.Type = ppBulletUnnumbered
* Format each of the bullets
.Paragraphs[2].Font.Bold = .T.
.Paragraphs[3].Font.ltalic =.T.
.Paragraphs[4].Font.Shadow = .T.
.Paragraphs[5].Font.Underline = .T.
.Paragraphs[6].Characters[1,3].Font.Subscript =.T.
.Paragraphs[7].Characters[1,5].Font.Superscript = .T.
.Paragraphs[8].Font.Emboss = .T.

ENDWITH



The Font object also has a property, Color, which references a ColorFormat object. The
ColorFormat’s RGB property sets the text color. The background color is set by the shape. The
following example sets the title text to blue. If there were a bullet symbol on the title, the Font.Color
property sets the color for the text and the bullet.

oSlide.Shapes.Title.TextFrame.TextRange.Color = RGB(0,0,128)

Occasionally, you may want to set the bullet color separately from the text color. To accomplish this,
set the TextRange.ParagraphFormat.Bullet.Font.Color.RGB property. This sets the logical
TextRange.ParagraphFormat.Bullet.UseTextColor property to .F. While you cannot explicitly set
UseTextColor to .F., you can set it to .T. to return the bullet color to the text color.

The Name property sets the font. Set it to a font name, just like you set the font name properties for
FoxPro objects. The font must exist on that machine, or it selects a font (generally Times New
Roman). As with color, you may want to set the font of bullets separately from the text. It's done
similarly, by setting the TextRange.ParagraphFormat.Bullet.Font.Name property (as opposed to
TextRange.Font.Name), which then sets the TextRange.ParagraphFormat.Bullet.UseTextFont to .F.
You cannot explicitly set UseTextFont to .F., but you can set it to .T. to return the bullet font to the
text font.

Making it presentable

Once the slides are built, the users are going to want to do something with them. They’ll probably
want to run a slide show, or they’'re going to want to print it. Fortunately, PowerPoint exposes some
methods to allow you to perform some pretty nice feats.

Running a slide show mode

Once you build a presentation, your users might like to preview it on the screen as a slide show. The
Presentation’s SlideShowSettings property references a SlideShowSettings object that allows you to
manipulate the presentation. The only method is the Run method, which starts the slide show:

oPresentation.SlideShowSettings.Run()

This command tells PowerPoint to begin the slide show, which becomes the topmost window. Your
application slips behind the slide show. When the users finish the slide show, they return to
PowerPoint—not to your application! In addition, your application continues to run while the slide
show is in progress. To handle this gracefully, be sure that the next line of your program is a wait
state, so your application doesn’t march along while they’re watching the PowerPoint show. You
probably also want code to put your application back on top after the show is over.

Printing

Presentation has a PrintOptions property that points to a PrintOptions object. The properties of
PrintOptions are summarized in Table 7. Once the print options are set, issue the PrintOut method to
print the selected items.

Table 7. PrintOptions object properties.



Property Type Description

Collate Logical A logical value denoting whether multiple copies should be collated.

FitToPage Logical True to make the slides fill the page; False to honor the values in the Page
Setup dialog.

FrameSlides Logical True to place a thin border around slides, notes, and handouts; False to omit it.

HandoutOrder Numeric Sets the order of the slides on the handout:
ppPrintHandoutHorizontalFirst (1)—Prints slides in rows across the page.
ppPrintHandoutVerticalFirst (2)—Prints the slides in columns down the page.
Default is 1; set to the number of copies needed.

OutputType Numeric A numeric value corresponding to what is printed (slides, handouts, or notes):

ppPrintOutputSlides (1)—Default.

ppPrintOutputTwoSlideHandouts (2)—Two slides per page.

ppPrintOutputThreeSlideHandouts (3)—Three slides per page.

ppPrintOutputFourSlideHandouts (8)—Four slides per page.

ppPrintOutputSixSlideHandouts (4)—Six slides per page.

ppPrintOutputNineSlideHandouts (9)—Nine slides per page.




ppPrintOutputOutline (6)—Outline format.

ppPrintOutputNotesPages (5)—Notes only.

PrintColorType Numeric A numeric value indicating how the colors should print:

ppPrintColor (1)—Default.

ppPrintBlackAndWhite (2)—Grayscale.

ppPrintPureBlackAndWhite (3)—Strictly black and white (no fills).

PrintFontsAsGraphics Logical True to print the fonts as a graphical image.
PrintHiddenSlides Logical True to print any hidden slides.
PrintinBackground Logical True to print in the background (default).

Once the properties are set, invoke the PrintOut method. All parameters are optional. The syntax of
the PrintOut method is as follows:

oPresentation.PrintOut(nFromSlide, nToSlide, cPrintToFile, nCopies, ICollate)

The nFromSlide and nToSlide parameters set the first and last slides to print. The cPrintToFile
parameter is a fully qualified path and filename to accept the output. The remaining parameters
override the settings in the PrintOptions object: nCopies overwrites NumberOfCopies, and ICollate
overrides Collate.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

Listing 4 shows a few slides for a marketing presentation for Tasmanian Traders. The slides show what is
covered in this chapter. The program creates three slides, shown in Figures 10, 11, and 12.

Listing 4. A sample presentation for Tasmanian Traders.

CLOSE DATA

#DEFINE ppLayoutTitle 1

#DEFINE ppLayoutText 2

#DEFINE ppBulletArabicPeriod 3

#DEFINE msoLineThickBetweenThin 5

#DEFINE autoIn2Pts 72

* Clean out any existing references to servers.

* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make oPowerPoint and oPresentation
* available after this program executes.

PUBLIC oPowerPoint, oPresentation

SET PATH TO _SAMPLES + "\TasTrade\Data\"

* Set up the data

OPEN DATABASE "TasTrade"

LogoFile = _SAMPLES + "\TasTrade\Bitmaps\TTradeSm.bmp"
USE Ordltems IN O

USE Products INO

* Select the top 5 selling items of all time

SELECT TOP 5

P.English_Name, ;

SUM(O.Unit_Price * O.Quantity) AS TotQuan ;
FROM Ordltems O, Products P ;

WHERE O.Product_ID = P.Product_ID ;

GROUP BY 1;

ORDER BY 2 DESC;



INTO CURSOR TopSellers

* Select the number of products

SELECT Count(*) ;

FROM Products ;

INTO ARRAY aProducts

* Open PowerPoint

oPowerPoint = CreateObject("PowerPoint.Application")
oPowerPoint.Visible = .T.

* Create the presentation

oPresentation = oPowerPoint.Presentations.Add()

SlideNum =1

Tasmanian Traders

Welcomes you...

Figure 10. The Tasmanian Traders sample title slide. This slide demonstrates adding graphics and
changing text attributes.

*TITLE SLIDE............

* Add the slide

oSlide = oPresentation.Slides.Add(SlideNum, ppLayoutTitle)
* Set the title text. Change it to Arial font, blue, and bold.
WITH oSlide.Shapes[1].TextFrame.TextRange

.Text = "Tasmanian Traders"

WITH .Font

.Name ="Arial"



.Bold =.T.

.Color = RGB(0, 0, 128)

ENDWITH

ENDWITH

* Set the subtitle text
oSlide.Shapes[2].TextFrame.TextRange.Text = "Welcomes you..."
* Add the logo.
oSlide.Shapes.AddPicture(LogoFile, .F., .T.,;
2.0 * autoln2Pts, 1.5 * autoIn2Pts)

* PowerPoint 97 users: the last two parameters,
* height and width, are not optional. Use this

* code instead:

*.Shapes.AddPicture(LogoFile, .F., .T.,;

* 8.5 *autoln2Pts, 6.0 * autoIln2Pts, ;

* 1.0 * autoIn2Pts, 1.0 * autoln2Pts)

SlideNum = SlideNum + 1

Tasmanian Traders
has what you need

With a selection of 77 items, you're
sure to be pleased.

Figure 11. The Tasmanian Traders sample second slide. This slide demonstrates adding lines and
changing attributes for a segment of text.

* SECOND SLIDE...........

* Add the slide



oSlide = oPresentation.Slides.Add(SlideNum, ppLayoutTitle)

* Bring the slide to the front

oSlide.Select()

* PowerPoint 97 users: oSlide.Select() will

* generate an error. Use this line instead:

* oPresentation.ActiveWindow.View.GoToSlide(2)

* Set the text of the title

WITH oSlide.Shapes[1].TextFrame.TextRange

.Text ="Tasmanian Traders " + CHR(13) + "has what you need"

WITH .Font

.Name ="Arial"

.Bold =.T.

.Color = RGB(0,0,128)

ENDWITH

ENDWITH

* Move the title up about half an inch

WITH oSlide.Shapes(1)

.Top =.Top - (.5 * autoIn2Pts)

ENDWITH

* Add a line half an inch below the title that is centered and 6" long

LineTop = oSlide.Shapes[1].Top + oSlide.Shapes[1].Height + ;

(.5 * autoIn2Pts)

LineLeft = 2 * autoIn2Pts

LineEnd = LineLeft + (6.0 * autoIn2Pts)

oLine = oSlide.Shapes.AddLine(LineLeft, LineTop, LineEnd, LineTop)

* Format the line to be red, and make it a thick line



* with two thin lines on either side

WITH oLine.Line

.ForeColor.RGB = RGB(255,0,0)

.Style = msoLineThickBetweenThin

Weight =8

ENDWITH

* Set the text of the subtitle, and change the number to bold and red.
WITH oSlide.Shapes[2].TextFrame.TextRange

.Text = "With a selection of " + ALLTRIM(STR(aProducts[1])) + ;
" items, you're sure to be pleased."

.Words[5].Font.Bold = .T.

.Words[5].Font.Color = RGB(255, 0, 0)

ENDWITH

SlideNum = SlideNum + 1

Tasmanian Traders
Top Sellers
1. Tibetan Barley Beer -- $1,922.889

2. Cote de Blaye (Red Bordeaux wine) --
$186.667

3. Thiiringer Sausage -- $114.924

4. Courdavault Raclette Cheese -- $88,100

5. Pierrot Camembert -- $59.982

Figure 12. The Tasmanian Traders sample third slide. This slide demonstrates adding bulleted lists.

*TOP 5 SELLERS SLIDE..........
* Add the slide

oSlide = oPresentation.Slides.Add(SlideNum, ppLayoutText)



* Bring the slide to the front

oSlide.Select()

* PowerPoint 97 users: oSlide.Select() will

* generate an error. Use this line instead:

* oPresentation.ActiveWindow.View.GoToSlide(2)

* Insert the title (note the use of the Title object, instead of
*an enumerated shape object). Make the font Arial, blue, and bold.
WITH oSlide.Shapes.Title.TextFrame.TextRange

.Text ="Tasmanian Traders" + CHR(13) + "Top Sellers"

WITH .Font

.Name = "Arial"

.Bold =.T.

.Color = RGB(0,0,128)

ENDWITH

ENDWITH

* Build the string to use for the top 5 sellers.

* Use a CR between each item to make each a separate bullet.
BulletString =""

SELECT TopSellers

SCAN

BulletString = BulletString +;
TRIM(TopSellers.English_Name) +" -- $" +;
ALLTRIM(TRANSFORM(TopSellers.TotQuan, "99,999,999")) +;
CHR(13)

ENDSCAN

* Add the bullet string to the text frame, and make the bullets numeric.
WITH oSlide.Shapes[2].TextFrame.TextRange

.Text = BulletString

.ParagraphFormat.Bullet.Style = ppBulletArabicPeriod && Available only
&& in PowerPoint 2000

ENDWITH

* Run the slide show.



oPresentation.SlideShowSettings.Run()

Now you are capable of producing a slide show that is sure to knock the socks off your client. But wait,
there’s more! In addition to these basic features, PowerPoint throws in some advanced features—FREE! The
next chapter explains some of the advanced features of PowerPoint.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 11 - PowerPoint Advanced
Features

Once you build a basic presentation, your clients will soon be begging for more. Actually, some of these advanced features
(like the Master Slide feature) can be so helpful, you'll want to use them right away. Others, like animations and transitions, are
fun to watch (and program). Used judiciously, these will dazzle your clients!

Now that your clients are impressed, you're ready to tackle a little more pizzazz in your presentations. Master
Slides is a feature that ensures that all your slides have a consistent appearance. This chapter also covers
some fancy features to animate shapes, control the transitions between slides, add multimedia, and create
hot spots that run other programs. At the end are ways to add notes to be printed with your presentation.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Achieving consistency with Master Slides

The SlideMaster object sets the defaults for each slide’s layout and appearance. The SlideMaster stores the
defaults for colors and fonts, standard item placement, as well as objects that should appear on any slide
(perhaps a company logo in the corner). The SlideMaster object is referenced by the Presentation’s
SlideMaster property.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Backgrounds

The plain white background on all slides is something your clients will insist that you change. You can set backgrounds individually on
every slide, but that's a lot of redundant code, and it's a big performance hit. One of the first SlideMaster properties to explore is the
Background property. This sets the background of all slides to be the same using a minimum of code with maximum performance.

The Background property stores a ShapeRange object. While the ShapeRange object has a number of properties, the most useful from
the Background property’s viewpoint is the Fill property, which references a FillFormat object, the same object used to fill shapes. You can
fill the background with solid, soft yellow like this:

#DEFINE rgbSoftYellow RGB(255,255,192)
oPresentation.SlideMaster.Background.Fill.ForeColor.RGB = rghSoftYellow

To provide a patterned background, set the ForeColor and BackColor properties of the FillFormat object. Then use the Patterned method,
which accepts one parameter, a numeric value corresponding to the pattern (msoPattern constants). The Pattern property is set to the
same value you pass to the Patterned method.

#DEFINE msoPatternDottedGrid 45

#DEFINE rgbDarkGray RGB(128, 128, 128)
#DEFINE rgbMediumGray RGB(192, 192, 192

* For a Patterned Background:

WITH oPresentation.SlideMaster.Background.Fill
.ForeColor.RGB = rgbDarkGray

.BackColor.RGB = rghMediumGray
.Patterned(msoPatternDottedGrid)

ENDWITH

This code produces a medium gray slide with a dotted grid (about every eight pixels) in dark gray. We're not sure this is the most
aesthetically pleasing background—the pattern is too small and busy to use for projected slides. The Pattern tab on the Fill Effects dialog
box in Figure 1 shows examples of the patterns. Use of patterns may best be left to smaller shapes, which can handle smaller patterns.

Fill Effects [ 7] =]

Gradient I Tesxkure Pa éf‘ﬂ“‘l Pickure |

Pattern: LI

Cancel

Sample:

Eareground: Background:

-] [—

Figure 1. The Fill Effects dialog box. This dialog shows samples of the available patterns.

ool
W
otk
™ The ForeColor represents the pattern, in this case, the dotted lines, and the BackColor shows through the pattern. Some
patterns, like the dotted grid, show more background color; others show more foreground color.

Textures

If you or your client has used PowerPoint for very long, you know (or will soon be informed by your client) that there are textured
backgrounds. Office provides about 25 preset textures to use. The FillFormat's PresetTextured method sets the background to the
specified texture.



#DEFINE msoTextureSand 8
oPresentation.SlideMaster.Background.Fill.PresetTextured(msoTextureSand)

This line of code sets the background to a deep sand texture. If you want to find out what texture is in use, use the read-only
PresetTexture property to return the numeric value.

What if your client wants a custom texture? Not to worry, PowerPoint provides a UserTextured method. This method takes one parameter,
which is the fully qualified filename of a picture file to tile across the background. This filename is stored in the TextureName property
(read-only). The TextureType property indicates which kind of texture is in use. The TextureType property returns msoTexturePreset (1) or
msoTextureUserDefined (2).

Picture fills

You can use a bitmap as a background, too. The UserPicture method accepts a parameter consisting of a fully qualified bitmap filename.
It forces the bitmap to take up the entire background—it does not tile it (use the UserTextured method to tile it). It uses some interesting
smoothing techniques when you try to stretch a small bitmap across the whole slide. For an example, you might try:

oPresentation.SlideMaster.Background.Fill.UserPicture( ;

GETENV("WINDIR" + "\TILES.BMP"))

This is a small bitmap that resembles brick; when enlarged, it has kind of a futuristic red and black look. This won’t win any visual awards,
but it is a striking example of how a small bitmap is smoothed over the whole screen. There isn't a documented property that corresponds
to the UserPicture method to tell you what bitmap is used.

eﬂﬂfe-

o ‘%,
sone

s The Background object is available for the SlideMaster as well as Shapes. These methods and properties for textures,
picture fills, and gradient fills are available for shapes, too.

Gradient fills

Perhaps the most sought after background is the gradient fill—you know the kind, a nice medium blue fades from the top to a nearly black
color at the bottom. Figure 2 shows the PowerPoint dialog box that allows you to select the gradient fills interactively. This is a handy cue
to remember all the various properties for setting a gradient fill.

There are three gradient color types available in PowerPoint. The GradientColorType property stores the currently selected gradient type.
It is a read-only property; separate methods are used to set the gradient. This is to your benefit, as the methods used to set each type take
multiple parameters, ensuring that you set all the necessary properties for the specific gradient. Here are the three gradient color types:

® Preset colors: usually employing three or more colors, there are 24 presets that have names like Daybreak, Ocean, Fog, Moss,
Wheat, and Parchment (which, incidentally, are the most professional looking schemes; the rest can look very garish depending on
the text colors used).

® One-color fill: the selected color graduates to shades of the same color that are lighter or darker than the selected color (as light as
white or as dark as black).

® Two-color fill: the first color graduates into the second color.

Fill Effects [ 2] <]
radiont | Texture | patterm | picture |

Colors

Calor 1:
= Cancel

& One color I j I

£ Two colors

" Preset j J j

Dark Light

Shading styl Variants

& Horigontal r

 Yertical

£ Diagonal up B

" Diagonal down ; Sample:

" From corner

" From kitle F— E

Figure 2. PowerPoint’s gradient fill option dialog box. This is a handy visual reminder of the properties that need to be set for a gradient fill.

The preset colors are set with the PresetGradient method. This method takes three parameters:



oPresentation.SlideMaster.Background.Fill.PresetGradient(nStyle,
nVariant, nType)

NStyle Numeric Indicates the shading style of the gradient:

msoGradientDiagonalDown 4  msoGradientDiagonalUp 3

msoGradientFromCenter 7  msoGradientFromCorner 5

msoGradientFromTitle 6  msoGradientHorizontal 1

msoGradientVertical 2

nVariant Numeric Indicates the choice of color order (no constants):

1 = Color 1 to Color 2 (top left box in the gradient dialog)

2 = Color 2 to Color 1 (top right box in the gradient dialog)

3 = Color 1 to Color 2 back to Color 1 (lower left box in the
gradient dialog)

4 = Color 2 to Color 1 back to Color 2 (lower right box in the
gradient dialog)

nType Numeric Indicates the preset color scheme. Some of the 24 are:

msoGradientDaybreak 4  msoGradientOcean 7
msoGradientFog 10 msoGradientParchment 14
msoGradientMoss 11 msoGradientWheat 13

Most clients may object to the preset colors. As stated before, many are garish, and those that are professional are probably overused by
their competitors. Your client may be more sophisticated than the preset colors (by the way, this is an excellent argument to dissuade a
client who chooses one of the garish presets—take a look at the Rainbow type [16] to see what we mean).

The next gradient type is the one-color gradient, which uses the OneColorGradient method to set the appropriate properties. Like the
PresetGradient method, it also takes three parameters; the first two are identical to the PresetGradient method:

oPresentation.SlideMaster.Background.Fill.OneColorGradient(nStyle,
nVariant, nDegree)

nStyle Numeric  The shading style of the gradient. See PresetGradient for
constants.

nVariant Numeric  The choice of color order. See PresetGradient for values.

nDegree Numeric A value from O to 1, representing the darkness of the resulting
color. 0 is black, and 1 is white; .25 is a dark shade of the
color, and .75 is a pale shade of the color. Represents Color
2.



Notice that there is no mention of what color to use as Color 1. The ForeColor property is used for Color 1. To set the background color on
the slide to go from a medium royal blue to a pale shade of the same blue, use the following code:

#DEFINE msoGradientHorizontal 1

#DEFINE rgbMediumBlue RGB(0, 0, 150)

WITH oPresentation.SlideMaster.Background.Fill
.ForeColor.RGB =rgbMediumBlue
.OneColorGradient(msoGradientHorizontal, 1, .75)
ENDWITH

The final gradient type is the two-color gradient. Yep, you guessed it: use the TwoColorGradient method. This one only takes two

parameters:

oPresentation.SlideMaster.Background.Fill.TwoColorGradient(nStyle, nVariant)

nStyle Numeric  The shading style of the gradient. See PresetGradient for
constants.

nVariant Numeric The choice of color order. See PresetGradient for values.

The two colors are set by the Foreground and Background colors. The following example sets the color to graduate from a royal blue to a
pale teal:

#DEFINE msoGradientHorizontal 1

#DEFINE rgbMediumBlue RGB( 0, 0, 150)

#DEFINE rgbPaleTeal RGB(192, 255,255)

WITH oPresentation.SlideMaster.Background.Fill

.ForeColor.RGB = rgbMediumBlue

.BackColor.RGB =rgbPaleTeal

.TwoColorGradient(msoGradientHorizontal, 1)

ENDWITH

Since you're setting a series of properties by calling methods, just what properties are you setting? Table 1 shows the FillFormat's
properties that are set through each method. These are all read-only properties that can be queried to determine what the current settings
are. Be sure to check the GradientColorType property first, then query only the properties that are applicable to the gradient type. Unused
properties (such as GradientDegree, if a preset or two-color gradient type) are not reset to a default value when the gradient type is
changed. For example, determining that the GradientDegree is .75 does not guarantee that a one-color gradient is used—you must query
GradientColorType to be sure.

Table 1. The Gradient properties of the FillFormat object. Each type of gradient uses most of the Gradient properties—but not all. Check
GradientColorType to ensure you set the appropriate properties for the gradient fill.

Property PresetGradient OneColorGradient TwoColorGradient

GradientColorType msoGradientPresetColors | msoGradientOneColor | msoGradientTwoColors

®) @ @

GradientStyle nStyle parameter nStyle parameter nStyle parameter




GradientVariant

nVariant parameter

nVariant parameter

nVariant parameter

GradientDegree

NA

0 (black) — 1 (white)

NA

PresetGradientType

nType parameter

NA

NA

All the types of backgrounds (solid, patterned, picture, textured, and gradient) set properties through the FillFormat’s methods.
Table 2 shows a compilation of all the properties that are set or used with each method. Remember, setting to a different

background does not reset any unused properties to a default. Query the FillFormat’'s Type property to ensure which

background format is in use.

Table 2. The FillFormat properties set by the various FillFormat methods. Remember that the Type property is the only indicator of the
background format in use—do not rely on values in the other properties solely to determine the type of background format.

Property Solid Patterned Preset Texture User Defined Texture UserPicture Preset Gradient
Read Only
Type msoFillSolid | msoFillPatterned msoFillTextured msoFillTextured msoFillPicture msoFillGradient

() @ 4) 4) (6) @)
Pattern - msoPattern - - - -

constants
TextureType - - msoTexturePreset | msoTextureUserDefined - -
) ©)
PresetTexture - - msoTexture - - -
constants
TextureName - - - BMP filename - -
GradientColorType - - - - - msoGradientPresetColors
@)

GradientStyle - - - - - nStyle
GradientVariant - - - - - nVariant
PresetGradientType - - - - - nType
GradientDegree - - - - - -
Read/Write



ForeColor i ] -

BackColor - il -

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Standardizing the appearance of text

Text is controlled by the TextStyles collection of the SlideMaster object. The collection has three objects. The
first is the default style, used when a shape with text is added. The second is the title style used for all title
placeholder objects. The last object is the body style, used for all of the other placeholders in an AutoLayout.

Within each TextStyle object is a collection of Level objects (Help refers to these as TextStyleLevel objects,
though you access them through the Level property). Text levels are easiest to explain in terms of bullets:
normally, each level is indented from the previous, and each level has a different bullet character and font
characteristics—though each level does not necessarily have to be indented or bulleted. Figure 3 shows the
master slide as seen in PowerPoint, which shows the default characteristics for each level. PowerPoint
supports five levels.

Each Level object contains a Font object and a ParagraphFormat object. The ParagraphFormat object
contains the Bullet object. These objects are covered in Chapter 10, "PowerPoint Basics," and have the same
properties and methods when used for Levels as they do for TextRanges.

You might use the TextStyles and Levels collections to change the color and font for the Title objects. Usually
slide show backgrounds are a darker color, like medium to dark blue, to ensure readability. When the
background is dark, the text needs to be light—perhaps a shade of yellow. Additionally, it is usual to use an
eye-catching sans-serif font for a title. The following code demonstrates this. Figure 4 shows the results.
#DEFINE ppTitleStyle 2

#DEFINE rgbYellow RGB(255,255,0)

WITH oPresentation.SlideMaster.TextStyles[ppTitleStyle].Levels[1].Font

.Name ="Arial"

.Color.RGB =rgbYellow

ENDWITH

- Click to edit Master text styles

— Second level

* Third level
— Fourth level
» Fifth level



Date frea : : Footer area : ; Mumber Area

Click to edit Master text styles
i+ Second level

— Third level
— Fourth level
3 Fifth level

Uedatestimes | T dooters P &
i Date Area ; Footer Area : ; Mumber Area

Figure 4. The SlideMaster in PowerPoint. This shows the results of the example code that sets the
Titles and Placeholder default text.

As the example illustrates, a Title uses the Levels collection. A Title can have multiple Levels, perhaps for a
title and subtitle in the same rectangle. While levels are useful for changing fonts in Titles, they really excel in
placeholders, especially when bullets are used.

The next example shows how to format the first three Levels in placeholders. The ppBodyStyle constant is
used to reference the third TextStyle object. The first level is formatted to dark blue. The bullet character is a
dot, but we’ve turned it off. The character is set so it can be turned on when needed. The second level is set
similarly, but the bullet is left on. The third level is slightly smaller, medium cyan, and uses an en-dash bullet
character. The result is shown in Figure 4.

#DEFINE ppBodyStyle 3

#DEFINE rgbDarkBlue RGB(0, 0, 128)

#DEFINE rgbMediumCyan RGB(0, 192, 192)

* Set Level One

WITH oPresentation.SlideMaster.TextStyles[ppBodyStyle].Levels[1]
WITH .Font

.Name ="Arial"

.Color.RGB =rgbDarkBlue

.Size =20



ENDWITH

WITH .ParagraphFormat.Bullet

* Set bullet character to a dot (use 149 if using PowerPoint 97)
.Character = 8226

\Visible = .F. && Don't show the bullet!

ENDWITH

ENDWITH

* Set Level Two

WITH oPresentation.SlideMaster.TextStyles[ppBodyStyle].Levels[2]
WITH .Font

.Name = "Arial"

.Color.RGB =rgbDarkBlue

.Size =20

ENDWITH

* Set bullet character to a dot (use 149 if using PowerPoint 97)
.ParagraphFormat.Bullet.Character = 8226

ENDWITH

* Set Level Three

WITH oPresentation.SlideMaster.TextStyles[ppBodyStyle].Levels[3]
WITH .Font

.Name ="Arial"

.Color.RGB =rgbMediumCyan

.Size =18

ENDWITH

* Set bullet character to an en-dash (use 150 if using PowerPoint 97)
.ParagraphFormat.Bullet.Character = 8211

ENDWITH

Similar code can be used to set the default text for added shapes using the constant ppDefaultStyle to

access the first TextStyle object.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Standardizing colors with ColorSchemes

An alternative to setting the colors on the SlideMaster is to use a ColorScheme object, which stores the
colors for the eight standard elements on a slide. Figure 5 shows the PowerPoint dialog box that allows you
to customize the colors. To display it in PowerPoint, select Format|Slide Color Scheme... from the menu,
then click the Custom tab. Up to 16 ColorScheme objects can exist; they're stored in the ColorSchemes
collection.

Color Scheme K |

Sktandard “usbom |

—acheme colors

Background
g : Apply
Text and lines _—
. Shadaows Cancel

[ Title text
. Fills Freview
. fccent -
. ficcent and byperlink

I_ fccent and followed hyperlink

Title of Slide
+ Bullek kext

i_hange Caolar... - H:I

Sddlfs Standard SERemnme

Figure 5. PowerPoint’'s Color Scheme dialog box. Color schemes set the eight standard colors for
objects.

Although the ColorSchemes collection belongs to the Presentation object, any ColorScheme object can be
referenced by the SlideMaster object, or by any slide. The Help file has quite a lengthy discussion of how to
use multiple ColorSchemes within a presentation (for example, having one ColorScheme for title slides, and
another for standard slides).

The most basic and practical use of a single ColorScheme is to dictate the colors of the eight elements on the
SlideMaster. A ColorScheme contains a collection of eight colors, each referenced by a constant. The
constants for the eight colors are: ppBackground (1), ppForeground (2), ppShadow (3), ppTitle (4), ppFill (5),
ppAccentl (6), ppAccent2 (7), and ppAccent3 (8). Beware: setting the background and fill colors in a
ColorScheme overrides any of the Background or Fill object properties that are set—if you set up a gradient
fill background, do not set the background color of the color scheme!

The following code changes the title colors to red and the text (ppForeground) to dark blue. Be sure to use
this code instead of setting colors in the SlideMaster. Colors set explicitly through the SlideMaster’s
TextStyles will take precedence over the ColorSchemes (though if you look at the dialog box, the
ColorSchemes color will change, but it won't change the colors on the slides).



#DEFINE ppTitle 4

#DEFINE ppForeground 2

#DEFINE rgbRed RGB(255, 0, 0)

#DEFINE rgbDarkBlue RGB( 0, 0, 128)

WITH oPresentation.SlideMaster.ColorScheme
.Colors[ppTitle].RGB =rgbRed
.Colors[ppForeground].RGB = rgbDarkBlue

ENDWITH

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



More on SlideMaster shapes

The five shapes on the SlideMaster are exactly that: Shape objects. You can set any of the Shape properties,
not just fonts. Changing the size or borders on the SlideMaster shapes affects the placeholders on all
shapes. To access the properties of the shapes, use the Shapes collection. The indices are from 1 to 5, in
this order: Title Area, Object Area, Date Area, Footer Area, and Number Area. With the myriad of constants
available in VBA, it is surprising there are not constants for these object. (If you expect to work with them a

lot, you can certainly define your own.)

All shapes get their color from the ColorScheme object on the SlideMaster. In the example in the previous
section, all the text is dark blue. Perhaps you want the footer area to be dark green instead. Override the
ColorScheme setting by accessing the shape directly. The following lines of code set the text of the footer to
"Tasmanian Traders" and set the color to dark green.

#DEFINE rgbDarkGreen RGB(0, 128, 0)

WITH oPresentation.SlideMaster.Shapes[4].TextFrame.TextRange
.Font.Color.RGB = rgbhDarkGreen

.Text ="Tasmanian Traders"

ENDWITH

The first two shapes, the Title Area and the Object Area, get their font properties from the TextStyles objects.
The other three (Date Area, Footer Area, and Number Area) are not affected by TextStyles. Set font
properties of these three objects separately.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Fancy features

Warning: the following features are fun to program and interesting to watch. However, the maxim "less is
more" is very appropriate here. There is elegance in simplicity. Used sparingly, these features can set your
presentation apart from others. Overuse them and the audience tires of all the gimmicks, leading them to
ignore the slides and, quite possibly, the speaker who is presenting them. Remember, the audience sees
only the presentation, not the way-cool tricks in your code.

Animations

Animations are special effects—visual and audio—that highlight important elements in a slide. Some
animation effects that PowerPoint supports are objects flying in from the edge (choose your edge), text
appearing letter-by-letter, and sound files playing. These animations can be timed to happen sequentially or
all at once. They can happen automatically, or in response to mouse clicks. There are so many combinations
and permutations of animations; we won't attempt to cover each and every one of them. The Animation
dialog gives you an excellent interface in which to explore them. We’'ll give you an idea of what’s possible to
get you started.

There are 19 animation effects supported by PowerPoint 2000, many with several options, bringing the total
number of effects to about 80. Figure 6 shows PowerPoint’'s Custom Animation dialog, with the Effects
dropdown box shown open. This dialog also gives some insight into the available collections, objects, and
properties. In the upper left corner, there is a list of all the objects on the slide; each can be animated
separately (or not animated at all). The Effects tab is shown, displaying the many properties involved in
customizing the effect. The other tabs indicate that there are properties to set the Order and Timing of
effects, to animate Charts (if any are present), and to add Multimedia effects.

Cusztom Armmation EHE

Check to animate slide objects: Ok

[~

[ Text 2 Cancel
Preview

Order & Timing  EFfects |Chart Effects | Multimedia Settings|

—Enkry animation and sound —Inkroduce kexk

Fly j IFrn:um Top-Left j I.ﬁ.ll ak once j

F
Blinds j [ Grouped by Ilst vI
Box
| level h
Zheckerboard EvEl paragraphs
[ Craw I | enimate atbached shape
Dissolve
Flash Once | j J= \Iniceverse order
Peek
—Random Bars
Spiral
Split -




Figure 6. PowerPoint’'s Custom Animation dialog. The dropdown for Effects is open, showing many of
the available animation effects.

The AnimationSettings object stores all the objects, collections, and properties that pertain to animations.
The AnimationSettings object is stored in the AnimationSettings property of every Shape object. Shapes on
the SlideMaster can be animated, too.

Setting the effect

The EntryEffect property sets the effect. This property is set to a numeric value, for which there are VBA
constants. The constants are set up to combine the two fields in the dialog box describing what is to happen
(shown in Figure 6 as "Fly") and any available options for that effect, such as where it might move from
(shown in Figure 6 as "From Top-Left"). Some of the constants for the effects are: ppEffectAppear (3844),
ppEffectFlashOnceFast (3841), ppEffectFlashOnceMedium (3842), ppEffectFlyFromLeft (3329),
ppEffectFlyFromTopLeft (3333), ppEffectRandom (513), ppEffectZzoomin (3345), and ppEffectZoomInSlightly
(3346). Use the Object Browser to look up the other 72 constants. See "Take me for a browse" in Chapter 2
for details on the Object Browser.

The following code sets the first shape on the slide to fly in from the left:

#DEFINE ppEffectFlyFromLeft 3329

oSlide.Shapes(1).AnimationSettings.EntryEffect = ppEffectFlyFromLeft
Modifying the effects

A very popular effect is to have a slide containing bulleted text, and have each of the bullets fly in from the left
as the user clicks the mouse. A modification to the "fly in from left" effect is to set which levels of bullets fly in
together. The TextLevelEffect tells which levels are animated. TextLevelEffect is set to a numeric
value—some of the constants are ppAnimateByFirstLevel (1), ppAnimateBySecondLevel (2),
ppAnimateByAllLevels (16), and ppAnimateLevelNone (0). Setting the effect to animate the first level sends
each first level bullet in separately, with all its subordinates. Setting the effect to animate the second level
sends each first and second level item in separately—any subordinates to the second level come in with their
parent.

The following code generates an example Tasmanian Traders marketing slide, showing a bulleted list with
two levels. The code sets the title and bullets to fly in from the left, one each time the mouse is clicked. The
code is set to fly each of the bullets in separately (at level 2). Modify the code for a second run by changing
the TextLevelEffect to ppAnimateByFirstLevel, to see that the first bullet flies in with its two subordinate
bullets. Figure 7 shows the resulting slide.

#DEFINE ppEffectFlyFromLeft 3329
#DEFINE ppLayoutText 2

#DEFINE ppAnimateByFirstLevel 1
#DEFINE ppAnimateBySecondLevel 2

* Add a slide--title and text objects on the layout



oSlide = oPresentation.Slides.Add(1, ppLayoutText)

* Put in the title text and set the effect

WITH oSlide.Shapes[1]

.TextFrame.TextRange.Text = "Tasmanian Traders"
AnimationSettings.EntryEffect = ppEffectFlyFromLeft

ENDWITH

* Put in some bullets (at 2 levels) and set the effect

m.BulletString = "Distributor of Fine Food Products" + CHR(13) +;
"Beverages" + CHR(13) +;

"Desserts" + CHR(13) +;

"International Shipping" + CHR(13) + ;

"Satisfaction Guaranteed"

WITH oSlide.Shapes[2]

.TextFrame.TextRange.Text = m.BulletString

* Indents "Beverages" and "Desserts"
.TextFrame.TextRange.Sentences|[2, 2].IndentLevel =2
AnimationSettings.EntryEffect = ppEffectFlyFromLeft
AnimationSettings.TextLevelEffect = ppAnimateBySecondLevel

* Run this again, but change the TextLevelEffect constant in the line above
*to ppAnimateByFirstLevel to see how setting it to first level brings
*in the two "level 2" bullets with their "level 1" parent.

ENDWITH

Tasmanian Traders

» Distributor of Fine Food Products

— Beverages
— Desserts

+ International Shipping
+ Satisfaction Guaranteed




Figure 7. An example of a bulleted list. Levels are used to format the bullets and text. Level 1 has a
circular bullet. Level 2 has a dash for a bullet, and has slightly smaller text.

Automatic timing

To eliminate manual mouse clicks and let the show run automatically, use the AdvanceMode property. There
are two constants: ppAdvanceOnClick (1) and ppAdvanceOnTime (2). When the AdvanceMode property is
set to ppAdvanceOnTime, it checks the number of seconds stored in the AdvanceTime property. Add the
following lines to the end of the previous example, and it automatically animates items one second apart.

#DEFINE ppAdvanceOnTime 2

* Change the Title shape's settings

WITH oSlide.Shapes[1].AnimationSettings
AdvanceMode = ppAdvanceOnTime
AdvanceTime =1

ENDWITH

* Change the bullet text shape's settings
WITH oSlide.Shapes[2].AnimationSettings
.AdvanceMode = ppAdvanceOnTime
AdvanceTime =1

ENDWITH

If there are multiple shapes, the order in which the shapes are animated is set through the AnimationOrder

property. By default, AnimationOrder is set to the creation order of the Shape (assuming, of course, that the
Shape is to be animated at all). By setting the AnimationOrder property, you can change the order in which

the objects are animated.

These are just a few of the many properties and methods available to animate shapes. See the Help file
under "AnimationSettings Object" for a comprehensive list.

Transitions

Fades, dissolves, wipes; these are all various ways of transitioning between slides. Transitions can be
applied to the SlideMaster, which affects all slides, or just to a single slide. The transitions are stored in the
SlideShowTransition object. The SlideShowTransition object is similar to the AnimationSettings
object—transitioning to another slide is similar to transitioning a single object onto the screen.

The EntryEffect property is used to store the transition effect. It uses the same set of constants as the
AnimationSettings’ EntryEffect property. Not all constants for EntryEffects are available for transitions, though
(for example, ppFlylnFromLeft is only for animations).

Like AnimationSettings, the SlideShowTransition object has properties to advance automatically. The syntax
is different than AnimationSettings, though. The SlideShowTransition object has an AdvanceOnTime logical



property. The AdvanceTime property stores the number of seconds (just as in the AnimationSettings object).

The following code adds a transition to the first slide to "cover down" and automatically advance after two
seconds. If this code were applied to the SlideMaster, it would affect every slide, but as written here, it only

affects the first slide.

#DEFINE ppEffectCoverDown 1284

WITH oPresentation.Slides[1].SlideShowTransition
.EntryEffect = ppEffectCoverDown
AdvanceOnTime = .T.

AdvanceTime = 2

ENDWITH

Taking action

PowerPoint allows specific actions to be taken when the mouse is moved over or clicked on a shape. Actions
include jumping to a specific slide in the slide show, running another slide show, running a separate program,
playing a sound, as well as a few others. Figure 8 shows PowerPoint’s interactive Action Settings dialog,

which lists the possible actions.

Action Settings |

Mouse Click | Mouse Orver I

— Ackion on click
" Mone
% Hyperlink to:

8 Fun program:

I Browse, . |

£ R IiEierer

| [
=) Shject action:

| 5

¥ Play sound:
ICash Regisker j

[ Highlight click

| (a4 I Cancel |

Figure 8. PowerPoint’s Action Settings dialog. Action settings define the action taken on mouse overs
and mouse clicks.

The ActionSettings collection stores these actions. The collection contains two ActionSettings objects: one for



a mouse click and one for a mouse over. The indices for the collections are ppMouseClick (1) and
ppMouseOver (2).

The Action property is the property that controls the action. Set the Action property to one of the constants
listed in Table 3.

Table 3. Where the action is. Set the Action property to determine the action taken when a user clicks
on a shape.

Constant Value Constant Value
ppActionNone 0 ppActionHyperlink 7
ppActionNextSlide 1 ppActionRunMacro 8
ppActionPreviousSlide 2 ppActionRunProgram 9
ppActionFirstSlide 3 ppActionNamedSlideShow 10
ppActionLastSlide 4 ppActionOLEVerb 11
ppActionLastSlideViewed 5 ppActionPlay 12
ppActionEndShow 6

The following code adds an arrow shape in the lower right corner of a slide, and sets its Action property to
move to the previous slide.

#DEFINE msoShapeRightArrow 33

#DEFINE ppMouseClick 1

#DEFINE ppActionPreviousSlide 2

oShape = oSlide.Shapes.AddShape(msoShapeRightArrow, 600, 450, 50, 50)
oShape.ActionSettings[ppMouseClick].Action = ppActionPreviousSlide

PowerPoint has a feature called Action Buttons, which are a series of predefined buttons. These buttons

have a consistent look, and they help the presentation designer maintain a consistent look and feel. When
entered interactively in PowerPoint, the dialog box comes up with the Action defaults for the type of button



selected. For example, placing the button with the End picture on it sets the Action default to jump to the end
of the slide show. When these buttons are added in code (Automation or VBA macros), no default Action is
specified—you must specify it explicitly using code like that shown previously.

The ActionSettings collection has additional properties to support other kinds of Actions. To enter a hyperlink,
first set the Action property to ppActionHyperlink, then set the properties of the Hyperlink object. To create a
hot link, set the Address property of the Hyperlink object, which stores the URL. Here’s a code sample that
adds a shape and attaches a hyperlink to a URL.

#DEFINE msoShapeRectangle 1

#DEFINE ppMouseClick 1

#DEFINE ppActionHyperlink 7

oShape = oSlide.Shapes.AddShape(msoShapeRectangle, 300, 200, 150, 100)
WITH oShape.ActionSettings[ppMouseClick]

Action = ppActionHyperlink

.Hyperlink.Address = "http://www.hentzenwerke.com"

ENDWITH

You can even run any program, including compiled FoxPro programs, from a mouse click or mouse
over. This is accomplished through the Run method. Pass it the fully qualified program name.

#DEFINE msoShapeRectangle 1

#DEFINE ppMouseClick 1

oShape = oSlide.Shapes.AddShape(msoShapeRectangle, 300, 200, 150, 100)
oShape.ActionSettings[ppMouseClick].Run =;

"C:\Program Files\Microsoft Office\Office\WINWORD.EXE"

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Multimedia

In this world of high-tech movies and video games, multimedia in business presentations is almost expected.
Multimedia has the power to enhance a presentation, making it more interesting to watch and easier for the
viewer to retain what was presented. However, there’s a fine line between "very interesting" and "very
distracting"—again, we listen to the maxim "less is more."

While you are developing automated presentations, be sure that your program can handle scaling to the wide
variety of hardware available for presentations. Even today, not all computers have good sound systems (or
speakers that are decent enough to project to the whole room full of attendees), high-powered graphics
cards, and lots of RAM and processor to allow the presentation to be successful. Ensure that your users
have an alternative to awesome multimedia displays—if the presentation computer can’t handle multimedia,
the "incredibly awesome" presentation quickly is perceived as "incredibly awful."

Sounding off

Sounds are managed through the SoundEffect object. The ActionSettings, AnimationSettings, and
SlideShowTransition objects (discussed earlier in this chapter) each have a SoundEffect property to access
the SoundEffect object.

There are a number of sound effects available in PowerPoint without using separate sound files. These
built-in sounds are accessed using the names shown in any of the PowerPoint sound effect dropdown boxes.
Figure 9 shows the Play sound dropdown on the Action Settings dialog.

Action Settings EH |

Mause Click. | Mause Over I

— Ackion an click,
i Mone
™ Hyperlink ta:

[ et Slide =

i Run progran:

I = |
) R mach
| [

0 Dbject ackion;

| i

¥ Play sound:

[Ma Sound] j
r [Mo Sound] -

Stn:nE Presious Sound —
Breaking Glass u
Camera b
————_ash Register
hirme
Clapping
Drive By hl




Figure 9. PowerPoint’s Action Settings dialog, showing the built-in sound effects.

Set the Name property to the text string corresponding to the sound you wish to use. This is an exception to
the long list of numeric constants usually used by VBA! The list of options are: Applause, Breaking Glass,
Camera, Cash Register, Chime, Clapping, Drive By, Drum Roll, Explosion, Gun Shot, Laser, Ricochet,
Screeching Brakes, Slide Projector, Typewriter, and Whoosh.

#DEFINE ppMouseClick 1

oShape.ActionSettings[ppMouseClick].SoundEffect.Name = "Slide Projector"

Setting the Name property automatically sets the Type property to ppSoundFile (2). To turn off the sound, set
the Type property to ppSoundNone (0). The constant ppStopPrevious (1) stops any sound currently being
played.

To specify a WAV file to play, use the ImportFromFile method to both link to the WAV file and set the object
to play it. Pass the fully qualified WAV filename. Once you have imported the WAV file, it is added to the list
of sounds available so it can be referenced by other objects (by its filename without the path), just like the
built-in sounds. The following lines of code import the WAV file, set the shape to play it when clicked, and
then use the imported file by its name to set the same sound to play on the slide show transition.

#DEFINE ppMouseClick 1
SoundFile = GETENV("WINDIR") + "\Media\Chord . WAV"
oShape.ActionSettings[ppMouseClick].SoundEffect.ImportFromFile(SoundFile)

oSlide.SlideShowTransition.SoundEffect.Name = "CHORD.WAV"

The SoundEffect object has a Play method, which plays the sound on demand. Use the Play method only
when you want the sound to play while your code is running; the use of the Play method does not affect
whether sounds play in the slide show. It plays the sound set for the specified object:

oSlide.SlideShowTransition.SoundEffect.Play()

This line plays whatever sound is set in the slide’s SlideShowTransition object.

Motion

To add video clips, you use the Shapes collection’s AddMediaObject method. As Chapter 10, "PowerPoint
Basics," points out, while AutoLayouts exist with placeholders for OLE objects, they cannot be used with
Automation or macros.

The AddMediaObject method takes up to five parameters. The first is the filename, and is not optional. Next
are the Left and Top. These are optional; the default is zero for both. The last two, Width and Height, are also
optional, and default to the width and height of the object. The following line of code shows how to add one of
FoxPro’s sample AVI files (it is a spinning globe, not a fox, as the name seems to indicate).

oShape = oSlide.Shapes.AddMediaObject( ;

_SAMPLES + "Solution\Forms\Fox.AVI", 240, 156)



This adds the AVI file roughly centered in the slide.

sort

’t"alﬂﬂ@ There wasn’t any magic involved in finding the Left and Top parameters. It was
done interactively. Using the FoxPro Command Window, we opened an instance of
PowerPoint and added a new presentation with a blank slide. Then we issued the preceding
command, leaving out the Left and Top parameters, which placed the image in the upper left
corner. Activating PowerPoint, we moved the image using the mouse to the location we
wanted. Back in FoxPro’s Command Window, we asked PowerPoint for the Top and Left
properties, and typed the results into our code:

? oShape.Left

? oShape.Top

It's important to remember to let the tools do the work for you. FoxPro’s object references
persist until the variable is released, or the object in PowerPoint is unavailable (whether the
presentation is closed or the object itself is deleted). Setting a reference to an object in
FoxPro, switching to PowerPoint to interactively manipulate the PowerPoint objects, then
guerying the properties from FoxPro is a very powerful way to quickly determine the desired
properties of the PowerPoint objects.

Adding the media clip with AddMediaObiject sets it to play when the user clicks on it during the presentation.
The AnimationSettings and ActionSettings objects change the behavior, setting it to play when the slide is
selected, to continuously play while the slide is viewed, or to play when the mouse is moved over it. The
ActionSettings object, which pertains to mouse clicks and movement, has no additional properties for
multimedia (see the section "Taking action” earlier in this chapter). The AnimationSettings object, however,
does have a number of properties relating to multimedia.

Figure 10 shows the Custom Animation dialog box, with the Multimedia Settings tab selected. This tab sets
the properties of the AnimationSettings’ PlaySettings object. The PlaySettings object contains a number of
properties that determine how the media clip plays during a slideshow. The check box labeled "Play using
animation order" corresponds to the logical PlayOnEntry property. When PlayOnEntry is true, it plays the
media clip when the slide is displayed (based on the AnimationSettings object’s AnimationOrder property).
PlayOnEntry also respects the other AnimationSettings properties, such as AdvanceMode and
AdvanceTime—if other objects that are higher in the order need mouse clicks to animate, then those lower in
the order aren’t animated until the mouse clicks force the preceding animations to happen. Set PlayOnEntry
to false to ensure that the user must animate it manually.

The two radio buttons that set the "While playing" action correspond to the PauseAnimation property. When
set to true (when the radio button reads "Pause slide show"), other automatic features of the slide show wait
until the video clip has finished playing. When set to false, the other automatic features are played at the
same time. This can be useful if you want several animated GIFs to play simultaneously. Set
PauseAnimation to true when you only have one object to play, and do not want the slide show to advance
before the object completes its play.



On the Custom Animation dialog, the Multimedia Settings tab has a "More Options" button, which
corresponds to more animation properties. The check boxes correspond to the LoopUntilStopped and
RewindMovie properties. To loop the animation until the user selects another action (or another action is
automatically scheduled to run), set the LoopUntilStopped property to true. Setting it to false runs it once. The
RewindMovie property controls whether the movie returns the view to the first frame when finished (true) or

whether the movie stays on the last frame (false).

Custom Animation

HE|

Check ko animate slide objects:

o4

Order & Timing | Effects | Chart Effects  Multimedia Settings

V¥ Play using animation order!

k.

Cancel

Preview

i il

Mare Options. .. |

While plaving: % Pause slide show

™ Continue slide show

Drjech achion;

Stop playingl £ ) Shier curtent slide

£ ey I E e [ Hide while nat playing

Jid

Figure 10. Multimedia Custom Animation settings. The Multimedia Settings tab shows the properties

that are available to media clips.

A common scenario is to play the video continuously when the slide is selected. The following code adds the

video clip object and sets the appropriate properties:

oShape = oSlide.Shapes.AddMediaObject( ;
_SAMPLES + "\Solution\Forms\Fox.AVI", 240, 156)
WITH oShape.AnimationSettings.PlaySettings
.PlayOnEntry = .T.

.LoopUntilStopped = .T.

ENDWITH

Kotk

’t"alﬂﬂ@ Many properties, such as PlayOnEntry, can be set with a logical value (.T. or
.F.) or a numeric value (1 or -1). However, when you read them, they will always be numeric.
This is a "feature” of how FoxPro’s logical values are translated to a numeric property; the
native numeric value will always be returned.



Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Adding notes

Notes can be entered for each slide. Notes are displayed in the bottom panel (in PowerPoint 2000), or printed
with a picture of the slide on the top and the notes below, one slide per page. The notes can be used as
speaker notes, or printed and passed out as handouts, with the notes annotating the slide images.

Explaining how to put notes on each slide actually is easier if we start by explaining the notes master. Figure
11 shows the notes master view in PowerPoint. Like the Placeholders collection for slides (discussed in
Chapter 10, "PowerPoint Basics"), the indices of the Placeholders collection make sense when we see them
in the notes master view: 1 is the header area, 2 is the date area, 3 is the SlideMaster object, 4 is the notes
body area, 5 is the footer area, and 6 is the number area (Microsoft didn’t provide constants for these, but
you can certainly define your own). Just as with the SlideMaster (see "Achieving consistency with Master
Slides" earlier in this chapter), these Placeholders can be formatted with color, fonts, and standardized text.
The NotesMaster object contains the properties that are accessed when printing the notes pages.

' deaders : ' adate MHme:
: Header area : Dake Area

Click to edit haster title style

= Click to edit Ilaster text styles
—Second lewvel
= Third lewel
= Fourtd [ewel
u Rt lewal

o e Inmimi u

Click: to ecdit Master test styles ;
Second lewel :

§ Third lewel

: Fonrity Jemel .

Fifth Lewel 5




lmmmmmmemcecccscec;ec;eece e —— e m-mmmmmmmmemmemmmmemmmmmmmmsmmmme———————

Figure 11. The notes master page, as seen in PowerPoint. The Notes Placeholders are ordered in a
left to right, top to bottom order.

Notes can be added to each slide using the NotesPage object. The NotesPage object contains a collection of
two Shape objects: one for the slide picture, and the second for the text. When viewing the notes master,
these two shapes change on each page, while the others remain constant (the slide number can be set to a
field that calculates the slide number). The slide image has an index of 1, while the text has an index of 2
(again, there are no Microsoft-issue constants). The following lines of code add sample speaker note text for
slides 1 and 2:

WITH oPresentation

.Slides[1].NotesPage.Shapes.Placeholders[2].TextFrame.TextRange.Text = ;
"Remember to welcome the audience.” + CHR(13) + "Introduce the company."
.Slides[2].NotesPage.Shapes.Placeholders[2].TextFrame.TextRange.Text = ;
"Explain the marketing slogan."

ENDWITH

You can format notes just like any other text. See the section "Adding and formatting text" in Chapter 10, as
well as "Standardizing the appearance of text" earlier in this chapter, for additional information on formatting
the text.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Putting it all together

In Chapter 10, "PowerPoint Basics," we put together a little slide show demonstrating the topics we covered.
In this chapter, we use the same basic slides, and add many of the additional features we covered. Listing 1
(PPTSample2.PRG in the Developer Download files available at www.hentzenwerke.com) shows the code,
while Figure 12, Figure 13, and Figure 14 show the finished slides. Note that with the addition of color, sound,
and animation, this code must be run to see the presentation. Black and white screen shots cannot show all
the features.

Listing 1. A sample presentation for Tasmanian Traders.

CLOSE DATA

#DEFINE ppTitleStyle 2

#DEFINE ppBodyStyle 3

#DEFINE ppLayoutTitle 1
#DEFINE ppLayoutText 2
#DEFINE ppEffectCoverDown 1284
#DEFINE ppEffectDissolve 1537
#DEFINE ppEffectAppear 3844
#DEFINE ppAnimateByFirstLevel 1
#DEFINE ppAdvanceOnTime 2
#DEFINE msoGradientHorizontal 1
#DEFINE ppBulletArabicPeriod 3
#DEFINE msoLineThickBetweenThin 5
#DEFINE autoln2Pts 72

#DEFINE rgbDarkBlue RGB( 0, 0, 138)
#DEFINE rgbMediumBlue RGB( 96, 96, 204)
#DEFINE rgbPaleGray RGB(192, 192, 192)
#DEFINE rgbYellow RGB(255, 255, 0)
#DEFINE rgbBurgundy RGB(128, 0, 0)
#DEFINE rgbLineColor RGB(255, 255, 0)

SET PATH TO (_SAMPLES + "\TasTrade\Data") ADDITIVE

*kkkkkkkkkkkkkkkkk

* Set up the data

*kkkkkkkkkkkkkkkkk

OPEN DATABASE TasTrade

LogoFile = (_ SAMPLES + "\TasTrade\Bitmaps\TTradeSm.bmp")

USE Ordltems IN O
USE Products INO

* Select the top 5 selling items of all time
SELECT TOP 5

P.English_Name, ;

SUM(O.Unit_Price * O.Quantity) AS TotQuan ;
FROM Ordltems O, Products P ;

WHERE O.Product_ID = P.Product_ID ;
GROUP BY 1;

ORDER BY 2 DESC;

INTO CURSOR TopSellers

* Select the number of products
SELECT Count(*) ;

FROM Products ;

INTO ARRAY aProducts



* Clean out any existing references to servers.
* This prevents memory loss to leftover instances.
RELEASE ALL LIKE o*

* For demonstration purposes, make oPowerPoint and oPresentation
* available after this program executes.
PUBLIC oPowerPoint, oPresentation

* Open PowerPoint
oPowerPoint = CreateObject("PowerPoint.Application")
oPowerPoint.Visible = .T.

* Create the presentation
oPresentation = oPowerPoint.Presentations.Add()

SlideNum =1

Fokkkkkkkkkkkkkkkkk

* MASTER SLIDE

Fkkkkkkkkkkkkkkkkk

WITH oPresentation.SlideMaster

* Set the background to a gradient fill

WITH .Background.Fill

.ForeColor.RGB =rgbhMediumBlue
.BackColor.RGB = rgbPaleGray
.TwoColorGradient(msoGradientHorizontal, 1)
ENDWITH

* Set titles

WITH .TextStyles[ppTitleStyle].Levels[1].Font
.Name ="Arial"

.Shadow =.T.

.Color.RGB =rgbDarkBlue

ENDWITH

* Set Body Style levels

WITH .TextStyles[ppBodyStyle]

WITH .Levels[1]

WITH .Font

.Name ="Arial"

.Bold =.T.

.Color.RGB = rghBurgundy

.Size =20

ENDWITH

WITH .ParagraphFormat.Bullet

* Set bullet character to a dot (use 149 if using PowerPoint 97)
.Character = 8226

.Visible = .F. && Don't show the bullet!
ENDWITH

ENDWITH

WITH .Levels[2]

WITH .Font

.Name ="Arial"

.Color.RGB =rgbDarkBlue

.Size =20

ENDWITH

* Set bullet character to a dot (use 149 if using PowerPoint 97)
.ParagraphFormat.Bullet.Character = 8226

ENDWITH



ENDWITH

* Add the logo.
.Shapes.AddPicture(LogoFile, .F., .T.,;
8.5 * autoIn2Pts, 6.0 * autoln2Pts)

* PowerPoint 97 users: the last two parameters,
* height and width, are not optional. Use this

* code instead:

*.Shapes.AddPicture(LogoFile, .F., .T., ;

* 8.5 * autoIn2Pts, 6.0 * autoIn2Pts, ;

*1.0 * autoIn2Pts, 1.0 * autoIn2Pts)

ENDWITH

Figure 12. The Tasmanian Traders sample title slide. The gradient fill background, title fonts and colors, and the logo on each
slide are done through the Master Slide.

Fokkkkkkkkkkkkkkkkk

*TITLE SLIDE

Fkkkkkkkkkkkkkkkkk

* Add the slide
oSlide = oPresentation.Slides.Add(SlideNum, ppLayoutTitle)

* Set the title text.
oSlide.Shapes[1].TextFrame.TextRange.Text = "Tasmanian Traders"

* Set the subtitle text
oSlide.Shapes[2].TextFrame.TextRange.Text = "Welcomes you..."

WITH oSlide.SlideShowTransition
.EntryEffect = ppEffectCoverDown
.AdvanceOnTime = .T.
.AdvanceTime =2

ENDWITH

SlideNum = SlideNum + 1



Figure 13. The Tasmanian Traders sample second slide. As with the first slide, there is minimal
formatting in the code, because the SlideMaster takes care of the majority of the formatting.

kkkkkkkkkkkkhkhkkx

* SECOND SLIDE

kkkkkkkkkkkkhkhkkx

* Add the slide
oSlide = oPresentation.Slides.Add(SlideNum, ppLayoutTitle)

* Bring the slide to the front
oSlide.Select()

* PowerPoint 97 users: oSlide.Select() will
* generate an error. Use this line instead:
* oPresentation.ActiveWindow.View.GoToSlide(2)

* Set the text of the title
oSlide.Shapes[1].TextFrame.TextRange.Text = "Tasmanian Traders " + CHR(13) + ;
"has what you need"

* Move the title up about half an inch
WITH oSlide.Shapes[1]

.Top =.Top - (.5 * autoIn2Pts)
ENDWITH

* Add a line half an inch below the title that is centered and 6" long
LineTop = oSlide.Shapes[1].Top + oSlide.Shapes[1].Height +;

(.5 * autolIn2Pts)

LineLeft = 2 * autoIn2Pts

LineEnd = LinelLeft + (6.0 * autoIn2Pts)



oLine = oSlide.Shapes.AddLine(LineLeft, LineTop, LineEnd, LineTop)

* Format the line to be a thick line
* with two thin lines on either side
WITH oLine.Line

.ForeColor.RGB =rgbLineColor
.Style = msoLineThickBetweenThin
.Weight =8

ENDWITH

* Set the text of the subtitle, and change the number to bold and blue
WITH oSlide.Shapes[2].TextFrame.TextRange

.Text = "With a selection of " + ALLTRIM(STR(aProducts[1])) +;

" items, you're sure to be pleased."

.Words[5].Font.Color = rgbDarkBlue

ENDWITH

WITH oSlide.SlideShowTransition
.EntryEffect = ppEffectDissolve
.AdvanceOnTime = .T.
.AdvanceTime =5

ENDWITH

SlideNum = SlideNum + 1

Figure 14. The Tasmanian Traders sample third slide. Again, the bulk of the formatting is done in the
SlideMaster. Fonts, colors, and backgrounds are extremely consistent, and your code is easy to
maintain.

*hkkkkkkkkkkkkkkkkhkhkk

*TOP SELLERS SLIDE



Fkkkkkkkkkkkkkkkkkkkkkk

* Add the slide
oSlide = oPresentation.Slides.Add(SlideNum, ppLayoutText)

* Bring the slide to the front
oSlide.Select()

* PowerPoint 97 users: oSlide.Select() will
* generate an error. Use this line instead:
* oPresentation.ActiveWindow.View.GoToSlide(3)

* Insert the title (note the use of the Title object, instead of

* an enumerated shape object).
oSlide.Shapes.Title.TextFrame.TextRange.Text = "Tasmanian Traders" + ;
CHR(13) + "Top Sellers"

* Build the string to use for the top 5 sellers.

* Use a CR between each item to make each a separate bullet.
BulletString =""

SELECT TopSellers

SCAN

BulletString = BulletString +;
TRIM(TopSellers.English_Name) + CHR(13) + "$" +;
ALLTRIM(TRANSFORM(TopSellers.TotQuan, "99,999,999")) +;
CHR(13)

ENDSCAN

* Add the bullet string to the text frame.
WITH oSlide.Shapes[2]

WITH .TextFrame.TextRange

.Text = BulletString

* Indent all the sales quotas
FORI=1TO5

.Lines[I*2, 1].IndentLevel = 2
ENDFOR

ENDWITH

* Move it to the right about 1.5"
.Left = .Left + (1.5 * autoIn2Pts)

* Each bullet (with subordinates) appears at 1 second intervals
WITH .AnimationSettings

.EntryEffect = ppEffectAppear

.TextLevelEffect = ppAnimateByFirstLevel

.AdvanceMode = ppAdvanceOnTime

AdvanceTime = 0.5

.SoundEffect.Name = "Whoosh"

ENDWITH

ENDWITH

oSlide.SlideShowTransition.EntryEffect = ppEffectDissolve

* Run the slideshow.
oPresentation.SlideShowSettings.Run()

This chapter explored the visual world of PowerPoint. We've covered many of the commonly used features of
PowerPoint. There is a lot more to PowerPoint, though, so don't hesitate to use that macro recorder, the
Object Browser, and the Help files to find those features that your application needs.



Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Chapter 12 - Automating Outlook

Imagine writing applications that send you e-mail when an error occurs or put important dates (like the one your check is due)
right onto the user’s calendar.

Outlook often reminds us of those infomercials on late night television—it slices, it dices, it juliennes. Outlook
does so many different things that it's hard to categorize. It's far more than just an e-mail client—in fact,
neither of us uses it that way habitually. But it's not just a calendar/scheduler or address book, either. In
many ways, Outlook is the replacement for the whole collection of items that most of us still keep on our

desks—the Rolodex®, datebook, pad of paper, telephone, and collection of Post-lts™. While we’re not ready
to throw any of them out quite yet, we do find ourselves relying on Outlook more and more (at least while the
computer is turned on).

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



The Outlook object model

Outlook’s object model is quite different from those of the other Office applications. That's because it grew up
in a different family and was adopted by Office. It's only with Office 2000 that you can use VBA to write
macros for Outlook, and there’s still no way to record a macro as there is in the other Office products. (This,
of course, makes figuring out the syntax for automating Outlook a lot harder. You can't just record a macro
and convert the code.)

Because of Outlook’s varied history, the examples in this chapter have been tested only with Outlook 2000.
They may well work with earlier versions, but we're making no promises on that front.

Like the other Office applications, Help has a live diagram of the object model. Figure 1 shows the main
page of the diagram.

As in the rest of Office (and many other servers), there’'s an Application object at the top that represents the
server itself. This is the object you instantiate with CreateObject()—we’ll look at that in the next section,
"Getting a handle on Outlook." As you'd expect, it has a Quit method to shut the application down. However,
there’s no Visible property, no Top and Left properties to indicate where the application is positioned, and no
StartupPath property to indicate where data is to be placed.

More striking, though, is that once you have the Application object in hand, there’s no object that jumps out at
you as clearly the key to the Outlook object model the way Document does in Word or Presentation does in
PowerPoint. That's because there is no one dominant object—the closest is probably MAPIFolder. Each
MAPIFolder represents one of Outlook’s folders, so there’'s a MAPIFolder object for the Calendar, another for
Contacts, a third for the Inbox, and so on. MAPIFolder objects are gathered into a Folders collection. To
complicate (or is it confuse?) matters, MAPIFolders can be nested. In fact, the Folders collection containing
the key Outlook objects is contained in another MAPIFolder object called "Personal Folders." That
MAPIFolder is contained in yet another Folders collection, which is contained in a NameSpace object. (Don't
worry if this seems complicated. We'll dig into it with examples later on.)

Microsoft Outlook Objects

See Alsg
| Application
—| HameSpace | —{ Aszsistant |
— PropertyPages [PropertyPage) | — COMAddins [COMAddin) |
{ Synclbjects [Synclbject] | —i Explorers (Explorer] |
ﬂ Addreszlists [Addresslist) | Selection [fawx] |
AddresszEntriez [AddressEntry] | MAHF Folder |
ﬂ Folders [MAFIFolder] | CommandBars [CommandBar) |
ltems [#am] | Panes [Fare) |
Links [Link) | L{nuuuukﬂ arPane |
UszerProperties [UzerProperty] | DutlookB arStorage |
FormDescription | L{Dutlunkﬂ arGroups [ OutlookB ar Group] |
S S R 1 |_In..n....|.n...c|...,.-n..|.. (el D e Chnebrat 1]




[FrAtuns prang I [[LFIL LI LI JE I AL S | LA LG I AL |
Attachments [Attachment] | L{Inspedurs [Inspector] |
Recipients [Becpient] | ﬂ WordEditor |
BecurrencePattern | ﬂ HTMLEditor |
L{ Exceptions [Ex ception] | ﬂ Pages [ Paz=) |
ﬂ PropertyPages [PropertyPage] | ﬂ CommandBars [CommandBar] |
—|Languageﬁettings | —|ﬁ‘m |

ﬂAnsw erWizard |

Figure 1. Outlook object model. Unlike the other Office objects, there’s no obvious candidate for the
key object below Application.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Getting a handle on Outlook

Although we use the same commands to start Outlook as the other Office applications, this is yet another
area where things are different as much as they’re the same. Again, VFP’s CreateObject() function is the key
to starting the Outlook Automation server. However, unlike the others, if Outlook is already open, this
command:

oOutlook = CreateObject("Outlook.Application™)

attaches to the running Outlook instance rather than starting a new one. It's as if you used GetObiject(), not
CreateObject(). In fact, you get the same result by issuing:

oOutlook = GetObject(,"Outlook.Application™)

If Outlook isn’t already running, then calling CreateObject() creates an instance, as you'd expect. When you
open Outlook this way, you run into yet another difference. As noted previously, Outlook’s Application object
doesn’t have a Visible property. In order to make Outlook visible, so you can see what you're doing, you have
to create and display an Explorer object, Outlook’s face to the world. Here’s the code:

#DEFINE olFolderDisplayNormal 0
oNameSpace = oOutlook.GetNameSpace("MAPI")
oExplorer = oOutlook.Explorers.Add(oNameSpace.Folders[1],0lFolderDisplayNormal)

oExplorer.Activate()

The first line (after the #DEFINE) is likely to be the first line you issue anytime you start up a new instance of
Outlook. It creates a NameSpace object within Outlook. NameSpace is at the top of the object hierarchy and
is needed to climb down to other objects. (Actually, you can climb down by way of an Explorer, but for
Automation work, you'll typically be working behind the scenes and won't need an Explorer.)

The next line creates an Explorer, telling it to display the first folder in the NameSpace created by the
previous line. Then, the last line tells Outlook to show the newly created Explorer object. That’s the line that's
really equivalent to a Visible = .T. line. However, there’s no corresponding Deactivate method. Once you
activate the Explorer, the only way to make it go away is to call its Close method, which not only hides it, but
destroys it, as well.

Once you have Outlook up and running, what can you do with it? That's what we’re about to find out.

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Accessing Outlook’s contents

Look at the example in the previous section again. The first real line of code is fairly mysterious. It calls a
method of the Application object named GetNameSpace, passing it a parameter called "MAPL" What's a
NameSpace, and why does it want a "MAP|"?

This is one of those questions to which the correct answer is "because." If you look up the NameSpace
object in the Outlook VBA Help file, the first sentence says, "Represents an abstract root object for any data
source." Not very helpful, is it? Reading on, you find out that the only data source Outlook supports is "MAPI,"
which is the Mail Application Programming Interface and includes all the data stored in Outlook. Bottom
line—NameSpace is simply an object that provides a gateway to the rest of the Outlook data. Perhaps at
some point, Outlook’s designers imagined that they’d support a variety of data stores.

We’'re not sure why you have to actively call GetNameSpace to load the data instead of having it loaded
when Outlook starts up. But you do, so just get used to doing it automatically.

Once you get past that point, things get a little more interesting. The NameSpace object provides access to
the Folder objects that are the heart of Outlook. There are a couple of ways into those Folders. You can
simply climb down the hierarchy. NameSpace has a Folders collection that contains one or more items,
depending on your configuration. For a stand-alone user, the only item in the collection is "Personal Folders."
With Exchange Server available, the collection may also contain "Public Folders" and "Mailbox" items. Those
folders each have their own Folders collections that contain a folder for each of the individual applets within
Outlook. There are folders for Calendar, Tasks, Inbox, Outbox, Contacts, and so forth. You can access them,
like this, if you've saved the reference to the NameSpace object in oNameSpace, as shown previously:

oCalendar = oNameSpace.Folders[1].Folders["Calendar"]

olnbox = oNameSpace.Folders[1].Folders["Inbox"]
and so forth.

However, there’s a simpler way to get to the individual folders. NameSpace has a method, GetDefaultFolder,
to which you can pass an appropriate constant, and receive in return a reference to the specified folder.
Table 1 shows the constants for the 10 types of folders that Outlook supports.

Table 1. Outlook folders. These constants represent the 10 primary folder types in Outlook. Pass them to
GetDefaultFolder to access Outlook’s data.

Constant Value Constant Value

olFolderDeletedltems 3 olFolderContacts 10

olFolderOutbox 4 olFolderJournal 11




olFolderSentMail 5 olFolderNotes 12

olFolderinbox 6 olFolderTasks 13

olFolderCalendar 9 olFolderDrafts 16

To use this approach, call the method like this:

#DEFINE olFolderTasks 13
#DEFINE olFolderContacts 10
oTasks = oNameSpace.GetDefaultFolder( olFolderTasks )

oContacts = oNameSpace.GetDefaultFolder( olFolderContacts )

Once you have the folder for one of the Outlook applets, you can explore its contents. Each folder contains a
collection of items, but the details vary significantly. We'll look at the ones we think you're most likely to want
to automate here, but we won't explore all 10 in depth. If you need to work with the others, the Outlook VBA
Help file should tell you what you need to know. (Actually, once you get the hang of it, looking up the specific
properties isn’t that big a deal.)

Once you reach the folder for a given Outlook applet, you still have to climb down through an Items collection
to reach the actual contents. For example, to find out how many tasks are in the Tasks folder, you'd check:

? oTasks.ltems.Count

New items of each type are created using Application’s Createltem method. You pass it a constant (or the
actual value) for the kind of item you want to create, and it adds a member to the appropriate folder. Table 2
shows the constants to pass to Createltem.

Table 2. Creating new items. The Createltem method adds data. Pass one of these constants to create an
item of the specified type.

Constant Value Constant Value
olMailltem 0 olJournalltem 4
olAppointmentltem 1 olNoteltem 5

olContactltem 2 olPostltem 6




olTaskltem 3 olDistributionListltem 7

For example, to create a new appointment, issue this call:
0Appt = oOutlook.Createltem( olAppointmentitem )

Then, you can modify the properties of the new appointment such as Start, End, AllDayEvent, and so forth to
properly enter it into the Calendar. Other types of items are handled similarly.

Once you've filled in the properties of the item, call its Save method to save it in the appropriate collection.
Anytime you change a property, you need to call Save again to have your changes saved.

You can remove an item by calling its Delete method. This method moves the item to the Deletedltems
folder, from which it can be resurrected, if necessary, but will be cleaned up, in due course. (The
Deletedltems folder can be set to be emptied automatically on exit or, like the Recycle Bin, can be emptied
manually.)

Copyright 2000 by Tamar E. Granor and Della Martin All Rights Reserved



Sending e-mail

The first thing everyone seems to want to automate with Outlook is sending e-mail messages, whether it's to
send bug reports to developers, saturate potential customers with solicitations, or just communicate between
different sites running an application.

The key object for sending and receiving messages is Mailltem, which represents a single mail message. To
create a new Mailltem object, call Createltem, passing olMailltem (0) as the parameter:

#DEFINE olMailltem 0

oMailltem = oOutlook.Createltem( olMailltem )
Table 3 lists key properties of Mailltem.

This code creates a simple message to one person:

#DEFINE CR CHR(13)

WITH oMailltem

.Subject = "Meeting next week"

.Body ="Just confirming our meeting on Tuesday at 3." + CR +;
"Please bring ideas, as well as your notes from last year's event."
.Recipients.Add("Bill Gates")

ENDWITH

Table 3. What's in a message? Here are the properties of Mailltem you’re most likely to work with.

Property Type Description

Subject Character The description of the message. This can be used as an index into the
Items collection.

Body Character The content of the message.

Recipients Object Reference to a collection of Recipient objects, with one entry for each
person to receive this message. (See the next section, "Recipients and
contacts.")

To Character A semi-colon-separated list of recipients. Although you can specify the




list of recipients by filling in this property, it's not recommended. Use
.Recipients.Add() instead. (See the next section, "Recipients and
contacts.")

CcC

Character

A semi-colon-separated list of people receiving copies of the message
(the cc: list). The caution in the To property applies to CC as well.

BCC

Character

A semi-colon-separated list of people receiving blind copies of the
message (the bcc: list). The caution in the To property applies to BCC
as well.

Importance

Numeric

The priority of the message (corresponding to the Importance field in the
Options dialog). Uses these constants:

ollmportanceLow

0
olimportanceNormal
1

olimportanceHigh

2

Sensitivity

Numeric

The privacy level of the message (corresponding to the Sensitivity field
in the Options dialog). Uses these constants:

olNormal
0

olPersonal

olPrivate

olConfidential

Attachments

Object

Reference to a collection of Attachment objects, with one for each
attached file. (See "Attaching files" later in this chapter.)




As with other items, once you've filled in the properties, you can call the Save method to store the new
message. However, the new message isn’t automatically stored in the Outbox. The folder where unsent
messages are stored is determined by a setting in Outlook’s Options dialog. Figure 2 shows the Advanced
E-mail Options dialog, where users make this choice. This dialog is accessed by choosing Tools|Options
from the menu, then choosing E-mail Options on the Preference tab, then choosing Advanced E-mail Options
on the dialog that appears.

Saving a message isn’'t enough to have it sent to the recipients, though. You have to call the Send method,
as well. (In fact, you can just call Send and skip Save altogether.) That method, as its name suggests, sends
the message immediately, routing it to the Sent Messages folder.

oMailltem.Save()

oMailltem.Send()

Advanced E-mail Options |

—Save messages

Save unsent items in:

V' autnSave unsent every: |3 LIRS

™ In folders ather than the Inbox, save replies with ariginal message

¥ Save forwarded messages

—wwhen new items arrive
M Play a sound

V¥ Eriefly change the mouse cursar

—wwhen sending a message
Set impaortance: INDr mal ;I
~l

Set sensitivity: INDr mal

W aliow comma as address separator
¥ automatic name checking

V¥ Delete meeting request from Inbax when responding

04 Cancel

Figure 2. Specifying e-mail options. This dialog lets you specify where the Save method stores new
mail messages. They can be placed in any of several folders, including Drafts and Outbox.

If Outlook isn’t connected to the mail server, a send error occurs (though you don’t get any indication
of the error in VFP), and the message lands in the Outbox, ready to be sent the next time there’s a
connection. (Actually, it may land in your Drafts folder—see the next paragraph for the reason why.)
However, at that time, depending on Outlook’s configuration, the message isn’'t necessarily sent
automatically—the user may have to take some action to start the process of sending and receiving
messages. (None of this really has much to do with Outlook itself so much as the way Outlook is
configured to send and receive mail, and none of it affects the code you write in VFP to send the

mail.)



If you've been following along with the examples and, for some reason, don’t have Bill Gates in your
Outlook address book, that Send command resulted in another error, one that was displayed in VFP:
"OLE IDispatch exception code 4096 from Microsoft Outlook: Outlook does not recognize one or
more names." (Of course, if you do have Bill Gates in your Outlook address book, you probably
shouldn’t have sent the message, unless you happen to have a meeting with him scheduled for
Tuesday at 3.) The second part of the message is actually pretty clear. It means that Outlook was
asked to send a message to someone, but doesn’t have that person in its Contacts folder.
Fortunately, there's a way to prevent this error before it occurs. The next section shows you how.

Recipients and contacts

As Table 3 indicates, a message can be sent to more than one person, and any given person can be
on any of three lists: the main list, the CC ("carbon copy") list, or the BCC ("blind carbon copy") list.
All of them are managed through a single collection called Recipients, however. The Type property of
the Recipient object indicates, for each recipient, to which list he or she belongs. The choices are
olTo (1), olCC (2), and olBCC (3).

To add a person to the list of recipients for a message, use the Add method of the Recipients
collection. It expects a single parameter, the name or e-mail address of the person to be added.
Outlook has a lot of smarts built in for matching this information up to the Contacts folder. Given half
a chance, it'll do the job right. The Resolve and ResolveAll methods are used for this process.
Resolve belongs to the Recipient object, while ResolveAll is a collection method. Both attempt to
match the current name/address information with the Contacts folder and fill in the Name and
Address properties, as well as create an AddressEntry object for the Recipient when a match is
found. Resolve can work with as little as a partial first or last name, if it's unique.

#DEFINE olMailltem O

#DEFINE CR CHR(13)

#DEFINE olCC 2

oMailltem = oOutlook.Createltem( olMaill